security: use mmap_min_addr indepedently of security models
[pandora-kernel.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19
20 /* Boot-time LSM user choice */
21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
22
23 /* things that live in capability.c */
24 extern struct security_operations default_security_ops;
25 extern void security_fixup_ops(struct security_operations *ops);
26
27 struct security_operations *security_ops;       /* Initialized to NULL */
28
29 static inline int verify(struct security_operations *ops)
30 {
31         /* verify the security_operations structure exists */
32         if (!ops)
33                 return -EINVAL;
34         security_fixup_ops(ops);
35         return 0;
36 }
37
38 static void __init do_security_initcalls(void)
39 {
40         initcall_t *call;
41         call = __security_initcall_start;
42         while (call < __security_initcall_end) {
43                 (*call) ();
44                 call++;
45         }
46 }
47
48 /**
49  * security_init - initializes the security framework
50  *
51  * This should be called early in the kernel initialization sequence.
52  */
53 int __init security_init(void)
54 {
55         printk(KERN_INFO "Security Framework initialized\n");
56
57         security_fixup_ops(&default_security_ops);
58         security_ops = &default_security_ops;
59         do_security_initcalls();
60
61         return 0;
62 }
63
64 /* Save user chosen LSM */
65 static int __init choose_lsm(char *str)
66 {
67         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
68         return 1;
69 }
70 __setup("security=", choose_lsm);
71
72 /**
73  * security_module_enable - Load given security module on boot ?
74  * @ops: a pointer to the struct security_operations that is to be checked.
75  *
76  * Each LSM must pass this method before registering its own operations
77  * to avoid security registration races. This method may also be used
78  * to check if your LSM is currently loaded during kernel initialization.
79  *
80  * Return true if:
81  *      -The passed LSM is the one chosen by user at boot time,
82  *      -or user didsn't specify a specific LSM and we're the first to ask
83  *       for registeration permissoin,
84  *      -or the passed LSM is currently loaded.
85  * Otherwise, return false.
86  */
87 int __init security_module_enable(struct security_operations *ops)
88 {
89         if (!*chosen_lsm)
90                 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
91         else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
92                 return 0;
93
94         return 1;
95 }
96
97 /**
98  * register_security - registers a security framework with the kernel
99  * @ops: a pointer to the struct security_options that is to be registered
100  *
101  * This function is to allow a security module to register itself with the
102  * kernel security subsystem.  Some rudimentary checking is done on the @ops
103  * value passed to this function. You'll need to check first if your LSM
104  * is allowed to register its @ops by calling security_module_enable(@ops).
105  *
106  * If there is already a security module registered with the kernel,
107  * an error will be returned.  Otherwise 0 is returned on success.
108  */
109 int register_security(struct security_operations *ops)
110 {
111         if (verify(ops)) {
112                 printk(KERN_DEBUG "%s could not verify "
113                        "security_operations structure.\n", __func__);
114                 return -EINVAL;
115         }
116
117         if (security_ops != &default_security_ops)
118                 return -EAGAIN;
119
120         security_ops = ops;
121
122         return 0;
123 }
124
125 /* Security operations */
126
127 int security_ptrace_may_access(struct task_struct *child, unsigned int mode)
128 {
129         return security_ops->ptrace_may_access(child, mode);
130 }
131
132 int security_ptrace_traceme(struct task_struct *parent)
133 {
134         return security_ops->ptrace_traceme(parent);
135 }
136
137 int security_capget(struct task_struct *target,
138                      kernel_cap_t *effective,
139                      kernel_cap_t *inheritable,
140                      kernel_cap_t *permitted)
141 {
142         return security_ops->capget(target, effective, inheritable, permitted);
143 }
144
145 int security_capset_check(struct task_struct *target,
146                            kernel_cap_t *effective,
147                            kernel_cap_t *inheritable,
148                            kernel_cap_t *permitted)
149 {
150         return security_ops->capset_check(target, effective, inheritable, permitted);
151 }
152
153 void security_capset_set(struct task_struct *target,
154                           kernel_cap_t *effective,
155                           kernel_cap_t *inheritable,
156                           kernel_cap_t *permitted)
157 {
158         security_ops->capset_set(target, effective, inheritable, permitted);
159 }
160
161 int security_capable(struct task_struct *tsk, int cap)
162 {
163         return security_ops->capable(tsk, cap);
164 }
165
166 int security_acct(struct file *file)
167 {
168         return security_ops->acct(file);
169 }
170
171 int security_sysctl(struct ctl_table *table, int op)
172 {
173         return security_ops->sysctl(table, op);
174 }
175
176 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
177 {
178         return security_ops->quotactl(cmds, type, id, sb);
179 }
180
181 int security_quota_on(struct dentry *dentry)
182 {
183         return security_ops->quota_on(dentry);
184 }
185
186 int security_syslog(int type)
187 {
188         return security_ops->syslog(type);
189 }
190
191 int security_settime(struct timespec *ts, struct timezone *tz)
192 {
193         return security_ops->settime(ts, tz);
194 }
195
196 int security_vm_enough_memory(long pages)
197 {
198         return security_ops->vm_enough_memory(current->mm, pages);
199 }
200
201 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
202 {
203         return security_ops->vm_enough_memory(mm, pages);
204 }
205
206 int security_bprm_alloc(struct linux_binprm *bprm)
207 {
208         return security_ops->bprm_alloc_security(bprm);
209 }
210
211 void security_bprm_free(struct linux_binprm *bprm)
212 {
213         security_ops->bprm_free_security(bprm);
214 }
215
216 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
217 {
218         security_ops->bprm_apply_creds(bprm, unsafe);
219 }
220
221 void security_bprm_post_apply_creds(struct linux_binprm *bprm)
222 {
223         security_ops->bprm_post_apply_creds(bprm);
224 }
225
226 int security_bprm_set(struct linux_binprm *bprm)
227 {
228         return security_ops->bprm_set_security(bprm);
229 }
230
231 int security_bprm_check(struct linux_binprm *bprm)
232 {
233         return security_ops->bprm_check_security(bprm);
234 }
235
236 int security_bprm_secureexec(struct linux_binprm *bprm)
237 {
238         return security_ops->bprm_secureexec(bprm);
239 }
240
241 int security_sb_alloc(struct super_block *sb)
242 {
243         return security_ops->sb_alloc_security(sb);
244 }
245
246 void security_sb_free(struct super_block *sb)
247 {
248         security_ops->sb_free_security(sb);
249 }
250
251 int security_sb_copy_data(char *orig, char *copy)
252 {
253         return security_ops->sb_copy_data(orig, copy);
254 }
255 EXPORT_SYMBOL(security_sb_copy_data);
256
257 int security_sb_kern_mount(struct super_block *sb, void *data)
258 {
259         return security_ops->sb_kern_mount(sb, data);
260 }
261
262 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
263 {
264         return security_ops->sb_show_options(m, sb);
265 }
266
267 int security_sb_statfs(struct dentry *dentry)
268 {
269         return security_ops->sb_statfs(dentry);
270 }
271
272 int security_sb_mount(char *dev_name, struct path *path,
273                        char *type, unsigned long flags, void *data)
274 {
275         return security_ops->sb_mount(dev_name, path, type, flags, data);
276 }
277
278 int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
279 {
280         return security_ops->sb_check_sb(mnt, path);
281 }
282
283 int security_sb_umount(struct vfsmount *mnt, int flags)
284 {
285         return security_ops->sb_umount(mnt, flags);
286 }
287
288 void security_sb_umount_close(struct vfsmount *mnt)
289 {
290         security_ops->sb_umount_close(mnt);
291 }
292
293 void security_sb_umount_busy(struct vfsmount *mnt)
294 {
295         security_ops->sb_umount_busy(mnt);
296 }
297
298 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
299 {
300         security_ops->sb_post_remount(mnt, flags, data);
301 }
302
303 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
304 {
305         security_ops->sb_post_addmount(mnt, mountpoint);
306 }
307
308 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
309 {
310         return security_ops->sb_pivotroot(old_path, new_path);
311 }
312
313 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
314 {
315         security_ops->sb_post_pivotroot(old_path, new_path);
316 }
317
318 int security_sb_set_mnt_opts(struct super_block *sb,
319                                 struct security_mnt_opts *opts)
320 {
321         return security_ops->sb_set_mnt_opts(sb, opts);
322 }
323 EXPORT_SYMBOL(security_sb_set_mnt_opts);
324
325 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
326                                 struct super_block *newsb)
327 {
328         security_ops->sb_clone_mnt_opts(oldsb, newsb);
329 }
330 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
331
332 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
333 {
334         return security_ops->sb_parse_opts_str(options, opts);
335 }
336 EXPORT_SYMBOL(security_sb_parse_opts_str);
337
338 int security_inode_alloc(struct inode *inode)
339 {
340         inode->i_security = NULL;
341         return security_ops->inode_alloc_security(inode);
342 }
343
344 void security_inode_free(struct inode *inode)
345 {
346         security_ops->inode_free_security(inode);
347 }
348
349 int security_inode_init_security(struct inode *inode, struct inode *dir,
350                                   char **name, void **value, size_t *len)
351 {
352         if (unlikely(IS_PRIVATE(inode)))
353                 return -EOPNOTSUPP;
354         return security_ops->inode_init_security(inode, dir, name, value, len);
355 }
356 EXPORT_SYMBOL(security_inode_init_security);
357
358 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
359 {
360         if (unlikely(IS_PRIVATE(dir)))
361                 return 0;
362         return security_ops->inode_create(dir, dentry, mode);
363 }
364
365 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
366                          struct dentry *new_dentry)
367 {
368         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
369                 return 0;
370         return security_ops->inode_link(old_dentry, dir, new_dentry);
371 }
372
373 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
374 {
375         if (unlikely(IS_PRIVATE(dentry->d_inode)))
376                 return 0;
377         return security_ops->inode_unlink(dir, dentry);
378 }
379
380 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
381                             const char *old_name)
382 {
383         if (unlikely(IS_PRIVATE(dir)))
384                 return 0;
385         return security_ops->inode_symlink(dir, dentry, old_name);
386 }
387
388 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
389 {
390         if (unlikely(IS_PRIVATE(dir)))
391                 return 0;
392         return security_ops->inode_mkdir(dir, dentry, mode);
393 }
394
395 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
396 {
397         if (unlikely(IS_PRIVATE(dentry->d_inode)))
398                 return 0;
399         return security_ops->inode_rmdir(dir, dentry);
400 }
401
402 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
403 {
404         if (unlikely(IS_PRIVATE(dir)))
405                 return 0;
406         return security_ops->inode_mknod(dir, dentry, mode, dev);
407 }
408
409 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
410                            struct inode *new_dir, struct dentry *new_dentry)
411 {
412         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
413             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
414                 return 0;
415         return security_ops->inode_rename(old_dir, old_dentry,
416                                            new_dir, new_dentry);
417 }
418
419 int security_inode_readlink(struct dentry *dentry)
420 {
421         if (unlikely(IS_PRIVATE(dentry->d_inode)))
422                 return 0;
423         return security_ops->inode_readlink(dentry);
424 }
425
426 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
427 {
428         if (unlikely(IS_PRIVATE(dentry->d_inode)))
429                 return 0;
430         return security_ops->inode_follow_link(dentry, nd);
431 }
432
433 int security_inode_permission(struct inode *inode, int mask)
434 {
435         if (unlikely(IS_PRIVATE(inode)))
436                 return 0;
437         return security_ops->inode_permission(inode, mask);
438 }
439
440 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
441 {
442         if (unlikely(IS_PRIVATE(dentry->d_inode)))
443                 return 0;
444         return security_ops->inode_setattr(dentry, attr);
445 }
446 EXPORT_SYMBOL_GPL(security_inode_setattr);
447
448 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
449 {
450         if (unlikely(IS_PRIVATE(dentry->d_inode)))
451                 return 0;
452         return security_ops->inode_getattr(mnt, dentry);
453 }
454
455 void security_inode_delete(struct inode *inode)
456 {
457         if (unlikely(IS_PRIVATE(inode)))
458                 return;
459         security_ops->inode_delete(inode);
460 }
461
462 int security_inode_setxattr(struct dentry *dentry, const char *name,
463                             const void *value, size_t size, int flags)
464 {
465         if (unlikely(IS_PRIVATE(dentry->d_inode)))
466                 return 0;
467         return security_ops->inode_setxattr(dentry, name, value, size, flags);
468 }
469
470 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
471                                   const void *value, size_t size, int flags)
472 {
473         if (unlikely(IS_PRIVATE(dentry->d_inode)))
474                 return;
475         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
476 }
477
478 int security_inode_getxattr(struct dentry *dentry, const char *name)
479 {
480         if (unlikely(IS_PRIVATE(dentry->d_inode)))
481                 return 0;
482         return security_ops->inode_getxattr(dentry, name);
483 }
484
485 int security_inode_listxattr(struct dentry *dentry)
486 {
487         if (unlikely(IS_PRIVATE(dentry->d_inode)))
488                 return 0;
489         return security_ops->inode_listxattr(dentry);
490 }
491
492 int security_inode_removexattr(struct dentry *dentry, const char *name)
493 {
494         if (unlikely(IS_PRIVATE(dentry->d_inode)))
495                 return 0;
496         return security_ops->inode_removexattr(dentry, name);
497 }
498
499 int security_inode_need_killpriv(struct dentry *dentry)
500 {
501         return security_ops->inode_need_killpriv(dentry);
502 }
503
504 int security_inode_killpriv(struct dentry *dentry)
505 {
506         return security_ops->inode_killpriv(dentry);
507 }
508
509 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
510 {
511         if (unlikely(IS_PRIVATE(inode)))
512                 return 0;
513         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
514 }
515
516 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
517 {
518         if (unlikely(IS_PRIVATE(inode)))
519                 return 0;
520         return security_ops->inode_setsecurity(inode, name, value, size, flags);
521 }
522
523 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
524 {
525         if (unlikely(IS_PRIVATE(inode)))
526                 return 0;
527         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
528 }
529
530 void security_inode_getsecid(const struct inode *inode, u32 *secid)
531 {
532         security_ops->inode_getsecid(inode, secid);
533 }
534
535 int security_file_permission(struct file *file, int mask)
536 {
537         return security_ops->file_permission(file, mask);
538 }
539
540 int security_file_alloc(struct file *file)
541 {
542         return security_ops->file_alloc_security(file);
543 }
544
545 void security_file_free(struct file *file)
546 {
547         security_ops->file_free_security(file);
548 }
549
550 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
551 {
552         return security_ops->file_ioctl(file, cmd, arg);
553 }
554
555 int security_file_mmap(struct file *file, unsigned long reqprot,
556                         unsigned long prot, unsigned long flags,
557                         unsigned long addr, unsigned long addr_only)
558 {
559         return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
560 }
561
562 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
563                             unsigned long prot)
564 {
565         return security_ops->file_mprotect(vma, reqprot, prot);
566 }
567
568 int security_file_lock(struct file *file, unsigned int cmd)
569 {
570         return security_ops->file_lock(file, cmd);
571 }
572
573 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
574 {
575         return security_ops->file_fcntl(file, cmd, arg);
576 }
577
578 int security_file_set_fowner(struct file *file)
579 {
580         return security_ops->file_set_fowner(file);
581 }
582
583 int security_file_send_sigiotask(struct task_struct *tsk,
584                                   struct fown_struct *fown, int sig)
585 {
586         return security_ops->file_send_sigiotask(tsk, fown, sig);
587 }
588
589 int security_file_receive(struct file *file)
590 {
591         return security_ops->file_receive(file);
592 }
593
594 int security_dentry_open(struct file *file)
595 {
596         return security_ops->dentry_open(file);
597 }
598
599 int security_task_create(unsigned long clone_flags)
600 {
601         return security_ops->task_create(clone_flags);
602 }
603
604 int security_task_alloc(struct task_struct *p)
605 {
606         return security_ops->task_alloc_security(p);
607 }
608
609 void security_task_free(struct task_struct *p)
610 {
611         security_ops->task_free_security(p);
612 }
613
614 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
615 {
616         return security_ops->task_setuid(id0, id1, id2, flags);
617 }
618
619 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
620                                uid_t old_suid, int flags)
621 {
622         return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
623 }
624
625 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
626 {
627         return security_ops->task_setgid(id0, id1, id2, flags);
628 }
629
630 int security_task_setpgid(struct task_struct *p, pid_t pgid)
631 {
632         return security_ops->task_setpgid(p, pgid);
633 }
634
635 int security_task_getpgid(struct task_struct *p)
636 {
637         return security_ops->task_getpgid(p);
638 }
639
640 int security_task_getsid(struct task_struct *p)
641 {
642         return security_ops->task_getsid(p);
643 }
644
645 void security_task_getsecid(struct task_struct *p, u32 *secid)
646 {
647         security_ops->task_getsecid(p, secid);
648 }
649 EXPORT_SYMBOL(security_task_getsecid);
650
651 int security_task_setgroups(struct group_info *group_info)
652 {
653         return security_ops->task_setgroups(group_info);
654 }
655
656 int security_task_setnice(struct task_struct *p, int nice)
657 {
658         return security_ops->task_setnice(p, nice);
659 }
660
661 int security_task_setioprio(struct task_struct *p, int ioprio)
662 {
663         return security_ops->task_setioprio(p, ioprio);
664 }
665
666 int security_task_getioprio(struct task_struct *p)
667 {
668         return security_ops->task_getioprio(p);
669 }
670
671 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
672 {
673         return security_ops->task_setrlimit(resource, new_rlim);
674 }
675
676 int security_task_setscheduler(struct task_struct *p,
677                                 int policy, struct sched_param *lp)
678 {
679         return security_ops->task_setscheduler(p, policy, lp);
680 }
681
682 int security_task_getscheduler(struct task_struct *p)
683 {
684         return security_ops->task_getscheduler(p);
685 }
686
687 int security_task_movememory(struct task_struct *p)
688 {
689         return security_ops->task_movememory(p);
690 }
691
692 int security_task_kill(struct task_struct *p, struct siginfo *info,
693                         int sig, u32 secid)
694 {
695         return security_ops->task_kill(p, info, sig, secid);
696 }
697
698 int security_task_wait(struct task_struct *p)
699 {
700         return security_ops->task_wait(p);
701 }
702
703 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
704                          unsigned long arg4, unsigned long arg5, long *rc_p)
705 {
706         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
707 }
708
709 void security_task_reparent_to_init(struct task_struct *p)
710 {
711         security_ops->task_reparent_to_init(p);
712 }
713
714 void security_task_to_inode(struct task_struct *p, struct inode *inode)
715 {
716         security_ops->task_to_inode(p, inode);
717 }
718
719 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
720 {
721         return security_ops->ipc_permission(ipcp, flag);
722 }
723
724 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
725 {
726         security_ops->ipc_getsecid(ipcp, secid);
727 }
728
729 int security_msg_msg_alloc(struct msg_msg *msg)
730 {
731         return security_ops->msg_msg_alloc_security(msg);
732 }
733
734 void security_msg_msg_free(struct msg_msg *msg)
735 {
736         security_ops->msg_msg_free_security(msg);
737 }
738
739 int security_msg_queue_alloc(struct msg_queue *msq)
740 {
741         return security_ops->msg_queue_alloc_security(msq);
742 }
743
744 void security_msg_queue_free(struct msg_queue *msq)
745 {
746         security_ops->msg_queue_free_security(msq);
747 }
748
749 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
750 {
751         return security_ops->msg_queue_associate(msq, msqflg);
752 }
753
754 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
755 {
756         return security_ops->msg_queue_msgctl(msq, cmd);
757 }
758
759 int security_msg_queue_msgsnd(struct msg_queue *msq,
760                                struct msg_msg *msg, int msqflg)
761 {
762         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
763 }
764
765 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
766                                struct task_struct *target, long type, int mode)
767 {
768         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
769 }
770
771 int security_shm_alloc(struct shmid_kernel *shp)
772 {
773         return security_ops->shm_alloc_security(shp);
774 }
775
776 void security_shm_free(struct shmid_kernel *shp)
777 {
778         security_ops->shm_free_security(shp);
779 }
780
781 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
782 {
783         return security_ops->shm_associate(shp, shmflg);
784 }
785
786 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
787 {
788         return security_ops->shm_shmctl(shp, cmd);
789 }
790
791 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
792 {
793         return security_ops->shm_shmat(shp, shmaddr, shmflg);
794 }
795
796 int security_sem_alloc(struct sem_array *sma)
797 {
798         return security_ops->sem_alloc_security(sma);
799 }
800
801 void security_sem_free(struct sem_array *sma)
802 {
803         security_ops->sem_free_security(sma);
804 }
805
806 int security_sem_associate(struct sem_array *sma, int semflg)
807 {
808         return security_ops->sem_associate(sma, semflg);
809 }
810
811 int security_sem_semctl(struct sem_array *sma, int cmd)
812 {
813         return security_ops->sem_semctl(sma, cmd);
814 }
815
816 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
817                         unsigned nsops, int alter)
818 {
819         return security_ops->sem_semop(sma, sops, nsops, alter);
820 }
821
822 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
823 {
824         if (unlikely(inode && IS_PRIVATE(inode)))
825                 return;
826         security_ops->d_instantiate(dentry, inode);
827 }
828 EXPORT_SYMBOL(security_d_instantiate);
829
830 int security_getprocattr(struct task_struct *p, char *name, char **value)
831 {
832         return security_ops->getprocattr(p, name, value);
833 }
834
835 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
836 {
837         return security_ops->setprocattr(p, name, value, size);
838 }
839
840 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
841 {
842         return security_ops->netlink_send(sk, skb);
843 }
844
845 int security_netlink_recv(struct sk_buff *skb, int cap)
846 {
847         return security_ops->netlink_recv(skb, cap);
848 }
849 EXPORT_SYMBOL(security_netlink_recv);
850
851 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
852 {
853         return security_ops->secid_to_secctx(secid, secdata, seclen);
854 }
855 EXPORT_SYMBOL(security_secid_to_secctx);
856
857 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
858 {
859         return security_ops->secctx_to_secid(secdata, seclen, secid);
860 }
861 EXPORT_SYMBOL(security_secctx_to_secid);
862
863 void security_release_secctx(char *secdata, u32 seclen)
864 {
865         security_ops->release_secctx(secdata, seclen);
866 }
867 EXPORT_SYMBOL(security_release_secctx);
868
869 #ifdef CONFIG_SECURITY_NETWORK
870
871 int security_unix_stream_connect(struct socket *sock, struct socket *other,
872                                  struct sock *newsk)
873 {
874         return security_ops->unix_stream_connect(sock, other, newsk);
875 }
876 EXPORT_SYMBOL(security_unix_stream_connect);
877
878 int security_unix_may_send(struct socket *sock,  struct socket *other)
879 {
880         return security_ops->unix_may_send(sock, other);
881 }
882 EXPORT_SYMBOL(security_unix_may_send);
883
884 int security_socket_create(int family, int type, int protocol, int kern)
885 {
886         return security_ops->socket_create(family, type, protocol, kern);
887 }
888
889 int security_socket_post_create(struct socket *sock, int family,
890                                 int type, int protocol, int kern)
891 {
892         return security_ops->socket_post_create(sock, family, type,
893                                                 protocol, kern);
894 }
895
896 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
897 {
898         return security_ops->socket_bind(sock, address, addrlen);
899 }
900
901 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
902 {
903         return security_ops->socket_connect(sock, address, addrlen);
904 }
905
906 int security_socket_listen(struct socket *sock, int backlog)
907 {
908         return security_ops->socket_listen(sock, backlog);
909 }
910
911 int security_socket_accept(struct socket *sock, struct socket *newsock)
912 {
913         return security_ops->socket_accept(sock, newsock);
914 }
915
916 void security_socket_post_accept(struct socket *sock, struct socket *newsock)
917 {
918         security_ops->socket_post_accept(sock, newsock);
919 }
920
921 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
922 {
923         return security_ops->socket_sendmsg(sock, msg, size);
924 }
925
926 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
927                             int size, int flags)
928 {
929         return security_ops->socket_recvmsg(sock, msg, size, flags);
930 }
931
932 int security_socket_getsockname(struct socket *sock)
933 {
934         return security_ops->socket_getsockname(sock);
935 }
936
937 int security_socket_getpeername(struct socket *sock)
938 {
939         return security_ops->socket_getpeername(sock);
940 }
941
942 int security_socket_getsockopt(struct socket *sock, int level, int optname)
943 {
944         return security_ops->socket_getsockopt(sock, level, optname);
945 }
946
947 int security_socket_setsockopt(struct socket *sock, int level, int optname)
948 {
949         return security_ops->socket_setsockopt(sock, level, optname);
950 }
951
952 int security_socket_shutdown(struct socket *sock, int how)
953 {
954         return security_ops->socket_shutdown(sock, how);
955 }
956
957 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
958 {
959         return security_ops->socket_sock_rcv_skb(sk, skb);
960 }
961 EXPORT_SYMBOL(security_sock_rcv_skb);
962
963 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
964                                       int __user *optlen, unsigned len)
965 {
966         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
967 }
968
969 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
970 {
971         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
972 }
973 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
974
975 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
976 {
977         return security_ops->sk_alloc_security(sk, family, priority);
978 }
979
980 void security_sk_free(struct sock *sk)
981 {
982         security_ops->sk_free_security(sk);
983 }
984
985 void security_sk_clone(const struct sock *sk, struct sock *newsk)
986 {
987         security_ops->sk_clone_security(sk, newsk);
988 }
989
990 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
991 {
992         security_ops->sk_getsecid(sk, &fl->secid);
993 }
994 EXPORT_SYMBOL(security_sk_classify_flow);
995
996 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
997 {
998         security_ops->req_classify_flow(req, fl);
999 }
1000 EXPORT_SYMBOL(security_req_classify_flow);
1001
1002 void security_sock_graft(struct sock *sk, struct socket *parent)
1003 {
1004         security_ops->sock_graft(sk, parent);
1005 }
1006 EXPORT_SYMBOL(security_sock_graft);
1007
1008 int security_inet_conn_request(struct sock *sk,
1009                         struct sk_buff *skb, struct request_sock *req)
1010 {
1011         return security_ops->inet_conn_request(sk, skb, req);
1012 }
1013 EXPORT_SYMBOL(security_inet_conn_request);
1014
1015 void security_inet_csk_clone(struct sock *newsk,
1016                         const struct request_sock *req)
1017 {
1018         security_ops->inet_csk_clone(newsk, req);
1019 }
1020
1021 void security_inet_conn_established(struct sock *sk,
1022                         struct sk_buff *skb)
1023 {
1024         security_ops->inet_conn_established(sk, skb);
1025 }
1026
1027 #endif  /* CONFIG_SECURITY_NETWORK */
1028
1029 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1030
1031 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1032 {
1033         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1034 }
1035 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1036
1037 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1038                               struct xfrm_sec_ctx **new_ctxp)
1039 {
1040         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1041 }
1042
1043 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1044 {
1045         security_ops->xfrm_policy_free_security(ctx);
1046 }
1047 EXPORT_SYMBOL(security_xfrm_policy_free);
1048
1049 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1050 {
1051         return security_ops->xfrm_policy_delete_security(ctx);
1052 }
1053
1054 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1055 {
1056         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1057 }
1058 EXPORT_SYMBOL(security_xfrm_state_alloc);
1059
1060 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1061                                       struct xfrm_sec_ctx *polsec, u32 secid)
1062 {
1063         if (!polsec)
1064                 return 0;
1065         /*
1066          * We want the context to be taken from secid which is usually
1067          * from the sock.
1068          */
1069         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1070 }
1071
1072 int security_xfrm_state_delete(struct xfrm_state *x)
1073 {
1074         return security_ops->xfrm_state_delete_security(x);
1075 }
1076 EXPORT_SYMBOL(security_xfrm_state_delete);
1077
1078 void security_xfrm_state_free(struct xfrm_state *x)
1079 {
1080         security_ops->xfrm_state_free_security(x);
1081 }
1082
1083 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1084 {
1085         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1086 }
1087
1088 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1089                                        struct xfrm_policy *xp, struct flowi *fl)
1090 {
1091         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1092 }
1093
1094 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1095 {
1096         return security_ops->xfrm_decode_session(skb, secid, 1);
1097 }
1098
1099 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1100 {
1101         int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1102
1103         BUG_ON(rc);
1104 }
1105 EXPORT_SYMBOL(security_skb_classify_flow);
1106
1107 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1108
1109 #ifdef CONFIG_KEYS
1110
1111 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
1112 {
1113         return security_ops->key_alloc(key, tsk, flags);
1114 }
1115
1116 void security_key_free(struct key *key)
1117 {
1118         security_ops->key_free(key);
1119 }
1120
1121 int security_key_permission(key_ref_t key_ref,
1122                             struct task_struct *context, key_perm_t perm)
1123 {
1124         return security_ops->key_permission(key_ref, context, perm);
1125 }
1126
1127 int security_key_getsecurity(struct key *key, char **_buffer)
1128 {
1129         return security_ops->key_getsecurity(key, _buffer);
1130 }
1131
1132 #endif  /* CONFIG_KEYS */
1133
1134 #ifdef CONFIG_AUDIT
1135
1136 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1137 {
1138         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1139 }
1140
1141 int security_audit_rule_known(struct audit_krule *krule)
1142 {
1143         return security_ops->audit_rule_known(krule);
1144 }
1145
1146 void security_audit_rule_free(void *lsmrule)
1147 {
1148         security_ops->audit_rule_free(lsmrule);
1149 }
1150
1151 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1152                               struct audit_context *actx)
1153 {
1154         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1155 }
1156
1157 #endif /* CONFIG_AUDIT */