evm: add evm_inode_setattr to prevent updating an invalid security.evm
[pandora-kernel.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/integrity.h>
20 #include <linux/ima.h>
21 #include <linux/evm.h>
22
23 #define MAX_LSM_EVM_XATTR       2
24
25 /* Boot-time LSM user choice */
26 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
27         CONFIG_DEFAULT_SECURITY;
28
29 /* things that live in capability.c */
30 extern void __init security_fixup_ops(struct security_operations *ops);
31
32 static struct security_operations *security_ops;
33 static struct security_operations default_security_ops = {
34         .name   = "default",
35 };
36
37 static inline int __init verify(struct security_operations *ops)
38 {
39         /* verify the security_operations structure exists */
40         if (!ops)
41                 return -EINVAL;
42         security_fixup_ops(ops);
43         return 0;
44 }
45
46 static void __init do_security_initcalls(void)
47 {
48         initcall_t *call;
49         call = __security_initcall_start;
50         while (call < __security_initcall_end) {
51                 (*call) ();
52                 call++;
53         }
54 }
55
56 /**
57  * security_init - initializes the security framework
58  *
59  * This should be called early in the kernel initialization sequence.
60  */
61 int __init security_init(void)
62 {
63         printk(KERN_INFO "Security Framework initialized\n");
64
65         security_fixup_ops(&default_security_ops);
66         security_ops = &default_security_ops;
67         do_security_initcalls();
68
69         return 0;
70 }
71
72 void reset_security_ops(void)
73 {
74         security_ops = &default_security_ops;
75 }
76
77 /* Save user chosen LSM */
78 static int __init choose_lsm(char *str)
79 {
80         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
81         return 1;
82 }
83 __setup("security=", choose_lsm);
84
85 /**
86  * security_module_enable - Load given security module on boot ?
87  * @ops: a pointer to the struct security_operations that is to be checked.
88  *
89  * Each LSM must pass this method before registering its own operations
90  * to avoid security registration races. This method may also be used
91  * to check if your LSM is currently loaded during kernel initialization.
92  *
93  * Return true if:
94  *      -The passed LSM is the one chosen by user at boot time,
95  *      -or the passed LSM is configured as the default and the user did not
96  *       choose an alternate LSM at boot time.
97  * Otherwise, return false.
98  */
99 int __init security_module_enable(struct security_operations *ops)
100 {
101         return !strcmp(ops->name, chosen_lsm);
102 }
103
104 /**
105  * register_security - registers a security framework with the kernel
106  * @ops: a pointer to the struct security_options that is to be registered
107  *
108  * This function allows a security module to register itself with the
109  * kernel security subsystem.  Some rudimentary checking is done on the @ops
110  * value passed to this function. You'll need to check first if your LSM
111  * is allowed to register its @ops by calling security_module_enable(@ops).
112  *
113  * If there is already a security module registered with the kernel,
114  * an error will be returned.  Otherwise %0 is returned on success.
115  */
116 int __init register_security(struct security_operations *ops)
117 {
118         if (verify(ops)) {
119                 printk(KERN_DEBUG "%s could not verify "
120                        "security_operations structure.\n", __func__);
121                 return -EINVAL;
122         }
123
124         if (security_ops != &default_security_ops)
125                 return -EAGAIN;
126
127         security_ops = ops;
128
129         return 0;
130 }
131
132 /* Security operations */
133
134 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
135 {
136         return security_ops->ptrace_access_check(child, mode);
137 }
138
139 int security_ptrace_traceme(struct task_struct *parent)
140 {
141         return security_ops->ptrace_traceme(parent);
142 }
143
144 int security_capget(struct task_struct *target,
145                      kernel_cap_t *effective,
146                      kernel_cap_t *inheritable,
147                      kernel_cap_t *permitted)
148 {
149         return security_ops->capget(target, effective, inheritable, permitted);
150 }
151
152 int security_capset(struct cred *new, const struct cred *old,
153                     const kernel_cap_t *effective,
154                     const kernel_cap_t *inheritable,
155                     const kernel_cap_t *permitted)
156 {
157         return security_ops->capset(new, old,
158                                     effective, inheritable, permitted);
159 }
160
161 int security_capable(struct user_namespace *ns, const struct cred *cred,
162                      int cap)
163 {
164         return security_ops->capable(current, cred, ns, cap,
165                                      SECURITY_CAP_AUDIT);
166 }
167
168 int security_real_capable(struct task_struct *tsk, struct user_namespace *ns,
169                           int cap)
170 {
171         const struct cred *cred;
172         int ret;
173
174         cred = get_task_cred(tsk);
175         ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_AUDIT);
176         put_cred(cred);
177         return ret;
178 }
179
180 int security_real_capable_noaudit(struct task_struct *tsk,
181                                   struct user_namespace *ns, int cap)
182 {
183         const struct cred *cred;
184         int ret;
185
186         cred = get_task_cred(tsk);
187         ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_NOAUDIT);
188         put_cred(cred);
189         return ret;
190 }
191
192 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
193 {
194         return security_ops->quotactl(cmds, type, id, sb);
195 }
196
197 int security_quota_on(struct dentry *dentry)
198 {
199         return security_ops->quota_on(dentry);
200 }
201
202 int security_syslog(int type)
203 {
204         return security_ops->syslog(type);
205 }
206
207 int security_settime(const struct timespec *ts, const struct timezone *tz)
208 {
209         return security_ops->settime(ts, tz);
210 }
211
212 int security_vm_enough_memory(long pages)
213 {
214         WARN_ON(current->mm == NULL);
215         return security_ops->vm_enough_memory(current->mm, pages);
216 }
217
218 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
219 {
220         WARN_ON(mm == NULL);
221         return security_ops->vm_enough_memory(mm, pages);
222 }
223
224 int security_vm_enough_memory_kern(long pages)
225 {
226         /* If current->mm is a kernel thread then we will pass NULL,
227            for this specific case that is fine */
228         return security_ops->vm_enough_memory(current->mm, pages);
229 }
230
231 int security_bprm_set_creds(struct linux_binprm *bprm)
232 {
233         return security_ops->bprm_set_creds(bprm);
234 }
235
236 int security_bprm_check(struct linux_binprm *bprm)
237 {
238         int ret;
239
240         ret = security_ops->bprm_check_security(bprm);
241         if (ret)
242                 return ret;
243         return ima_bprm_check(bprm);
244 }
245
246 void security_bprm_committing_creds(struct linux_binprm *bprm)
247 {
248         security_ops->bprm_committing_creds(bprm);
249 }
250
251 void security_bprm_committed_creds(struct linux_binprm *bprm)
252 {
253         security_ops->bprm_committed_creds(bprm);
254 }
255
256 int security_bprm_secureexec(struct linux_binprm *bprm)
257 {
258         return security_ops->bprm_secureexec(bprm);
259 }
260
261 int security_sb_alloc(struct super_block *sb)
262 {
263         return security_ops->sb_alloc_security(sb);
264 }
265
266 void security_sb_free(struct super_block *sb)
267 {
268         security_ops->sb_free_security(sb);
269 }
270
271 int security_sb_copy_data(char *orig, char *copy)
272 {
273         return security_ops->sb_copy_data(orig, copy);
274 }
275 EXPORT_SYMBOL(security_sb_copy_data);
276
277 int security_sb_remount(struct super_block *sb, void *data)
278 {
279         return security_ops->sb_remount(sb, data);
280 }
281
282 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
283 {
284         return security_ops->sb_kern_mount(sb, flags, data);
285 }
286
287 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
288 {
289         return security_ops->sb_show_options(m, sb);
290 }
291
292 int security_sb_statfs(struct dentry *dentry)
293 {
294         return security_ops->sb_statfs(dentry);
295 }
296
297 int security_sb_mount(char *dev_name, struct path *path,
298                        char *type, unsigned long flags, void *data)
299 {
300         return security_ops->sb_mount(dev_name, path, type, flags, data);
301 }
302
303 int security_sb_umount(struct vfsmount *mnt, int flags)
304 {
305         return security_ops->sb_umount(mnt, flags);
306 }
307
308 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
309 {
310         return security_ops->sb_pivotroot(old_path, new_path);
311 }
312
313 int security_sb_set_mnt_opts(struct super_block *sb,
314                                 struct security_mnt_opts *opts)
315 {
316         return security_ops->sb_set_mnt_opts(sb, opts);
317 }
318 EXPORT_SYMBOL(security_sb_set_mnt_opts);
319
320 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
321                                 struct super_block *newsb)
322 {
323         security_ops->sb_clone_mnt_opts(oldsb, newsb);
324 }
325 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
326
327 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
328 {
329         return security_ops->sb_parse_opts_str(options, opts);
330 }
331 EXPORT_SYMBOL(security_sb_parse_opts_str);
332
333 int security_inode_alloc(struct inode *inode)
334 {
335         inode->i_security = NULL;
336         return security_ops->inode_alloc_security(inode);
337 }
338
339 void security_inode_free(struct inode *inode)
340 {
341         integrity_inode_free(inode);
342         security_ops->inode_free_security(inode);
343 }
344
345 int security_inode_init_security(struct inode *inode, struct inode *dir,
346                                  const struct qstr *qstr,
347                                  const initxattrs initxattrs, void *fs_data)
348 {
349         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
350         struct xattr *lsm_xattr, *evm_xattr, *xattr;
351         int ret;
352
353         if (unlikely(IS_PRIVATE(inode)))
354                 return -EOPNOTSUPP;
355
356         memset(new_xattrs, 0, sizeof new_xattrs);
357         if (!initxattrs)
358                 return security_ops->inode_init_security(inode, dir, qstr,
359                                                          NULL, NULL, NULL);
360         lsm_xattr = new_xattrs;
361         ret = security_ops->inode_init_security(inode, dir, qstr,
362                                                 &lsm_xattr->name,
363                                                 &lsm_xattr->value,
364                                                 &lsm_xattr->value_len);
365         if (ret)
366                 goto out;
367
368         evm_xattr = lsm_xattr + 1;
369         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
370         if (ret)
371                 goto out;
372         ret = initxattrs(inode, new_xattrs, fs_data);
373 out:
374         for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
375                 kfree(xattr->name);
376                 kfree(xattr->value);
377         }
378         return (ret == -EOPNOTSUPP) ? 0 : ret;
379 }
380 EXPORT_SYMBOL(security_inode_init_security);
381
382 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
383                                      const struct qstr *qstr, char **name,
384                                      void **value, size_t *len)
385 {
386         if (unlikely(IS_PRIVATE(inode)))
387                 return -EOPNOTSUPP;
388         return security_ops->inode_init_security(inode, dir, qstr, name, value,
389                                                  len);
390 }
391 EXPORT_SYMBOL(security_old_inode_init_security);
392
393 #ifdef CONFIG_SECURITY_PATH
394 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
395                         unsigned int dev)
396 {
397         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
398                 return 0;
399         return security_ops->path_mknod(dir, dentry, mode, dev);
400 }
401 EXPORT_SYMBOL(security_path_mknod);
402
403 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
404 {
405         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
406                 return 0;
407         return security_ops->path_mkdir(dir, dentry, mode);
408 }
409 EXPORT_SYMBOL(security_path_mkdir);
410
411 int security_path_rmdir(struct path *dir, struct dentry *dentry)
412 {
413         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
414                 return 0;
415         return security_ops->path_rmdir(dir, dentry);
416 }
417
418 int security_path_unlink(struct path *dir, struct dentry *dentry)
419 {
420         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
421                 return 0;
422         return security_ops->path_unlink(dir, dentry);
423 }
424 EXPORT_SYMBOL(security_path_unlink);
425
426 int security_path_symlink(struct path *dir, struct dentry *dentry,
427                           const char *old_name)
428 {
429         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
430                 return 0;
431         return security_ops->path_symlink(dir, dentry, old_name);
432 }
433
434 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
435                        struct dentry *new_dentry)
436 {
437         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
438                 return 0;
439         return security_ops->path_link(old_dentry, new_dir, new_dentry);
440 }
441
442 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
443                          struct path *new_dir, struct dentry *new_dentry)
444 {
445         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
446                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
447                 return 0;
448         return security_ops->path_rename(old_dir, old_dentry, new_dir,
449                                          new_dentry);
450 }
451 EXPORT_SYMBOL(security_path_rename);
452
453 int security_path_truncate(struct path *path)
454 {
455         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
456                 return 0;
457         return security_ops->path_truncate(path);
458 }
459
460 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
461                         mode_t mode)
462 {
463         if (unlikely(IS_PRIVATE(dentry->d_inode)))
464                 return 0;
465         return security_ops->path_chmod(dentry, mnt, mode);
466 }
467
468 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
469 {
470         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
471                 return 0;
472         return security_ops->path_chown(path, uid, gid);
473 }
474
475 int security_path_chroot(struct path *path)
476 {
477         return security_ops->path_chroot(path);
478 }
479 #endif
480
481 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
482 {
483         if (unlikely(IS_PRIVATE(dir)))
484                 return 0;
485         return security_ops->inode_create(dir, dentry, mode);
486 }
487 EXPORT_SYMBOL_GPL(security_inode_create);
488
489 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
490                          struct dentry *new_dentry)
491 {
492         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
493                 return 0;
494         return security_ops->inode_link(old_dentry, dir, new_dentry);
495 }
496
497 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
498 {
499         if (unlikely(IS_PRIVATE(dentry->d_inode)))
500                 return 0;
501         return security_ops->inode_unlink(dir, dentry);
502 }
503
504 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
505                             const char *old_name)
506 {
507         if (unlikely(IS_PRIVATE(dir)))
508                 return 0;
509         return security_ops->inode_symlink(dir, dentry, old_name);
510 }
511
512 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
513 {
514         if (unlikely(IS_PRIVATE(dir)))
515                 return 0;
516         return security_ops->inode_mkdir(dir, dentry, mode);
517 }
518 EXPORT_SYMBOL_GPL(security_inode_mkdir);
519
520 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
521 {
522         if (unlikely(IS_PRIVATE(dentry->d_inode)))
523                 return 0;
524         return security_ops->inode_rmdir(dir, dentry);
525 }
526
527 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
528 {
529         if (unlikely(IS_PRIVATE(dir)))
530                 return 0;
531         return security_ops->inode_mknod(dir, dentry, mode, dev);
532 }
533
534 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
535                            struct inode *new_dir, struct dentry *new_dentry)
536 {
537         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
538             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
539                 return 0;
540         return security_ops->inode_rename(old_dir, old_dentry,
541                                            new_dir, new_dentry);
542 }
543
544 int security_inode_readlink(struct dentry *dentry)
545 {
546         if (unlikely(IS_PRIVATE(dentry->d_inode)))
547                 return 0;
548         return security_ops->inode_readlink(dentry);
549 }
550
551 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
552 {
553         if (unlikely(IS_PRIVATE(dentry->d_inode)))
554                 return 0;
555         return security_ops->inode_follow_link(dentry, nd);
556 }
557
558 int security_inode_permission(struct inode *inode, int mask)
559 {
560         if (unlikely(IS_PRIVATE(inode)))
561                 return 0;
562         return security_ops->inode_permission(inode, mask, 0);
563 }
564
565 int security_inode_exec_permission(struct inode *inode, unsigned int flags)
566 {
567         if (unlikely(IS_PRIVATE(inode)))
568                 return 0;
569         return security_ops->inode_permission(inode, MAY_EXEC, flags);
570 }
571
572 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
573 {
574         int ret;
575
576         if (unlikely(IS_PRIVATE(dentry->d_inode)))
577                 return 0;
578         ret = security_ops->inode_setattr(dentry, attr);
579         if (ret)
580                 return ret;
581         return evm_inode_setattr(dentry, attr);
582 }
583 EXPORT_SYMBOL_GPL(security_inode_setattr);
584
585 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
586 {
587         if (unlikely(IS_PRIVATE(dentry->d_inode)))
588                 return 0;
589         return security_ops->inode_getattr(mnt, dentry);
590 }
591
592 int security_inode_setxattr(struct dentry *dentry, const char *name,
593                             const void *value, size_t size, int flags)
594 {
595         int ret;
596
597         if (unlikely(IS_PRIVATE(dentry->d_inode)))
598                 return 0;
599         ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
600         if (ret)
601                 return ret;
602         return evm_inode_setxattr(dentry, name, value, size);
603 }
604
605 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
606                                   const void *value, size_t size, int flags)
607 {
608         if (unlikely(IS_PRIVATE(dentry->d_inode)))
609                 return;
610         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
611         evm_inode_post_setxattr(dentry, name, value, size);
612 }
613
614 int security_inode_getxattr(struct dentry *dentry, const char *name)
615 {
616         if (unlikely(IS_PRIVATE(dentry->d_inode)))
617                 return 0;
618         return security_ops->inode_getxattr(dentry, name);
619 }
620
621 int security_inode_listxattr(struct dentry *dentry)
622 {
623         if (unlikely(IS_PRIVATE(dentry->d_inode)))
624                 return 0;
625         return security_ops->inode_listxattr(dentry);
626 }
627
628 int security_inode_removexattr(struct dentry *dentry, const char *name)
629 {
630         int ret;
631
632         if (unlikely(IS_PRIVATE(dentry->d_inode)))
633                 return 0;
634         ret = security_ops->inode_removexattr(dentry, name);
635         if (ret)
636                 return ret;
637         return evm_inode_removexattr(dentry, name);
638 }
639
640 int security_inode_need_killpriv(struct dentry *dentry)
641 {
642         return security_ops->inode_need_killpriv(dentry);
643 }
644
645 int security_inode_killpriv(struct dentry *dentry)
646 {
647         return security_ops->inode_killpriv(dentry);
648 }
649
650 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
651 {
652         if (unlikely(IS_PRIVATE(inode)))
653                 return -EOPNOTSUPP;
654         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
655 }
656
657 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
658 {
659         if (unlikely(IS_PRIVATE(inode)))
660                 return -EOPNOTSUPP;
661         return security_ops->inode_setsecurity(inode, name, value, size, flags);
662 }
663
664 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
665 {
666         if (unlikely(IS_PRIVATE(inode)))
667                 return 0;
668         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
669 }
670
671 void security_inode_getsecid(const struct inode *inode, u32 *secid)
672 {
673         security_ops->inode_getsecid(inode, secid);
674 }
675
676 int security_file_permission(struct file *file, int mask)
677 {
678         int ret;
679
680         ret = security_ops->file_permission(file, mask);
681         if (ret)
682                 return ret;
683
684         return fsnotify_perm(file, mask);
685 }
686
687 int security_file_alloc(struct file *file)
688 {
689         return security_ops->file_alloc_security(file);
690 }
691
692 void security_file_free(struct file *file)
693 {
694         security_ops->file_free_security(file);
695 }
696
697 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
698 {
699         return security_ops->file_ioctl(file, cmd, arg);
700 }
701
702 int security_file_mmap(struct file *file, unsigned long reqprot,
703                         unsigned long prot, unsigned long flags,
704                         unsigned long addr, unsigned long addr_only)
705 {
706         int ret;
707
708         ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
709         if (ret)
710                 return ret;
711         return ima_file_mmap(file, prot);
712 }
713
714 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
715                             unsigned long prot)
716 {
717         return security_ops->file_mprotect(vma, reqprot, prot);
718 }
719
720 int security_file_lock(struct file *file, unsigned int cmd)
721 {
722         return security_ops->file_lock(file, cmd);
723 }
724
725 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
726 {
727         return security_ops->file_fcntl(file, cmd, arg);
728 }
729
730 int security_file_set_fowner(struct file *file)
731 {
732         return security_ops->file_set_fowner(file);
733 }
734
735 int security_file_send_sigiotask(struct task_struct *tsk,
736                                   struct fown_struct *fown, int sig)
737 {
738         return security_ops->file_send_sigiotask(tsk, fown, sig);
739 }
740
741 int security_file_receive(struct file *file)
742 {
743         return security_ops->file_receive(file);
744 }
745
746 int security_dentry_open(struct file *file, const struct cred *cred)
747 {
748         int ret;
749
750         ret = security_ops->dentry_open(file, cred);
751         if (ret)
752                 return ret;
753
754         return fsnotify_perm(file, MAY_OPEN);
755 }
756
757 int security_task_create(unsigned long clone_flags)
758 {
759         return security_ops->task_create(clone_flags);
760 }
761
762 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
763 {
764         return security_ops->cred_alloc_blank(cred, gfp);
765 }
766
767 void security_cred_free(struct cred *cred)
768 {
769         security_ops->cred_free(cred);
770 }
771
772 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
773 {
774         return security_ops->cred_prepare(new, old, gfp);
775 }
776
777 void security_transfer_creds(struct cred *new, const struct cred *old)
778 {
779         security_ops->cred_transfer(new, old);
780 }
781
782 int security_kernel_act_as(struct cred *new, u32 secid)
783 {
784         return security_ops->kernel_act_as(new, secid);
785 }
786
787 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
788 {
789         return security_ops->kernel_create_files_as(new, inode);
790 }
791
792 int security_kernel_module_request(char *kmod_name)
793 {
794         return security_ops->kernel_module_request(kmod_name);
795 }
796
797 int security_task_fix_setuid(struct cred *new, const struct cred *old,
798                              int flags)
799 {
800         return security_ops->task_fix_setuid(new, old, flags);
801 }
802
803 int security_task_setpgid(struct task_struct *p, pid_t pgid)
804 {
805         return security_ops->task_setpgid(p, pgid);
806 }
807
808 int security_task_getpgid(struct task_struct *p)
809 {
810         return security_ops->task_getpgid(p);
811 }
812
813 int security_task_getsid(struct task_struct *p)
814 {
815         return security_ops->task_getsid(p);
816 }
817
818 void security_task_getsecid(struct task_struct *p, u32 *secid)
819 {
820         security_ops->task_getsecid(p, secid);
821 }
822 EXPORT_SYMBOL(security_task_getsecid);
823
824 int security_task_setnice(struct task_struct *p, int nice)
825 {
826         return security_ops->task_setnice(p, nice);
827 }
828
829 int security_task_setioprio(struct task_struct *p, int ioprio)
830 {
831         return security_ops->task_setioprio(p, ioprio);
832 }
833
834 int security_task_getioprio(struct task_struct *p)
835 {
836         return security_ops->task_getioprio(p);
837 }
838
839 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
840                 struct rlimit *new_rlim)
841 {
842         return security_ops->task_setrlimit(p, resource, new_rlim);
843 }
844
845 int security_task_setscheduler(struct task_struct *p)
846 {
847         return security_ops->task_setscheduler(p);
848 }
849
850 int security_task_getscheduler(struct task_struct *p)
851 {
852         return security_ops->task_getscheduler(p);
853 }
854
855 int security_task_movememory(struct task_struct *p)
856 {
857         return security_ops->task_movememory(p);
858 }
859
860 int security_task_kill(struct task_struct *p, struct siginfo *info,
861                         int sig, u32 secid)
862 {
863         return security_ops->task_kill(p, info, sig, secid);
864 }
865
866 int security_task_wait(struct task_struct *p)
867 {
868         return security_ops->task_wait(p);
869 }
870
871 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
872                          unsigned long arg4, unsigned long arg5)
873 {
874         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
875 }
876
877 void security_task_to_inode(struct task_struct *p, struct inode *inode)
878 {
879         security_ops->task_to_inode(p, inode);
880 }
881
882 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
883 {
884         return security_ops->ipc_permission(ipcp, flag);
885 }
886
887 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
888 {
889         security_ops->ipc_getsecid(ipcp, secid);
890 }
891
892 int security_msg_msg_alloc(struct msg_msg *msg)
893 {
894         return security_ops->msg_msg_alloc_security(msg);
895 }
896
897 void security_msg_msg_free(struct msg_msg *msg)
898 {
899         security_ops->msg_msg_free_security(msg);
900 }
901
902 int security_msg_queue_alloc(struct msg_queue *msq)
903 {
904         return security_ops->msg_queue_alloc_security(msq);
905 }
906
907 void security_msg_queue_free(struct msg_queue *msq)
908 {
909         security_ops->msg_queue_free_security(msq);
910 }
911
912 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
913 {
914         return security_ops->msg_queue_associate(msq, msqflg);
915 }
916
917 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
918 {
919         return security_ops->msg_queue_msgctl(msq, cmd);
920 }
921
922 int security_msg_queue_msgsnd(struct msg_queue *msq,
923                                struct msg_msg *msg, int msqflg)
924 {
925         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
926 }
927
928 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
929                                struct task_struct *target, long type, int mode)
930 {
931         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
932 }
933
934 int security_shm_alloc(struct shmid_kernel *shp)
935 {
936         return security_ops->shm_alloc_security(shp);
937 }
938
939 void security_shm_free(struct shmid_kernel *shp)
940 {
941         security_ops->shm_free_security(shp);
942 }
943
944 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
945 {
946         return security_ops->shm_associate(shp, shmflg);
947 }
948
949 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
950 {
951         return security_ops->shm_shmctl(shp, cmd);
952 }
953
954 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
955 {
956         return security_ops->shm_shmat(shp, shmaddr, shmflg);
957 }
958
959 int security_sem_alloc(struct sem_array *sma)
960 {
961         return security_ops->sem_alloc_security(sma);
962 }
963
964 void security_sem_free(struct sem_array *sma)
965 {
966         security_ops->sem_free_security(sma);
967 }
968
969 int security_sem_associate(struct sem_array *sma, int semflg)
970 {
971         return security_ops->sem_associate(sma, semflg);
972 }
973
974 int security_sem_semctl(struct sem_array *sma, int cmd)
975 {
976         return security_ops->sem_semctl(sma, cmd);
977 }
978
979 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
980                         unsigned nsops, int alter)
981 {
982         return security_ops->sem_semop(sma, sops, nsops, alter);
983 }
984
985 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
986 {
987         if (unlikely(inode && IS_PRIVATE(inode)))
988                 return;
989         security_ops->d_instantiate(dentry, inode);
990 }
991 EXPORT_SYMBOL(security_d_instantiate);
992
993 int security_getprocattr(struct task_struct *p, char *name, char **value)
994 {
995         return security_ops->getprocattr(p, name, value);
996 }
997
998 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
999 {
1000         return security_ops->setprocattr(p, name, value, size);
1001 }
1002
1003 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1004 {
1005         return security_ops->netlink_send(sk, skb);
1006 }
1007
1008 int security_netlink_recv(struct sk_buff *skb, int cap)
1009 {
1010         return security_ops->netlink_recv(skb, cap);
1011 }
1012 EXPORT_SYMBOL(security_netlink_recv);
1013
1014 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1015 {
1016         return security_ops->secid_to_secctx(secid, secdata, seclen);
1017 }
1018 EXPORT_SYMBOL(security_secid_to_secctx);
1019
1020 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1021 {
1022         return security_ops->secctx_to_secid(secdata, seclen, secid);
1023 }
1024 EXPORT_SYMBOL(security_secctx_to_secid);
1025
1026 void security_release_secctx(char *secdata, u32 seclen)
1027 {
1028         security_ops->release_secctx(secdata, seclen);
1029 }
1030 EXPORT_SYMBOL(security_release_secctx);
1031
1032 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1033 {
1034         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1035 }
1036 EXPORT_SYMBOL(security_inode_notifysecctx);
1037
1038 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1039 {
1040         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1041 }
1042 EXPORT_SYMBOL(security_inode_setsecctx);
1043
1044 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1045 {
1046         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1047 }
1048 EXPORT_SYMBOL(security_inode_getsecctx);
1049
1050 #ifdef CONFIG_SECURITY_NETWORK
1051
1052 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1053 {
1054         return security_ops->unix_stream_connect(sock, other, newsk);
1055 }
1056 EXPORT_SYMBOL(security_unix_stream_connect);
1057
1058 int security_unix_may_send(struct socket *sock,  struct socket *other)
1059 {
1060         return security_ops->unix_may_send(sock, other);
1061 }
1062 EXPORT_SYMBOL(security_unix_may_send);
1063
1064 int security_socket_create(int family, int type, int protocol, int kern)
1065 {
1066         return security_ops->socket_create(family, type, protocol, kern);
1067 }
1068
1069 int security_socket_post_create(struct socket *sock, int family,
1070                                 int type, int protocol, int kern)
1071 {
1072         return security_ops->socket_post_create(sock, family, type,
1073                                                 protocol, kern);
1074 }
1075
1076 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1077 {
1078         return security_ops->socket_bind(sock, address, addrlen);
1079 }
1080
1081 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1082 {
1083         return security_ops->socket_connect(sock, address, addrlen);
1084 }
1085
1086 int security_socket_listen(struct socket *sock, int backlog)
1087 {
1088         return security_ops->socket_listen(sock, backlog);
1089 }
1090
1091 int security_socket_accept(struct socket *sock, struct socket *newsock)
1092 {
1093         return security_ops->socket_accept(sock, newsock);
1094 }
1095
1096 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1097 {
1098         return security_ops->socket_sendmsg(sock, msg, size);
1099 }
1100
1101 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1102                             int size, int flags)
1103 {
1104         return security_ops->socket_recvmsg(sock, msg, size, flags);
1105 }
1106
1107 int security_socket_getsockname(struct socket *sock)
1108 {
1109         return security_ops->socket_getsockname(sock);
1110 }
1111
1112 int security_socket_getpeername(struct socket *sock)
1113 {
1114         return security_ops->socket_getpeername(sock);
1115 }
1116
1117 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1118 {
1119         return security_ops->socket_getsockopt(sock, level, optname);
1120 }
1121
1122 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1123 {
1124         return security_ops->socket_setsockopt(sock, level, optname);
1125 }
1126
1127 int security_socket_shutdown(struct socket *sock, int how)
1128 {
1129         return security_ops->socket_shutdown(sock, how);
1130 }
1131
1132 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1133 {
1134         return security_ops->socket_sock_rcv_skb(sk, skb);
1135 }
1136 EXPORT_SYMBOL(security_sock_rcv_skb);
1137
1138 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1139                                       int __user *optlen, unsigned len)
1140 {
1141         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1142 }
1143
1144 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1145 {
1146         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1147 }
1148 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1149
1150 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1151 {
1152         return security_ops->sk_alloc_security(sk, family, priority);
1153 }
1154
1155 void security_sk_free(struct sock *sk)
1156 {
1157         security_ops->sk_free_security(sk);
1158 }
1159
1160 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1161 {
1162         security_ops->sk_clone_security(sk, newsk);
1163 }
1164
1165 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1166 {
1167         security_ops->sk_getsecid(sk, &fl->flowi_secid);
1168 }
1169 EXPORT_SYMBOL(security_sk_classify_flow);
1170
1171 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1172 {
1173         security_ops->req_classify_flow(req, fl);
1174 }
1175 EXPORT_SYMBOL(security_req_classify_flow);
1176
1177 void security_sock_graft(struct sock *sk, struct socket *parent)
1178 {
1179         security_ops->sock_graft(sk, parent);
1180 }
1181 EXPORT_SYMBOL(security_sock_graft);
1182
1183 int security_inet_conn_request(struct sock *sk,
1184                         struct sk_buff *skb, struct request_sock *req)
1185 {
1186         return security_ops->inet_conn_request(sk, skb, req);
1187 }
1188 EXPORT_SYMBOL(security_inet_conn_request);
1189
1190 void security_inet_csk_clone(struct sock *newsk,
1191                         const struct request_sock *req)
1192 {
1193         security_ops->inet_csk_clone(newsk, req);
1194 }
1195
1196 void security_inet_conn_established(struct sock *sk,
1197                         struct sk_buff *skb)
1198 {
1199         security_ops->inet_conn_established(sk, skb);
1200 }
1201
1202 int security_secmark_relabel_packet(u32 secid)
1203 {
1204         return security_ops->secmark_relabel_packet(secid);
1205 }
1206 EXPORT_SYMBOL(security_secmark_relabel_packet);
1207
1208 void security_secmark_refcount_inc(void)
1209 {
1210         security_ops->secmark_refcount_inc();
1211 }
1212 EXPORT_SYMBOL(security_secmark_refcount_inc);
1213
1214 void security_secmark_refcount_dec(void)
1215 {
1216         security_ops->secmark_refcount_dec();
1217 }
1218 EXPORT_SYMBOL(security_secmark_refcount_dec);
1219
1220 int security_tun_dev_create(void)
1221 {
1222         return security_ops->tun_dev_create();
1223 }
1224 EXPORT_SYMBOL(security_tun_dev_create);
1225
1226 void security_tun_dev_post_create(struct sock *sk)
1227 {
1228         return security_ops->tun_dev_post_create(sk);
1229 }
1230 EXPORT_SYMBOL(security_tun_dev_post_create);
1231
1232 int security_tun_dev_attach(struct sock *sk)
1233 {
1234         return security_ops->tun_dev_attach(sk);
1235 }
1236 EXPORT_SYMBOL(security_tun_dev_attach);
1237
1238 #endif  /* CONFIG_SECURITY_NETWORK */
1239
1240 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1241
1242 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1243 {
1244         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1245 }
1246 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1247
1248 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1249                               struct xfrm_sec_ctx **new_ctxp)
1250 {
1251         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1252 }
1253
1254 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1255 {
1256         security_ops->xfrm_policy_free_security(ctx);
1257 }
1258 EXPORT_SYMBOL(security_xfrm_policy_free);
1259
1260 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1261 {
1262         return security_ops->xfrm_policy_delete_security(ctx);
1263 }
1264
1265 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1266 {
1267         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1268 }
1269 EXPORT_SYMBOL(security_xfrm_state_alloc);
1270
1271 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1272                                       struct xfrm_sec_ctx *polsec, u32 secid)
1273 {
1274         if (!polsec)
1275                 return 0;
1276         /*
1277          * We want the context to be taken from secid which is usually
1278          * from the sock.
1279          */
1280         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1281 }
1282
1283 int security_xfrm_state_delete(struct xfrm_state *x)
1284 {
1285         return security_ops->xfrm_state_delete_security(x);
1286 }
1287 EXPORT_SYMBOL(security_xfrm_state_delete);
1288
1289 void security_xfrm_state_free(struct xfrm_state *x)
1290 {
1291         security_ops->xfrm_state_free_security(x);
1292 }
1293
1294 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1295 {
1296         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1297 }
1298
1299 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1300                                        struct xfrm_policy *xp,
1301                                        const struct flowi *fl)
1302 {
1303         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1304 }
1305
1306 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1307 {
1308         return security_ops->xfrm_decode_session(skb, secid, 1);
1309 }
1310
1311 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1312 {
1313         int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1314
1315         BUG_ON(rc);
1316 }
1317 EXPORT_SYMBOL(security_skb_classify_flow);
1318
1319 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1320
1321 #ifdef CONFIG_KEYS
1322
1323 int security_key_alloc(struct key *key, const struct cred *cred,
1324                        unsigned long flags)
1325 {
1326         return security_ops->key_alloc(key, cred, flags);
1327 }
1328
1329 void security_key_free(struct key *key)
1330 {
1331         security_ops->key_free(key);
1332 }
1333
1334 int security_key_permission(key_ref_t key_ref,
1335                             const struct cred *cred, key_perm_t perm)
1336 {
1337         return security_ops->key_permission(key_ref, cred, perm);
1338 }
1339
1340 int security_key_getsecurity(struct key *key, char **_buffer)
1341 {
1342         return security_ops->key_getsecurity(key, _buffer);
1343 }
1344
1345 #endif  /* CONFIG_KEYS */
1346
1347 #ifdef CONFIG_AUDIT
1348
1349 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1350 {
1351         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1352 }
1353
1354 int security_audit_rule_known(struct audit_krule *krule)
1355 {
1356         return security_ops->audit_rule_known(krule);
1357 }
1358
1359 void security_audit_rule_free(void *lsmrule)
1360 {
1361         security_ops->audit_rule_free(lsmrule);
1362 }
1363
1364 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1365                               struct audit_context *actx)
1366 {
1367         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1368 }
1369
1370 #endif /* CONFIG_AUDIT */