[media] partially reverts changeset fa5527c
[pandora-kernel.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19
20
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/random.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "regdb.h"
60 #include "nl80211.h"
61
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...)                  \
64         printk(KERN_DEBUG pr_fmt(format), ##args)
65 #else
66 #define REG_DBG_PRINT(args...)
67 #endif
68
69 static struct regulatory_request core_request_world = {
70         .initiator = NL80211_REGDOM_SET_BY_CORE,
71         .alpha2[0] = '0',
72         .alpha2[1] = '0',
73         .intersect = false,
74         .processed = true,
75         .country_ie_env = ENVIRON_ANY,
76 };
77
78 /* Receipt of information from last regulatory request */
79 static struct regulatory_request *last_request = &core_request_world;
80
81 /* To trigger userspace events */
82 static struct platform_device *reg_pdev;
83
84 static struct device_type reg_device_type = {
85         .uevent = reg_device_uevent,
86 };
87
88 /*
89  * Central wireless core regulatory domains, we only need two,
90  * the current one and a world regulatory domain in case we have no
91  * information to give us an alpha2
92  */
93 const struct ieee80211_regdomain *cfg80211_regdomain;
94
95 /*
96  * Protects static reg.c components:
97  *     - cfg80211_world_regdom
98  *     - cfg80211_regdom
99  *     - last_request
100  */
101 static DEFINE_MUTEX(reg_mutex);
102
103 static inline void assert_reg_lock(void)
104 {
105         lockdep_assert_held(&reg_mutex);
106 }
107
108 /* Used to queue up regulatory hints */
109 static LIST_HEAD(reg_requests_list);
110 static spinlock_t reg_requests_lock;
111
112 /* Used to queue up beacon hints for review */
113 static LIST_HEAD(reg_pending_beacons);
114 static spinlock_t reg_pending_beacons_lock;
115
116 /* Used to keep track of processed beacon hints */
117 static LIST_HEAD(reg_beacon_list);
118
119 struct reg_beacon {
120         struct list_head list;
121         struct ieee80211_channel chan;
122 };
123
124 static void reg_todo(struct work_struct *work);
125 static DECLARE_WORK(reg_work, reg_todo);
126
127 static void reg_timeout_work(struct work_struct *work);
128 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
129
130 /* We keep a static world regulatory domain in case of the absence of CRDA */
131 static const struct ieee80211_regdomain world_regdom = {
132         .n_reg_rules = 5,
133         .alpha2 =  "00",
134         .reg_rules = {
135                 /* IEEE 802.11b/g, channels 1..11 */
136                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
137                 /* IEEE 802.11b/g, channels 12..13. No HT40
138                  * channel fits here. */
139                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
140                         NL80211_RRF_PASSIVE_SCAN |
141                         NL80211_RRF_NO_IBSS),
142                 /* IEEE 802.11 channel 14 - Only JP enables
143                  * this and for 802.11b only */
144                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
145                         NL80211_RRF_PASSIVE_SCAN |
146                         NL80211_RRF_NO_IBSS |
147                         NL80211_RRF_NO_OFDM),
148                 /* IEEE 802.11a, channel 36..48 */
149                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
150                         NL80211_RRF_PASSIVE_SCAN |
151                         NL80211_RRF_NO_IBSS),
152
153                 /* NB: 5260 MHz - 5700 MHz requies DFS */
154
155                 /* IEEE 802.11a, channel 149..165 */
156                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
157                         NL80211_RRF_PASSIVE_SCAN |
158                         NL80211_RRF_NO_IBSS),
159         }
160 };
161
162 static const struct ieee80211_regdomain *cfg80211_world_regdom =
163         &world_regdom;
164
165 static char *ieee80211_regdom = "00";
166 static char user_alpha2[2];
167
168 module_param(ieee80211_regdom, charp, 0444);
169 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
170
171 static void reset_regdomains(bool full_reset)
172 {
173         /* avoid freeing static information or freeing something twice */
174         if (cfg80211_regdomain == cfg80211_world_regdom)
175                 cfg80211_regdomain = NULL;
176         if (cfg80211_world_regdom == &world_regdom)
177                 cfg80211_world_regdom = NULL;
178         if (cfg80211_regdomain == &world_regdom)
179                 cfg80211_regdomain = NULL;
180
181         kfree(cfg80211_regdomain);
182         kfree(cfg80211_world_regdom);
183
184         cfg80211_world_regdom = &world_regdom;
185         cfg80211_regdomain = NULL;
186
187         if (!full_reset)
188                 return;
189
190         if (last_request != &core_request_world)
191                 kfree(last_request);
192         last_request = &core_request_world;
193 }
194
195 /*
196  * Dynamic world regulatory domain requested by the wireless
197  * core upon initialization
198  */
199 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
200 {
201         BUG_ON(!last_request);
202
203         reset_regdomains(false);
204
205         cfg80211_world_regdom = rd;
206         cfg80211_regdomain = rd;
207 }
208
209 bool is_world_regdom(const char *alpha2)
210 {
211         if (!alpha2)
212                 return false;
213         if (alpha2[0] == '0' && alpha2[1] == '0')
214                 return true;
215         return false;
216 }
217
218 static bool is_alpha2_set(const char *alpha2)
219 {
220         if (!alpha2)
221                 return false;
222         if (alpha2[0] != 0 && alpha2[1] != 0)
223                 return true;
224         return false;
225 }
226
227 static bool is_unknown_alpha2(const char *alpha2)
228 {
229         if (!alpha2)
230                 return false;
231         /*
232          * Special case where regulatory domain was built by driver
233          * but a specific alpha2 cannot be determined
234          */
235         if (alpha2[0] == '9' && alpha2[1] == '9')
236                 return true;
237         return false;
238 }
239
240 static bool is_intersected_alpha2(const char *alpha2)
241 {
242         if (!alpha2)
243                 return false;
244         /*
245          * Special case where regulatory domain is the
246          * result of an intersection between two regulatory domain
247          * structures
248          */
249         if (alpha2[0] == '9' && alpha2[1] == '8')
250                 return true;
251         return false;
252 }
253
254 static bool is_an_alpha2(const char *alpha2)
255 {
256         if (!alpha2)
257                 return false;
258         if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
259                 return true;
260         return false;
261 }
262
263 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
264 {
265         if (!alpha2_x || !alpha2_y)
266                 return false;
267         if (alpha2_x[0] == alpha2_y[0] &&
268                 alpha2_x[1] == alpha2_y[1])
269                 return true;
270         return false;
271 }
272
273 static bool regdom_changes(const char *alpha2)
274 {
275         assert_cfg80211_lock();
276
277         if (!cfg80211_regdomain)
278                 return true;
279         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
280                 return false;
281         return true;
282 }
283
284 /*
285  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
286  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
287  * has ever been issued.
288  */
289 static bool is_user_regdom_saved(void)
290 {
291         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
292                 return false;
293
294         /* This would indicate a mistake on the design */
295         if (WARN((!is_world_regdom(user_alpha2) &&
296                   !is_an_alpha2(user_alpha2)),
297                  "Unexpected user alpha2: %c%c\n",
298                  user_alpha2[0],
299                  user_alpha2[1]))
300                 return false;
301
302         return true;
303 }
304
305 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
306                          const struct ieee80211_regdomain *src_regd)
307 {
308         struct ieee80211_regdomain *regd;
309         int size_of_regd = 0;
310         unsigned int i;
311
312         size_of_regd = sizeof(struct ieee80211_regdomain) +
313           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
314
315         regd = kzalloc(size_of_regd, GFP_KERNEL);
316         if (!regd)
317                 return -ENOMEM;
318
319         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
320
321         for (i = 0; i < src_regd->n_reg_rules; i++)
322                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
323                         sizeof(struct ieee80211_reg_rule));
324
325         *dst_regd = regd;
326         return 0;
327 }
328
329 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
330 struct reg_regdb_search_request {
331         char alpha2[2];
332         struct list_head list;
333 };
334
335 static LIST_HEAD(reg_regdb_search_list);
336 static DEFINE_MUTEX(reg_regdb_search_mutex);
337
338 static void reg_regdb_search(struct work_struct *work)
339 {
340         struct reg_regdb_search_request *request;
341         const struct ieee80211_regdomain *curdom, *regdom;
342         int i, r;
343
344         mutex_lock(&reg_regdb_search_mutex);
345         while (!list_empty(&reg_regdb_search_list)) {
346                 request = list_first_entry(&reg_regdb_search_list,
347                                            struct reg_regdb_search_request,
348                                            list);
349                 list_del(&request->list);
350
351                 for (i=0; i<reg_regdb_size; i++) {
352                         curdom = reg_regdb[i];
353
354                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
355                                 r = reg_copy_regd(&regdom, curdom);
356                                 if (r)
357                                         break;
358                                 mutex_lock(&cfg80211_mutex);
359                                 set_regdom(regdom);
360                                 mutex_unlock(&cfg80211_mutex);
361                                 break;
362                         }
363                 }
364
365                 kfree(request);
366         }
367         mutex_unlock(&reg_regdb_search_mutex);
368 }
369
370 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
371
372 static void reg_regdb_query(const char *alpha2)
373 {
374         struct reg_regdb_search_request *request;
375
376         if (!alpha2)
377                 return;
378
379         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
380         if (!request)
381                 return;
382
383         memcpy(request->alpha2, alpha2, 2);
384
385         mutex_lock(&reg_regdb_search_mutex);
386         list_add_tail(&request->list, &reg_regdb_search_list);
387         mutex_unlock(&reg_regdb_search_mutex);
388
389         schedule_work(&reg_regdb_work);
390 }
391 #else
392 static inline void reg_regdb_query(const char *alpha2) {}
393 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
394
395 /*
396  * This lets us keep regulatory code which is updated on a regulatory
397  * basis in userspace. Country information is filled in by
398  * reg_device_uevent
399  */
400 static int call_crda(const char *alpha2)
401 {
402         if (!is_world_regdom((char *) alpha2))
403                 pr_info("Calling CRDA for country: %c%c\n",
404                         alpha2[0], alpha2[1]);
405         else
406                 pr_info("Calling CRDA to update world regulatory domain\n");
407
408         /* query internal regulatory database (if it exists) */
409         reg_regdb_query(alpha2);
410
411         return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
412 }
413
414 /* Used by nl80211 before kmalloc'ing our regulatory domain */
415 bool reg_is_valid_request(const char *alpha2)
416 {
417         assert_cfg80211_lock();
418
419         if (!last_request)
420                 return false;
421
422         return alpha2_equal(last_request->alpha2, alpha2);
423 }
424
425 /* Sanity check on a regulatory rule */
426 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
427 {
428         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
429         u32 freq_diff;
430
431         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
432                 return false;
433
434         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
435                 return false;
436
437         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
438
439         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
440                         freq_range->max_bandwidth_khz > freq_diff)
441                 return false;
442
443         return true;
444 }
445
446 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
447 {
448         const struct ieee80211_reg_rule *reg_rule = NULL;
449         unsigned int i;
450
451         if (!rd->n_reg_rules)
452                 return false;
453
454         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
455                 return false;
456
457         for (i = 0; i < rd->n_reg_rules; i++) {
458                 reg_rule = &rd->reg_rules[i];
459                 if (!is_valid_reg_rule(reg_rule))
460                         return false;
461         }
462
463         return true;
464 }
465
466 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
467                             u32 center_freq_khz,
468                             u32 bw_khz)
469 {
470         u32 start_freq_khz, end_freq_khz;
471
472         start_freq_khz = center_freq_khz - (bw_khz/2);
473         end_freq_khz = center_freq_khz + (bw_khz/2);
474
475         if (start_freq_khz >= freq_range->start_freq_khz &&
476             end_freq_khz <= freq_range->end_freq_khz)
477                 return true;
478
479         return false;
480 }
481
482 /**
483  * freq_in_rule_band - tells us if a frequency is in a frequency band
484  * @freq_range: frequency rule we want to query
485  * @freq_khz: frequency we are inquiring about
486  *
487  * This lets us know if a specific frequency rule is or is not relevant to
488  * a specific frequency's band. Bands are device specific and artificial
489  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
490  * safe for now to assume that a frequency rule should not be part of a
491  * frequency's band if the start freq or end freq are off by more than 2 GHz.
492  * This resolution can be lowered and should be considered as we add
493  * regulatory rule support for other "bands".
494  **/
495 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
496         u32 freq_khz)
497 {
498 #define ONE_GHZ_IN_KHZ  1000000
499         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
500                 return true;
501         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
502                 return true;
503         return false;
504 #undef ONE_GHZ_IN_KHZ
505 }
506
507 /*
508  * Helper for regdom_intersect(), this does the real
509  * mathematical intersection fun
510  */
511 static int reg_rules_intersect(
512         const struct ieee80211_reg_rule *rule1,
513         const struct ieee80211_reg_rule *rule2,
514         struct ieee80211_reg_rule *intersected_rule)
515 {
516         const struct ieee80211_freq_range *freq_range1, *freq_range2;
517         struct ieee80211_freq_range *freq_range;
518         const struct ieee80211_power_rule *power_rule1, *power_rule2;
519         struct ieee80211_power_rule *power_rule;
520         u32 freq_diff;
521
522         freq_range1 = &rule1->freq_range;
523         freq_range2 = &rule2->freq_range;
524         freq_range = &intersected_rule->freq_range;
525
526         power_rule1 = &rule1->power_rule;
527         power_rule2 = &rule2->power_rule;
528         power_rule = &intersected_rule->power_rule;
529
530         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
531                 freq_range2->start_freq_khz);
532         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
533                 freq_range2->end_freq_khz);
534         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
535                 freq_range2->max_bandwidth_khz);
536
537         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
538         if (freq_range->max_bandwidth_khz > freq_diff)
539                 freq_range->max_bandwidth_khz = freq_diff;
540
541         power_rule->max_eirp = min(power_rule1->max_eirp,
542                 power_rule2->max_eirp);
543         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
544                 power_rule2->max_antenna_gain);
545
546         intersected_rule->flags = (rule1->flags | rule2->flags);
547
548         if (!is_valid_reg_rule(intersected_rule))
549                 return -EINVAL;
550
551         return 0;
552 }
553
554 /**
555  * regdom_intersect - do the intersection between two regulatory domains
556  * @rd1: first regulatory domain
557  * @rd2: second regulatory domain
558  *
559  * Use this function to get the intersection between two regulatory domains.
560  * Once completed we will mark the alpha2 for the rd as intersected, "98",
561  * as no one single alpha2 can represent this regulatory domain.
562  *
563  * Returns a pointer to the regulatory domain structure which will hold the
564  * resulting intersection of rules between rd1 and rd2. We will
565  * kzalloc() this structure for you.
566  */
567 static struct ieee80211_regdomain *regdom_intersect(
568         const struct ieee80211_regdomain *rd1,
569         const struct ieee80211_regdomain *rd2)
570 {
571         int r, size_of_regd;
572         unsigned int x, y;
573         unsigned int num_rules = 0, rule_idx = 0;
574         const struct ieee80211_reg_rule *rule1, *rule2;
575         struct ieee80211_reg_rule *intersected_rule;
576         struct ieee80211_regdomain *rd;
577         /* This is just a dummy holder to help us count */
578         struct ieee80211_reg_rule irule;
579
580         /* Uses the stack temporarily for counter arithmetic */
581         intersected_rule = &irule;
582
583         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
584
585         if (!rd1 || !rd2)
586                 return NULL;
587
588         /*
589          * First we get a count of the rules we'll need, then we actually
590          * build them. This is to so we can malloc() and free() a
591          * regdomain once. The reason we use reg_rules_intersect() here
592          * is it will return -EINVAL if the rule computed makes no sense.
593          * All rules that do check out OK are valid.
594          */
595
596         for (x = 0; x < rd1->n_reg_rules; x++) {
597                 rule1 = &rd1->reg_rules[x];
598                 for (y = 0; y < rd2->n_reg_rules; y++) {
599                         rule2 = &rd2->reg_rules[y];
600                         if (!reg_rules_intersect(rule1, rule2,
601                                         intersected_rule))
602                                 num_rules++;
603                         memset(intersected_rule, 0,
604                                         sizeof(struct ieee80211_reg_rule));
605                 }
606         }
607
608         if (!num_rules)
609                 return NULL;
610
611         size_of_regd = sizeof(struct ieee80211_regdomain) +
612                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
613
614         rd = kzalloc(size_of_regd, GFP_KERNEL);
615         if (!rd)
616                 return NULL;
617
618         for (x = 0; x < rd1->n_reg_rules; x++) {
619                 rule1 = &rd1->reg_rules[x];
620                 for (y = 0; y < rd2->n_reg_rules; y++) {
621                         rule2 = &rd2->reg_rules[y];
622                         /*
623                          * This time around instead of using the stack lets
624                          * write to the target rule directly saving ourselves
625                          * a memcpy()
626                          */
627                         intersected_rule = &rd->reg_rules[rule_idx];
628                         r = reg_rules_intersect(rule1, rule2,
629                                 intersected_rule);
630                         /*
631                          * No need to memset here the intersected rule here as
632                          * we're not using the stack anymore
633                          */
634                         if (r)
635                                 continue;
636                         rule_idx++;
637                 }
638         }
639
640         if (rule_idx != num_rules) {
641                 kfree(rd);
642                 return NULL;
643         }
644
645         rd->n_reg_rules = num_rules;
646         rd->alpha2[0] = '9';
647         rd->alpha2[1] = '8';
648
649         return rd;
650 }
651
652 /*
653  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
654  * want to just have the channel structure use these
655  */
656 static u32 map_regdom_flags(u32 rd_flags)
657 {
658         u32 channel_flags = 0;
659         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
660                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
661         if (rd_flags & NL80211_RRF_NO_IBSS)
662                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
663         if (rd_flags & NL80211_RRF_DFS)
664                 channel_flags |= IEEE80211_CHAN_RADAR;
665         return channel_flags;
666 }
667
668 static int freq_reg_info_regd(struct wiphy *wiphy,
669                               u32 center_freq,
670                               u32 desired_bw_khz,
671                               const struct ieee80211_reg_rule **reg_rule,
672                               const struct ieee80211_regdomain *custom_regd)
673 {
674         int i;
675         bool band_rule_found = false;
676         const struct ieee80211_regdomain *regd;
677         bool bw_fits = false;
678
679         if (!desired_bw_khz)
680                 desired_bw_khz = MHZ_TO_KHZ(20);
681
682         regd = custom_regd ? custom_regd : cfg80211_regdomain;
683
684         /*
685          * Follow the driver's regulatory domain, if present, unless a country
686          * IE has been processed or a user wants to help complaince further
687          */
688         if (!custom_regd &&
689             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
690             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
691             wiphy->regd)
692                 regd = wiphy->regd;
693
694         if (!regd)
695                 return -EINVAL;
696
697         for (i = 0; i < regd->n_reg_rules; i++) {
698                 const struct ieee80211_reg_rule *rr;
699                 const struct ieee80211_freq_range *fr = NULL;
700
701                 rr = &regd->reg_rules[i];
702                 fr = &rr->freq_range;
703
704                 /*
705                  * We only need to know if one frequency rule was
706                  * was in center_freq's band, that's enough, so lets
707                  * not overwrite it once found
708                  */
709                 if (!band_rule_found)
710                         band_rule_found = freq_in_rule_band(fr, center_freq);
711
712                 bw_fits = reg_does_bw_fit(fr,
713                                           center_freq,
714                                           desired_bw_khz);
715
716                 if (band_rule_found && bw_fits) {
717                         *reg_rule = rr;
718                         return 0;
719                 }
720         }
721
722         if (!band_rule_found)
723                 return -ERANGE;
724
725         return -EINVAL;
726 }
727
728 int freq_reg_info(struct wiphy *wiphy,
729                   u32 center_freq,
730                   u32 desired_bw_khz,
731                   const struct ieee80211_reg_rule **reg_rule)
732 {
733         assert_cfg80211_lock();
734         return freq_reg_info_regd(wiphy,
735                                   center_freq,
736                                   desired_bw_khz,
737                                   reg_rule,
738                                   NULL);
739 }
740 EXPORT_SYMBOL(freq_reg_info);
741
742 #ifdef CONFIG_CFG80211_REG_DEBUG
743 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
744 {
745         switch (initiator) {
746         case NL80211_REGDOM_SET_BY_CORE:
747                 return "Set by core";
748         case NL80211_REGDOM_SET_BY_USER:
749                 return "Set by user";
750         case NL80211_REGDOM_SET_BY_DRIVER:
751                 return "Set by driver";
752         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
753                 return "Set by country IE";
754         default:
755                 WARN_ON(1);
756                 return "Set by bug";
757         }
758 }
759
760 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
761                                     u32 desired_bw_khz,
762                                     const struct ieee80211_reg_rule *reg_rule)
763 {
764         const struct ieee80211_power_rule *power_rule;
765         const struct ieee80211_freq_range *freq_range;
766         char max_antenna_gain[32];
767
768         power_rule = &reg_rule->power_rule;
769         freq_range = &reg_rule->freq_range;
770
771         if (!power_rule->max_antenna_gain)
772                 snprintf(max_antenna_gain, 32, "N/A");
773         else
774                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
775
776         REG_DBG_PRINT("Updating information on frequency %d MHz "
777                       "for a %d MHz width channel with regulatory rule:\n",
778                       chan->center_freq,
779                       KHZ_TO_MHZ(desired_bw_khz));
780
781         REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
782                       freq_range->start_freq_khz,
783                       freq_range->end_freq_khz,
784                       freq_range->max_bandwidth_khz,
785                       max_antenna_gain,
786                       power_rule->max_eirp);
787 }
788 #else
789 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
790                                     u32 desired_bw_khz,
791                                     const struct ieee80211_reg_rule *reg_rule)
792 {
793         return;
794 }
795 #endif
796
797 /*
798  * Note that right now we assume the desired channel bandwidth
799  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
800  * per channel, the primary and the extension channel). To support
801  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
802  * new ieee80211_channel.target_bw and re run the regulatory check
803  * on the wiphy with the target_bw specified. Then we can simply use
804  * that below for the desired_bw_khz below.
805  */
806 static void handle_channel(struct wiphy *wiphy,
807                            enum nl80211_reg_initiator initiator,
808                            enum ieee80211_band band,
809                            unsigned int chan_idx)
810 {
811         int r;
812         u32 flags, bw_flags = 0;
813         u32 desired_bw_khz = MHZ_TO_KHZ(20);
814         const struct ieee80211_reg_rule *reg_rule = NULL;
815         const struct ieee80211_power_rule *power_rule = NULL;
816         const struct ieee80211_freq_range *freq_range = NULL;
817         struct ieee80211_supported_band *sband;
818         struct ieee80211_channel *chan;
819         struct wiphy *request_wiphy = NULL;
820
821         assert_cfg80211_lock();
822
823         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
824
825         sband = wiphy->bands[band];
826         BUG_ON(chan_idx >= sband->n_channels);
827         chan = &sband->channels[chan_idx];
828
829         flags = chan->orig_flags;
830
831         r = freq_reg_info(wiphy,
832                           MHZ_TO_KHZ(chan->center_freq),
833                           desired_bw_khz,
834                           &reg_rule);
835
836         if (r) {
837                 /*
838                  * We will disable all channels that do not match our
839                  * received regulatory rule unless the hint is coming
840                  * from a Country IE and the Country IE had no information
841                  * about a band. The IEEE 802.11 spec allows for an AP
842                  * to send only a subset of the regulatory rules allowed,
843                  * so an AP in the US that only supports 2.4 GHz may only send
844                  * a country IE with information for the 2.4 GHz band
845                  * while 5 GHz is still supported.
846                  */
847                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
848                     r == -ERANGE)
849                         return;
850
851                 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
852                 chan->flags = IEEE80211_CHAN_DISABLED;
853                 return;
854         }
855
856         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
857
858         power_rule = &reg_rule->power_rule;
859         freq_range = &reg_rule->freq_range;
860
861         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
862                 bw_flags = IEEE80211_CHAN_NO_HT40;
863
864         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
865             request_wiphy && request_wiphy == wiphy &&
866             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
867                 /*
868                  * This guarantees the driver's requested regulatory domain
869                  * will always be used as a base for further regulatory
870                  * settings
871                  */
872                 chan->flags = chan->orig_flags =
873                         map_regdom_flags(reg_rule->flags) | bw_flags;
874                 chan->max_antenna_gain = chan->orig_mag =
875                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
876                 chan->max_power = chan->orig_mpwr =
877                         (int) MBM_TO_DBM(power_rule->max_eirp);
878                 return;
879         }
880
881         chan->beacon_found = false;
882         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
883         chan->max_antenna_gain = min(chan->orig_mag,
884                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
885         if (chan->orig_mpwr) {
886                 /*
887                  * Devices that have their own custom regulatory domain
888                  * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
889                  * passed country IE power settings.
890                  */
891                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
892                     wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
893                     wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
894                         chan->max_power =
895                                 MBM_TO_DBM(power_rule->max_eirp);
896                 } else {
897                         chan->max_power = min(chan->orig_mpwr,
898                                 (int) MBM_TO_DBM(power_rule->max_eirp));
899                 }
900         } else
901                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
902 }
903
904 static void handle_band(struct wiphy *wiphy,
905                         enum ieee80211_band band,
906                         enum nl80211_reg_initiator initiator)
907 {
908         unsigned int i;
909         struct ieee80211_supported_band *sband;
910
911         BUG_ON(!wiphy->bands[band]);
912         sband = wiphy->bands[band];
913
914         for (i = 0; i < sband->n_channels; i++)
915                 handle_channel(wiphy, initiator, band, i);
916 }
917
918 static bool ignore_reg_update(struct wiphy *wiphy,
919                               enum nl80211_reg_initiator initiator)
920 {
921         if (!last_request) {
922                 REG_DBG_PRINT("Ignoring regulatory request %s since "
923                               "last_request is not set\n",
924                               reg_initiator_name(initiator));
925                 return true;
926         }
927
928         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
929             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
930                 REG_DBG_PRINT("Ignoring regulatory request %s "
931                               "since the driver uses its own custom "
932                               "regulatory domain\n",
933                               reg_initiator_name(initiator));
934                 return true;
935         }
936
937         /*
938          * wiphy->regd will be set once the device has its own
939          * desired regulatory domain set
940          */
941         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
942             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
943             !is_world_regdom(last_request->alpha2)) {
944                 REG_DBG_PRINT("Ignoring regulatory request %s "
945                               "since the driver requires its own regulatory "
946                               "domain to be set first\n",
947                               reg_initiator_name(initiator));
948                 return true;
949         }
950
951         return false;
952 }
953
954 static void handle_reg_beacon(struct wiphy *wiphy,
955                               unsigned int chan_idx,
956                               struct reg_beacon *reg_beacon)
957 {
958         struct ieee80211_supported_band *sband;
959         struct ieee80211_channel *chan;
960         bool channel_changed = false;
961         struct ieee80211_channel chan_before;
962
963         assert_cfg80211_lock();
964
965         sband = wiphy->bands[reg_beacon->chan.band];
966         chan = &sband->channels[chan_idx];
967
968         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
969                 return;
970
971         if (chan->beacon_found)
972                 return;
973
974         chan->beacon_found = true;
975
976         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
977                 return;
978
979         chan_before.center_freq = chan->center_freq;
980         chan_before.flags = chan->flags;
981
982         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
983                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
984                 channel_changed = true;
985         }
986
987         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
988                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
989                 channel_changed = true;
990         }
991
992         if (channel_changed)
993                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
994 }
995
996 /*
997  * Called when a scan on a wiphy finds a beacon on
998  * new channel
999  */
1000 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1001                                     struct reg_beacon *reg_beacon)
1002 {
1003         unsigned int i;
1004         struct ieee80211_supported_band *sband;
1005
1006         assert_cfg80211_lock();
1007
1008         if (!wiphy->bands[reg_beacon->chan.band])
1009                 return;
1010
1011         sband = wiphy->bands[reg_beacon->chan.band];
1012
1013         for (i = 0; i < sband->n_channels; i++)
1014                 handle_reg_beacon(wiphy, i, reg_beacon);
1015 }
1016
1017 /*
1018  * Called upon reg changes or a new wiphy is added
1019  */
1020 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1021 {
1022         unsigned int i;
1023         struct ieee80211_supported_band *sband;
1024         struct reg_beacon *reg_beacon;
1025
1026         assert_cfg80211_lock();
1027
1028         if (list_empty(&reg_beacon_list))
1029                 return;
1030
1031         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1032                 if (!wiphy->bands[reg_beacon->chan.band])
1033                         continue;
1034                 sband = wiphy->bands[reg_beacon->chan.band];
1035                 for (i = 0; i < sband->n_channels; i++)
1036                         handle_reg_beacon(wiphy, i, reg_beacon);
1037         }
1038 }
1039
1040 static bool reg_is_world_roaming(struct wiphy *wiphy)
1041 {
1042         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1043             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1044                 return true;
1045         if (last_request &&
1046             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1047             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1048                 return true;
1049         return false;
1050 }
1051
1052 /* Reap the advantages of previously found beacons */
1053 static void reg_process_beacons(struct wiphy *wiphy)
1054 {
1055         /*
1056          * Means we are just firing up cfg80211, so no beacons would
1057          * have been processed yet.
1058          */
1059         if (!last_request)
1060                 return;
1061         if (!reg_is_world_roaming(wiphy))
1062                 return;
1063         wiphy_update_beacon_reg(wiphy);
1064 }
1065
1066 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1067 {
1068         if (!chan)
1069                 return true;
1070         if (chan->flags & IEEE80211_CHAN_DISABLED)
1071                 return true;
1072         /* This would happen when regulatory rules disallow HT40 completely */
1073         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1074                 return true;
1075         return false;
1076 }
1077
1078 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1079                                          enum ieee80211_band band,
1080                                          unsigned int chan_idx)
1081 {
1082         struct ieee80211_supported_band *sband;
1083         struct ieee80211_channel *channel;
1084         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1085         unsigned int i;
1086
1087         assert_cfg80211_lock();
1088
1089         sband = wiphy->bands[band];
1090         BUG_ON(chan_idx >= sband->n_channels);
1091         channel = &sband->channels[chan_idx];
1092
1093         if (is_ht40_not_allowed(channel)) {
1094                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1095                 return;
1096         }
1097
1098         /*
1099          * We need to ensure the extension channels exist to
1100          * be able to use HT40- or HT40+, this finds them (or not)
1101          */
1102         for (i = 0; i < sband->n_channels; i++) {
1103                 struct ieee80211_channel *c = &sband->channels[i];
1104                 if (c->center_freq == (channel->center_freq - 20))
1105                         channel_before = c;
1106                 if (c->center_freq == (channel->center_freq + 20))
1107                         channel_after = c;
1108         }
1109
1110         /*
1111          * Please note that this assumes target bandwidth is 20 MHz,
1112          * if that ever changes we also need to change the below logic
1113          * to include that as well.
1114          */
1115         if (is_ht40_not_allowed(channel_before))
1116                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1117         else
1118                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1119
1120         if (is_ht40_not_allowed(channel_after))
1121                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1122         else
1123                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1124 }
1125
1126 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1127                                       enum ieee80211_band band)
1128 {
1129         unsigned int i;
1130         struct ieee80211_supported_band *sband;
1131
1132         BUG_ON(!wiphy->bands[band]);
1133         sband = wiphy->bands[band];
1134
1135         for (i = 0; i < sband->n_channels; i++)
1136                 reg_process_ht_flags_channel(wiphy, band, i);
1137 }
1138
1139 static void reg_process_ht_flags(struct wiphy *wiphy)
1140 {
1141         enum ieee80211_band band;
1142
1143         if (!wiphy)
1144                 return;
1145
1146         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1147                 if (wiphy->bands[band])
1148                         reg_process_ht_flags_band(wiphy, band);
1149         }
1150
1151 }
1152
1153 static void wiphy_update_regulatory(struct wiphy *wiphy,
1154                                     enum nl80211_reg_initiator initiator)
1155 {
1156         enum ieee80211_band band;
1157
1158         assert_reg_lock();
1159
1160         if (ignore_reg_update(wiphy, initiator))
1161                 return;
1162
1163         last_request->dfs_region = cfg80211_regdomain->dfs_region;
1164
1165         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1166                 if (wiphy->bands[band])
1167                         handle_band(wiphy, band, initiator);
1168         }
1169
1170         reg_process_beacons(wiphy);
1171         reg_process_ht_flags(wiphy);
1172         if (wiphy->reg_notifier)
1173                 wiphy->reg_notifier(wiphy, last_request);
1174 }
1175
1176 void regulatory_update(struct wiphy *wiphy,
1177                        enum nl80211_reg_initiator setby)
1178 {
1179         mutex_lock(&reg_mutex);
1180         wiphy_update_regulatory(wiphy, setby);
1181         mutex_unlock(&reg_mutex);
1182 }
1183
1184 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1185 {
1186         struct cfg80211_registered_device *rdev;
1187         struct wiphy *wiphy;
1188
1189         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1190                 wiphy = &rdev->wiphy;
1191                 wiphy_update_regulatory(wiphy, initiator);
1192                 /*
1193                  * Regulatory updates set by CORE are ignored for custom
1194                  * regulatory cards. Let us notify the changes to the driver,
1195                  * as some drivers used this to restore its orig_* reg domain.
1196                  */
1197                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1198                     wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1199                     wiphy->reg_notifier)
1200                         wiphy->reg_notifier(wiphy, last_request);
1201         }
1202 }
1203
1204 static void handle_channel_custom(struct wiphy *wiphy,
1205                                   enum ieee80211_band band,
1206                                   unsigned int chan_idx,
1207                                   const struct ieee80211_regdomain *regd)
1208 {
1209         int r;
1210         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1211         u32 bw_flags = 0;
1212         const struct ieee80211_reg_rule *reg_rule = NULL;
1213         const struct ieee80211_power_rule *power_rule = NULL;
1214         const struct ieee80211_freq_range *freq_range = NULL;
1215         struct ieee80211_supported_band *sband;
1216         struct ieee80211_channel *chan;
1217
1218         assert_reg_lock();
1219
1220         sband = wiphy->bands[band];
1221         BUG_ON(chan_idx >= sband->n_channels);
1222         chan = &sband->channels[chan_idx];
1223
1224         r = freq_reg_info_regd(wiphy,
1225                                MHZ_TO_KHZ(chan->center_freq),
1226                                desired_bw_khz,
1227                                &reg_rule,
1228                                regd);
1229
1230         if (r) {
1231                 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1232                               "regd has no rule that fits a %d MHz "
1233                               "wide channel\n",
1234                               chan->center_freq,
1235                               KHZ_TO_MHZ(desired_bw_khz));
1236                 chan->flags = IEEE80211_CHAN_DISABLED;
1237                 return;
1238         }
1239
1240         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1241
1242         power_rule = &reg_rule->power_rule;
1243         freq_range = &reg_rule->freq_range;
1244
1245         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1246                 bw_flags = IEEE80211_CHAN_NO_HT40;
1247
1248         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1249         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1250         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1251 }
1252
1253 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1254                                const struct ieee80211_regdomain *regd)
1255 {
1256         unsigned int i;
1257         struct ieee80211_supported_band *sband;
1258
1259         BUG_ON(!wiphy->bands[band]);
1260         sband = wiphy->bands[band];
1261
1262         for (i = 0; i < sband->n_channels; i++)
1263                 handle_channel_custom(wiphy, band, i, regd);
1264 }
1265
1266 /* Used by drivers prior to wiphy registration */
1267 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1268                                    const struct ieee80211_regdomain *regd)
1269 {
1270         enum ieee80211_band band;
1271         unsigned int bands_set = 0;
1272
1273         mutex_lock(&reg_mutex);
1274         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1275                 if (!wiphy->bands[band])
1276                         continue;
1277                 handle_band_custom(wiphy, band, regd);
1278                 bands_set++;
1279         }
1280         mutex_unlock(&reg_mutex);
1281
1282         /*
1283          * no point in calling this if it won't have any effect
1284          * on your device's supportd bands.
1285          */
1286         WARN_ON(!bands_set);
1287 }
1288 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1289
1290 /*
1291  * Return value which can be used by ignore_request() to indicate
1292  * it has been determined we should intersect two regulatory domains
1293  */
1294 #define REG_INTERSECT   1
1295
1296 /* This has the logic which determines when a new request
1297  * should be ignored. */
1298 static int ignore_request(struct wiphy *wiphy,
1299                           struct regulatory_request *pending_request)
1300 {
1301         struct wiphy *last_wiphy = NULL;
1302
1303         assert_cfg80211_lock();
1304
1305         /* All initial requests are respected */
1306         if (!last_request)
1307                 return 0;
1308
1309         switch (pending_request->initiator) {
1310         case NL80211_REGDOM_SET_BY_CORE:
1311                 return 0;
1312         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1313
1314                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1315
1316                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1317                         return -EINVAL;
1318                 if (last_request->initiator ==
1319                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1320                         if (last_wiphy != wiphy) {
1321                                 /*
1322                                  * Two cards with two APs claiming different
1323                                  * Country IE alpha2s. We could
1324                                  * intersect them, but that seems unlikely
1325                                  * to be correct. Reject second one for now.
1326                                  */
1327                                 if (regdom_changes(pending_request->alpha2))
1328                                         return -EOPNOTSUPP;
1329                                 return -EALREADY;
1330                         }
1331                         /*
1332                          * Two consecutive Country IE hints on the same wiphy.
1333                          * This should be picked up early by the driver/stack
1334                          */
1335                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1336                                 return 0;
1337                         return -EALREADY;
1338                 }
1339                 return 0;
1340         case NL80211_REGDOM_SET_BY_DRIVER:
1341                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1342                         if (regdom_changes(pending_request->alpha2))
1343                                 return 0;
1344                         return -EALREADY;
1345                 }
1346
1347                 /*
1348                  * This would happen if you unplug and plug your card
1349                  * back in or if you add a new device for which the previously
1350                  * loaded card also agrees on the regulatory domain.
1351                  */
1352                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1353                     !regdom_changes(pending_request->alpha2))
1354                         return -EALREADY;
1355
1356                 return REG_INTERSECT;
1357         case NL80211_REGDOM_SET_BY_USER:
1358                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1359                         return REG_INTERSECT;
1360                 /*
1361                  * If the user knows better the user should set the regdom
1362                  * to their country before the IE is picked up
1363                  */
1364                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1365                           last_request->intersect)
1366                         return -EOPNOTSUPP;
1367                 /*
1368                  * Process user requests only after previous user/driver/core
1369                  * requests have been processed
1370                  */
1371                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1372                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1373                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1374                         if (regdom_changes(last_request->alpha2))
1375                                 return -EAGAIN;
1376                 }
1377
1378                 if (!regdom_changes(pending_request->alpha2))
1379                         return -EALREADY;
1380
1381                 return 0;
1382         }
1383
1384         return -EINVAL;
1385 }
1386
1387 static void reg_set_request_processed(void)
1388 {
1389         bool need_more_processing = false;
1390
1391         last_request->processed = true;
1392
1393         spin_lock(&reg_requests_lock);
1394         if (!list_empty(&reg_requests_list))
1395                 need_more_processing = true;
1396         spin_unlock(&reg_requests_lock);
1397
1398         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1399                 cancel_delayed_work_sync(&reg_timeout);
1400
1401         if (need_more_processing)
1402                 schedule_work(&reg_work);
1403 }
1404
1405 /**
1406  * __regulatory_hint - hint to the wireless core a regulatory domain
1407  * @wiphy: if the hint comes from country information from an AP, this
1408  *      is required to be set to the wiphy that received the information
1409  * @pending_request: the regulatory request currently being processed
1410  *
1411  * The Wireless subsystem can use this function to hint to the wireless core
1412  * what it believes should be the current regulatory domain.
1413  *
1414  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1415  * already been set or other standard error codes.
1416  *
1417  * Caller must hold &cfg80211_mutex and &reg_mutex
1418  */
1419 static int __regulatory_hint(struct wiphy *wiphy,
1420                              struct regulatory_request *pending_request)
1421 {
1422         bool intersect = false;
1423         int r = 0;
1424
1425         assert_cfg80211_lock();
1426
1427         r = ignore_request(wiphy, pending_request);
1428
1429         if (r == REG_INTERSECT) {
1430                 if (pending_request->initiator ==
1431                     NL80211_REGDOM_SET_BY_DRIVER) {
1432                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1433                         if (r) {
1434                                 kfree(pending_request);
1435                                 return r;
1436                         }
1437                 }
1438                 intersect = true;
1439         } else if (r) {
1440                 /*
1441                  * If the regulatory domain being requested by the
1442                  * driver has already been set just copy it to the
1443                  * wiphy
1444                  */
1445                 if (r == -EALREADY &&
1446                     pending_request->initiator ==
1447                     NL80211_REGDOM_SET_BY_DRIVER) {
1448                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1449                         if (r) {
1450                                 kfree(pending_request);
1451                                 return r;
1452                         }
1453                         r = -EALREADY;
1454                         goto new_request;
1455                 }
1456                 kfree(pending_request);
1457                 return r;
1458         }
1459
1460 new_request:
1461         if (last_request != &core_request_world)
1462                 kfree(last_request);
1463
1464         last_request = pending_request;
1465         last_request->intersect = intersect;
1466
1467         pending_request = NULL;
1468
1469         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1470                 user_alpha2[0] = last_request->alpha2[0];
1471                 user_alpha2[1] = last_request->alpha2[1];
1472         }
1473
1474         /* When r == REG_INTERSECT we do need to call CRDA */
1475         if (r < 0) {
1476                 /*
1477                  * Since CRDA will not be called in this case as we already
1478                  * have applied the requested regulatory domain before we just
1479                  * inform userspace we have processed the request
1480                  */
1481                 if (r == -EALREADY) {
1482                         nl80211_send_reg_change_event(last_request);
1483                         reg_set_request_processed();
1484                 }
1485                 return r;
1486         }
1487
1488         return call_crda(last_request->alpha2);
1489 }
1490
1491 /* This processes *all* regulatory hints */
1492 static void reg_process_hint(struct regulatory_request *reg_request,
1493                              enum nl80211_reg_initiator reg_initiator)
1494 {
1495         int r = 0;
1496         struct wiphy *wiphy = NULL;
1497
1498         BUG_ON(!reg_request->alpha2);
1499
1500         if (wiphy_idx_valid(reg_request->wiphy_idx))
1501                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1502
1503         if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1504             !wiphy) {
1505                 kfree(reg_request);
1506                 return;
1507         }
1508
1509         r = __regulatory_hint(wiphy, reg_request);
1510         /* This is required so that the orig_* parameters are saved */
1511         if (r == -EALREADY && wiphy &&
1512             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1513                 wiphy_update_regulatory(wiphy, reg_initiator);
1514                 return;
1515         }
1516
1517         /*
1518          * We only time out user hints, given that they should be the only
1519          * source of bogus requests.
1520          */
1521         if (r != -EALREADY &&
1522             reg_initiator == NL80211_REGDOM_SET_BY_USER)
1523                 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1524 }
1525
1526 /*
1527  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1528  * Regulatory hints come on a first come first serve basis and we
1529  * must process each one atomically.
1530  */
1531 static void reg_process_pending_hints(void)
1532 {
1533         struct regulatory_request *reg_request;
1534
1535         mutex_lock(&cfg80211_mutex);
1536         mutex_lock(&reg_mutex);
1537
1538         /* When last_request->processed becomes true this will be rescheduled */
1539         if (last_request && !last_request->processed) {
1540                 REG_DBG_PRINT("Pending regulatory request, waiting "
1541                               "for it to be processed...\n");
1542                 goto out;
1543         }
1544
1545         spin_lock(&reg_requests_lock);
1546
1547         if (list_empty(&reg_requests_list)) {
1548                 spin_unlock(&reg_requests_lock);
1549                 goto out;
1550         }
1551
1552         reg_request = list_first_entry(&reg_requests_list,
1553                                        struct regulatory_request,
1554                                        list);
1555         list_del_init(&reg_request->list);
1556
1557         spin_unlock(&reg_requests_lock);
1558
1559         reg_process_hint(reg_request, reg_request->initiator);
1560
1561 out:
1562         mutex_unlock(&reg_mutex);
1563         mutex_unlock(&cfg80211_mutex);
1564 }
1565
1566 /* Processes beacon hints -- this has nothing to do with country IEs */
1567 static void reg_process_pending_beacon_hints(void)
1568 {
1569         struct cfg80211_registered_device *rdev;
1570         struct reg_beacon *pending_beacon, *tmp;
1571
1572         /*
1573          * No need to hold the reg_mutex here as we just touch wiphys
1574          * and do not read or access regulatory variables.
1575          */
1576         mutex_lock(&cfg80211_mutex);
1577
1578         /* This goes through the _pending_ beacon list */
1579         spin_lock_bh(&reg_pending_beacons_lock);
1580
1581         if (list_empty(&reg_pending_beacons)) {
1582                 spin_unlock_bh(&reg_pending_beacons_lock);
1583                 goto out;
1584         }
1585
1586         list_for_each_entry_safe(pending_beacon, tmp,
1587                                  &reg_pending_beacons, list) {
1588
1589                 list_del_init(&pending_beacon->list);
1590
1591                 /* Applies the beacon hint to current wiphys */
1592                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1593                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1594
1595                 /* Remembers the beacon hint for new wiphys or reg changes */
1596                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1597         }
1598
1599         spin_unlock_bh(&reg_pending_beacons_lock);
1600 out:
1601         mutex_unlock(&cfg80211_mutex);
1602 }
1603
1604 static void reg_todo(struct work_struct *work)
1605 {
1606         reg_process_pending_hints();
1607         reg_process_pending_beacon_hints();
1608 }
1609
1610 static void queue_regulatory_request(struct regulatory_request *request)
1611 {
1612         if (isalpha(request->alpha2[0]))
1613                 request->alpha2[0] = toupper(request->alpha2[0]);
1614         if (isalpha(request->alpha2[1]))
1615                 request->alpha2[1] = toupper(request->alpha2[1]);
1616
1617         spin_lock(&reg_requests_lock);
1618         list_add_tail(&request->list, &reg_requests_list);
1619         spin_unlock(&reg_requests_lock);
1620
1621         schedule_work(&reg_work);
1622 }
1623
1624 /*
1625  * Core regulatory hint -- happens during cfg80211_init()
1626  * and when we restore regulatory settings.
1627  */
1628 static int regulatory_hint_core(const char *alpha2)
1629 {
1630         struct regulatory_request *request;
1631
1632         request = kzalloc(sizeof(struct regulatory_request),
1633                           GFP_KERNEL);
1634         if (!request)
1635                 return -ENOMEM;
1636
1637         request->alpha2[0] = alpha2[0];
1638         request->alpha2[1] = alpha2[1];
1639         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1640
1641         queue_regulatory_request(request);
1642
1643         return 0;
1644 }
1645
1646 /* User hints */
1647 int regulatory_hint_user(const char *alpha2)
1648 {
1649         struct regulatory_request *request;
1650
1651         BUG_ON(!alpha2);
1652
1653         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1654         if (!request)
1655                 return -ENOMEM;
1656
1657         request->wiphy_idx = WIPHY_IDX_STALE;
1658         request->alpha2[0] = alpha2[0];
1659         request->alpha2[1] = alpha2[1];
1660         request->initiator = NL80211_REGDOM_SET_BY_USER;
1661
1662         queue_regulatory_request(request);
1663
1664         return 0;
1665 }
1666
1667 /* Driver hints */
1668 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1669 {
1670         struct regulatory_request *request;
1671
1672         BUG_ON(!alpha2);
1673         BUG_ON(!wiphy);
1674
1675         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1676         if (!request)
1677                 return -ENOMEM;
1678
1679         request->wiphy_idx = get_wiphy_idx(wiphy);
1680
1681         /* Must have registered wiphy first */
1682         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1683
1684         request->alpha2[0] = alpha2[0];
1685         request->alpha2[1] = alpha2[1];
1686         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1687
1688         queue_regulatory_request(request);
1689
1690         return 0;
1691 }
1692 EXPORT_SYMBOL(regulatory_hint);
1693
1694 /*
1695  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1696  * therefore cannot iterate over the rdev list here.
1697  */
1698 void regulatory_hint_11d(struct wiphy *wiphy,
1699                          enum ieee80211_band band,
1700                          u8 *country_ie,
1701                          u8 country_ie_len)
1702 {
1703         char alpha2[2];
1704         enum environment_cap env = ENVIRON_ANY;
1705         struct regulatory_request *request;
1706
1707         mutex_lock(&reg_mutex);
1708
1709         if (unlikely(!last_request))
1710                 goto out;
1711
1712         /* IE len must be evenly divisible by 2 */
1713         if (country_ie_len & 0x01)
1714                 goto out;
1715
1716         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1717                 goto out;
1718
1719         alpha2[0] = country_ie[0];
1720         alpha2[1] = country_ie[1];
1721
1722         if (country_ie[2] == 'I')
1723                 env = ENVIRON_INDOOR;
1724         else if (country_ie[2] == 'O')
1725                 env = ENVIRON_OUTDOOR;
1726
1727         /*
1728          * We will run this only upon a successful connection on cfg80211.
1729          * We leave conflict resolution to the workqueue, where can hold
1730          * cfg80211_mutex.
1731          */
1732         if (likely(last_request->initiator ==
1733             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1734             wiphy_idx_valid(last_request->wiphy_idx)))
1735                 goto out;
1736
1737         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1738         if (!request)
1739                 goto out;
1740
1741         request->wiphy_idx = get_wiphy_idx(wiphy);
1742         request->alpha2[0] = alpha2[0];
1743         request->alpha2[1] = alpha2[1];
1744         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1745         request->country_ie_env = env;
1746
1747         mutex_unlock(&reg_mutex);
1748
1749         queue_regulatory_request(request);
1750
1751         return;
1752
1753 out:
1754         mutex_unlock(&reg_mutex);
1755 }
1756
1757 static void restore_alpha2(char *alpha2, bool reset_user)
1758 {
1759         /* indicates there is no alpha2 to consider for restoration */
1760         alpha2[0] = '9';
1761         alpha2[1] = '7';
1762
1763         /* The user setting has precedence over the module parameter */
1764         if (is_user_regdom_saved()) {
1765                 /* Unless we're asked to ignore it and reset it */
1766                 if (reset_user) {
1767                         REG_DBG_PRINT("Restoring regulatory settings "
1768                                "including user preference\n");
1769                         user_alpha2[0] = '9';
1770                         user_alpha2[1] = '7';
1771
1772                         /*
1773                          * If we're ignoring user settings, we still need to
1774                          * check the module parameter to ensure we put things
1775                          * back as they were for a full restore.
1776                          */
1777                         if (!is_world_regdom(ieee80211_regdom)) {
1778                                 REG_DBG_PRINT("Keeping preference on "
1779                                        "module parameter ieee80211_regdom: %c%c\n",
1780                                        ieee80211_regdom[0],
1781                                        ieee80211_regdom[1]);
1782                                 alpha2[0] = ieee80211_regdom[0];
1783                                 alpha2[1] = ieee80211_regdom[1];
1784                         }
1785                 } else {
1786                         REG_DBG_PRINT("Restoring regulatory settings "
1787                                "while preserving user preference for: %c%c\n",
1788                                user_alpha2[0],
1789                                user_alpha2[1]);
1790                         alpha2[0] = user_alpha2[0];
1791                         alpha2[1] = user_alpha2[1];
1792                 }
1793         } else if (!is_world_regdom(ieee80211_regdom)) {
1794                 REG_DBG_PRINT("Keeping preference on "
1795                        "module parameter ieee80211_regdom: %c%c\n",
1796                        ieee80211_regdom[0],
1797                        ieee80211_regdom[1]);
1798                 alpha2[0] = ieee80211_regdom[0];
1799                 alpha2[1] = ieee80211_regdom[1];
1800         } else
1801                 REG_DBG_PRINT("Restoring regulatory settings\n");
1802 }
1803
1804 static void restore_custom_reg_settings(struct wiphy *wiphy)
1805 {
1806         struct ieee80211_supported_band *sband;
1807         enum ieee80211_band band;
1808         struct ieee80211_channel *chan;
1809         int i;
1810
1811         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1812                 sband = wiphy->bands[band];
1813                 if (!sband)
1814                         continue;
1815                 for (i = 0; i < sband->n_channels; i++) {
1816                         chan = &sband->channels[i];
1817                         chan->flags = chan->orig_flags;
1818                         chan->max_antenna_gain = chan->orig_mag;
1819                         chan->max_power = chan->orig_mpwr;
1820                 }
1821         }
1822 }
1823
1824 /*
1825  * Restoring regulatory settings involves ingoring any
1826  * possibly stale country IE information and user regulatory
1827  * settings if so desired, this includes any beacon hints
1828  * learned as we could have traveled outside to another country
1829  * after disconnection. To restore regulatory settings we do
1830  * exactly what we did at bootup:
1831  *
1832  *   - send a core regulatory hint
1833  *   - send a user regulatory hint if applicable
1834  *
1835  * Device drivers that send a regulatory hint for a specific country
1836  * keep their own regulatory domain on wiphy->regd so that does does
1837  * not need to be remembered.
1838  */
1839 static void restore_regulatory_settings(bool reset_user)
1840 {
1841         char alpha2[2];
1842         char world_alpha2[2];
1843         struct reg_beacon *reg_beacon, *btmp;
1844         struct regulatory_request *reg_request, *tmp;
1845         LIST_HEAD(tmp_reg_req_list);
1846         struct cfg80211_registered_device *rdev;
1847
1848         mutex_lock(&cfg80211_mutex);
1849         mutex_lock(&reg_mutex);
1850
1851         reset_regdomains(true);
1852         restore_alpha2(alpha2, reset_user);
1853
1854         /*
1855          * If there's any pending requests we simply
1856          * stash them to a temporary pending queue and
1857          * add then after we've restored regulatory
1858          * settings.
1859          */
1860         spin_lock(&reg_requests_lock);
1861         if (!list_empty(&reg_requests_list)) {
1862                 list_for_each_entry_safe(reg_request, tmp,
1863                                          &reg_requests_list, list) {
1864                         if (reg_request->initiator !=
1865                             NL80211_REGDOM_SET_BY_USER)
1866                                 continue;
1867                         list_del(&reg_request->list);
1868                         list_add_tail(&reg_request->list, &tmp_reg_req_list);
1869                 }
1870         }
1871         spin_unlock(&reg_requests_lock);
1872
1873         /* Clear beacon hints */
1874         spin_lock_bh(&reg_pending_beacons_lock);
1875         if (!list_empty(&reg_pending_beacons)) {
1876                 list_for_each_entry_safe(reg_beacon, btmp,
1877                                          &reg_pending_beacons, list) {
1878                         list_del(&reg_beacon->list);
1879                         kfree(reg_beacon);
1880                 }
1881         }
1882         spin_unlock_bh(&reg_pending_beacons_lock);
1883
1884         if (!list_empty(&reg_beacon_list)) {
1885                 list_for_each_entry_safe(reg_beacon, btmp,
1886                                          &reg_beacon_list, list) {
1887                         list_del(&reg_beacon->list);
1888                         kfree(reg_beacon);
1889                 }
1890         }
1891
1892         /* First restore to the basic regulatory settings */
1893         cfg80211_regdomain = cfg80211_world_regdom;
1894         world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1895         world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1896
1897         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1898                 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1899                         restore_custom_reg_settings(&rdev->wiphy);
1900         }
1901
1902         mutex_unlock(&reg_mutex);
1903         mutex_unlock(&cfg80211_mutex);
1904
1905         regulatory_hint_core(world_alpha2);
1906
1907         /*
1908          * This restores the ieee80211_regdom module parameter
1909          * preference or the last user requested regulatory
1910          * settings, user regulatory settings takes precedence.
1911          */
1912         if (is_an_alpha2(alpha2))
1913                 regulatory_hint_user(user_alpha2);
1914
1915         if (list_empty(&tmp_reg_req_list))
1916                 return;
1917
1918         mutex_lock(&cfg80211_mutex);
1919         mutex_lock(&reg_mutex);
1920
1921         spin_lock(&reg_requests_lock);
1922         list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1923                 REG_DBG_PRINT("Adding request for country %c%c back "
1924                               "into the queue\n",
1925                               reg_request->alpha2[0],
1926                               reg_request->alpha2[1]);
1927                 list_del(&reg_request->list);
1928                 list_add_tail(&reg_request->list, &reg_requests_list);
1929         }
1930         spin_unlock(&reg_requests_lock);
1931
1932         mutex_unlock(&reg_mutex);
1933         mutex_unlock(&cfg80211_mutex);
1934
1935         REG_DBG_PRINT("Kicking the queue\n");
1936
1937         schedule_work(&reg_work);
1938 }
1939
1940 void regulatory_hint_disconnect(void)
1941 {
1942         REG_DBG_PRINT("All devices are disconnected, going to "
1943                       "restore regulatory settings\n");
1944         restore_regulatory_settings(false);
1945 }
1946
1947 static bool freq_is_chan_12_13_14(u16 freq)
1948 {
1949         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1950             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1951             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1952                 return true;
1953         return false;
1954 }
1955
1956 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1957                                  struct ieee80211_channel *beacon_chan,
1958                                  gfp_t gfp)
1959 {
1960         struct reg_beacon *reg_beacon;
1961
1962         if (likely((beacon_chan->beacon_found ||
1963             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1964             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1965              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1966                 return 0;
1967
1968         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1969         if (!reg_beacon)
1970                 return -ENOMEM;
1971
1972         REG_DBG_PRINT("Found new beacon on "
1973                       "frequency: %d MHz (Ch %d) on %s\n",
1974                       beacon_chan->center_freq,
1975                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1976                       wiphy_name(wiphy));
1977
1978         memcpy(&reg_beacon->chan, beacon_chan,
1979                 sizeof(struct ieee80211_channel));
1980
1981
1982         /*
1983          * Since we can be called from BH or and non-BH context
1984          * we must use spin_lock_bh()
1985          */
1986         spin_lock_bh(&reg_pending_beacons_lock);
1987         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1988         spin_unlock_bh(&reg_pending_beacons_lock);
1989
1990         schedule_work(&reg_work);
1991
1992         return 0;
1993 }
1994
1995 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1996 {
1997         unsigned int i;
1998         const struct ieee80211_reg_rule *reg_rule = NULL;
1999         const struct ieee80211_freq_range *freq_range = NULL;
2000         const struct ieee80211_power_rule *power_rule = NULL;
2001
2002         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2003
2004         for (i = 0; i < rd->n_reg_rules; i++) {
2005                 reg_rule = &rd->reg_rules[i];
2006                 freq_range = &reg_rule->freq_range;
2007                 power_rule = &reg_rule->power_rule;
2008
2009                 /*
2010                  * There may not be documentation for max antenna gain
2011                  * in certain regions
2012                  */
2013                 if (power_rule->max_antenna_gain)
2014                         pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2015                                 freq_range->start_freq_khz,
2016                                 freq_range->end_freq_khz,
2017                                 freq_range->max_bandwidth_khz,
2018                                 power_rule->max_antenna_gain,
2019                                 power_rule->max_eirp);
2020                 else
2021                         pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2022                                 freq_range->start_freq_khz,
2023                                 freq_range->end_freq_khz,
2024                                 freq_range->max_bandwidth_khz,
2025                                 power_rule->max_eirp);
2026         }
2027 }
2028
2029 bool reg_supported_dfs_region(u8 dfs_region)
2030 {
2031         switch (dfs_region) {
2032         case NL80211_DFS_UNSET:
2033         case NL80211_DFS_FCC:
2034         case NL80211_DFS_ETSI:
2035         case NL80211_DFS_JP:
2036                 return true;
2037         default:
2038                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2039                               dfs_region);
2040                 return false;
2041         }
2042 }
2043
2044 static void print_dfs_region(u8 dfs_region)
2045 {
2046         if (!dfs_region)
2047                 return;
2048
2049         switch (dfs_region) {
2050         case NL80211_DFS_FCC:
2051                 pr_info(" DFS Master region FCC");
2052                 break;
2053         case NL80211_DFS_ETSI:
2054                 pr_info(" DFS Master region ETSI");
2055                 break;
2056         case NL80211_DFS_JP:
2057                 pr_info(" DFS Master region JP");
2058                 break;
2059         default:
2060                 pr_info(" DFS Master region Uknown");
2061                 break;
2062         }
2063 }
2064
2065 static void print_regdomain(const struct ieee80211_regdomain *rd)
2066 {
2067
2068         if (is_intersected_alpha2(rd->alpha2)) {
2069
2070                 if (last_request->initiator ==
2071                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2072                         struct cfg80211_registered_device *rdev;
2073                         rdev = cfg80211_rdev_by_wiphy_idx(
2074                                 last_request->wiphy_idx);
2075                         if (rdev) {
2076                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2077                                         rdev->country_ie_alpha2[0],
2078                                         rdev->country_ie_alpha2[1]);
2079                         } else
2080                                 pr_info("Current regulatory domain intersected:\n");
2081                 } else
2082                         pr_info("Current regulatory domain intersected:\n");
2083         } else if (is_world_regdom(rd->alpha2))
2084                 pr_info("World regulatory domain updated:\n");
2085         else {
2086                 if (is_unknown_alpha2(rd->alpha2))
2087                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2088                 else
2089                         pr_info("Regulatory domain changed to country: %c%c\n",
2090                                 rd->alpha2[0], rd->alpha2[1]);
2091         }
2092         print_dfs_region(rd->dfs_region);
2093         print_rd_rules(rd);
2094 }
2095
2096 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2097 {
2098         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2099         print_rd_rules(rd);
2100 }
2101
2102 /* Takes ownership of rd only if it doesn't fail */
2103 static int __set_regdom(const struct ieee80211_regdomain *rd)
2104 {
2105         const struct ieee80211_regdomain *intersected_rd = NULL;
2106         struct cfg80211_registered_device *rdev = NULL;
2107         struct wiphy *request_wiphy;
2108         /* Some basic sanity checks first */
2109
2110         if (is_world_regdom(rd->alpha2)) {
2111                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2112                         return -EINVAL;
2113                 update_world_regdomain(rd);
2114                 return 0;
2115         }
2116
2117         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2118                         !is_unknown_alpha2(rd->alpha2))
2119                 return -EINVAL;
2120
2121         if (!last_request)
2122                 return -EINVAL;
2123
2124         /*
2125          * Lets only bother proceeding on the same alpha2 if the current
2126          * rd is non static (it means CRDA was present and was used last)
2127          * and the pending request came in from a country IE
2128          */
2129         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2130                 /*
2131                  * If someone else asked us to change the rd lets only bother
2132                  * checking if the alpha2 changes if CRDA was already called
2133                  */
2134                 if (!regdom_changes(rd->alpha2))
2135                         return -EINVAL;
2136         }
2137
2138         /*
2139          * Now lets set the regulatory domain, update all driver channels
2140          * and finally inform them of what we have done, in case they want
2141          * to review or adjust their own settings based on their own
2142          * internal EEPROM data
2143          */
2144
2145         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2146                 return -EINVAL;
2147
2148         if (!is_valid_rd(rd)) {
2149                 pr_err("Invalid regulatory domain detected:\n");
2150                 print_regdomain_info(rd);
2151                 return -EINVAL;
2152         }
2153
2154         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2155         if (!request_wiphy &&
2156             (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2157              last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2158                 schedule_delayed_work(&reg_timeout, 0);
2159                 return -ENODEV;
2160         }
2161
2162         if (!last_request->intersect) {
2163                 int r;
2164
2165                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2166                         reset_regdomains(false);
2167                         cfg80211_regdomain = rd;
2168                         return 0;
2169                 }
2170
2171                 /*
2172                  * For a driver hint, lets copy the regulatory domain the
2173                  * driver wanted to the wiphy to deal with conflicts
2174                  */
2175
2176                 /*
2177                  * Userspace could have sent two replies with only
2178                  * one kernel request.
2179                  */
2180                 if (request_wiphy->regd)
2181                         return -EALREADY;
2182
2183                 r = reg_copy_regd(&request_wiphy->regd, rd);
2184                 if (r)
2185                         return r;
2186
2187                 reset_regdomains(false);
2188                 cfg80211_regdomain = rd;
2189                 return 0;
2190         }
2191
2192         /* Intersection requires a bit more work */
2193
2194         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2195
2196                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2197                 if (!intersected_rd)
2198                         return -EINVAL;
2199
2200                 /*
2201                  * We can trash what CRDA provided now.
2202                  * However if a driver requested this specific regulatory
2203                  * domain we keep it for its private use
2204                  */
2205                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2206                         request_wiphy->regd = rd;
2207                 else
2208                         kfree(rd);
2209
2210                 rd = NULL;
2211
2212                 reset_regdomains(false);
2213                 cfg80211_regdomain = intersected_rd;
2214
2215                 return 0;
2216         }
2217
2218         if (!intersected_rd)
2219                 return -EINVAL;
2220
2221         rdev = wiphy_to_dev(request_wiphy);
2222
2223         rdev->country_ie_alpha2[0] = rd->alpha2[0];
2224         rdev->country_ie_alpha2[1] = rd->alpha2[1];
2225         rdev->env = last_request->country_ie_env;
2226
2227         BUG_ON(intersected_rd == rd);
2228
2229         kfree(rd);
2230         rd = NULL;
2231
2232         reset_regdomains(false);
2233         cfg80211_regdomain = intersected_rd;
2234
2235         return 0;
2236 }
2237
2238
2239 /*
2240  * Use this call to set the current regulatory domain. Conflicts with
2241  * multiple drivers can be ironed out later. Caller must've already
2242  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2243  */
2244 int set_regdom(const struct ieee80211_regdomain *rd)
2245 {
2246         int r;
2247
2248         assert_cfg80211_lock();
2249
2250         mutex_lock(&reg_mutex);
2251
2252         /* Note that this doesn't update the wiphys, this is done below */
2253         r = __set_regdom(rd);
2254         if (r) {
2255                 kfree(rd);
2256                 mutex_unlock(&reg_mutex);
2257                 return r;
2258         }
2259
2260         /* This would make this whole thing pointless */
2261         if (!last_request->intersect)
2262                 BUG_ON(rd != cfg80211_regdomain);
2263
2264         /* update all wiphys now with the new established regulatory domain */
2265         update_all_wiphy_regulatory(last_request->initiator);
2266
2267         print_regdomain(cfg80211_regdomain);
2268
2269         nl80211_send_reg_change_event(last_request);
2270
2271         reg_set_request_processed();
2272
2273         mutex_unlock(&reg_mutex);
2274
2275         return r;
2276 }
2277
2278 #ifdef CONFIG_HOTPLUG
2279 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2280 {
2281         if (last_request && !last_request->processed) {
2282                 if (add_uevent_var(env, "COUNTRY=%c%c",
2283                                    last_request->alpha2[0],
2284                                    last_request->alpha2[1]))
2285                         return -ENOMEM;
2286         }
2287
2288         return 0;
2289 }
2290 #else
2291 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2292 {
2293         return -ENODEV;
2294 }
2295 #endif /* CONFIG_HOTPLUG */
2296
2297 /* Caller must hold cfg80211_mutex */
2298 void reg_device_remove(struct wiphy *wiphy)
2299 {
2300         struct wiphy *request_wiphy = NULL;
2301
2302         assert_cfg80211_lock();
2303
2304         mutex_lock(&reg_mutex);
2305
2306         kfree(wiphy->regd);
2307
2308         if (last_request)
2309                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2310
2311         if (!request_wiphy || request_wiphy != wiphy)
2312                 goto out;
2313
2314         last_request->wiphy_idx = WIPHY_IDX_STALE;
2315         last_request->country_ie_env = ENVIRON_ANY;
2316 out:
2317         mutex_unlock(&reg_mutex);
2318 }
2319
2320 static void reg_timeout_work(struct work_struct *work)
2321 {
2322         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2323                       "restoring regulatory settings\n");
2324         restore_regulatory_settings(true);
2325 }
2326
2327 int __init regulatory_init(void)
2328 {
2329         int err = 0;
2330
2331         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2332         if (IS_ERR(reg_pdev))
2333                 return PTR_ERR(reg_pdev);
2334
2335         reg_pdev->dev.type = &reg_device_type;
2336
2337         spin_lock_init(&reg_requests_lock);
2338         spin_lock_init(&reg_pending_beacons_lock);
2339
2340         cfg80211_regdomain = cfg80211_world_regdom;
2341
2342         user_alpha2[0] = '9';
2343         user_alpha2[1] = '7';
2344
2345         /* We always try to get an update for the static regdomain */
2346         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2347         if (err) {
2348                 if (err == -ENOMEM)
2349                         return err;
2350                 /*
2351                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2352                  * memory which is handled and propagated appropriately above
2353                  * but it can also fail during a netlink_broadcast() or during
2354                  * early boot for call_usermodehelper(). For now treat these
2355                  * errors as non-fatal.
2356                  */
2357                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2358 #ifdef CONFIG_CFG80211_REG_DEBUG
2359                 /* We want to find out exactly why when debugging */
2360                 WARN_ON(err);
2361 #endif
2362         }
2363
2364         /*
2365          * Finally, if the user set the module parameter treat it
2366          * as a user hint.
2367          */
2368         if (!is_world_regdom(ieee80211_regdom))
2369                 regulatory_hint_user(ieee80211_regdom);
2370
2371         return 0;
2372 }
2373
2374 void /* __init_or_exit */ regulatory_exit(void)
2375 {
2376         struct regulatory_request *reg_request, *tmp;
2377         struct reg_beacon *reg_beacon, *btmp;
2378
2379         cancel_work_sync(&reg_work);
2380         cancel_delayed_work_sync(&reg_timeout);
2381
2382         mutex_lock(&cfg80211_mutex);
2383         mutex_lock(&reg_mutex);
2384
2385         reset_regdomains(true);
2386
2387         dev_set_uevent_suppress(&reg_pdev->dev, true);
2388
2389         platform_device_unregister(reg_pdev);
2390
2391         spin_lock_bh(&reg_pending_beacons_lock);
2392         if (!list_empty(&reg_pending_beacons)) {
2393                 list_for_each_entry_safe(reg_beacon, btmp,
2394                                          &reg_pending_beacons, list) {
2395                         list_del(&reg_beacon->list);
2396                         kfree(reg_beacon);
2397                 }
2398         }
2399         spin_unlock_bh(&reg_pending_beacons_lock);
2400
2401         if (!list_empty(&reg_beacon_list)) {
2402                 list_for_each_entry_safe(reg_beacon, btmp,
2403                                          &reg_beacon_list, list) {
2404                         list_del(&reg_beacon->list);
2405                         kfree(reg_beacon);
2406                 }
2407         }
2408
2409         spin_lock(&reg_requests_lock);
2410         if (!list_empty(&reg_requests_list)) {
2411                 list_for_each_entry_safe(reg_request, tmp,
2412                                          &reg_requests_list, list) {
2413                         list_del(&reg_request->list);
2414                         kfree(reg_request);
2415                 }
2416         }
2417         spin_unlock(&reg_requests_lock);
2418
2419         mutex_unlock(&reg_mutex);
2420         mutex_unlock(&cfg80211_mutex);
2421 }