Merge tag 'stable/for-linus-3.6-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19
20
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/random.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "regdb.h"
60 #include "nl80211.h"
61
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...)                  \
64         printk(KERN_DEBUG pr_fmt(format), ##args)
65 #else
66 #define REG_DBG_PRINT(args...)
67 #endif
68
69 static struct regulatory_request core_request_world = {
70         .initiator = NL80211_REGDOM_SET_BY_CORE,
71         .alpha2[0] = '0',
72         .alpha2[1] = '0',
73         .intersect = false,
74         .processed = true,
75         .country_ie_env = ENVIRON_ANY,
76 };
77
78 /* Receipt of information from last regulatory request */
79 static struct regulatory_request *last_request = &core_request_world;
80
81 /* To trigger userspace events */
82 static struct platform_device *reg_pdev;
83
84 static struct device_type reg_device_type = {
85         .uevent = reg_device_uevent,
86 };
87
88 /*
89  * Central wireless core regulatory domains, we only need two,
90  * the current one and a world regulatory domain in case we have no
91  * information to give us an alpha2
92  */
93 const struct ieee80211_regdomain *cfg80211_regdomain;
94
95 /*
96  * Protects static reg.c components:
97  *     - cfg80211_world_regdom
98  *     - cfg80211_regdom
99  *     - last_request
100  *     - reg_num_devs_support_basehint
101  */
102 static DEFINE_MUTEX(reg_mutex);
103
104 /*
105  * Number of devices that registered to the core
106  * that support cellular base station regulatory hints
107  */
108 static int reg_num_devs_support_basehint;
109
110 static inline void assert_reg_lock(void)
111 {
112         lockdep_assert_held(&reg_mutex);
113 }
114
115 /* Used to queue up regulatory hints */
116 static LIST_HEAD(reg_requests_list);
117 static spinlock_t reg_requests_lock;
118
119 /* Used to queue up beacon hints for review */
120 static LIST_HEAD(reg_pending_beacons);
121 static spinlock_t reg_pending_beacons_lock;
122
123 /* Used to keep track of processed beacon hints */
124 static LIST_HEAD(reg_beacon_list);
125
126 struct reg_beacon {
127         struct list_head list;
128         struct ieee80211_channel chan;
129 };
130
131 static void reg_todo(struct work_struct *work);
132 static DECLARE_WORK(reg_work, reg_todo);
133
134 static void reg_timeout_work(struct work_struct *work);
135 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
136
137 /* We keep a static world regulatory domain in case of the absence of CRDA */
138 static const struct ieee80211_regdomain world_regdom = {
139         .n_reg_rules = 6,
140         .alpha2 =  "00",
141         .reg_rules = {
142                 /* IEEE 802.11b/g, channels 1..11 */
143                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
144                 /* IEEE 802.11b/g, channels 12..13. No HT40
145                  * channel fits here. */
146                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
147                         NL80211_RRF_PASSIVE_SCAN |
148                         NL80211_RRF_NO_IBSS),
149                 /* IEEE 802.11 channel 14 - Only JP enables
150                  * this and for 802.11b only */
151                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
152                         NL80211_RRF_PASSIVE_SCAN |
153                         NL80211_RRF_NO_IBSS |
154                         NL80211_RRF_NO_OFDM),
155                 /* IEEE 802.11a, channel 36..48 */
156                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
157                         NL80211_RRF_PASSIVE_SCAN |
158                         NL80211_RRF_NO_IBSS),
159
160                 /* NB: 5260 MHz - 5700 MHz requies DFS */
161
162                 /* IEEE 802.11a, channel 149..165 */
163                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
164                         NL80211_RRF_PASSIVE_SCAN |
165                         NL80211_RRF_NO_IBSS),
166
167                 /* IEEE 802.11ad (60gHz), channels 1..3 */
168                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
169         }
170 };
171
172 static const struct ieee80211_regdomain *cfg80211_world_regdom =
173         &world_regdom;
174
175 static char *ieee80211_regdom = "00";
176 static char user_alpha2[2];
177
178 module_param(ieee80211_regdom, charp, 0444);
179 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
180
181 static void reset_regdomains(bool full_reset)
182 {
183         /* avoid freeing static information or freeing something twice */
184         if (cfg80211_regdomain == cfg80211_world_regdom)
185                 cfg80211_regdomain = NULL;
186         if (cfg80211_world_regdom == &world_regdom)
187                 cfg80211_world_regdom = NULL;
188         if (cfg80211_regdomain == &world_regdom)
189                 cfg80211_regdomain = NULL;
190
191         kfree(cfg80211_regdomain);
192         kfree(cfg80211_world_regdom);
193
194         cfg80211_world_regdom = &world_regdom;
195         cfg80211_regdomain = NULL;
196
197         if (!full_reset)
198                 return;
199
200         if (last_request != &core_request_world)
201                 kfree(last_request);
202         last_request = &core_request_world;
203 }
204
205 /*
206  * Dynamic world regulatory domain requested by the wireless
207  * core upon initialization
208  */
209 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
210 {
211         BUG_ON(!last_request);
212
213         reset_regdomains(false);
214
215         cfg80211_world_regdom = rd;
216         cfg80211_regdomain = rd;
217 }
218
219 bool is_world_regdom(const char *alpha2)
220 {
221         if (!alpha2)
222                 return false;
223         if (alpha2[0] == '0' && alpha2[1] == '0')
224                 return true;
225         return false;
226 }
227
228 static bool is_alpha2_set(const char *alpha2)
229 {
230         if (!alpha2)
231                 return false;
232         if (alpha2[0] != 0 && alpha2[1] != 0)
233                 return true;
234         return false;
235 }
236
237 static bool is_unknown_alpha2(const char *alpha2)
238 {
239         if (!alpha2)
240                 return false;
241         /*
242          * Special case where regulatory domain was built by driver
243          * but a specific alpha2 cannot be determined
244          */
245         if (alpha2[0] == '9' && alpha2[1] == '9')
246                 return true;
247         return false;
248 }
249
250 static bool is_intersected_alpha2(const char *alpha2)
251 {
252         if (!alpha2)
253                 return false;
254         /*
255          * Special case where regulatory domain is the
256          * result of an intersection between two regulatory domain
257          * structures
258          */
259         if (alpha2[0] == '9' && alpha2[1] == '8')
260                 return true;
261         return false;
262 }
263
264 static bool is_an_alpha2(const char *alpha2)
265 {
266         if (!alpha2)
267                 return false;
268         if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
269                 return true;
270         return false;
271 }
272
273 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
274 {
275         if (!alpha2_x || !alpha2_y)
276                 return false;
277         if (alpha2_x[0] == alpha2_y[0] &&
278                 alpha2_x[1] == alpha2_y[1])
279                 return true;
280         return false;
281 }
282
283 static bool regdom_changes(const char *alpha2)
284 {
285         assert_cfg80211_lock();
286
287         if (!cfg80211_regdomain)
288                 return true;
289         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
290                 return false;
291         return true;
292 }
293
294 /*
295  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
296  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
297  * has ever been issued.
298  */
299 static bool is_user_regdom_saved(void)
300 {
301         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
302                 return false;
303
304         /* This would indicate a mistake on the design */
305         if (WARN((!is_world_regdom(user_alpha2) &&
306                   !is_an_alpha2(user_alpha2)),
307                  "Unexpected user alpha2: %c%c\n",
308                  user_alpha2[0],
309                  user_alpha2[1]))
310                 return false;
311
312         return true;
313 }
314
315 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
316                          const struct ieee80211_regdomain *src_regd)
317 {
318         struct ieee80211_regdomain *regd;
319         int size_of_regd = 0;
320         unsigned int i;
321
322         size_of_regd = sizeof(struct ieee80211_regdomain) +
323           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
324
325         regd = kzalloc(size_of_regd, GFP_KERNEL);
326         if (!regd)
327                 return -ENOMEM;
328
329         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
330
331         for (i = 0; i < src_regd->n_reg_rules; i++)
332                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
333                         sizeof(struct ieee80211_reg_rule));
334
335         *dst_regd = regd;
336         return 0;
337 }
338
339 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
340 struct reg_regdb_search_request {
341         char alpha2[2];
342         struct list_head list;
343 };
344
345 static LIST_HEAD(reg_regdb_search_list);
346 static DEFINE_MUTEX(reg_regdb_search_mutex);
347
348 static void reg_regdb_search(struct work_struct *work)
349 {
350         struct reg_regdb_search_request *request;
351         const struct ieee80211_regdomain *curdom, *regdom;
352         int i, r;
353
354         mutex_lock(&reg_regdb_search_mutex);
355         while (!list_empty(&reg_regdb_search_list)) {
356                 request = list_first_entry(&reg_regdb_search_list,
357                                            struct reg_regdb_search_request,
358                                            list);
359                 list_del(&request->list);
360
361                 for (i=0; i<reg_regdb_size; i++) {
362                         curdom = reg_regdb[i];
363
364                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
365                                 r = reg_copy_regd(&regdom, curdom);
366                                 if (r)
367                                         break;
368                                 mutex_lock(&cfg80211_mutex);
369                                 set_regdom(regdom);
370                                 mutex_unlock(&cfg80211_mutex);
371                                 break;
372                         }
373                 }
374
375                 kfree(request);
376         }
377         mutex_unlock(&reg_regdb_search_mutex);
378 }
379
380 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
381
382 static void reg_regdb_query(const char *alpha2)
383 {
384         struct reg_regdb_search_request *request;
385
386         if (!alpha2)
387                 return;
388
389         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
390         if (!request)
391                 return;
392
393         memcpy(request->alpha2, alpha2, 2);
394
395         mutex_lock(&reg_regdb_search_mutex);
396         list_add_tail(&request->list, &reg_regdb_search_list);
397         mutex_unlock(&reg_regdb_search_mutex);
398
399         schedule_work(&reg_regdb_work);
400 }
401
402 /* Feel free to add any other sanity checks here */
403 static void reg_regdb_size_check(void)
404 {
405         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
406         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
407 }
408 #else
409 static inline void reg_regdb_size_check(void) {}
410 static inline void reg_regdb_query(const char *alpha2) {}
411 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
412
413 /*
414  * This lets us keep regulatory code which is updated on a regulatory
415  * basis in userspace. Country information is filled in by
416  * reg_device_uevent
417  */
418 static int call_crda(const char *alpha2)
419 {
420         if (!is_world_regdom((char *) alpha2))
421                 pr_info("Calling CRDA for country: %c%c\n",
422                         alpha2[0], alpha2[1]);
423         else
424                 pr_info("Calling CRDA to update world regulatory domain\n");
425
426         /* query internal regulatory database (if it exists) */
427         reg_regdb_query(alpha2);
428
429         return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
430 }
431
432 /* Used by nl80211 before kmalloc'ing our regulatory domain */
433 bool reg_is_valid_request(const char *alpha2)
434 {
435         assert_cfg80211_lock();
436
437         if (!last_request)
438                 return false;
439
440         return alpha2_equal(last_request->alpha2, alpha2);
441 }
442
443 /* Sanity check on a regulatory rule */
444 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
445 {
446         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
447         u32 freq_diff;
448
449         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
450                 return false;
451
452         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
453                 return false;
454
455         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
456
457         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
458                         freq_range->max_bandwidth_khz > freq_diff)
459                 return false;
460
461         return true;
462 }
463
464 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
465 {
466         const struct ieee80211_reg_rule *reg_rule = NULL;
467         unsigned int i;
468
469         if (!rd->n_reg_rules)
470                 return false;
471
472         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
473                 return false;
474
475         for (i = 0; i < rd->n_reg_rules; i++) {
476                 reg_rule = &rd->reg_rules[i];
477                 if (!is_valid_reg_rule(reg_rule))
478                         return false;
479         }
480
481         return true;
482 }
483
484 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
485                             u32 center_freq_khz,
486                             u32 bw_khz)
487 {
488         u32 start_freq_khz, end_freq_khz;
489
490         start_freq_khz = center_freq_khz - (bw_khz/2);
491         end_freq_khz = center_freq_khz + (bw_khz/2);
492
493         if (start_freq_khz >= freq_range->start_freq_khz &&
494             end_freq_khz <= freq_range->end_freq_khz)
495                 return true;
496
497         return false;
498 }
499
500 /**
501  * freq_in_rule_band - tells us if a frequency is in a frequency band
502  * @freq_range: frequency rule we want to query
503  * @freq_khz: frequency we are inquiring about
504  *
505  * This lets us know if a specific frequency rule is or is not relevant to
506  * a specific frequency's band. Bands are device specific and artificial
507  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
508  * safe for now to assume that a frequency rule should not be part of a
509  * frequency's band if the start freq or end freq are off by more than 2 GHz.
510  * This resolution can be lowered and should be considered as we add
511  * regulatory rule support for other "bands".
512  **/
513 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
514         u32 freq_khz)
515 {
516 #define ONE_GHZ_IN_KHZ  1000000
517         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
518                 return true;
519         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
520                 return true;
521         return false;
522 #undef ONE_GHZ_IN_KHZ
523 }
524
525 /*
526  * Helper for regdom_intersect(), this does the real
527  * mathematical intersection fun
528  */
529 static int reg_rules_intersect(
530         const struct ieee80211_reg_rule *rule1,
531         const struct ieee80211_reg_rule *rule2,
532         struct ieee80211_reg_rule *intersected_rule)
533 {
534         const struct ieee80211_freq_range *freq_range1, *freq_range2;
535         struct ieee80211_freq_range *freq_range;
536         const struct ieee80211_power_rule *power_rule1, *power_rule2;
537         struct ieee80211_power_rule *power_rule;
538         u32 freq_diff;
539
540         freq_range1 = &rule1->freq_range;
541         freq_range2 = &rule2->freq_range;
542         freq_range = &intersected_rule->freq_range;
543
544         power_rule1 = &rule1->power_rule;
545         power_rule2 = &rule2->power_rule;
546         power_rule = &intersected_rule->power_rule;
547
548         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
549                 freq_range2->start_freq_khz);
550         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
551                 freq_range2->end_freq_khz);
552         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
553                 freq_range2->max_bandwidth_khz);
554
555         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
556         if (freq_range->max_bandwidth_khz > freq_diff)
557                 freq_range->max_bandwidth_khz = freq_diff;
558
559         power_rule->max_eirp = min(power_rule1->max_eirp,
560                 power_rule2->max_eirp);
561         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
562                 power_rule2->max_antenna_gain);
563
564         intersected_rule->flags = (rule1->flags | rule2->flags);
565
566         if (!is_valid_reg_rule(intersected_rule))
567                 return -EINVAL;
568
569         return 0;
570 }
571
572 /**
573  * regdom_intersect - do the intersection between two regulatory domains
574  * @rd1: first regulatory domain
575  * @rd2: second regulatory domain
576  *
577  * Use this function to get the intersection between two regulatory domains.
578  * Once completed we will mark the alpha2 for the rd as intersected, "98",
579  * as no one single alpha2 can represent this regulatory domain.
580  *
581  * Returns a pointer to the regulatory domain structure which will hold the
582  * resulting intersection of rules between rd1 and rd2. We will
583  * kzalloc() this structure for you.
584  */
585 static struct ieee80211_regdomain *regdom_intersect(
586         const struct ieee80211_regdomain *rd1,
587         const struct ieee80211_regdomain *rd2)
588 {
589         int r, size_of_regd;
590         unsigned int x, y;
591         unsigned int num_rules = 0, rule_idx = 0;
592         const struct ieee80211_reg_rule *rule1, *rule2;
593         struct ieee80211_reg_rule *intersected_rule;
594         struct ieee80211_regdomain *rd;
595         /* This is just a dummy holder to help us count */
596         struct ieee80211_reg_rule irule;
597
598         /* Uses the stack temporarily for counter arithmetic */
599         intersected_rule = &irule;
600
601         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
602
603         if (!rd1 || !rd2)
604                 return NULL;
605
606         /*
607          * First we get a count of the rules we'll need, then we actually
608          * build them. This is to so we can malloc() and free() a
609          * regdomain once. The reason we use reg_rules_intersect() here
610          * is it will return -EINVAL if the rule computed makes no sense.
611          * All rules that do check out OK are valid.
612          */
613
614         for (x = 0; x < rd1->n_reg_rules; x++) {
615                 rule1 = &rd1->reg_rules[x];
616                 for (y = 0; y < rd2->n_reg_rules; y++) {
617                         rule2 = &rd2->reg_rules[y];
618                         if (!reg_rules_intersect(rule1, rule2,
619                                         intersected_rule))
620                                 num_rules++;
621                         memset(intersected_rule, 0,
622                                         sizeof(struct ieee80211_reg_rule));
623                 }
624         }
625
626         if (!num_rules)
627                 return NULL;
628
629         size_of_regd = sizeof(struct ieee80211_regdomain) +
630                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
631
632         rd = kzalloc(size_of_regd, GFP_KERNEL);
633         if (!rd)
634                 return NULL;
635
636         for (x = 0; x < rd1->n_reg_rules; x++) {
637                 rule1 = &rd1->reg_rules[x];
638                 for (y = 0; y < rd2->n_reg_rules; y++) {
639                         rule2 = &rd2->reg_rules[y];
640                         /*
641                          * This time around instead of using the stack lets
642                          * write to the target rule directly saving ourselves
643                          * a memcpy()
644                          */
645                         intersected_rule = &rd->reg_rules[rule_idx];
646                         r = reg_rules_intersect(rule1, rule2,
647                                 intersected_rule);
648                         /*
649                          * No need to memset here the intersected rule here as
650                          * we're not using the stack anymore
651                          */
652                         if (r)
653                                 continue;
654                         rule_idx++;
655                 }
656         }
657
658         if (rule_idx != num_rules) {
659                 kfree(rd);
660                 return NULL;
661         }
662
663         rd->n_reg_rules = num_rules;
664         rd->alpha2[0] = '9';
665         rd->alpha2[1] = '8';
666
667         return rd;
668 }
669
670 /*
671  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
672  * want to just have the channel structure use these
673  */
674 static u32 map_regdom_flags(u32 rd_flags)
675 {
676         u32 channel_flags = 0;
677         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
678                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
679         if (rd_flags & NL80211_RRF_NO_IBSS)
680                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
681         if (rd_flags & NL80211_RRF_DFS)
682                 channel_flags |= IEEE80211_CHAN_RADAR;
683         return channel_flags;
684 }
685
686 static int freq_reg_info_regd(struct wiphy *wiphy,
687                               u32 center_freq,
688                               u32 desired_bw_khz,
689                               const struct ieee80211_reg_rule **reg_rule,
690                               const struct ieee80211_regdomain *custom_regd)
691 {
692         int i;
693         bool band_rule_found = false;
694         const struct ieee80211_regdomain *regd;
695         bool bw_fits = false;
696
697         if (!desired_bw_khz)
698                 desired_bw_khz = MHZ_TO_KHZ(20);
699
700         regd = custom_regd ? custom_regd : cfg80211_regdomain;
701
702         /*
703          * Follow the driver's regulatory domain, if present, unless a country
704          * IE has been processed or a user wants to help complaince further
705          */
706         if (!custom_regd &&
707             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
708             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
709             wiphy->regd)
710                 regd = wiphy->regd;
711
712         if (!regd)
713                 return -EINVAL;
714
715         for (i = 0; i < regd->n_reg_rules; i++) {
716                 const struct ieee80211_reg_rule *rr;
717                 const struct ieee80211_freq_range *fr = NULL;
718
719                 rr = &regd->reg_rules[i];
720                 fr = &rr->freq_range;
721
722                 /*
723                  * We only need to know if one frequency rule was
724                  * was in center_freq's band, that's enough, so lets
725                  * not overwrite it once found
726                  */
727                 if (!band_rule_found)
728                         band_rule_found = freq_in_rule_band(fr, center_freq);
729
730                 bw_fits = reg_does_bw_fit(fr,
731                                           center_freq,
732                                           desired_bw_khz);
733
734                 if (band_rule_found && bw_fits) {
735                         *reg_rule = rr;
736                         return 0;
737                 }
738         }
739
740         if (!band_rule_found)
741                 return -ERANGE;
742
743         return -EINVAL;
744 }
745
746 int freq_reg_info(struct wiphy *wiphy,
747                   u32 center_freq,
748                   u32 desired_bw_khz,
749                   const struct ieee80211_reg_rule **reg_rule)
750 {
751         assert_cfg80211_lock();
752         return freq_reg_info_regd(wiphy,
753                                   center_freq,
754                                   desired_bw_khz,
755                                   reg_rule,
756                                   NULL);
757 }
758 EXPORT_SYMBOL(freq_reg_info);
759
760 #ifdef CONFIG_CFG80211_REG_DEBUG
761 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
762 {
763         switch (initiator) {
764         case NL80211_REGDOM_SET_BY_CORE:
765                 return "Set by core";
766         case NL80211_REGDOM_SET_BY_USER:
767                 return "Set by user";
768         case NL80211_REGDOM_SET_BY_DRIVER:
769                 return "Set by driver";
770         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
771                 return "Set by country IE";
772         default:
773                 WARN_ON(1);
774                 return "Set by bug";
775         }
776 }
777
778 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
779                                     u32 desired_bw_khz,
780                                     const struct ieee80211_reg_rule *reg_rule)
781 {
782         const struct ieee80211_power_rule *power_rule;
783         const struct ieee80211_freq_range *freq_range;
784         char max_antenna_gain[32];
785
786         power_rule = &reg_rule->power_rule;
787         freq_range = &reg_rule->freq_range;
788
789         if (!power_rule->max_antenna_gain)
790                 snprintf(max_antenna_gain, 32, "N/A");
791         else
792                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
793
794         REG_DBG_PRINT("Updating information on frequency %d MHz "
795                       "for a %d MHz width channel with regulatory rule:\n",
796                       chan->center_freq,
797                       KHZ_TO_MHZ(desired_bw_khz));
798
799         REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
800                       freq_range->start_freq_khz,
801                       freq_range->end_freq_khz,
802                       freq_range->max_bandwidth_khz,
803                       max_antenna_gain,
804                       power_rule->max_eirp);
805 }
806 #else
807 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
808                                     u32 desired_bw_khz,
809                                     const struct ieee80211_reg_rule *reg_rule)
810 {
811         return;
812 }
813 #endif
814
815 /*
816  * Note that right now we assume the desired channel bandwidth
817  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
818  * per channel, the primary and the extension channel). To support
819  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
820  * new ieee80211_channel.target_bw and re run the regulatory check
821  * on the wiphy with the target_bw specified. Then we can simply use
822  * that below for the desired_bw_khz below.
823  */
824 static void handle_channel(struct wiphy *wiphy,
825                            enum nl80211_reg_initiator initiator,
826                            enum ieee80211_band band,
827                            unsigned int chan_idx)
828 {
829         int r;
830         u32 flags, bw_flags = 0;
831         u32 desired_bw_khz = MHZ_TO_KHZ(20);
832         const struct ieee80211_reg_rule *reg_rule = NULL;
833         const struct ieee80211_power_rule *power_rule = NULL;
834         const struct ieee80211_freq_range *freq_range = NULL;
835         struct ieee80211_supported_band *sband;
836         struct ieee80211_channel *chan;
837         struct wiphy *request_wiphy = NULL;
838
839         assert_cfg80211_lock();
840
841         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
842
843         sband = wiphy->bands[band];
844         BUG_ON(chan_idx >= sband->n_channels);
845         chan = &sband->channels[chan_idx];
846
847         flags = chan->orig_flags;
848
849         r = freq_reg_info(wiphy,
850                           MHZ_TO_KHZ(chan->center_freq),
851                           desired_bw_khz,
852                           &reg_rule);
853
854         if (r) {
855                 /*
856                  * We will disable all channels that do not match our
857                  * received regulatory rule unless the hint is coming
858                  * from a Country IE and the Country IE had no information
859                  * about a band. The IEEE 802.11 spec allows for an AP
860                  * to send only a subset of the regulatory rules allowed,
861                  * so an AP in the US that only supports 2.4 GHz may only send
862                  * a country IE with information for the 2.4 GHz band
863                  * while 5 GHz is still supported.
864                  */
865                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
866                     r == -ERANGE)
867                         return;
868
869                 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
870                 chan->flags = IEEE80211_CHAN_DISABLED;
871                 return;
872         }
873
874         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
875
876         power_rule = &reg_rule->power_rule;
877         freq_range = &reg_rule->freq_range;
878
879         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
880                 bw_flags = IEEE80211_CHAN_NO_HT40;
881
882         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
883             request_wiphy && request_wiphy == wiphy &&
884             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
885                 /*
886                  * This guarantees the driver's requested regulatory domain
887                  * will always be used as a base for further regulatory
888                  * settings
889                  */
890                 chan->flags = chan->orig_flags =
891                         map_regdom_flags(reg_rule->flags) | bw_flags;
892                 chan->max_antenna_gain = chan->orig_mag =
893                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
894                 chan->max_power = chan->orig_mpwr =
895                         (int) MBM_TO_DBM(power_rule->max_eirp);
896                 return;
897         }
898
899         chan->beacon_found = false;
900         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
901         chan->max_antenna_gain = min(chan->orig_mag,
902                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
903         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
904         chan->max_power = min(chan->max_power, chan->max_reg_power);
905 }
906
907 static void handle_band(struct wiphy *wiphy,
908                         enum ieee80211_band band,
909                         enum nl80211_reg_initiator initiator)
910 {
911         unsigned int i;
912         struct ieee80211_supported_band *sband;
913
914         BUG_ON(!wiphy->bands[band]);
915         sband = wiphy->bands[band];
916
917         for (i = 0; i < sband->n_channels; i++)
918                 handle_channel(wiphy, initiator, band, i);
919 }
920
921 static bool reg_request_cell_base(struct regulatory_request *request)
922 {
923         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
924                 return false;
925         if (request->user_reg_hint_type != NL80211_USER_REG_HINT_CELL_BASE)
926                 return false;
927         return true;
928 }
929
930 bool reg_last_request_cell_base(void)
931 {
932         bool val;
933         assert_cfg80211_lock();
934
935         mutex_lock(&reg_mutex);
936         val = reg_request_cell_base(last_request);
937         mutex_unlock(&reg_mutex);
938         return val;
939 }
940
941 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
942
943 /* Core specific check */
944 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
945 {
946         if (!reg_num_devs_support_basehint)
947                 return -EOPNOTSUPP;
948
949         if (reg_request_cell_base(last_request)) {
950                 if (!regdom_changes(pending_request->alpha2))
951                         return -EALREADY;
952                 return 0;
953         }
954         return 0;
955 }
956
957 /* Device specific check */
958 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
959 {
960         if (!(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS))
961                 return true;
962         return false;
963 }
964 #else
965 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
966 {
967         return -EOPNOTSUPP;
968 }
969 static int reg_dev_ignore_cell_hint(struct wiphy *wiphy)
970 {
971         return true;
972 }
973 #endif
974
975
976 static bool ignore_reg_update(struct wiphy *wiphy,
977                               enum nl80211_reg_initiator initiator)
978 {
979         if (!last_request) {
980                 REG_DBG_PRINT("Ignoring regulatory request %s since "
981                               "last_request is not set\n",
982                               reg_initiator_name(initiator));
983                 return true;
984         }
985
986         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
987             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
988                 REG_DBG_PRINT("Ignoring regulatory request %s "
989                               "since the driver uses its own custom "
990                               "regulatory domain\n",
991                               reg_initiator_name(initiator));
992                 return true;
993         }
994
995         /*
996          * wiphy->regd will be set once the device has its own
997          * desired regulatory domain set
998          */
999         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1000             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1001             !is_world_regdom(last_request->alpha2)) {
1002                 REG_DBG_PRINT("Ignoring regulatory request %s "
1003                               "since the driver requires its own regulatory "
1004                               "domain to be set first\n",
1005                               reg_initiator_name(initiator));
1006                 return true;
1007         }
1008
1009         if (reg_request_cell_base(last_request))
1010                 return reg_dev_ignore_cell_hint(wiphy);
1011
1012         return false;
1013 }
1014
1015 static void handle_reg_beacon(struct wiphy *wiphy,
1016                               unsigned int chan_idx,
1017                               struct reg_beacon *reg_beacon)
1018 {
1019         struct ieee80211_supported_band *sband;
1020         struct ieee80211_channel *chan;
1021         bool channel_changed = false;
1022         struct ieee80211_channel chan_before;
1023
1024         assert_cfg80211_lock();
1025
1026         sband = wiphy->bands[reg_beacon->chan.band];
1027         chan = &sband->channels[chan_idx];
1028
1029         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1030                 return;
1031
1032         if (chan->beacon_found)
1033                 return;
1034
1035         chan->beacon_found = true;
1036
1037         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1038                 return;
1039
1040         chan_before.center_freq = chan->center_freq;
1041         chan_before.flags = chan->flags;
1042
1043         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1044                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1045                 channel_changed = true;
1046         }
1047
1048         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1049                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1050                 channel_changed = true;
1051         }
1052
1053         if (channel_changed)
1054                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1055 }
1056
1057 /*
1058  * Called when a scan on a wiphy finds a beacon on
1059  * new channel
1060  */
1061 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1062                                     struct reg_beacon *reg_beacon)
1063 {
1064         unsigned int i;
1065         struct ieee80211_supported_band *sband;
1066
1067         assert_cfg80211_lock();
1068
1069         if (!wiphy->bands[reg_beacon->chan.band])
1070                 return;
1071
1072         sband = wiphy->bands[reg_beacon->chan.band];
1073
1074         for (i = 0; i < sband->n_channels; i++)
1075                 handle_reg_beacon(wiphy, i, reg_beacon);
1076 }
1077
1078 /*
1079  * Called upon reg changes or a new wiphy is added
1080  */
1081 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1082 {
1083         unsigned int i;
1084         struct ieee80211_supported_band *sband;
1085         struct reg_beacon *reg_beacon;
1086
1087         assert_cfg80211_lock();
1088
1089         if (list_empty(&reg_beacon_list))
1090                 return;
1091
1092         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1093                 if (!wiphy->bands[reg_beacon->chan.band])
1094                         continue;
1095                 sband = wiphy->bands[reg_beacon->chan.band];
1096                 for (i = 0; i < sband->n_channels; i++)
1097                         handle_reg_beacon(wiphy, i, reg_beacon);
1098         }
1099 }
1100
1101 static bool reg_is_world_roaming(struct wiphy *wiphy)
1102 {
1103         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1104             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1105                 return true;
1106         if (last_request &&
1107             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1108             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1109                 return true;
1110         return false;
1111 }
1112
1113 /* Reap the advantages of previously found beacons */
1114 static void reg_process_beacons(struct wiphy *wiphy)
1115 {
1116         /*
1117          * Means we are just firing up cfg80211, so no beacons would
1118          * have been processed yet.
1119          */
1120         if (!last_request)
1121                 return;
1122         if (!reg_is_world_roaming(wiphy))
1123                 return;
1124         wiphy_update_beacon_reg(wiphy);
1125 }
1126
1127 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1128 {
1129         if (!chan)
1130                 return true;
1131         if (chan->flags & IEEE80211_CHAN_DISABLED)
1132                 return true;
1133         /* This would happen when regulatory rules disallow HT40 completely */
1134         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1135                 return true;
1136         return false;
1137 }
1138
1139 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1140                                          enum ieee80211_band band,
1141                                          unsigned int chan_idx)
1142 {
1143         struct ieee80211_supported_band *sband;
1144         struct ieee80211_channel *channel;
1145         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1146         unsigned int i;
1147
1148         assert_cfg80211_lock();
1149
1150         sband = wiphy->bands[band];
1151         BUG_ON(chan_idx >= sband->n_channels);
1152         channel = &sband->channels[chan_idx];
1153
1154         if (is_ht40_not_allowed(channel)) {
1155                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1156                 return;
1157         }
1158
1159         /*
1160          * We need to ensure the extension channels exist to
1161          * be able to use HT40- or HT40+, this finds them (or not)
1162          */
1163         for (i = 0; i < sband->n_channels; i++) {
1164                 struct ieee80211_channel *c = &sband->channels[i];
1165                 if (c->center_freq == (channel->center_freq - 20))
1166                         channel_before = c;
1167                 if (c->center_freq == (channel->center_freq + 20))
1168                         channel_after = c;
1169         }
1170
1171         /*
1172          * Please note that this assumes target bandwidth is 20 MHz,
1173          * if that ever changes we also need to change the below logic
1174          * to include that as well.
1175          */
1176         if (is_ht40_not_allowed(channel_before))
1177                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1178         else
1179                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1180
1181         if (is_ht40_not_allowed(channel_after))
1182                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1183         else
1184                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1185 }
1186
1187 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1188                                       enum ieee80211_band band)
1189 {
1190         unsigned int i;
1191         struct ieee80211_supported_band *sband;
1192
1193         BUG_ON(!wiphy->bands[band]);
1194         sband = wiphy->bands[band];
1195
1196         for (i = 0; i < sband->n_channels; i++)
1197                 reg_process_ht_flags_channel(wiphy, band, i);
1198 }
1199
1200 static void reg_process_ht_flags(struct wiphy *wiphy)
1201 {
1202         enum ieee80211_band band;
1203
1204         if (!wiphy)
1205                 return;
1206
1207         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1208                 if (wiphy->bands[band])
1209                         reg_process_ht_flags_band(wiphy, band);
1210         }
1211
1212 }
1213
1214 static void wiphy_update_regulatory(struct wiphy *wiphy,
1215                                     enum nl80211_reg_initiator initiator)
1216 {
1217         enum ieee80211_band band;
1218
1219         assert_reg_lock();
1220
1221         if (ignore_reg_update(wiphy, initiator))
1222                 return;
1223
1224         last_request->dfs_region = cfg80211_regdomain->dfs_region;
1225
1226         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1227                 if (wiphy->bands[band])
1228                         handle_band(wiphy, band, initiator);
1229         }
1230
1231         reg_process_beacons(wiphy);
1232         reg_process_ht_flags(wiphy);
1233         if (wiphy->reg_notifier)
1234                 wiphy->reg_notifier(wiphy, last_request);
1235 }
1236
1237 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1238 {
1239         struct cfg80211_registered_device *rdev;
1240         struct wiphy *wiphy;
1241
1242         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1243                 wiphy = &rdev->wiphy;
1244                 wiphy_update_regulatory(wiphy, initiator);
1245                 /*
1246                  * Regulatory updates set by CORE are ignored for custom
1247                  * regulatory cards. Let us notify the changes to the driver,
1248                  * as some drivers used this to restore its orig_* reg domain.
1249                  */
1250                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1251                     wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1252                     wiphy->reg_notifier)
1253                         wiphy->reg_notifier(wiphy, last_request);
1254         }
1255 }
1256
1257 static void handle_channel_custom(struct wiphy *wiphy,
1258                                   enum ieee80211_band band,
1259                                   unsigned int chan_idx,
1260                                   const struct ieee80211_regdomain *regd)
1261 {
1262         int r;
1263         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1264         u32 bw_flags = 0;
1265         const struct ieee80211_reg_rule *reg_rule = NULL;
1266         const struct ieee80211_power_rule *power_rule = NULL;
1267         const struct ieee80211_freq_range *freq_range = NULL;
1268         struct ieee80211_supported_band *sband;
1269         struct ieee80211_channel *chan;
1270
1271         assert_reg_lock();
1272
1273         sband = wiphy->bands[band];
1274         BUG_ON(chan_idx >= sband->n_channels);
1275         chan = &sband->channels[chan_idx];
1276
1277         r = freq_reg_info_regd(wiphy,
1278                                MHZ_TO_KHZ(chan->center_freq),
1279                                desired_bw_khz,
1280                                &reg_rule,
1281                                regd);
1282
1283         if (r) {
1284                 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1285                               "regd has no rule that fits a %d MHz "
1286                               "wide channel\n",
1287                               chan->center_freq,
1288                               KHZ_TO_MHZ(desired_bw_khz));
1289                 chan->flags = IEEE80211_CHAN_DISABLED;
1290                 return;
1291         }
1292
1293         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1294
1295         power_rule = &reg_rule->power_rule;
1296         freq_range = &reg_rule->freq_range;
1297
1298         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1299                 bw_flags = IEEE80211_CHAN_NO_HT40;
1300
1301         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1302         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1303         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1304 }
1305
1306 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1307                                const struct ieee80211_regdomain *regd)
1308 {
1309         unsigned int i;
1310         struct ieee80211_supported_band *sband;
1311
1312         BUG_ON(!wiphy->bands[band]);
1313         sband = wiphy->bands[band];
1314
1315         for (i = 0; i < sband->n_channels; i++)
1316                 handle_channel_custom(wiphy, band, i, regd);
1317 }
1318
1319 /* Used by drivers prior to wiphy registration */
1320 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1321                                    const struct ieee80211_regdomain *regd)
1322 {
1323         enum ieee80211_band band;
1324         unsigned int bands_set = 0;
1325
1326         mutex_lock(&reg_mutex);
1327         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1328                 if (!wiphy->bands[band])
1329                         continue;
1330                 handle_band_custom(wiphy, band, regd);
1331                 bands_set++;
1332         }
1333         mutex_unlock(&reg_mutex);
1334
1335         /*
1336          * no point in calling this if it won't have any effect
1337          * on your device's supportd bands.
1338          */
1339         WARN_ON(!bands_set);
1340 }
1341 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1342
1343 /*
1344  * Return value which can be used by ignore_request() to indicate
1345  * it has been determined we should intersect two regulatory domains
1346  */
1347 #define REG_INTERSECT   1
1348
1349 /* This has the logic which determines when a new request
1350  * should be ignored. */
1351 static int ignore_request(struct wiphy *wiphy,
1352                           struct regulatory_request *pending_request)
1353 {
1354         struct wiphy *last_wiphy = NULL;
1355
1356         assert_cfg80211_lock();
1357
1358         /* All initial requests are respected */
1359         if (!last_request)
1360                 return 0;
1361
1362         switch (pending_request->initiator) {
1363         case NL80211_REGDOM_SET_BY_CORE:
1364                 return 0;
1365         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1366
1367                 if (reg_request_cell_base(last_request)) {
1368                         /* Trust a Cell base station over the AP's country IE */
1369                         if (regdom_changes(pending_request->alpha2))
1370                                 return -EOPNOTSUPP;
1371                         return -EALREADY;
1372                 }
1373
1374                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1375
1376                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1377                         return -EINVAL;
1378                 if (last_request->initiator ==
1379                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1380                         if (last_wiphy != wiphy) {
1381                                 /*
1382                                  * Two cards with two APs claiming different
1383                                  * Country IE alpha2s. We could
1384                                  * intersect them, but that seems unlikely
1385                                  * to be correct. Reject second one for now.
1386                                  */
1387                                 if (regdom_changes(pending_request->alpha2))
1388                                         return -EOPNOTSUPP;
1389                                 return -EALREADY;
1390                         }
1391                         /*
1392                          * Two consecutive Country IE hints on the same wiphy.
1393                          * This should be picked up early by the driver/stack
1394                          */
1395                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1396                                 return 0;
1397                         return -EALREADY;
1398                 }
1399                 return 0;
1400         case NL80211_REGDOM_SET_BY_DRIVER:
1401                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1402                         if (regdom_changes(pending_request->alpha2))
1403                                 return 0;
1404                         return -EALREADY;
1405                 }
1406
1407                 /*
1408                  * This would happen if you unplug and plug your card
1409                  * back in or if you add a new device for which the previously
1410                  * loaded card also agrees on the regulatory domain.
1411                  */
1412                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1413                     !regdom_changes(pending_request->alpha2))
1414                         return -EALREADY;
1415
1416                 return REG_INTERSECT;
1417         case NL80211_REGDOM_SET_BY_USER:
1418                 if (reg_request_cell_base(pending_request))
1419                         return reg_ignore_cell_hint(pending_request);
1420
1421                 if (reg_request_cell_base(last_request))
1422                         return -EOPNOTSUPP;
1423
1424                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1425                         return REG_INTERSECT;
1426                 /*
1427                  * If the user knows better the user should set the regdom
1428                  * to their country before the IE is picked up
1429                  */
1430                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1431                           last_request->intersect)
1432                         return -EOPNOTSUPP;
1433                 /*
1434                  * Process user requests only after previous user/driver/core
1435                  * requests have been processed
1436                  */
1437                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1438                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1439                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1440                         if (regdom_changes(last_request->alpha2))
1441                                 return -EAGAIN;
1442                 }
1443
1444                 if (!regdom_changes(pending_request->alpha2))
1445                         return -EALREADY;
1446
1447                 return 0;
1448         }
1449
1450         return -EINVAL;
1451 }
1452
1453 static void reg_set_request_processed(void)
1454 {
1455         bool need_more_processing = false;
1456
1457         last_request->processed = true;
1458
1459         spin_lock(&reg_requests_lock);
1460         if (!list_empty(&reg_requests_list))
1461                 need_more_processing = true;
1462         spin_unlock(&reg_requests_lock);
1463
1464         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1465                 cancel_delayed_work(&reg_timeout);
1466
1467         if (need_more_processing)
1468                 schedule_work(&reg_work);
1469 }
1470
1471 /**
1472  * __regulatory_hint - hint to the wireless core a regulatory domain
1473  * @wiphy: if the hint comes from country information from an AP, this
1474  *      is required to be set to the wiphy that received the information
1475  * @pending_request: the regulatory request currently being processed
1476  *
1477  * The Wireless subsystem can use this function to hint to the wireless core
1478  * what it believes should be the current regulatory domain.
1479  *
1480  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1481  * already been set or other standard error codes.
1482  *
1483  * Caller must hold &cfg80211_mutex and &reg_mutex
1484  */
1485 static int __regulatory_hint(struct wiphy *wiphy,
1486                              struct regulatory_request *pending_request)
1487 {
1488         bool intersect = false;
1489         int r = 0;
1490
1491         assert_cfg80211_lock();
1492
1493         r = ignore_request(wiphy, pending_request);
1494
1495         if (r == REG_INTERSECT) {
1496                 if (pending_request->initiator ==
1497                     NL80211_REGDOM_SET_BY_DRIVER) {
1498                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1499                         if (r) {
1500                                 kfree(pending_request);
1501                                 return r;
1502                         }
1503                 }
1504                 intersect = true;
1505         } else if (r) {
1506                 /*
1507                  * If the regulatory domain being requested by the
1508                  * driver has already been set just copy it to the
1509                  * wiphy
1510                  */
1511                 if (r == -EALREADY &&
1512                     pending_request->initiator ==
1513                     NL80211_REGDOM_SET_BY_DRIVER) {
1514                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1515                         if (r) {
1516                                 kfree(pending_request);
1517                                 return r;
1518                         }
1519                         r = -EALREADY;
1520                         goto new_request;
1521                 }
1522                 kfree(pending_request);
1523                 return r;
1524         }
1525
1526 new_request:
1527         if (last_request != &core_request_world)
1528                 kfree(last_request);
1529
1530         last_request = pending_request;
1531         last_request->intersect = intersect;
1532
1533         pending_request = NULL;
1534
1535         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1536                 user_alpha2[0] = last_request->alpha2[0];
1537                 user_alpha2[1] = last_request->alpha2[1];
1538         }
1539
1540         /* When r == REG_INTERSECT we do need to call CRDA */
1541         if (r < 0) {
1542                 /*
1543                  * Since CRDA will not be called in this case as we already
1544                  * have applied the requested regulatory domain before we just
1545                  * inform userspace we have processed the request
1546                  */
1547                 if (r == -EALREADY) {
1548                         nl80211_send_reg_change_event(last_request);
1549                         reg_set_request_processed();
1550                 }
1551                 return r;
1552         }
1553
1554         return call_crda(last_request->alpha2);
1555 }
1556
1557 /* This processes *all* regulatory hints */
1558 static void reg_process_hint(struct regulatory_request *reg_request,
1559                              enum nl80211_reg_initiator reg_initiator)
1560 {
1561         int r = 0;
1562         struct wiphy *wiphy = NULL;
1563
1564         BUG_ON(!reg_request->alpha2);
1565
1566         if (wiphy_idx_valid(reg_request->wiphy_idx))
1567                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1568
1569         if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1570             !wiphy) {
1571                 kfree(reg_request);
1572                 return;
1573         }
1574
1575         r = __regulatory_hint(wiphy, reg_request);
1576         /* This is required so that the orig_* parameters are saved */
1577         if (r == -EALREADY && wiphy &&
1578             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1579                 wiphy_update_regulatory(wiphy, reg_initiator);
1580                 return;
1581         }
1582
1583         /*
1584          * We only time out user hints, given that they should be the only
1585          * source of bogus requests.
1586          */
1587         if (r != -EALREADY &&
1588             reg_initiator == NL80211_REGDOM_SET_BY_USER)
1589                 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1590 }
1591
1592 /*
1593  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1594  * Regulatory hints come on a first come first serve basis and we
1595  * must process each one atomically.
1596  */
1597 static void reg_process_pending_hints(void)
1598 {
1599         struct regulatory_request *reg_request;
1600
1601         mutex_lock(&cfg80211_mutex);
1602         mutex_lock(&reg_mutex);
1603
1604         /* When last_request->processed becomes true this will be rescheduled */
1605         if (last_request && !last_request->processed) {
1606                 REG_DBG_PRINT("Pending regulatory request, waiting "
1607                               "for it to be processed...\n");
1608                 goto out;
1609         }
1610
1611         spin_lock(&reg_requests_lock);
1612
1613         if (list_empty(&reg_requests_list)) {
1614                 spin_unlock(&reg_requests_lock);
1615                 goto out;
1616         }
1617
1618         reg_request = list_first_entry(&reg_requests_list,
1619                                        struct regulatory_request,
1620                                        list);
1621         list_del_init(&reg_request->list);
1622
1623         spin_unlock(&reg_requests_lock);
1624
1625         reg_process_hint(reg_request, reg_request->initiator);
1626
1627 out:
1628         mutex_unlock(&reg_mutex);
1629         mutex_unlock(&cfg80211_mutex);
1630 }
1631
1632 /* Processes beacon hints -- this has nothing to do with country IEs */
1633 static void reg_process_pending_beacon_hints(void)
1634 {
1635         struct cfg80211_registered_device *rdev;
1636         struct reg_beacon *pending_beacon, *tmp;
1637
1638         /*
1639          * No need to hold the reg_mutex here as we just touch wiphys
1640          * and do not read or access regulatory variables.
1641          */
1642         mutex_lock(&cfg80211_mutex);
1643
1644         /* This goes through the _pending_ beacon list */
1645         spin_lock_bh(&reg_pending_beacons_lock);
1646
1647         if (list_empty(&reg_pending_beacons)) {
1648                 spin_unlock_bh(&reg_pending_beacons_lock);
1649                 goto out;
1650         }
1651
1652         list_for_each_entry_safe(pending_beacon, tmp,
1653                                  &reg_pending_beacons, list) {
1654
1655                 list_del_init(&pending_beacon->list);
1656
1657                 /* Applies the beacon hint to current wiphys */
1658                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1659                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1660
1661                 /* Remembers the beacon hint for new wiphys or reg changes */
1662                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1663         }
1664
1665         spin_unlock_bh(&reg_pending_beacons_lock);
1666 out:
1667         mutex_unlock(&cfg80211_mutex);
1668 }
1669
1670 static void reg_todo(struct work_struct *work)
1671 {
1672         reg_process_pending_hints();
1673         reg_process_pending_beacon_hints();
1674 }
1675
1676 static void queue_regulatory_request(struct regulatory_request *request)
1677 {
1678         if (isalpha(request->alpha2[0]))
1679                 request->alpha2[0] = toupper(request->alpha2[0]);
1680         if (isalpha(request->alpha2[1]))
1681                 request->alpha2[1] = toupper(request->alpha2[1]);
1682
1683         spin_lock(&reg_requests_lock);
1684         list_add_tail(&request->list, &reg_requests_list);
1685         spin_unlock(&reg_requests_lock);
1686
1687         schedule_work(&reg_work);
1688 }
1689
1690 /*
1691  * Core regulatory hint -- happens during cfg80211_init()
1692  * and when we restore regulatory settings.
1693  */
1694 static int regulatory_hint_core(const char *alpha2)
1695 {
1696         struct regulatory_request *request;
1697
1698         request = kzalloc(sizeof(struct regulatory_request),
1699                           GFP_KERNEL);
1700         if (!request)
1701                 return -ENOMEM;
1702
1703         request->alpha2[0] = alpha2[0];
1704         request->alpha2[1] = alpha2[1];
1705         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1706
1707         queue_regulatory_request(request);
1708
1709         return 0;
1710 }
1711
1712 /* User hints */
1713 int regulatory_hint_user(const char *alpha2,
1714                          enum nl80211_user_reg_hint_type user_reg_hint_type)
1715 {
1716         struct regulatory_request *request;
1717
1718         BUG_ON(!alpha2);
1719
1720         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1721         if (!request)
1722                 return -ENOMEM;
1723
1724         request->wiphy_idx = WIPHY_IDX_STALE;
1725         request->alpha2[0] = alpha2[0];
1726         request->alpha2[1] = alpha2[1];
1727         request->initiator = NL80211_REGDOM_SET_BY_USER;
1728         request->user_reg_hint_type = user_reg_hint_type;
1729
1730         queue_regulatory_request(request);
1731
1732         return 0;
1733 }
1734
1735 /* Driver hints */
1736 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1737 {
1738         struct regulatory_request *request;
1739
1740         BUG_ON(!alpha2);
1741         BUG_ON(!wiphy);
1742
1743         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1744         if (!request)
1745                 return -ENOMEM;
1746
1747         request->wiphy_idx = get_wiphy_idx(wiphy);
1748
1749         /* Must have registered wiphy first */
1750         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1751
1752         request->alpha2[0] = alpha2[0];
1753         request->alpha2[1] = alpha2[1];
1754         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1755
1756         queue_regulatory_request(request);
1757
1758         return 0;
1759 }
1760 EXPORT_SYMBOL(regulatory_hint);
1761
1762 /*
1763  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1764  * therefore cannot iterate over the rdev list here.
1765  */
1766 void regulatory_hint_11d(struct wiphy *wiphy,
1767                          enum ieee80211_band band,
1768                          u8 *country_ie,
1769                          u8 country_ie_len)
1770 {
1771         char alpha2[2];
1772         enum environment_cap env = ENVIRON_ANY;
1773         struct regulatory_request *request;
1774
1775         mutex_lock(&reg_mutex);
1776
1777         if (unlikely(!last_request))
1778                 goto out;
1779
1780         /* IE len must be evenly divisible by 2 */
1781         if (country_ie_len & 0x01)
1782                 goto out;
1783
1784         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1785                 goto out;
1786
1787         alpha2[0] = country_ie[0];
1788         alpha2[1] = country_ie[1];
1789
1790         if (country_ie[2] == 'I')
1791                 env = ENVIRON_INDOOR;
1792         else if (country_ie[2] == 'O')
1793                 env = ENVIRON_OUTDOOR;
1794
1795         /*
1796          * We will run this only upon a successful connection on cfg80211.
1797          * We leave conflict resolution to the workqueue, where can hold
1798          * cfg80211_mutex.
1799          */
1800         if (likely(last_request->initiator ==
1801             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1802             wiphy_idx_valid(last_request->wiphy_idx)))
1803                 goto out;
1804
1805         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1806         if (!request)
1807                 goto out;
1808
1809         request->wiphy_idx = get_wiphy_idx(wiphy);
1810         request->alpha2[0] = alpha2[0];
1811         request->alpha2[1] = alpha2[1];
1812         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1813         request->country_ie_env = env;
1814
1815         mutex_unlock(&reg_mutex);
1816
1817         queue_regulatory_request(request);
1818
1819         return;
1820
1821 out:
1822         mutex_unlock(&reg_mutex);
1823 }
1824
1825 static void restore_alpha2(char *alpha2, bool reset_user)
1826 {
1827         /* indicates there is no alpha2 to consider for restoration */
1828         alpha2[0] = '9';
1829         alpha2[1] = '7';
1830
1831         /* The user setting has precedence over the module parameter */
1832         if (is_user_regdom_saved()) {
1833                 /* Unless we're asked to ignore it and reset it */
1834                 if (reset_user) {
1835                         REG_DBG_PRINT("Restoring regulatory settings "
1836                                "including user preference\n");
1837                         user_alpha2[0] = '9';
1838                         user_alpha2[1] = '7';
1839
1840                         /*
1841                          * If we're ignoring user settings, we still need to
1842                          * check the module parameter to ensure we put things
1843                          * back as they were for a full restore.
1844                          */
1845                         if (!is_world_regdom(ieee80211_regdom)) {
1846                                 REG_DBG_PRINT("Keeping preference on "
1847                                        "module parameter ieee80211_regdom: %c%c\n",
1848                                        ieee80211_regdom[0],
1849                                        ieee80211_regdom[1]);
1850                                 alpha2[0] = ieee80211_regdom[0];
1851                                 alpha2[1] = ieee80211_regdom[1];
1852                         }
1853                 } else {
1854                         REG_DBG_PRINT("Restoring regulatory settings "
1855                                "while preserving user preference for: %c%c\n",
1856                                user_alpha2[0],
1857                                user_alpha2[1]);
1858                         alpha2[0] = user_alpha2[0];
1859                         alpha2[1] = user_alpha2[1];
1860                 }
1861         } else if (!is_world_regdom(ieee80211_regdom)) {
1862                 REG_DBG_PRINT("Keeping preference on "
1863                        "module parameter ieee80211_regdom: %c%c\n",
1864                        ieee80211_regdom[0],
1865                        ieee80211_regdom[1]);
1866                 alpha2[0] = ieee80211_regdom[0];
1867                 alpha2[1] = ieee80211_regdom[1];
1868         } else
1869                 REG_DBG_PRINT("Restoring regulatory settings\n");
1870 }
1871
1872 static void restore_custom_reg_settings(struct wiphy *wiphy)
1873 {
1874         struct ieee80211_supported_band *sband;
1875         enum ieee80211_band band;
1876         struct ieee80211_channel *chan;
1877         int i;
1878
1879         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1880                 sband = wiphy->bands[band];
1881                 if (!sband)
1882                         continue;
1883                 for (i = 0; i < sband->n_channels; i++) {
1884                         chan = &sband->channels[i];
1885                         chan->flags = chan->orig_flags;
1886                         chan->max_antenna_gain = chan->orig_mag;
1887                         chan->max_power = chan->orig_mpwr;
1888                 }
1889         }
1890 }
1891
1892 /*
1893  * Restoring regulatory settings involves ingoring any
1894  * possibly stale country IE information and user regulatory
1895  * settings if so desired, this includes any beacon hints
1896  * learned as we could have traveled outside to another country
1897  * after disconnection. To restore regulatory settings we do
1898  * exactly what we did at bootup:
1899  *
1900  *   - send a core regulatory hint
1901  *   - send a user regulatory hint if applicable
1902  *
1903  * Device drivers that send a regulatory hint for a specific country
1904  * keep their own regulatory domain on wiphy->regd so that does does
1905  * not need to be remembered.
1906  */
1907 static void restore_regulatory_settings(bool reset_user)
1908 {
1909         char alpha2[2];
1910         char world_alpha2[2];
1911         struct reg_beacon *reg_beacon, *btmp;
1912         struct regulatory_request *reg_request, *tmp;
1913         LIST_HEAD(tmp_reg_req_list);
1914         struct cfg80211_registered_device *rdev;
1915
1916         mutex_lock(&cfg80211_mutex);
1917         mutex_lock(&reg_mutex);
1918
1919         reset_regdomains(true);
1920         restore_alpha2(alpha2, reset_user);
1921
1922         /*
1923          * If there's any pending requests we simply
1924          * stash them to a temporary pending queue and
1925          * add then after we've restored regulatory
1926          * settings.
1927          */
1928         spin_lock(&reg_requests_lock);
1929         if (!list_empty(&reg_requests_list)) {
1930                 list_for_each_entry_safe(reg_request, tmp,
1931                                          &reg_requests_list, list) {
1932                         if (reg_request->initiator !=
1933                             NL80211_REGDOM_SET_BY_USER)
1934                                 continue;
1935                         list_del(&reg_request->list);
1936                         list_add_tail(&reg_request->list, &tmp_reg_req_list);
1937                 }
1938         }
1939         spin_unlock(&reg_requests_lock);
1940
1941         /* Clear beacon hints */
1942         spin_lock_bh(&reg_pending_beacons_lock);
1943         if (!list_empty(&reg_pending_beacons)) {
1944                 list_for_each_entry_safe(reg_beacon, btmp,
1945                                          &reg_pending_beacons, list) {
1946                         list_del(&reg_beacon->list);
1947                         kfree(reg_beacon);
1948                 }
1949         }
1950         spin_unlock_bh(&reg_pending_beacons_lock);
1951
1952         if (!list_empty(&reg_beacon_list)) {
1953                 list_for_each_entry_safe(reg_beacon, btmp,
1954                                          &reg_beacon_list, list) {
1955                         list_del(&reg_beacon->list);
1956                         kfree(reg_beacon);
1957                 }
1958         }
1959
1960         /* First restore to the basic regulatory settings */
1961         cfg80211_regdomain = cfg80211_world_regdom;
1962         world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1963         world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1964
1965         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1966                 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1967                         restore_custom_reg_settings(&rdev->wiphy);
1968         }
1969
1970         mutex_unlock(&reg_mutex);
1971         mutex_unlock(&cfg80211_mutex);
1972
1973         regulatory_hint_core(world_alpha2);
1974
1975         /*
1976          * This restores the ieee80211_regdom module parameter
1977          * preference or the last user requested regulatory
1978          * settings, user regulatory settings takes precedence.
1979          */
1980         if (is_an_alpha2(alpha2))
1981                 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1982
1983         if (list_empty(&tmp_reg_req_list))
1984                 return;
1985
1986         mutex_lock(&cfg80211_mutex);
1987         mutex_lock(&reg_mutex);
1988
1989         spin_lock(&reg_requests_lock);
1990         list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1991                 REG_DBG_PRINT("Adding request for country %c%c back "
1992                               "into the queue\n",
1993                               reg_request->alpha2[0],
1994                               reg_request->alpha2[1]);
1995                 list_del(&reg_request->list);
1996                 list_add_tail(&reg_request->list, &reg_requests_list);
1997         }
1998         spin_unlock(&reg_requests_lock);
1999
2000         mutex_unlock(&reg_mutex);
2001         mutex_unlock(&cfg80211_mutex);
2002
2003         REG_DBG_PRINT("Kicking the queue\n");
2004
2005         schedule_work(&reg_work);
2006 }
2007
2008 void regulatory_hint_disconnect(void)
2009 {
2010         REG_DBG_PRINT("All devices are disconnected, going to "
2011                       "restore regulatory settings\n");
2012         restore_regulatory_settings(false);
2013 }
2014
2015 static bool freq_is_chan_12_13_14(u16 freq)
2016 {
2017         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2018             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2019             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2020                 return true;
2021         return false;
2022 }
2023
2024 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2025                                  struct ieee80211_channel *beacon_chan,
2026                                  gfp_t gfp)
2027 {
2028         struct reg_beacon *reg_beacon;
2029
2030         if (likely((beacon_chan->beacon_found ||
2031             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
2032             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2033              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
2034                 return 0;
2035
2036         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2037         if (!reg_beacon)
2038                 return -ENOMEM;
2039
2040         REG_DBG_PRINT("Found new beacon on "
2041                       "frequency: %d MHz (Ch %d) on %s\n",
2042                       beacon_chan->center_freq,
2043                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
2044                       wiphy_name(wiphy));
2045
2046         memcpy(&reg_beacon->chan, beacon_chan,
2047                 sizeof(struct ieee80211_channel));
2048
2049
2050         /*
2051          * Since we can be called from BH or and non-BH context
2052          * we must use spin_lock_bh()
2053          */
2054         spin_lock_bh(&reg_pending_beacons_lock);
2055         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2056         spin_unlock_bh(&reg_pending_beacons_lock);
2057
2058         schedule_work(&reg_work);
2059
2060         return 0;
2061 }
2062
2063 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2064 {
2065         unsigned int i;
2066         const struct ieee80211_reg_rule *reg_rule = NULL;
2067         const struct ieee80211_freq_range *freq_range = NULL;
2068         const struct ieee80211_power_rule *power_rule = NULL;
2069
2070         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2071
2072         for (i = 0; i < rd->n_reg_rules; i++) {
2073                 reg_rule = &rd->reg_rules[i];
2074                 freq_range = &reg_rule->freq_range;
2075                 power_rule = &reg_rule->power_rule;
2076
2077                 /*
2078                  * There may not be documentation for max antenna gain
2079                  * in certain regions
2080                  */
2081                 if (power_rule->max_antenna_gain)
2082                         pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2083                                 freq_range->start_freq_khz,
2084                                 freq_range->end_freq_khz,
2085                                 freq_range->max_bandwidth_khz,
2086                                 power_rule->max_antenna_gain,
2087                                 power_rule->max_eirp);
2088                 else
2089                         pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2090                                 freq_range->start_freq_khz,
2091                                 freq_range->end_freq_khz,
2092                                 freq_range->max_bandwidth_khz,
2093                                 power_rule->max_eirp);
2094         }
2095 }
2096
2097 bool reg_supported_dfs_region(u8 dfs_region)
2098 {
2099         switch (dfs_region) {
2100         case NL80211_DFS_UNSET:
2101         case NL80211_DFS_FCC:
2102         case NL80211_DFS_ETSI:
2103         case NL80211_DFS_JP:
2104                 return true;
2105         default:
2106                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2107                               dfs_region);
2108                 return false;
2109         }
2110 }
2111
2112 static void print_dfs_region(u8 dfs_region)
2113 {
2114         if (!dfs_region)
2115                 return;
2116
2117         switch (dfs_region) {
2118         case NL80211_DFS_FCC:
2119                 pr_info(" DFS Master region FCC");
2120                 break;
2121         case NL80211_DFS_ETSI:
2122                 pr_info(" DFS Master region ETSI");
2123                 break;
2124         case NL80211_DFS_JP:
2125                 pr_info(" DFS Master region JP");
2126                 break;
2127         default:
2128                 pr_info(" DFS Master region Uknown");
2129                 break;
2130         }
2131 }
2132
2133 static void print_regdomain(const struct ieee80211_regdomain *rd)
2134 {
2135
2136         if (is_intersected_alpha2(rd->alpha2)) {
2137
2138                 if (last_request->initiator ==
2139                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2140                         struct cfg80211_registered_device *rdev;
2141                         rdev = cfg80211_rdev_by_wiphy_idx(
2142                                 last_request->wiphy_idx);
2143                         if (rdev) {
2144                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2145                                         rdev->country_ie_alpha2[0],
2146                                         rdev->country_ie_alpha2[1]);
2147                         } else
2148                                 pr_info("Current regulatory domain intersected:\n");
2149                 } else
2150                         pr_info("Current regulatory domain intersected:\n");
2151         } else if (is_world_regdom(rd->alpha2))
2152                 pr_info("World regulatory domain updated:\n");
2153         else {
2154                 if (is_unknown_alpha2(rd->alpha2))
2155                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2156                 else {
2157                         if (reg_request_cell_base(last_request))
2158                                 pr_info("Regulatory domain changed "
2159                                         "to country: %c%c by Cell Station\n",
2160                                         rd->alpha2[0], rd->alpha2[1]);
2161                         else
2162                                 pr_info("Regulatory domain changed "
2163                                         "to country: %c%c\n",
2164                                         rd->alpha2[0], rd->alpha2[1]);
2165                 }
2166         }
2167         print_dfs_region(rd->dfs_region);
2168         print_rd_rules(rd);
2169 }
2170
2171 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2172 {
2173         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2174         print_rd_rules(rd);
2175 }
2176
2177 /* Takes ownership of rd only if it doesn't fail */
2178 static int __set_regdom(const struct ieee80211_regdomain *rd)
2179 {
2180         const struct ieee80211_regdomain *intersected_rd = NULL;
2181         struct cfg80211_registered_device *rdev = NULL;
2182         struct wiphy *request_wiphy;
2183         /* Some basic sanity checks first */
2184
2185         if (is_world_regdom(rd->alpha2)) {
2186                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2187                         return -EINVAL;
2188                 update_world_regdomain(rd);
2189                 return 0;
2190         }
2191
2192         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2193                         !is_unknown_alpha2(rd->alpha2))
2194                 return -EINVAL;
2195
2196         if (!last_request)
2197                 return -EINVAL;
2198
2199         /*
2200          * Lets only bother proceeding on the same alpha2 if the current
2201          * rd is non static (it means CRDA was present and was used last)
2202          * and the pending request came in from a country IE
2203          */
2204         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2205                 /*
2206                  * If someone else asked us to change the rd lets only bother
2207                  * checking if the alpha2 changes if CRDA was already called
2208                  */
2209                 if (!regdom_changes(rd->alpha2))
2210                         return -EALREADY;
2211         }
2212
2213         /*
2214          * Now lets set the regulatory domain, update all driver channels
2215          * and finally inform them of what we have done, in case they want
2216          * to review or adjust their own settings based on their own
2217          * internal EEPROM data
2218          */
2219
2220         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2221                 return -EINVAL;
2222
2223         if (!is_valid_rd(rd)) {
2224                 pr_err("Invalid regulatory domain detected:\n");
2225                 print_regdomain_info(rd);
2226                 return -EINVAL;
2227         }
2228
2229         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2230         if (!request_wiphy &&
2231             (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2232              last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2233                 schedule_delayed_work(&reg_timeout, 0);
2234                 return -ENODEV;
2235         }
2236
2237         if (!last_request->intersect) {
2238                 int r;
2239
2240                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2241                         reset_regdomains(false);
2242                         cfg80211_regdomain = rd;
2243                         return 0;
2244                 }
2245
2246                 /*
2247                  * For a driver hint, lets copy the regulatory domain the
2248                  * driver wanted to the wiphy to deal with conflicts
2249                  */
2250
2251                 /*
2252                  * Userspace could have sent two replies with only
2253                  * one kernel request.
2254                  */
2255                 if (request_wiphy->regd)
2256                         return -EALREADY;
2257
2258                 r = reg_copy_regd(&request_wiphy->regd, rd);
2259                 if (r)
2260                         return r;
2261
2262                 reset_regdomains(false);
2263                 cfg80211_regdomain = rd;
2264                 return 0;
2265         }
2266
2267         /* Intersection requires a bit more work */
2268
2269         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2270
2271                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2272                 if (!intersected_rd)
2273                         return -EINVAL;
2274
2275                 /*
2276                  * We can trash what CRDA provided now.
2277                  * However if a driver requested this specific regulatory
2278                  * domain we keep it for its private use
2279                  */
2280                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2281                         request_wiphy->regd = rd;
2282                 else
2283                         kfree(rd);
2284
2285                 rd = NULL;
2286
2287                 reset_regdomains(false);
2288                 cfg80211_regdomain = intersected_rd;
2289
2290                 return 0;
2291         }
2292
2293         if (!intersected_rd)
2294                 return -EINVAL;
2295
2296         rdev = wiphy_to_dev(request_wiphy);
2297
2298         rdev->country_ie_alpha2[0] = rd->alpha2[0];
2299         rdev->country_ie_alpha2[1] = rd->alpha2[1];
2300         rdev->env = last_request->country_ie_env;
2301
2302         BUG_ON(intersected_rd == rd);
2303
2304         kfree(rd);
2305         rd = NULL;
2306
2307         reset_regdomains(false);
2308         cfg80211_regdomain = intersected_rd;
2309
2310         return 0;
2311 }
2312
2313
2314 /*
2315  * Use this call to set the current regulatory domain. Conflicts with
2316  * multiple drivers can be ironed out later. Caller must've already
2317  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2318  */
2319 int set_regdom(const struct ieee80211_regdomain *rd)
2320 {
2321         int r;
2322
2323         assert_cfg80211_lock();
2324
2325         mutex_lock(&reg_mutex);
2326
2327         /* Note that this doesn't update the wiphys, this is done below */
2328         r = __set_regdom(rd);
2329         if (r) {
2330                 if (r == -EALREADY)
2331                         reg_set_request_processed();
2332
2333                 kfree(rd);
2334                 mutex_unlock(&reg_mutex);
2335                 return r;
2336         }
2337
2338         /* This would make this whole thing pointless */
2339         if (!last_request->intersect)
2340                 BUG_ON(rd != cfg80211_regdomain);
2341
2342         /* update all wiphys now with the new established regulatory domain */
2343         update_all_wiphy_regulatory(last_request->initiator);
2344
2345         print_regdomain(cfg80211_regdomain);
2346
2347         nl80211_send_reg_change_event(last_request);
2348
2349         reg_set_request_processed();
2350
2351         mutex_unlock(&reg_mutex);
2352
2353         return r;
2354 }
2355
2356 #ifdef CONFIG_HOTPLUG
2357 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2358 {
2359         if (last_request && !last_request->processed) {
2360                 if (add_uevent_var(env, "COUNTRY=%c%c",
2361                                    last_request->alpha2[0],
2362                                    last_request->alpha2[1]))
2363                         return -ENOMEM;
2364         }
2365
2366         return 0;
2367 }
2368 #else
2369 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2370 {
2371         return -ENODEV;
2372 }
2373 #endif /* CONFIG_HOTPLUG */
2374
2375 void wiphy_regulatory_register(struct wiphy *wiphy)
2376 {
2377         assert_cfg80211_lock();
2378
2379         mutex_lock(&reg_mutex);
2380
2381         if (!reg_dev_ignore_cell_hint(wiphy))
2382                 reg_num_devs_support_basehint++;
2383
2384         wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE);
2385
2386         mutex_unlock(&reg_mutex);
2387 }
2388
2389 /* Caller must hold cfg80211_mutex */
2390 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2391 {
2392         struct wiphy *request_wiphy = NULL;
2393
2394         assert_cfg80211_lock();
2395
2396         mutex_lock(&reg_mutex);
2397
2398         if (!reg_dev_ignore_cell_hint(wiphy))
2399                 reg_num_devs_support_basehint--;
2400
2401         kfree(wiphy->regd);
2402
2403         if (last_request)
2404                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2405
2406         if (!request_wiphy || request_wiphy != wiphy)
2407                 goto out;
2408
2409         last_request->wiphy_idx = WIPHY_IDX_STALE;
2410         last_request->country_ie_env = ENVIRON_ANY;
2411 out:
2412         mutex_unlock(&reg_mutex);
2413 }
2414
2415 static void reg_timeout_work(struct work_struct *work)
2416 {
2417         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2418                       "restoring regulatory settings\n");
2419         restore_regulatory_settings(true);
2420 }
2421
2422 int __init regulatory_init(void)
2423 {
2424         int err = 0;
2425
2426         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2427         if (IS_ERR(reg_pdev))
2428                 return PTR_ERR(reg_pdev);
2429
2430         reg_pdev->dev.type = &reg_device_type;
2431
2432         spin_lock_init(&reg_requests_lock);
2433         spin_lock_init(&reg_pending_beacons_lock);
2434
2435         reg_regdb_size_check();
2436
2437         cfg80211_regdomain = cfg80211_world_regdom;
2438
2439         user_alpha2[0] = '9';
2440         user_alpha2[1] = '7';
2441
2442         /* We always try to get an update for the static regdomain */
2443         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2444         if (err) {
2445                 if (err == -ENOMEM)
2446                         return err;
2447                 /*
2448                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2449                  * memory which is handled and propagated appropriately above
2450                  * but it can also fail during a netlink_broadcast() or during
2451                  * early boot for call_usermodehelper(). For now treat these
2452                  * errors as non-fatal.
2453                  */
2454                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2455 #ifdef CONFIG_CFG80211_REG_DEBUG
2456                 /* We want to find out exactly why when debugging */
2457                 WARN_ON(err);
2458 #endif
2459         }
2460
2461         /*
2462          * Finally, if the user set the module parameter treat it
2463          * as a user hint.
2464          */
2465         if (!is_world_regdom(ieee80211_regdom))
2466                 regulatory_hint_user(ieee80211_regdom,
2467                                      NL80211_USER_REG_HINT_USER);
2468
2469         return 0;
2470 }
2471
2472 void /* __init_or_exit */ regulatory_exit(void)
2473 {
2474         struct regulatory_request *reg_request, *tmp;
2475         struct reg_beacon *reg_beacon, *btmp;
2476
2477         cancel_work_sync(&reg_work);
2478         cancel_delayed_work_sync(&reg_timeout);
2479
2480         mutex_lock(&cfg80211_mutex);
2481         mutex_lock(&reg_mutex);
2482
2483         reset_regdomains(true);
2484
2485         dev_set_uevent_suppress(&reg_pdev->dev, true);
2486
2487         platform_device_unregister(reg_pdev);
2488
2489         spin_lock_bh(&reg_pending_beacons_lock);
2490         if (!list_empty(&reg_pending_beacons)) {
2491                 list_for_each_entry_safe(reg_beacon, btmp,
2492                                          &reg_pending_beacons, list) {
2493                         list_del(&reg_beacon->list);
2494                         kfree(reg_beacon);
2495                 }
2496         }
2497         spin_unlock_bh(&reg_pending_beacons_lock);
2498
2499         if (!list_empty(&reg_beacon_list)) {
2500                 list_for_each_entry_safe(reg_beacon, btmp,
2501                                          &reg_beacon_list, list) {
2502                         list_del(&reg_beacon->list);
2503                         kfree(reg_beacon);
2504                 }
2505         }
2506
2507         spin_lock(&reg_requests_lock);
2508         if (!list_empty(&reg_requests_list)) {
2509                 list_for_each_entry_safe(reg_request, tmp,
2510                                          &reg_requests_list, list) {
2511                         list_del(&reg_request->list);
2512                         kfree(reg_request);
2513                 }
2514         }
2515         spin_unlock(&reg_requests_lock);
2516
2517         mutex_unlock(&reg_mutex);
2518         mutex_unlock(&cfg80211_mutex);
2519 }