2 * linux/net/sunrpc/svc_xprt.c
4 * Author: Tom Tucker <tom@opengridcomputing.com>
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16 #include <linux/sunrpc/xprt.h>
17 #include <linux/module.h>
19 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
21 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
22 static int svc_deferred_recv(struct svc_rqst *rqstp);
23 static struct cache_deferred_req *svc_defer(struct cache_req *req);
24 static void svc_age_temp_xprts(unsigned long closure);
25 static void svc_delete_xprt(struct svc_xprt *xprt);
27 /* apparently the "standard" is that clients close
28 * idle connections after 5 minutes, servers after
30 * http://www.connectathon.org/talks96/nfstcp.pdf
32 static int svc_conn_age_period = 6*60;
34 /* List of registered transport classes */
35 static DEFINE_SPINLOCK(svc_xprt_class_lock);
36 static LIST_HEAD(svc_xprt_class_list);
38 /* SMP locking strategy:
40 * svc_pool->sp_lock protects most of the fields of that pool.
41 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
42 * when both need to be taken (rare), svc_serv->sv_lock is first.
43 * BKL protects svc_serv->sv_nrthread.
44 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
45 * and the ->sk_info_authunix cache.
47 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
48 * enqueued multiply. During normal transport processing this bit
49 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
50 * Providers should not manipulate this bit directly.
52 * Some flags can be set to certain values at any time
53 * providing that certain rules are followed:
56 * - Can be set or cleared at any time.
57 * - After a set, svc_xprt_enqueue must be called to enqueue
58 * the transport for processing.
59 * - After a clear, the transport must be read/accepted.
60 * If this succeeds, it must be set again.
62 * - Can set at any time. It is never cleared.
64 * - Can only be set while XPT_BUSY is held which ensures
65 * that no other thread will be using the transport or will
66 * try to set XPT_DEAD.
69 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
71 struct svc_xprt_class *cl;
74 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
76 INIT_LIST_HEAD(&xcl->xcl_list);
77 spin_lock(&svc_xprt_class_lock);
78 /* Make sure there isn't already a class with the same name */
79 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
80 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
83 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
86 spin_unlock(&svc_xprt_class_lock);
89 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
91 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
93 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
94 spin_lock(&svc_xprt_class_lock);
95 list_del_init(&xcl->xcl_list);
96 spin_unlock(&svc_xprt_class_lock);
98 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
101 * Format the transport list for printing
103 int svc_print_xprts(char *buf, int maxlen)
105 struct svc_xprt_class *xcl;
110 spin_lock(&svc_xprt_class_lock);
111 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
114 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
115 slen = strlen(tmpstr);
116 if (len + slen > maxlen)
121 spin_unlock(&svc_xprt_class_lock);
126 static void svc_xprt_free(struct kref *kref)
128 struct svc_xprt *xprt =
129 container_of(kref, struct svc_xprt, xpt_ref);
130 struct module *owner = xprt->xpt_class->xcl_owner;
131 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
132 svcauth_unix_info_release(xprt);
133 put_net(xprt->xpt_net);
134 /* See comment on corresponding get in xs_setup_bc_tcp(): */
135 if (xprt->xpt_bc_xprt)
136 xprt_put(xprt->xpt_bc_xprt);
137 xprt->xpt_ops->xpo_free(xprt);
141 void svc_xprt_put(struct svc_xprt *xprt)
143 kref_put(&xprt->xpt_ref, svc_xprt_free);
145 EXPORT_SYMBOL_GPL(svc_xprt_put);
148 * Called by transport drivers to initialize the transport independent
149 * portion of the transport instance.
151 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
152 struct svc_xprt *xprt, struct svc_serv *serv)
154 memset(xprt, 0, sizeof(*xprt));
155 xprt->xpt_class = xcl;
156 xprt->xpt_ops = xcl->xcl_ops;
157 kref_init(&xprt->xpt_ref);
158 xprt->xpt_server = serv;
159 INIT_LIST_HEAD(&xprt->xpt_list);
160 INIT_LIST_HEAD(&xprt->xpt_ready);
161 INIT_LIST_HEAD(&xprt->xpt_deferred);
162 INIT_LIST_HEAD(&xprt->xpt_users);
163 mutex_init(&xprt->xpt_mutex);
164 spin_lock_init(&xprt->xpt_lock);
165 set_bit(XPT_BUSY, &xprt->xpt_flags);
166 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
167 xprt->xpt_net = get_net(net);
169 EXPORT_SYMBOL_GPL(svc_xprt_init);
171 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
172 struct svc_serv *serv,
175 const unsigned short port,
178 struct sockaddr_in sin = {
179 .sin_family = AF_INET,
180 .sin_addr.s_addr = htonl(INADDR_ANY),
181 .sin_port = htons(port),
183 #if IS_ENABLED(CONFIG_IPV6)
184 struct sockaddr_in6 sin6 = {
185 .sin6_family = AF_INET6,
186 .sin6_addr = IN6ADDR_ANY_INIT,
187 .sin6_port = htons(port),
190 struct sockaddr *sap;
195 sap = (struct sockaddr *)&sin;
198 #if IS_ENABLED(CONFIG_IPV6)
200 sap = (struct sockaddr *)&sin6;
205 return ERR_PTR(-EAFNOSUPPORT);
208 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
211 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
212 struct net *net, const int family,
213 const unsigned short port, int flags)
215 struct svc_xprt_class *xcl;
217 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
218 spin_lock(&svc_xprt_class_lock);
219 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
220 struct svc_xprt *newxprt;
221 unsigned short newport;
223 if (strcmp(xprt_name, xcl->xcl_name))
226 if (!try_module_get(xcl->xcl_owner))
229 spin_unlock(&svc_xprt_class_lock);
230 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
231 if (IS_ERR(newxprt)) {
232 module_put(xcl->xcl_owner);
233 return PTR_ERR(newxprt);
236 clear_bit(XPT_TEMP, &newxprt->xpt_flags);
237 spin_lock_bh(&serv->sv_lock);
238 list_add(&newxprt->xpt_list, &serv->sv_permsocks);
239 spin_unlock_bh(&serv->sv_lock);
240 newport = svc_xprt_local_port(newxprt);
241 clear_bit(XPT_BUSY, &newxprt->xpt_flags);
245 spin_unlock(&svc_xprt_class_lock);
246 dprintk("svc: transport %s not found\n", xprt_name);
248 /* This errno is exposed to user space. Provide a reasonable
249 * perror msg for a bad transport. */
250 return -EPROTONOSUPPORT;
252 EXPORT_SYMBOL_GPL(svc_create_xprt);
255 * Copy the local and remote xprt addresses to the rqstp structure
257 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
259 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
260 rqstp->rq_addrlen = xprt->xpt_remotelen;
263 * Destination address in request is needed for binding the
264 * source address in RPC replies/callbacks later.
266 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
267 rqstp->rq_daddrlen = xprt->xpt_locallen;
269 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
272 * svc_print_addr - Format rq_addr field for printing
273 * @rqstp: svc_rqst struct containing address to print
274 * @buf: target buffer for formatted address
275 * @len: length of target buffer
278 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
280 return __svc_print_addr(svc_addr(rqstp), buf, len);
282 EXPORT_SYMBOL_GPL(svc_print_addr);
285 * Queue up an idle server thread. Must have pool->sp_lock held.
286 * Note: this is really a stack rather than a queue, so that we only
287 * use as many different threads as we need, and the rest don't pollute
290 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
292 list_add(&rqstp->rq_list, &pool->sp_threads);
296 * Dequeue an nfsd thread. Must have pool->sp_lock held.
298 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
300 list_del(&rqstp->rq_list);
303 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
305 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
307 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
308 return xprt->xpt_ops->xpo_has_wspace(xprt);
313 * Queue up a transport with data pending. If there are idle nfsd
314 * processes, wake 'em up.
317 void svc_xprt_enqueue(struct svc_xprt *xprt)
319 struct svc_pool *pool;
320 struct svc_rqst *rqstp;
323 if (!svc_xprt_has_something_to_do(xprt))
327 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
330 spin_lock_bh(&pool->sp_lock);
332 if (!list_empty(&pool->sp_threads) &&
333 !list_empty(&pool->sp_sockets))
336 "threads and transports both waiting??\n");
338 pool->sp_stats.packets++;
340 /* Mark transport as busy. It will remain in this state until
341 * the provider calls svc_xprt_received. We update XPT_BUSY
342 * atomically because it also guards against trying to enqueue
343 * the transport twice.
345 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
346 /* Don't enqueue transport while already enqueued */
347 dprintk("svc: transport %p busy, not enqueued\n", xprt);
351 if (!list_empty(&pool->sp_threads)) {
352 rqstp = list_entry(pool->sp_threads.next,
355 dprintk("svc: transport %p served by daemon %p\n",
357 svc_thread_dequeue(pool, rqstp);
360 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
361 rqstp, rqstp->rq_xprt);
362 rqstp->rq_xprt = xprt;
364 pool->sp_stats.threads_woken++;
365 wake_up(&rqstp->rq_wait);
367 dprintk("svc: transport %p put into queue\n", xprt);
368 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
369 pool->sp_stats.sockets_queued++;
373 spin_unlock_bh(&pool->sp_lock);
375 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
378 * Dequeue the first transport. Must be called with the pool->sp_lock held.
380 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
382 struct svc_xprt *xprt;
384 if (list_empty(&pool->sp_sockets))
387 xprt = list_entry(pool->sp_sockets.next,
388 struct svc_xprt, xpt_ready);
389 list_del_init(&xprt->xpt_ready);
391 dprintk("svc: transport %p dequeued, inuse=%d\n",
392 xprt, atomic_read(&xprt->xpt_ref.refcount));
398 * svc_xprt_received conditionally queues the transport for processing
399 * by another thread. The caller must hold the XPT_BUSY bit and must
400 * not thereafter touch transport data.
402 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
403 * insufficient) data.
405 void svc_xprt_received(struct svc_xprt *xprt)
407 BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
408 /* As soon as we clear busy, the xprt could be closed and
409 * 'put', so we need a reference to call svc_xprt_enqueue with:
412 clear_bit(XPT_BUSY, &xprt->xpt_flags);
413 svc_xprt_enqueue(xprt);
416 EXPORT_SYMBOL_GPL(svc_xprt_received);
419 * svc_reserve - change the space reserved for the reply to a request.
420 * @rqstp: The request in question
421 * @space: new max space to reserve
423 * Each request reserves some space on the output queue of the transport
424 * to make sure the reply fits. This function reduces that reserved
425 * space to be the amount of space used already, plus @space.
428 void svc_reserve(struct svc_rqst *rqstp, int space)
430 space += rqstp->rq_res.head[0].iov_len;
432 if (space < rqstp->rq_reserved) {
433 struct svc_xprt *xprt = rqstp->rq_xprt;
434 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
435 rqstp->rq_reserved = space;
437 svc_xprt_enqueue(xprt);
440 EXPORT_SYMBOL_GPL(svc_reserve);
442 static void svc_xprt_release(struct svc_rqst *rqstp)
444 struct svc_xprt *xprt = rqstp->rq_xprt;
446 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
448 kfree(rqstp->rq_deferred);
449 rqstp->rq_deferred = NULL;
451 svc_free_res_pages(rqstp);
452 rqstp->rq_res.page_len = 0;
453 rqstp->rq_res.page_base = 0;
455 /* Reset response buffer and release
457 * But first, check that enough space was reserved
458 * for the reply, otherwise we have a bug!
460 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
461 printk(KERN_ERR "RPC request reserved %d but used %d\n",
465 rqstp->rq_res.head[0].iov_len = 0;
466 svc_reserve(rqstp, 0);
467 rqstp->rq_xprt = NULL;
473 * External function to wake up a server waiting for data
474 * This really only makes sense for services like lockd
475 * which have exactly one thread anyway.
477 void svc_wake_up(struct svc_serv *serv)
479 struct svc_rqst *rqstp;
481 struct svc_pool *pool;
483 for (i = 0; i < serv->sv_nrpools; i++) {
484 pool = &serv->sv_pools[i];
486 spin_lock_bh(&pool->sp_lock);
487 if (!list_empty(&pool->sp_threads)) {
488 rqstp = list_entry(pool->sp_threads.next,
491 dprintk("svc: daemon %p woken up.\n", rqstp);
493 svc_thread_dequeue(pool, rqstp);
494 rqstp->rq_xprt = NULL;
496 wake_up(&rqstp->rq_wait);
498 spin_unlock_bh(&pool->sp_lock);
501 EXPORT_SYMBOL_GPL(svc_wake_up);
503 int svc_port_is_privileged(struct sockaddr *sin)
505 switch (sin->sa_family) {
507 return ntohs(((struct sockaddr_in *)sin)->sin_port)
510 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
518 * Make sure that we don't have too many active connections. If we have,
519 * something must be dropped. It's not clear what will happen if we allow
520 * "too many" connections, but when dealing with network-facing software,
521 * we have to code defensively. Here we do that by imposing hard limits.
523 * There's no point in trying to do random drop here for DoS
524 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
525 * attacker can easily beat that.
527 * The only somewhat efficient mechanism would be if drop old
528 * connections from the same IP first. But right now we don't even
529 * record the client IP in svc_sock.
531 * single-threaded services that expect a lot of clients will probably
532 * need to set sv_maxconn to override the default value which is based
533 * on the number of threads
535 static void svc_check_conn_limits(struct svc_serv *serv)
537 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
538 (serv->sv_nrthreads+3) * 20;
540 if (serv->sv_tmpcnt > limit) {
541 struct svc_xprt *xprt = NULL;
542 spin_lock_bh(&serv->sv_lock);
543 if (!list_empty(&serv->sv_tempsocks)) {
544 /* Try to help the admin */
545 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
546 serv->sv_name, serv->sv_maxconn ?
547 "max number of connections" :
548 "number of threads");
550 * Always select the oldest connection. It's not fair,
553 xprt = list_entry(serv->sv_tempsocks.prev,
556 set_bit(XPT_CLOSE, &xprt->xpt_flags);
559 spin_unlock_bh(&serv->sv_lock);
562 svc_xprt_enqueue(xprt);
569 * Receive the next request on any transport. This code is carefully
570 * organised not to touch any cachelines in the shared svc_serv
571 * structure, only cachelines in the local svc_pool.
573 int svc_recv(struct svc_rqst *rqstp, long timeout)
575 struct svc_xprt *xprt = NULL;
576 struct svc_serv *serv = rqstp->rq_server;
577 struct svc_pool *pool = rqstp->rq_pool;
581 DECLARE_WAITQUEUE(wait, current);
584 dprintk("svc: server %p waiting for data (to = %ld)\n",
589 "svc_recv: service %p, transport not NULL!\n",
591 if (waitqueue_active(&rqstp->rq_wait))
593 "svc_recv: service %p, wait queue active!\n",
596 /* now allocate needed pages. If we get a failure, sleep briefly */
597 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
598 BUG_ON(pages >= RPCSVC_MAXPAGES);
599 for (i = 0; i < pages ; i++)
600 while (rqstp->rq_pages[i] == NULL) {
601 struct page *p = alloc_page(GFP_KERNEL);
603 set_current_state(TASK_INTERRUPTIBLE);
604 if (signalled() || kthread_should_stop()) {
605 set_current_state(TASK_RUNNING);
608 schedule_timeout(msecs_to_jiffies(500));
610 rqstp->rq_pages[i] = p;
612 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
614 /* Make arg->head point to first page and arg->pages point to rest */
615 arg = &rqstp->rq_arg;
616 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
617 arg->head[0].iov_len = PAGE_SIZE;
618 arg->pages = rqstp->rq_pages + 1;
620 /* save at least one page for response */
621 arg->page_len = (pages-2)*PAGE_SIZE;
622 arg->len = (pages-1)*PAGE_SIZE;
623 arg->tail[0].iov_len = 0;
627 if (signalled() || kthread_should_stop())
630 /* Normally we will wait up to 5 seconds for any required
631 * cache information to be provided.
633 rqstp->rq_chandle.thread_wait = 5*HZ;
635 spin_lock_bh(&pool->sp_lock);
636 xprt = svc_xprt_dequeue(pool);
638 rqstp->rq_xprt = xprt;
641 /* As there is a shortage of threads and this request
642 * had to be queued, don't allow the thread to wait so
643 * long for cache updates.
645 rqstp->rq_chandle.thread_wait = 1*HZ;
647 /* No data pending. Go to sleep */
648 svc_thread_enqueue(pool, rqstp);
651 * We have to be able to interrupt this wait
652 * to bring down the daemons ...
654 set_current_state(TASK_INTERRUPTIBLE);
657 * checking kthread_should_stop() here allows us to avoid
658 * locking and signalling when stopping kthreads that call
659 * svc_recv. If the thread has already been woken up, then
660 * we can exit here without sleeping. If not, then it
661 * it'll be woken up quickly during the schedule_timeout
663 if (kthread_should_stop()) {
664 set_current_state(TASK_RUNNING);
665 spin_unlock_bh(&pool->sp_lock);
669 add_wait_queue(&rqstp->rq_wait, &wait);
670 spin_unlock_bh(&pool->sp_lock);
672 time_left = schedule_timeout(timeout);
676 spin_lock_bh(&pool->sp_lock);
677 remove_wait_queue(&rqstp->rq_wait, &wait);
679 pool->sp_stats.threads_timedout++;
681 xprt = rqstp->rq_xprt;
683 svc_thread_dequeue(pool, rqstp);
684 spin_unlock_bh(&pool->sp_lock);
685 dprintk("svc: server %p, no data yet\n", rqstp);
686 if (signalled() || kthread_should_stop())
692 spin_unlock_bh(&pool->sp_lock);
695 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
696 dprintk("svc_recv: found XPT_CLOSE\n");
697 svc_delete_xprt(xprt);
698 /* Leave XPT_BUSY set on the dead xprt: */
701 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
702 struct svc_xprt *newxpt;
703 newxpt = xprt->xpt_ops->xpo_accept(xprt);
706 * We know this module_get will succeed because the
707 * listener holds a reference too
709 __module_get(newxpt->xpt_class->xcl_owner);
710 svc_check_conn_limits(xprt->xpt_server);
711 spin_lock_bh(&serv->sv_lock);
712 set_bit(XPT_TEMP, &newxpt->xpt_flags);
713 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
715 if (serv->sv_temptimer.function == NULL) {
716 /* setup timer to age temp transports */
717 setup_timer(&serv->sv_temptimer,
719 (unsigned long)serv);
720 mod_timer(&serv->sv_temptimer,
721 jiffies + svc_conn_age_period * HZ);
723 spin_unlock_bh(&serv->sv_lock);
724 svc_xprt_received(newxpt);
726 } else if (xprt->xpt_ops->xpo_has_wspace(xprt)) {
727 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
728 rqstp, pool->sp_id, xprt,
729 atomic_read(&xprt->xpt_ref.refcount));
730 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
731 if (rqstp->rq_deferred)
732 len = svc_deferred_recv(rqstp);
734 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
735 dprintk("svc: got len=%d\n", len);
736 rqstp->rq_reserved = serv->sv_max_mesg;
737 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
739 svc_xprt_received(xprt);
741 /* No data, incomplete (TCP) read, or accept() */
742 if (len == 0 || len == -EAGAIN)
745 clear_bit(XPT_OLD, &xprt->xpt_flags);
747 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
748 rqstp->rq_chandle.defer = svc_defer;
751 serv->sv_stats->netcnt++;
754 rqstp->rq_res.len = 0;
755 svc_xprt_release(rqstp);
758 EXPORT_SYMBOL_GPL(svc_recv);
763 void svc_drop(struct svc_rqst *rqstp)
765 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
766 svc_xprt_release(rqstp);
768 EXPORT_SYMBOL_GPL(svc_drop);
771 * Return reply to client.
773 int svc_send(struct svc_rqst *rqstp)
775 struct svc_xprt *xprt;
779 xprt = rqstp->rq_xprt;
783 /* release the receive skb before sending the reply */
784 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
786 /* calculate over-all length */
788 xb->len = xb->head[0].iov_len +
792 /* Grab mutex to serialize outgoing data. */
793 mutex_lock(&xprt->xpt_mutex);
794 if (test_bit(XPT_DEAD, &xprt->xpt_flags)
795 || test_bit(XPT_CLOSE, &xprt->xpt_flags))
798 len = xprt->xpt_ops->xpo_sendto(rqstp);
799 mutex_unlock(&xprt->xpt_mutex);
800 rpc_wake_up(&xprt->xpt_bc_pending);
801 svc_xprt_release(rqstp);
803 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
809 * Timer function to close old temporary transports, using
810 * a mark-and-sweep algorithm.
812 static void svc_age_temp_xprts(unsigned long closure)
814 struct svc_serv *serv = (struct svc_serv *)closure;
815 struct svc_xprt *xprt;
816 struct list_head *le, *next;
817 LIST_HEAD(to_be_aged);
819 dprintk("svc_age_temp_xprts\n");
821 if (!spin_trylock_bh(&serv->sv_lock)) {
822 /* busy, try again 1 sec later */
823 dprintk("svc_age_temp_xprts: busy\n");
824 mod_timer(&serv->sv_temptimer, jiffies + HZ);
828 list_for_each_safe(le, next, &serv->sv_tempsocks) {
829 xprt = list_entry(le, struct svc_xprt, xpt_list);
831 /* First time through, just mark it OLD. Second time
832 * through, close it. */
833 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
835 if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
836 test_bit(XPT_BUSY, &xprt->xpt_flags))
839 list_move(le, &to_be_aged);
840 set_bit(XPT_CLOSE, &xprt->xpt_flags);
841 set_bit(XPT_DETACHED, &xprt->xpt_flags);
843 spin_unlock_bh(&serv->sv_lock);
845 while (!list_empty(&to_be_aged)) {
846 le = to_be_aged.next;
847 /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
849 xprt = list_entry(le, struct svc_xprt, xpt_list);
851 dprintk("queuing xprt %p for closing\n", xprt);
853 /* a thread will dequeue and close it soon */
854 svc_xprt_enqueue(xprt);
858 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
861 static void call_xpt_users(struct svc_xprt *xprt)
863 struct svc_xpt_user *u;
865 spin_lock(&xprt->xpt_lock);
866 while (!list_empty(&xprt->xpt_users)) {
867 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
871 spin_unlock(&xprt->xpt_lock);
875 * Remove a dead transport
877 static void svc_delete_xprt(struct svc_xprt *xprt)
879 struct svc_serv *serv = xprt->xpt_server;
880 struct svc_deferred_req *dr;
882 /* Only do this once */
883 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
886 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
887 xprt->xpt_ops->xpo_detach(xprt);
889 spin_lock_bh(&serv->sv_lock);
890 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
891 list_del_init(&xprt->xpt_list);
892 BUG_ON(!list_empty(&xprt->xpt_ready));
893 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
895 spin_unlock_bh(&serv->sv_lock);
897 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
900 call_xpt_users(xprt);
904 void svc_close_xprt(struct svc_xprt *xprt)
906 set_bit(XPT_CLOSE, &xprt->xpt_flags);
907 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
908 /* someone else will have to effect the close */
911 * We expect svc_close_xprt() to work even when no threads are
912 * running (e.g., while configuring the server before starting
913 * any threads), so if the transport isn't busy, we delete
916 svc_delete_xprt(xprt);
918 EXPORT_SYMBOL_GPL(svc_close_xprt);
920 static void svc_close_list(struct list_head *xprt_list, struct net *net)
922 struct svc_xprt *xprt;
924 list_for_each_entry(xprt, xprt_list, xpt_list) {
925 if (xprt->xpt_net != net)
927 set_bit(XPT_CLOSE, &xprt->xpt_flags);
928 set_bit(XPT_BUSY, &xprt->xpt_flags);
932 static void svc_clear_pools(struct svc_serv *serv, struct net *net)
934 struct svc_pool *pool;
935 struct svc_xprt *xprt;
936 struct svc_xprt *tmp;
939 for (i = 0; i < serv->sv_nrpools; i++) {
940 pool = &serv->sv_pools[i];
942 spin_lock_bh(&pool->sp_lock);
943 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
944 if (xprt->xpt_net != net)
946 list_del_init(&xprt->xpt_ready);
948 spin_unlock_bh(&pool->sp_lock);
952 static void svc_clear_list(struct list_head *xprt_list, struct net *net)
954 struct svc_xprt *xprt;
955 struct svc_xprt *tmp;
957 list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
958 if (xprt->xpt_net != net)
960 svc_delete_xprt(xprt);
962 list_for_each_entry(xprt, xprt_list, xpt_list)
963 BUG_ON(xprt->xpt_net == net);
966 void svc_close_net(struct svc_serv *serv, struct net *net)
968 svc_close_list(&serv->sv_tempsocks, net);
969 svc_close_list(&serv->sv_permsocks, net);
971 svc_clear_pools(serv, net);
973 * At this point the sp_sockets lists will stay empty, since
974 * svc_xprt_enqueue will not add new entries without taking the
975 * sp_lock and checking XPT_BUSY.
977 svc_clear_list(&serv->sv_tempsocks, net);
978 svc_clear_list(&serv->sv_permsocks, net);
982 * Handle defer and revisit of requests
985 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
987 struct svc_deferred_req *dr =
988 container_of(dreq, struct svc_deferred_req, handle);
989 struct svc_xprt *xprt = dr->xprt;
991 spin_lock(&xprt->xpt_lock);
992 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
993 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
994 spin_unlock(&xprt->xpt_lock);
995 dprintk("revisit canceled\n");
1000 dprintk("revisit queued\n");
1002 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1003 spin_unlock(&xprt->xpt_lock);
1004 svc_xprt_enqueue(xprt);
1009 * Save the request off for later processing. The request buffer looks
1012 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1014 * This code can only handle requests that consist of an xprt-header
1017 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1019 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1020 struct svc_deferred_req *dr;
1022 if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
1023 return NULL; /* if more than a page, give up FIXME */
1024 if (rqstp->rq_deferred) {
1025 dr = rqstp->rq_deferred;
1026 rqstp->rq_deferred = NULL;
1030 /* FIXME maybe discard if size too large */
1031 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1032 dr = kmalloc(size, GFP_KERNEL);
1036 dr->handle.owner = rqstp->rq_server;
1037 dr->prot = rqstp->rq_prot;
1038 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1039 dr->addrlen = rqstp->rq_addrlen;
1040 dr->daddr = rqstp->rq_daddr;
1041 dr->argslen = rqstp->rq_arg.len >> 2;
1042 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1044 /* back up head to the start of the buffer and copy */
1045 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1046 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1049 svc_xprt_get(rqstp->rq_xprt);
1050 dr->xprt = rqstp->rq_xprt;
1051 rqstp->rq_dropme = true;
1053 dr->handle.revisit = svc_revisit;
1058 * recv data from a deferred request into an active one
1060 static int svc_deferred_recv(struct svc_rqst *rqstp)
1062 struct svc_deferred_req *dr = rqstp->rq_deferred;
1064 /* setup iov_base past transport header */
1065 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1066 /* The iov_len does not include the transport header bytes */
1067 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1068 rqstp->rq_arg.page_len = 0;
1069 /* The rq_arg.len includes the transport header bytes */
1070 rqstp->rq_arg.len = dr->argslen<<2;
1071 rqstp->rq_prot = dr->prot;
1072 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1073 rqstp->rq_addrlen = dr->addrlen;
1074 /* Save off transport header len in case we get deferred again */
1075 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1076 rqstp->rq_daddr = dr->daddr;
1077 rqstp->rq_respages = rqstp->rq_pages;
1078 return (dr->argslen<<2) - dr->xprt_hlen;
1082 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1084 struct svc_deferred_req *dr = NULL;
1086 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1088 spin_lock(&xprt->xpt_lock);
1089 if (!list_empty(&xprt->xpt_deferred)) {
1090 dr = list_entry(xprt->xpt_deferred.next,
1091 struct svc_deferred_req,
1093 list_del_init(&dr->handle.recent);
1095 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1096 spin_unlock(&xprt->xpt_lock);
1101 * svc_find_xprt - find an RPC transport instance
1102 * @serv: pointer to svc_serv to search
1103 * @xcl_name: C string containing transport's class name
1104 * @net: owner net pointer
1105 * @af: Address family of transport's local address
1106 * @port: transport's IP port number
1108 * Return the transport instance pointer for the endpoint accepting
1109 * connections/peer traffic from the specified transport class,
1110 * address family and port.
1112 * Specifying 0 for the address family or port is effectively a
1113 * wild-card, and will result in matching the first transport in the
1114 * service's list that has a matching class name.
1116 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1117 struct net *net, const sa_family_t af,
1118 const unsigned short port)
1120 struct svc_xprt *xprt;
1121 struct svc_xprt *found = NULL;
1123 /* Sanity check the args */
1124 if (serv == NULL || xcl_name == NULL)
1127 spin_lock_bh(&serv->sv_lock);
1128 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1129 if (xprt->xpt_net != net)
1131 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1133 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1135 if (port != 0 && port != svc_xprt_local_port(xprt))
1141 spin_unlock_bh(&serv->sv_lock);
1144 EXPORT_SYMBOL_GPL(svc_find_xprt);
1146 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1147 char *pos, int remaining)
1151 len = snprintf(pos, remaining, "%s %u\n",
1152 xprt->xpt_class->xcl_name,
1153 svc_xprt_local_port(xprt));
1154 if (len >= remaining)
1155 return -ENAMETOOLONG;
1160 * svc_xprt_names - format a buffer with a list of transport names
1161 * @serv: pointer to an RPC service
1162 * @buf: pointer to a buffer to be filled in
1163 * @buflen: length of buffer to be filled in
1165 * Fills in @buf with a string containing a list of transport names,
1166 * each name terminated with '\n'.
1168 * Returns positive length of the filled-in string on success; otherwise
1169 * a negative errno value is returned if an error occurs.
1171 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1173 struct svc_xprt *xprt;
1177 /* Sanity check args */
1181 spin_lock_bh(&serv->sv_lock);
1185 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1186 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1198 spin_unlock_bh(&serv->sv_lock);
1201 EXPORT_SYMBOL_GPL(svc_xprt_names);
1204 /*----------------------------------------------------------------------------*/
1206 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1208 unsigned int pidx = (unsigned int)*pos;
1209 struct svc_serv *serv = m->private;
1211 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1214 return SEQ_START_TOKEN;
1215 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1218 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1220 struct svc_pool *pool = p;
1221 struct svc_serv *serv = m->private;
1223 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1225 if (p == SEQ_START_TOKEN) {
1226 pool = &serv->sv_pools[0];
1228 unsigned int pidx = (pool - &serv->sv_pools[0]);
1229 if (pidx < serv->sv_nrpools-1)
1230 pool = &serv->sv_pools[pidx+1];
1238 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1242 static int svc_pool_stats_show(struct seq_file *m, void *p)
1244 struct svc_pool *pool = p;
1246 if (p == SEQ_START_TOKEN) {
1247 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1251 seq_printf(m, "%u %lu %lu %lu %lu\n",
1253 pool->sp_stats.packets,
1254 pool->sp_stats.sockets_queued,
1255 pool->sp_stats.threads_woken,
1256 pool->sp_stats.threads_timedout);
1261 static const struct seq_operations svc_pool_stats_seq_ops = {
1262 .start = svc_pool_stats_start,
1263 .next = svc_pool_stats_next,
1264 .stop = svc_pool_stats_stop,
1265 .show = svc_pool_stats_show,
1268 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1272 err = seq_open(file, &svc_pool_stats_seq_ops);
1274 ((struct seq_file *) file->private_data)->private = serv;
1277 EXPORT_SYMBOL(svc_pool_stats_open);
1279 /*----------------------------------------------------------------------------*/