ipv6: fix bad free of addrconf_init_net
[pandora-kernel.git] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21
22 #include <linux/sunrpc/clnt.h>
23
24 #include "sunrpc.h"
25
26 #ifdef RPC_DEBUG
27 #define RPCDBG_FACILITY         RPCDBG_SCHED
28 #endif
29
30 /*
31  * RPC slabs and memory pools
32  */
33 #define RPC_BUFFER_MAXSIZE      (2048)
34 #define RPC_BUFFER_POOLSIZE     (8)
35 #define RPC_TASK_POOLSIZE       (8)
36 static struct kmem_cache        *rpc_task_slabp __read_mostly;
37 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
38 static mempool_t        *rpc_task_mempool __read_mostly;
39 static mempool_t        *rpc_buffer_mempool __read_mostly;
40
41 static void                     rpc_async_schedule(struct work_struct *);
42 static void                      rpc_release_task(struct rpc_task *task);
43 static void __rpc_queue_timer_fn(unsigned long ptr);
44
45 /*
46  * RPC tasks sit here while waiting for conditions to improve.
47  */
48 static struct rpc_wait_queue delay_queue;
49
50 /*
51  * rpciod-related stuff
52  */
53 struct workqueue_struct *rpciod_workqueue;
54
55 /*
56  * Disable the timer for a given RPC task. Should be called with
57  * queue->lock and bh_disabled in order to avoid races within
58  * rpc_run_timer().
59  */
60 static void
61 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
62 {
63         if (task->tk_timeout == 0)
64                 return;
65         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
66         task->tk_timeout = 0;
67         list_del(&task->u.tk_wait.timer_list);
68         if (list_empty(&queue->timer_list.list))
69                 del_timer(&queue->timer_list.timer);
70 }
71
72 static void
73 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
74 {
75         queue->timer_list.expires = expires;
76         mod_timer(&queue->timer_list.timer, expires);
77 }
78
79 /*
80  * Set up a timer for the current task.
81  */
82 static void
83 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
84 {
85         if (!task->tk_timeout)
86                 return;
87
88         dprintk("RPC: %5u setting alarm for %lu ms\n",
89                         task->tk_pid, task->tk_timeout * 1000 / HZ);
90
91         task->u.tk_wait.expires = jiffies + task->tk_timeout;
92         if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
93                 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
94         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
95 }
96
97 /*
98  * Add new request to a priority queue.
99  */
100 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
101                 struct rpc_task *task,
102                 unsigned char queue_priority)
103 {
104         struct list_head *q;
105         struct rpc_task *t;
106
107         INIT_LIST_HEAD(&task->u.tk_wait.links);
108         q = &queue->tasks[queue_priority];
109         if (unlikely(queue_priority > queue->maxpriority))
110                 q = &queue->tasks[queue->maxpriority];
111         list_for_each_entry(t, q, u.tk_wait.list) {
112                 if (t->tk_owner == task->tk_owner) {
113                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
114                         return;
115                 }
116         }
117         list_add_tail(&task->u.tk_wait.list, q);
118 }
119
120 /*
121  * Add new request to wait queue.
122  *
123  * Swapper tasks always get inserted at the head of the queue.
124  * This should avoid many nasty memory deadlocks and hopefully
125  * improve overall performance.
126  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
127  */
128 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
129                 struct rpc_task *task,
130                 unsigned char queue_priority)
131 {
132         BUG_ON (RPC_IS_QUEUED(task));
133
134         if (RPC_IS_PRIORITY(queue))
135                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
136         else if (RPC_IS_SWAPPER(task))
137                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
138         else
139                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
140         task->tk_waitqueue = queue;
141         queue->qlen++;
142         /* barrier matches the read in rpc_wake_up_task_queue_locked() */
143         smp_wmb();
144         rpc_set_queued(task);
145
146         dprintk("RPC: %5u added to queue %p \"%s\"\n",
147                         task->tk_pid, queue, rpc_qname(queue));
148 }
149
150 /*
151  * Remove request from a priority queue.
152  */
153 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
154 {
155         struct rpc_task *t;
156
157         if (!list_empty(&task->u.tk_wait.links)) {
158                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
159                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
160                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
161         }
162 }
163
164 /*
165  * Remove request from queue.
166  * Note: must be called with spin lock held.
167  */
168 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
169 {
170         __rpc_disable_timer(queue, task);
171         if (RPC_IS_PRIORITY(queue))
172                 __rpc_remove_wait_queue_priority(task);
173         list_del(&task->u.tk_wait.list);
174         queue->qlen--;
175         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
176                         task->tk_pid, queue, rpc_qname(queue));
177 }
178
179 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
180 {
181         queue->priority = priority;
182         queue->count = 1 << (priority * 2);
183 }
184
185 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
186 {
187         queue->owner = pid;
188         queue->nr = RPC_BATCH_COUNT;
189 }
190
191 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
192 {
193         rpc_set_waitqueue_priority(queue, queue->maxpriority);
194         rpc_set_waitqueue_owner(queue, 0);
195 }
196
197 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
198 {
199         int i;
200
201         spin_lock_init(&queue->lock);
202         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
203                 INIT_LIST_HEAD(&queue->tasks[i]);
204         queue->maxpriority = nr_queues - 1;
205         rpc_reset_waitqueue_priority(queue);
206         queue->qlen = 0;
207         setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
208         INIT_LIST_HEAD(&queue->timer_list.list);
209 #ifdef RPC_DEBUG
210         queue->name = qname;
211 #endif
212 }
213
214 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
215 {
216         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
217 }
218 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
219
220 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
221 {
222         __rpc_init_priority_wait_queue(queue, qname, 1);
223 }
224 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
225
226 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
227 {
228         del_timer_sync(&queue->timer_list.timer);
229 }
230 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
231
232 static int rpc_wait_bit_killable(void *word)
233 {
234         if (fatal_signal_pending(current))
235                 return -ERESTARTSYS;
236         schedule();
237         return 0;
238 }
239
240 #ifdef RPC_DEBUG
241 static void rpc_task_set_debuginfo(struct rpc_task *task)
242 {
243         static atomic_t rpc_pid;
244
245         task->tk_pid = atomic_inc_return(&rpc_pid);
246 }
247 #else
248 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
249 {
250 }
251 #endif
252
253 static void rpc_set_active(struct rpc_task *task)
254 {
255         rpc_task_set_debuginfo(task);
256         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
257 }
258
259 /*
260  * Mark an RPC call as having completed by clearing the 'active' bit
261  * and then waking up all tasks that were sleeping.
262  */
263 static int rpc_complete_task(struct rpc_task *task)
264 {
265         void *m = &task->tk_runstate;
266         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
267         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
268         unsigned long flags;
269         int ret;
270
271         spin_lock_irqsave(&wq->lock, flags);
272         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
273         ret = atomic_dec_and_test(&task->tk_count);
274         if (waitqueue_active(wq))
275                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
276         spin_unlock_irqrestore(&wq->lock, flags);
277         return ret;
278 }
279
280 /*
281  * Allow callers to wait for completion of an RPC call
282  *
283  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
284  * to enforce taking of the wq->lock and hence avoid races with
285  * rpc_complete_task().
286  */
287 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
288 {
289         if (action == NULL)
290                 action = rpc_wait_bit_killable;
291         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
292                         action, TASK_KILLABLE);
293 }
294 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
295
296 /*
297  * Make an RPC task runnable.
298  *
299  * Note: If the task is ASYNC, this must be called with
300  * the spinlock held to protect the wait queue operation.
301  */
302 static void rpc_make_runnable(struct rpc_task *task)
303 {
304         rpc_clear_queued(task);
305         if (rpc_test_and_set_running(task))
306                 return;
307         if (RPC_IS_ASYNC(task)) {
308                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
309                 queue_work(rpciod_workqueue, &task->u.tk_work);
310         } else
311                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
312 }
313
314 /*
315  * Prepare for sleeping on a wait queue.
316  * By always appending tasks to the list we ensure FIFO behavior.
317  * NB: An RPC task will only receive interrupt-driven events as long
318  * as it's on a wait queue.
319  */
320 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
321                 struct rpc_task *task,
322                 rpc_action action,
323                 unsigned char queue_priority)
324 {
325         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
326                         task->tk_pid, rpc_qname(q), jiffies);
327
328         __rpc_add_wait_queue(q, task, queue_priority);
329
330         BUG_ON(task->tk_callback != NULL);
331         task->tk_callback = action;
332         __rpc_add_timer(q, task);
333 }
334
335 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
336                                 rpc_action action)
337 {
338         /* We shouldn't ever put an inactive task to sleep */
339         BUG_ON(!RPC_IS_ACTIVATED(task));
340
341         /*
342          * Protect the queue operations.
343          */
344         spin_lock_bh(&q->lock);
345         __rpc_sleep_on_priority(q, task, action, task->tk_priority);
346         spin_unlock_bh(&q->lock);
347 }
348 EXPORT_SYMBOL_GPL(rpc_sleep_on);
349
350 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
351                 rpc_action action, int priority)
352 {
353         /* We shouldn't ever put an inactive task to sleep */
354         BUG_ON(!RPC_IS_ACTIVATED(task));
355
356         /*
357          * Protect the queue operations.
358          */
359         spin_lock_bh(&q->lock);
360         __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
361         spin_unlock_bh(&q->lock);
362 }
363
364 /**
365  * __rpc_do_wake_up_task - wake up a single rpc_task
366  * @queue: wait queue
367  * @task: task to be woken up
368  *
369  * Caller must hold queue->lock, and have cleared the task queued flag.
370  */
371 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
372 {
373         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
374                         task->tk_pid, jiffies);
375
376         /* Has the task been executed yet? If not, we cannot wake it up! */
377         if (!RPC_IS_ACTIVATED(task)) {
378                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
379                 return;
380         }
381
382         __rpc_remove_wait_queue(queue, task);
383
384         rpc_make_runnable(task);
385
386         dprintk("RPC:       __rpc_wake_up_task done\n");
387 }
388
389 /*
390  * Wake up a queued task while the queue lock is being held
391  */
392 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
393 {
394         if (RPC_IS_QUEUED(task)) {
395                 smp_rmb();
396                 if (task->tk_waitqueue == queue)
397                         __rpc_do_wake_up_task(queue, task);
398         }
399 }
400
401 /*
402  * Tests whether rpc queue is empty
403  */
404 int rpc_queue_empty(struct rpc_wait_queue *queue)
405 {
406         int res;
407
408         spin_lock_bh(&queue->lock);
409         res = queue->qlen;
410         spin_unlock_bh(&queue->lock);
411         return res == 0;
412 }
413 EXPORT_SYMBOL_GPL(rpc_queue_empty);
414
415 /*
416  * Wake up a task on a specific queue
417  */
418 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
419 {
420         spin_lock_bh(&queue->lock);
421         rpc_wake_up_task_queue_locked(queue, task);
422         spin_unlock_bh(&queue->lock);
423 }
424 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
425
426 /*
427  * Wake up the next task on a priority queue.
428  */
429 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
430 {
431         struct list_head *q;
432         struct rpc_task *task;
433
434         /*
435          * Service a batch of tasks from a single owner.
436          */
437         q = &queue->tasks[queue->priority];
438         if (!list_empty(q)) {
439                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
440                 if (queue->owner == task->tk_owner) {
441                         if (--queue->nr)
442                                 goto out;
443                         list_move_tail(&task->u.tk_wait.list, q);
444                 }
445                 /*
446                  * Check if we need to switch queues.
447                  */
448                 if (--queue->count)
449                         goto new_owner;
450         }
451
452         /*
453          * Service the next queue.
454          */
455         do {
456                 if (q == &queue->tasks[0])
457                         q = &queue->tasks[queue->maxpriority];
458                 else
459                         q = q - 1;
460                 if (!list_empty(q)) {
461                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
462                         goto new_queue;
463                 }
464         } while (q != &queue->tasks[queue->priority]);
465
466         rpc_reset_waitqueue_priority(queue);
467         return NULL;
468
469 new_queue:
470         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
471 new_owner:
472         rpc_set_waitqueue_owner(queue, task->tk_owner);
473 out:
474         rpc_wake_up_task_queue_locked(queue, task);
475         return task;
476 }
477
478 /*
479  * Wake up the next task on the wait queue.
480  */
481 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
482 {
483         struct rpc_task *task = NULL;
484
485         dprintk("RPC:       wake_up_next(%p \"%s\")\n",
486                         queue, rpc_qname(queue));
487         spin_lock_bh(&queue->lock);
488         if (RPC_IS_PRIORITY(queue))
489                 task = __rpc_wake_up_next_priority(queue);
490         else {
491                 task_for_first(task, &queue->tasks[0])
492                         rpc_wake_up_task_queue_locked(queue, task);
493         }
494         spin_unlock_bh(&queue->lock);
495
496         return task;
497 }
498 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
499
500 /**
501  * rpc_wake_up - wake up all rpc_tasks
502  * @queue: rpc_wait_queue on which the tasks are sleeping
503  *
504  * Grabs queue->lock
505  */
506 void rpc_wake_up(struct rpc_wait_queue *queue)
507 {
508         struct list_head *head;
509
510         spin_lock_bh(&queue->lock);
511         head = &queue->tasks[queue->maxpriority];
512         for (;;) {
513                 while (!list_empty(head)) {
514                         struct rpc_task *task;
515                         task = list_first_entry(head,
516                                         struct rpc_task,
517                                         u.tk_wait.list);
518                         rpc_wake_up_task_queue_locked(queue, task);
519                 }
520                 if (head == &queue->tasks[0])
521                         break;
522                 head--;
523         }
524         spin_unlock_bh(&queue->lock);
525 }
526 EXPORT_SYMBOL_GPL(rpc_wake_up);
527
528 /**
529  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
530  * @queue: rpc_wait_queue on which the tasks are sleeping
531  * @status: status value to set
532  *
533  * Grabs queue->lock
534  */
535 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
536 {
537         struct list_head *head;
538
539         spin_lock_bh(&queue->lock);
540         head = &queue->tasks[queue->maxpriority];
541         for (;;) {
542                 while (!list_empty(head)) {
543                         struct rpc_task *task;
544                         task = list_first_entry(head,
545                                         struct rpc_task,
546                                         u.tk_wait.list);
547                         task->tk_status = status;
548                         rpc_wake_up_task_queue_locked(queue, task);
549                 }
550                 if (head == &queue->tasks[0])
551                         break;
552                 head--;
553         }
554         spin_unlock_bh(&queue->lock);
555 }
556 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
557
558 static void __rpc_queue_timer_fn(unsigned long ptr)
559 {
560         struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
561         struct rpc_task *task, *n;
562         unsigned long expires, now, timeo;
563
564         spin_lock(&queue->lock);
565         expires = now = jiffies;
566         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
567                 timeo = task->u.tk_wait.expires;
568                 if (time_after_eq(now, timeo)) {
569                         dprintk("RPC: %5u timeout\n", task->tk_pid);
570                         task->tk_status = -ETIMEDOUT;
571                         rpc_wake_up_task_queue_locked(queue, task);
572                         continue;
573                 }
574                 if (expires == now || time_after(expires, timeo))
575                         expires = timeo;
576         }
577         if (!list_empty(&queue->timer_list.list))
578                 rpc_set_queue_timer(queue, expires);
579         spin_unlock(&queue->lock);
580 }
581
582 static void __rpc_atrun(struct rpc_task *task)
583 {
584         task->tk_status = 0;
585 }
586
587 /*
588  * Run a task at a later time
589  */
590 void rpc_delay(struct rpc_task *task, unsigned long delay)
591 {
592         task->tk_timeout = delay;
593         rpc_sleep_on(&delay_queue, task, __rpc_atrun);
594 }
595 EXPORT_SYMBOL_GPL(rpc_delay);
596
597 /*
598  * Helper to call task->tk_ops->rpc_call_prepare
599  */
600 void rpc_prepare_task(struct rpc_task *task)
601 {
602         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
603 }
604
605 static void
606 rpc_init_task_statistics(struct rpc_task *task)
607 {
608         /* Initialize retry counters */
609         task->tk_garb_retry = 2;
610         task->tk_cred_retry = 2;
611         task->tk_rebind_retry = 2;
612
613         /* starting timestamp */
614         task->tk_start = ktime_get();
615 }
616
617 static void
618 rpc_reset_task_statistics(struct rpc_task *task)
619 {
620         task->tk_timeouts = 0;
621         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
622
623         rpc_init_task_statistics(task);
624 }
625
626 /*
627  * Helper that calls task->tk_ops->rpc_call_done if it exists
628  */
629 void rpc_exit_task(struct rpc_task *task)
630 {
631         task->tk_action = NULL;
632         if (task->tk_ops->rpc_call_done != NULL) {
633                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
634                 if (task->tk_action != NULL) {
635                         WARN_ON(RPC_ASSASSINATED(task));
636                         /* Always release the RPC slot and buffer memory */
637                         xprt_release(task);
638                         rpc_reset_task_statistics(task);
639                 }
640         }
641 }
642
643 void rpc_exit(struct rpc_task *task, int status)
644 {
645         task->tk_status = status;
646         task->tk_action = rpc_exit_task;
647         if (RPC_IS_QUEUED(task))
648                 rpc_wake_up_queued_task(task->tk_waitqueue, task);
649 }
650 EXPORT_SYMBOL_GPL(rpc_exit);
651
652 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
653 {
654         if (ops->rpc_release != NULL)
655                 ops->rpc_release(calldata);
656 }
657
658 /*
659  * This is the RPC `scheduler' (or rather, the finite state machine).
660  */
661 static void __rpc_execute(struct rpc_task *task)
662 {
663         struct rpc_wait_queue *queue;
664         int task_is_async = RPC_IS_ASYNC(task);
665         int status = 0;
666
667         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
668                         task->tk_pid, task->tk_flags);
669
670         BUG_ON(RPC_IS_QUEUED(task));
671
672         for (;;) {
673                 void (*do_action)(struct rpc_task *);
674
675                 /*
676                  * Execute any pending callback first.
677                  */
678                 do_action = task->tk_callback;
679                 task->tk_callback = NULL;
680                 if (do_action == NULL) {
681                         /*
682                          * Perform the next FSM step.
683                          * tk_action may be NULL if the task has been killed.
684                          * In particular, note that rpc_killall_tasks may
685                          * do this at any time, so beware when dereferencing.
686                          */
687                         do_action = task->tk_action;
688                         if (do_action == NULL)
689                                 break;
690                 }
691                 do_action(task);
692
693                 /*
694                  * Lockless check for whether task is sleeping or not.
695                  */
696                 if (!RPC_IS_QUEUED(task))
697                         continue;
698                 /*
699                  * The queue->lock protects against races with
700                  * rpc_make_runnable().
701                  *
702                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
703                  * rpc_task, rpc_make_runnable() can assign it to a
704                  * different workqueue. We therefore cannot assume that the
705                  * rpc_task pointer may still be dereferenced.
706                  */
707                 queue = task->tk_waitqueue;
708                 spin_lock_bh(&queue->lock);
709                 if (!RPC_IS_QUEUED(task)) {
710                         spin_unlock_bh(&queue->lock);
711                         continue;
712                 }
713                 rpc_clear_running(task);
714                 spin_unlock_bh(&queue->lock);
715                 if (task_is_async)
716                         return;
717
718                 /* sync task: sleep here */
719                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
720                 status = out_of_line_wait_on_bit(&task->tk_runstate,
721                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
722                                 TASK_KILLABLE);
723                 if (status == -ERESTARTSYS) {
724                         /*
725                          * When a sync task receives a signal, it exits with
726                          * -ERESTARTSYS. In order to catch any callbacks that
727                          * clean up after sleeping on some queue, we don't
728                          * break the loop here, but go around once more.
729                          */
730                         dprintk("RPC: %5u got signal\n", task->tk_pid);
731                         task->tk_flags |= RPC_TASK_KILLED;
732                         rpc_exit(task, -ERESTARTSYS);
733                 }
734                 rpc_set_running(task);
735                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
736         }
737
738         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
739                         task->tk_status);
740         /* Release all resources associated with the task */
741         rpc_release_task(task);
742 }
743
744 /*
745  * User-visible entry point to the scheduler.
746  *
747  * This may be called recursively if e.g. an async NFS task updates
748  * the attributes and finds that dirty pages must be flushed.
749  * NOTE: Upon exit of this function the task is guaranteed to be
750  *       released. In particular note that tk_release() will have
751  *       been called, so your task memory may have been freed.
752  */
753 void rpc_execute(struct rpc_task *task)
754 {
755         rpc_set_active(task);
756         rpc_make_runnable(task);
757         if (!RPC_IS_ASYNC(task))
758                 __rpc_execute(task);
759 }
760
761 static void rpc_async_schedule(struct work_struct *work)
762 {
763         current->flags |= PF_FSTRANS;
764         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
765         current->flags &= ~PF_FSTRANS;
766 }
767
768 /**
769  * rpc_malloc - allocate an RPC buffer
770  * @task: RPC task that will use this buffer
771  * @size: requested byte size
772  *
773  * To prevent rpciod from hanging, this allocator never sleeps,
774  * returning NULL if the request cannot be serviced immediately.
775  * The caller can arrange to sleep in a way that is safe for rpciod.
776  *
777  * Most requests are 'small' (under 2KiB) and can be serviced from a
778  * mempool, ensuring that NFS reads and writes can always proceed,
779  * and that there is good locality of reference for these buffers.
780  *
781  * In order to avoid memory starvation triggering more writebacks of
782  * NFS requests, we avoid using GFP_KERNEL.
783  */
784 void *rpc_malloc(struct rpc_task *task, size_t size)
785 {
786         struct rpc_buffer *buf;
787         gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
788
789         size += sizeof(struct rpc_buffer);
790         if (size <= RPC_BUFFER_MAXSIZE)
791                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
792         else
793                 buf = kmalloc(size, gfp);
794
795         if (!buf)
796                 return NULL;
797
798         buf->len = size;
799         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
800                         task->tk_pid, size, buf);
801         return &buf->data;
802 }
803 EXPORT_SYMBOL_GPL(rpc_malloc);
804
805 /**
806  * rpc_free - free buffer allocated via rpc_malloc
807  * @buffer: buffer to free
808  *
809  */
810 void rpc_free(void *buffer)
811 {
812         size_t size;
813         struct rpc_buffer *buf;
814
815         if (!buffer)
816                 return;
817
818         buf = container_of(buffer, struct rpc_buffer, data);
819         size = buf->len;
820
821         dprintk("RPC:       freeing buffer of size %zu at %p\n",
822                         size, buf);
823
824         if (size <= RPC_BUFFER_MAXSIZE)
825                 mempool_free(buf, rpc_buffer_mempool);
826         else
827                 kfree(buf);
828 }
829 EXPORT_SYMBOL_GPL(rpc_free);
830
831 /*
832  * Creation and deletion of RPC task structures
833  */
834 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
835 {
836         memset(task, 0, sizeof(*task));
837         atomic_set(&task->tk_count, 1);
838         task->tk_flags  = task_setup_data->flags;
839         task->tk_ops = task_setup_data->callback_ops;
840         task->tk_calldata = task_setup_data->callback_data;
841         INIT_LIST_HEAD(&task->tk_task);
842
843         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
844         task->tk_owner = current->tgid;
845
846         /* Initialize workqueue for async tasks */
847         task->tk_workqueue = task_setup_data->workqueue;
848
849         if (task->tk_ops->rpc_call_prepare != NULL)
850                 task->tk_action = rpc_prepare_task;
851
852         rpc_init_task_statistics(task);
853
854         dprintk("RPC:       new task initialized, procpid %u\n",
855                                 task_pid_nr(current));
856 }
857
858 static struct rpc_task *
859 rpc_alloc_task(void)
860 {
861         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
862 }
863
864 /*
865  * Create a new task for the specified client.
866  */
867 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
868 {
869         struct rpc_task *task = setup_data->task;
870         unsigned short flags = 0;
871
872         if (task == NULL) {
873                 task = rpc_alloc_task();
874                 if (task == NULL) {
875                         rpc_release_calldata(setup_data->callback_ops,
876                                         setup_data->callback_data);
877                         return ERR_PTR(-ENOMEM);
878                 }
879                 flags = RPC_TASK_DYNAMIC;
880         }
881
882         rpc_init_task(task, setup_data);
883         task->tk_flags |= flags;
884         dprintk("RPC:       allocated task %p\n", task);
885         return task;
886 }
887
888 /*
889  * rpc_free_task - release rpc task and perform cleanups
890  *
891  * Note that we free up the rpc_task _after_ rpc_release_calldata()
892  * in order to work around a workqueue dependency issue.
893  *
894  * Tejun Heo states:
895  * "Workqueue currently considers two work items to be the same if they're
896  * on the same address and won't execute them concurrently - ie. it
897  * makes a work item which is queued again while being executed wait
898  * for the previous execution to complete.
899  *
900  * If a work function frees the work item, and then waits for an event
901  * which should be performed by another work item and *that* work item
902  * recycles the freed work item, it can create a false dependency loop.
903  * There really is no reliable way to detect this short of verifying
904  * every memory free."
905  *
906  */
907 static void rpc_free_task(struct rpc_task *task)
908 {
909         unsigned short tk_flags = task->tk_flags;
910
911         rpc_release_calldata(task->tk_ops, task->tk_calldata);
912
913         if (tk_flags & RPC_TASK_DYNAMIC) {
914                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
915                 mempool_free(task, rpc_task_mempool);
916         }
917 }
918
919 static void rpc_async_release(struct work_struct *work)
920 {
921         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
922 }
923
924 static void rpc_release_resources_task(struct rpc_task *task)
925 {
926         xprt_release(task);
927         if (task->tk_msg.rpc_cred) {
928                 put_rpccred(task->tk_msg.rpc_cred);
929                 task->tk_msg.rpc_cred = NULL;
930         }
931         rpc_task_release_client(task);
932 }
933
934 static void rpc_final_put_task(struct rpc_task *task,
935                 struct workqueue_struct *q)
936 {
937         if (q != NULL) {
938                 INIT_WORK(&task->u.tk_work, rpc_async_release);
939                 queue_work(q, &task->u.tk_work);
940         } else
941                 rpc_free_task(task);
942 }
943
944 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
945 {
946         if (atomic_dec_and_test(&task->tk_count)) {
947                 rpc_release_resources_task(task);
948                 rpc_final_put_task(task, q);
949         }
950 }
951
952 void rpc_put_task(struct rpc_task *task)
953 {
954         rpc_do_put_task(task, NULL);
955 }
956 EXPORT_SYMBOL_GPL(rpc_put_task);
957
958 void rpc_put_task_async(struct rpc_task *task)
959 {
960         rpc_do_put_task(task, task->tk_workqueue);
961 }
962 EXPORT_SYMBOL_GPL(rpc_put_task_async);
963
964 static void rpc_release_task(struct rpc_task *task)
965 {
966         dprintk("RPC: %5u release task\n", task->tk_pid);
967
968         BUG_ON (RPC_IS_QUEUED(task));
969
970         rpc_release_resources_task(task);
971
972         /*
973          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
974          * so it should be safe to use task->tk_count as a test for whether
975          * or not any other processes still hold references to our rpc_task.
976          */
977         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
978                 /* Wake up anyone who may be waiting for task completion */
979                 if (!rpc_complete_task(task))
980                         return;
981         } else {
982                 if (!atomic_dec_and_test(&task->tk_count))
983                         return;
984         }
985         rpc_final_put_task(task, task->tk_workqueue);
986 }
987
988 int rpciod_up(void)
989 {
990         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
991 }
992
993 void rpciod_down(void)
994 {
995         module_put(THIS_MODULE);
996 }
997
998 /*
999  * Start up the rpciod workqueue.
1000  */
1001 static int rpciod_start(void)
1002 {
1003         struct workqueue_struct *wq;
1004
1005         /*
1006          * Create the rpciod thread and wait for it to start.
1007          */
1008         dprintk("RPC:       creating workqueue rpciod\n");
1009         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
1010         rpciod_workqueue = wq;
1011         return rpciod_workqueue != NULL;
1012 }
1013
1014 static void rpciod_stop(void)
1015 {
1016         struct workqueue_struct *wq = NULL;
1017
1018         if (rpciod_workqueue == NULL)
1019                 return;
1020         dprintk("RPC:       destroying workqueue rpciod\n");
1021
1022         wq = rpciod_workqueue;
1023         rpciod_workqueue = NULL;
1024         destroy_workqueue(wq);
1025 }
1026
1027 void
1028 rpc_destroy_mempool(void)
1029 {
1030         rpciod_stop();
1031         if (rpc_buffer_mempool)
1032                 mempool_destroy(rpc_buffer_mempool);
1033         if (rpc_task_mempool)
1034                 mempool_destroy(rpc_task_mempool);
1035         if (rpc_task_slabp)
1036                 kmem_cache_destroy(rpc_task_slabp);
1037         if (rpc_buffer_slabp)
1038                 kmem_cache_destroy(rpc_buffer_slabp);
1039         rpc_destroy_wait_queue(&delay_queue);
1040 }
1041
1042 int
1043 rpc_init_mempool(void)
1044 {
1045         /*
1046          * The following is not strictly a mempool initialisation,
1047          * but there is no harm in doing it here
1048          */
1049         rpc_init_wait_queue(&delay_queue, "delayq");
1050         if (!rpciod_start())
1051                 goto err_nomem;
1052
1053         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1054                                              sizeof(struct rpc_task),
1055                                              0, SLAB_HWCACHE_ALIGN,
1056                                              NULL);
1057         if (!rpc_task_slabp)
1058                 goto err_nomem;
1059         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1060                                              RPC_BUFFER_MAXSIZE,
1061                                              0, SLAB_HWCACHE_ALIGN,
1062                                              NULL);
1063         if (!rpc_buffer_slabp)
1064                 goto err_nomem;
1065         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1066                                                     rpc_task_slabp);
1067         if (!rpc_task_mempool)
1068                 goto err_nomem;
1069         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1070                                                       rpc_buffer_slabp);
1071         if (!rpc_buffer_mempool)
1072                 goto err_nomem;
1073         return 0;
1074 err_nomem:
1075         rpc_destroy_mempool();
1076         return -ENOMEM;
1077 }