tcp: do not pace pure ack packets
[pandora-kernel.git] / net / sched / sch_fq.c
1 /*
2  * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
3  *
4  *  Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
5  *
6  *      This program is free software; you can redistribute it and/or
7  *      modify it under the terms of the GNU General Public License
8  *      as published by the Free Software Foundation; either version
9  *      2 of the License, or (at your option) any later version.
10  *
11  *  Meant to be mostly used for localy generated traffic :
12  *  Fast classification depends on skb->sk being set before reaching us.
13  *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14  *  All packets belonging to a socket are considered as a 'flow'.
15  *
16  *  Flows are dynamically allocated and stored in a hash table of RB trees
17  *  They are also part of one Round Robin 'queues' (new or old flows)
18  *
19  *  Burst avoidance (aka pacing) capability :
20  *
21  *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22  *  bunch of packets, and this packet scheduler adds delay between
23  *  packets to respect rate limitation.
24  *
25  *  enqueue() :
26  *   - lookup one RB tree (out of 1024 or more) to find the flow.
27  *     If non existent flow, create it, add it to the tree.
28  *     Add skb to the per flow list of skb (fifo).
29  *   - Use a special fifo for high prio packets
30  *
31  *  dequeue() : serves flows in Round Robin
32  *  Note : When a flow becomes empty, we do not immediately remove it from
33  *  rb trees, for performance reasons (its expected to send additional packets,
34  *  or SLAB cache will reuse socket for another flow)
35  */
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/jiffies.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/errno.h>
44 #include <linux/init.h>
45 #include <linux/skbuff.h>
46 #include <linux/slab.h>
47 #include <linux/rbtree.h>
48 #include <linux/hash.h>
49 #include <linux/prefetch.h>
50 #include <linux/vmalloc.h>
51 #include <net/netlink.h>
52 #include <net/pkt_sched.h>
53 #include <net/sock.h>
54 #include <net/tcp_states.h>
55 #include <net/tcp.h>
56
57 /*
58  * Per flow structure, dynamically allocated
59  */
60 struct fq_flow {
61         struct sk_buff  *head;          /* list of skbs for this flow : first skb */
62         union {
63                 struct sk_buff *tail;   /* last skb in the list */
64                 unsigned long  age;     /* jiffies when flow was emptied, for gc */
65         };
66         struct rb_node  fq_node;        /* anchor in fq_root[] trees */
67         struct sock     *sk;
68         int             qlen;           /* number of packets in flow queue */
69         int             credit;
70         u32             socket_hash;    /* sk_hash */
71         struct fq_flow *next;           /* next pointer in RR lists, or &detached */
72
73         struct rb_node  rate_node;      /* anchor in q->delayed tree */
74         u64             time_next_packet;
75 };
76
77 struct fq_flow_head {
78         struct fq_flow *first;
79         struct fq_flow *last;
80 };
81
82 struct fq_sched_data {
83         struct fq_flow_head new_flows;
84
85         struct fq_flow_head old_flows;
86
87         struct rb_root  delayed;        /* for rate limited flows */
88         u64             time_next_delayed_flow;
89
90         struct fq_flow  internal;       /* for non classified or high prio packets */
91         u32             quantum;
92         u32             initial_quantum;
93         u32             flow_refill_delay;
94         u32             flow_max_rate;  /* optional max rate per flow */
95         u32             flow_plimit;    /* max packets per flow */
96         struct rb_root  *fq_root;
97         u8              rate_enable;
98         u8              fq_trees_log;
99
100         u32             flows;
101         u32             inactive_flows;
102         u32             throttled_flows;
103
104         u64             stat_gc_flows;
105         u64             stat_internal_packets;
106         u64             stat_tcp_retrans;
107         u64             stat_throttled;
108         u64             stat_flows_plimit;
109         u64             stat_pkts_too_long;
110         u64             stat_allocation_errors;
111         struct qdisc_watchdog watchdog;
112 };
113
114 /* special value to mark a detached flow (not on old/new list) */
115 static struct fq_flow detached, throttled;
116
117 static void fq_flow_set_detached(struct fq_flow *f)
118 {
119         f->next = &detached;
120         f->age = jiffies;
121 }
122
123 static bool fq_flow_is_detached(const struct fq_flow *f)
124 {
125         return f->next == &detached;
126 }
127
128 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
129 {
130         struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
131
132         while (*p) {
133                 struct fq_flow *aux;
134
135                 parent = *p;
136                 aux = container_of(parent, struct fq_flow, rate_node);
137                 if (f->time_next_packet >= aux->time_next_packet)
138                         p = &parent->rb_right;
139                 else
140                         p = &parent->rb_left;
141         }
142         rb_link_node(&f->rate_node, parent, p);
143         rb_insert_color(&f->rate_node, &q->delayed);
144         q->throttled_flows++;
145         q->stat_throttled++;
146
147         f->next = &throttled;
148         if (q->time_next_delayed_flow > f->time_next_packet)
149                 q->time_next_delayed_flow = f->time_next_packet;
150 }
151
152
153 static struct kmem_cache *fq_flow_cachep __read_mostly;
154
155 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
156 {
157         if (head->first)
158                 head->last->next = flow;
159         else
160                 head->first = flow;
161         head->last = flow;
162         flow->next = NULL;
163 }
164
165 /* limit number of collected flows per round */
166 #define FQ_GC_MAX 8
167 #define FQ_GC_AGE (3*HZ)
168
169 static bool fq_gc_candidate(const struct fq_flow *f)
170 {
171         return fq_flow_is_detached(f) &&
172                time_after(jiffies, f->age + FQ_GC_AGE);
173 }
174
175 static void fq_gc(struct fq_sched_data *q,
176                   struct rb_root *root,
177                   struct sock *sk)
178 {
179         struct fq_flow *f, *tofree[FQ_GC_MAX];
180         struct rb_node **p, *parent;
181         int fcnt = 0;
182
183         p = &root->rb_node;
184         parent = NULL;
185         while (*p) {
186                 parent = *p;
187
188                 f = container_of(parent, struct fq_flow, fq_node);
189                 if (f->sk == sk)
190                         break;
191
192                 if (fq_gc_candidate(f)) {
193                         tofree[fcnt++] = f;
194                         if (fcnt == FQ_GC_MAX)
195                                 break;
196                 }
197
198                 if (f->sk > sk)
199                         p = &parent->rb_right;
200                 else
201                         p = &parent->rb_left;
202         }
203
204         q->flows -= fcnt;
205         q->inactive_flows -= fcnt;
206         q->stat_gc_flows += fcnt;
207         while (fcnt) {
208                 struct fq_flow *f = tofree[--fcnt];
209
210                 rb_erase(&f->fq_node, root);
211                 kmem_cache_free(fq_flow_cachep, f);
212         }
213 }
214
215 static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
216 {
217         struct rb_node **p, *parent;
218         struct sock *sk = skb->sk;
219         struct rb_root *root;
220         struct fq_flow *f;
221
222         /* warning: no starvation prevention... */
223         if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
224                 return &q->internal;
225
226         if (unlikely(!sk)) {
227                 /* By forcing low order bit to 1, we make sure to not
228                  * collide with a local flow (socket pointers are word aligned)
229                  */
230                 sk = (struct sock *)(skb_get_hash(skb) | 1L);
231         }
232
233         root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
234
235         if (q->flows >= (2U << q->fq_trees_log) &&
236             q->inactive_flows > q->flows/2)
237                 fq_gc(q, root, sk);
238
239         p = &root->rb_node;
240         parent = NULL;
241         while (*p) {
242                 parent = *p;
243
244                 f = container_of(parent, struct fq_flow, fq_node);
245                 if (f->sk == sk) {
246                         /* socket might have been reallocated, so check
247                          * if its sk_hash is the same.
248                          * It not, we need to refill credit with
249                          * initial quantum
250                          */
251                         if (unlikely(skb->sk &&
252                                      f->socket_hash != sk->sk_hash)) {
253                                 f->credit = q->initial_quantum;
254                                 f->socket_hash = sk->sk_hash;
255                                 f->time_next_packet = 0ULL;
256                         }
257                         return f;
258                 }
259                 if (f->sk > sk)
260                         p = &parent->rb_right;
261                 else
262                         p = &parent->rb_left;
263         }
264
265         f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
266         if (unlikely(!f)) {
267                 q->stat_allocation_errors++;
268                 return &q->internal;
269         }
270         fq_flow_set_detached(f);
271         f->sk = sk;
272         if (skb->sk)
273                 f->socket_hash = sk->sk_hash;
274         f->credit = q->initial_quantum;
275
276         rb_link_node(&f->fq_node, parent, p);
277         rb_insert_color(&f->fq_node, root);
278
279         q->flows++;
280         q->inactive_flows++;
281         return f;
282 }
283
284
285 /* remove one skb from head of flow queue */
286 static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
287 {
288         struct sk_buff *skb = flow->head;
289
290         if (skb) {
291                 flow->head = skb->next;
292                 skb->next = NULL;
293                 flow->qlen--;
294                 qdisc_qstats_backlog_dec(sch, skb);
295                 sch->q.qlen--;
296         }
297         return skb;
298 }
299
300 /* We might add in the future detection of retransmits
301  * For the time being, just return false
302  */
303 static bool skb_is_retransmit(struct sk_buff *skb)
304 {
305         return false;
306 }
307
308 /* add skb to flow queue
309  * flow queue is a linked list, kind of FIFO, except for TCP retransmits
310  * We special case tcp retransmits to be transmitted before other packets.
311  * We rely on fact that TCP retransmits are unlikely, so we do not waste
312  * a separate queue or a pointer.
313  * head->  [retrans pkt 1]
314  *         [retrans pkt 2]
315  *         [ normal pkt 1]
316  *         [ normal pkt 2]
317  *         [ normal pkt 3]
318  * tail->  [ normal pkt 4]
319  */
320 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
321 {
322         struct sk_buff *prev, *head = flow->head;
323
324         skb->next = NULL;
325         if (!head) {
326                 flow->head = skb;
327                 flow->tail = skb;
328                 return;
329         }
330         if (likely(!skb_is_retransmit(skb))) {
331                 flow->tail->next = skb;
332                 flow->tail = skb;
333                 return;
334         }
335
336         /* This skb is a tcp retransmit,
337          * find the last retrans packet in the queue
338          */
339         prev = NULL;
340         while (skb_is_retransmit(head)) {
341                 prev = head;
342                 head = head->next;
343                 if (!head)
344                         break;
345         }
346         if (!prev) { /* no rtx packet in queue, become the new head */
347                 skb->next = flow->head;
348                 flow->head = skb;
349         } else {
350                 if (prev == flow->tail)
351                         flow->tail = skb;
352                 else
353                         skb->next = prev->next;
354                 prev->next = skb;
355         }
356 }
357
358 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
359 {
360         struct fq_sched_data *q = qdisc_priv(sch);
361         struct fq_flow *f;
362
363         if (unlikely(sch->q.qlen >= sch->limit))
364                 return qdisc_drop(skb, sch);
365
366         f = fq_classify(skb, q);
367         if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
368                 q->stat_flows_plimit++;
369                 return qdisc_drop(skb, sch);
370         }
371
372         f->qlen++;
373         if (skb_is_retransmit(skb))
374                 q->stat_tcp_retrans++;
375         qdisc_qstats_backlog_inc(sch, skb);
376         if (fq_flow_is_detached(f)) {
377                 fq_flow_add_tail(&q->new_flows, f);
378                 if (time_after(jiffies, f->age + q->flow_refill_delay))
379                         f->credit = max_t(u32, f->credit, q->quantum);
380                 q->inactive_flows--;
381         }
382
383         /* Note: this overwrites f->age */
384         flow_queue_add(f, skb);
385
386         if (unlikely(f == &q->internal)) {
387                 q->stat_internal_packets++;
388         }
389         sch->q.qlen++;
390
391         return NET_XMIT_SUCCESS;
392 }
393
394 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
395 {
396         struct rb_node *p;
397
398         if (q->time_next_delayed_flow > now)
399                 return;
400
401         q->time_next_delayed_flow = ~0ULL;
402         while ((p = rb_first(&q->delayed)) != NULL) {
403                 struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
404
405                 if (f->time_next_packet > now) {
406                         q->time_next_delayed_flow = f->time_next_packet;
407                         break;
408                 }
409                 rb_erase(p, &q->delayed);
410                 q->throttled_flows--;
411                 fq_flow_add_tail(&q->old_flows, f);
412         }
413 }
414
415 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
416 {
417         struct fq_sched_data *q = qdisc_priv(sch);
418         u64 now = ktime_get_ns();
419         struct fq_flow_head *head;
420         struct sk_buff *skb;
421         struct fq_flow *f;
422         u32 rate;
423
424         skb = fq_dequeue_head(sch, &q->internal);
425         if (skb)
426                 goto out;
427         fq_check_throttled(q, now);
428 begin:
429         head = &q->new_flows;
430         if (!head->first) {
431                 head = &q->old_flows;
432                 if (!head->first) {
433                         if (q->time_next_delayed_flow != ~0ULL)
434                                 qdisc_watchdog_schedule_ns(&q->watchdog,
435                                                            q->time_next_delayed_flow,
436                                                            false);
437                         return NULL;
438                 }
439         }
440         f = head->first;
441
442         if (f->credit <= 0) {
443                 f->credit += q->quantum;
444                 head->first = f->next;
445                 fq_flow_add_tail(&q->old_flows, f);
446                 goto begin;
447         }
448
449         skb = f->head;
450         if (unlikely(skb && now < f->time_next_packet &&
451                      !skb_is_tcp_pure_ack(skb))) {
452                 head->first = f->next;
453                 fq_flow_set_throttled(q, f);
454                 goto begin;
455         }
456
457         skb = fq_dequeue_head(sch, f);
458         if (!skb) {
459                 head->first = f->next;
460                 /* force a pass through old_flows to prevent starvation */
461                 if ((head == &q->new_flows) && q->old_flows.first) {
462                         fq_flow_add_tail(&q->old_flows, f);
463                 } else {
464                         fq_flow_set_detached(f);
465                         q->inactive_flows++;
466                 }
467                 goto begin;
468         }
469         prefetch(&skb->end);
470         f->credit -= qdisc_pkt_len(skb);
471
472         if (f->credit > 0 || !q->rate_enable)
473                 goto out;
474
475         /* Do not pace locally generated ack packets */
476         if (skb_is_tcp_pure_ack(skb))
477                 goto out;
478
479         rate = q->flow_max_rate;
480         if (skb->sk)
481                 rate = min(skb->sk->sk_pacing_rate, rate);
482
483         if (rate != ~0U) {
484                 u32 plen = max(qdisc_pkt_len(skb), q->quantum);
485                 u64 len = (u64)plen * NSEC_PER_SEC;
486
487                 if (likely(rate))
488                         do_div(len, rate);
489                 /* Since socket rate can change later,
490                  * clamp the delay to 1 second.
491                  * Really, providers of too big packets should be fixed !
492                  */
493                 if (unlikely(len > NSEC_PER_SEC)) {
494                         len = NSEC_PER_SEC;
495                         q->stat_pkts_too_long++;
496                 }
497
498                 f->time_next_packet = now + len;
499         }
500 out:
501         qdisc_bstats_update(sch, skb);
502         return skb;
503 }
504
505 static void fq_reset(struct Qdisc *sch)
506 {
507         struct fq_sched_data *q = qdisc_priv(sch);
508         struct rb_root *root;
509         struct sk_buff *skb;
510         struct rb_node *p;
511         struct fq_flow *f;
512         unsigned int idx;
513
514         while ((skb = fq_dequeue_head(sch, &q->internal)) != NULL)
515                 kfree_skb(skb);
516
517         if (!q->fq_root)
518                 return;
519
520         for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
521                 root = &q->fq_root[idx];
522                 while ((p = rb_first(root)) != NULL) {
523                         f = container_of(p, struct fq_flow, fq_node);
524                         rb_erase(p, root);
525
526                         while ((skb = fq_dequeue_head(sch, f)) != NULL)
527                                 kfree_skb(skb);
528
529                         kmem_cache_free(fq_flow_cachep, f);
530                 }
531         }
532         q->new_flows.first      = NULL;
533         q->old_flows.first      = NULL;
534         q->delayed              = RB_ROOT;
535         q->flows                = 0;
536         q->inactive_flows       = 0;
537         q->throttled_flows      = 0;
538 }
539
540 static void fq_rehash(struct fq_sched_data *q,
541                       struct rb_root *old_array, u32 old_log,
542                       struct rb_root *new_array, u32 new_log)
543 {
544         struct rb_node *op, **np, *parent;
545         struct rb_root *oroot, *nroot;
546         struct fq_flow *of, *nf;
547         int fcnt = 0;
548         u32 idx;
549
550         for (idx = 0; idx < (1U << old_log); idx++) {
551                 oroot = &old_array[idx];
552                 while ((op = rb_first(oroot)) != NULL) {
553                         rb_erase(op, oroot);
554                         of = container_of(op, struct fq_flow, fq_node);
555                         if (fq_gc_candidate(of)) {
556                                 fcnt++;
557                                 kmem_cache_free(fq_flow_cachep, of);
558                                 continue;
559                         }
560                         nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
561
562                         np = &nroot->rb_node;
563                         parent = NULL;
564                         while (*np) {
565                                 parent = *np;
566
567                                 nf = container_of(parent, struct fq_flow, fq_node);
568                                 BUG_ON(nf->sk == of->sk);
569
570                                 if (nf->sk > of->sk)
571                                         np = &parent->rb_right;
572                                 else
573                                         np = &parent->rb_left;
574                         }
575
576                         rb_link_node(&of->fq_node, parent, np);
577                         rb_insert_color(&of->fq_node, nroot);
578                 }
579         }
580         q->flows -= fcnt;
581         q->inactive_flows -= fcnt;
582         q->stat_gc_flows += fcnt;
583 }
584
585 static void *fq_alloc_node(size_t sz, int node)
586 {
587         void *ptr;
588
589         ptr = kmalloc_node(sz, GFP_KERNEL | __GFP_REPEAT | __GFP_NOWARN, node);
590         if (!ptr)
591                 ptr = vmalloc_node(sz, node);
592         return ptr;
593 }
594
595 static void fq_free(void *addr)
596 {
597         kvfree(addr);
598 }
599
600 static int fq_resize(struct Qdisc *sch, u32 log)
601 {
602         struct fq_sched_data *q = qdisc_priv(sch);
603         struct rb_root *array;
604         void *old_fq_root;
605         u32 idx;
606
607         if (q->fq_root && log == q->fq_trees_log)
608                 return 0;
609
610         /* If XPS was setup, we can allocate memory on right NUMA node */
611         array = fq_alloc_node(sizeof(struct rb_root) << log,
612                               netdev_queue_numa_node_read(sch->dev_queue));
613         if (!array)
614                 return -ENOMEM;
615
616         for (idx = 0; idx < (1U << log); idx++)
617                 array[idx] = RB_ROOT;
618
619         sch_tree_lock(sch);
620
621         old_fq_root = q->fq_root;
622         if (old_fq_root)
623                 fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
624
625         q->fq_root = array;
626         q->fq_trees_log = log;
627
628         sch_tree_unlock(sch);
629
630         fq_free(old_fq_root);
631
632         return 0;
633 }
634
635 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
636         [TCA_FQ_PLIMIT]                 = { .type = NLA_U32 },
637         [TCA_FQ_FLOW_PLIMIT]            = { .type = NLA_U32 },
638         [TCA_FQ_QUANTUM]                = { .type = NLA_U32 },
639         [TCA_FQ_INITIAL_QUANTUM]        = { .type = NLA_U32 },
640         [TCA_FQ_RATE_ENABLE]            = { .type = NLA_U32 },
641         [TCA_FQ_FLOW_DEFAULT_RATE]      = { .type = NLA_U32 },
642         [TCA_FQ_FLOW_MAX_RATE]          = { .type = NLA_U32 },
643         [TCA_FQ_BUCKETS_LOG]            = { .type = NLA_U32 },
644         [TCA_FQ_FLOW_REFILL_DELAY]      = { .type = NLA_U32 },
645 };
646
647 static int fq_change(struct Qdisc *sch, struct nlattr *opt)
648 {
649         struct fq_sched_data *q = qdisc_priv(sch);
650         struct nlattr *tb[TCA_FQ_MAX + 1];
651         int err, drop_count = 0;
652         u32 fq_log;
653
654         if (!opt)
655                 return -EINVAL;
656
657         err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
658         if (err < 0)
659                 return err;
660
661         sch_tree_lock(sch);
662
663         fq_log = q->fq_trees_log;
664
665         if (tb[TCA_FQ_BUCKETS_LOG]) {
666                 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
667
668                 if (nval >= 1 && nval <= ilog2(256*1024))
669                         fq_log = nval;
670                 else
671                         err = -EINVAL;
672         }
673         if (tb[TCA_FQ_PLIMIT])
674                 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
675
676         if (tb[TCA_FQ_FLOW_PLIMIT])
677                 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
678
679         if (tb[TCA_FQ_QUANTUM])
680                 q->quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
681
682         if (tb[TCA_FQ_INITIAL_QUANTUM])
683                 q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
684
685         if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
686                 pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
687                                     nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
688
689         if (tb[TCA_FQ_FLOW_MAX_RATE])
690                 q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
691
692         if (tb[TCA_FQ_RATE_ENABLE]) {
693                 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
694
695                 if (enable <= 1)
696                         q->rate_enable = enable;
697                 else
698                         err = -EINVAL;
699         }
700
701         if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
702                 u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
703
704                 q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
705         }
706
707         if (!err) {
708                 sch_tree_unlock(sch);
709                 err = fq_resize(sch, fq_log);
710                 sch_tree_lock(sch);
711         }
712         while (sch->q.qlen > sch->limit) {
713                 struct sk_buff *skb = fq_dequeue(sch);
714
715                 if (!skb)
716                         break;
717                 kfree_skb(skb);
718                 drop_count++;
719         }
720         qdisc_tree_decrease_qlen(sch, drop_count);
721
722         sch_tree_unlock(sch);
723         return err;
724 }
725
726 static void fq_destroy(struct Qdisc *sch)
727 {
728         struct fq_sched_data *q = qdisc_priv(sch);
729
730         fq_reset(sch);
731         fq_free(q->fq_root);
732         qdisc_watchdog_cancel(&q->watchdog);
733 }
734
735 static int fq_init(struct Qdisc *sch, struct nlattr *opt)
736 {
737         struct fq_sched_data *q = qdisc_priv(sch);
738         int err;
739
740         sch->limit              = 10000;
741         q->flow_plimit          = 100;
742         q->quantum              = 2 * psched_mtu(qdisc_dev(sch));
743         q->initial_quantum      = 10 * psched_mtu(qdisc_dev(sch));
744         q->flow_refill_delay    = msecs_to_jiffies(40);
745         q->flow_max_rate        = ~0U;
746         q->rate_enable          = 1;
747         q->new_flows.first      = NULL;
748         q->old_flows.first      = NULL;
749         q->delayed              = RB_ROOT;
750         q->fq_root              = NULL;
751         q->fq_trees_log         = ilog2(1024);
752         qdisc_watchdog_init(&q->watchdog, sch);
753
754         if (opt)
755                 err = fq_change(sch, opt);
756         else
757                 err = fq_resize(sch, q->fq_trees_log);
758
759         return err;
760 }
761
762 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
763 {
764         struct fq_sched_data *q = qdisc_priv(sch);
765         struct nlattr *opts;
766
767         opts = nla_nest_start(skb, TCA_OPTIONS);
768         if (opts == NULL)
769                 goto nla_put_failure;
770
771         /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
772
773         if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
774             nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
775             nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
776             nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
777             nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
778             nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
779             nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
780                         jiffies_to_usecs(q->flow_refill_delay)) ||
781             nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
782                 goto nla_put_failure;
783
784         return nla_nest_end(skb, opts);
785
786 nla_put_failure:
787         return -1;
788 }
789
790 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
791 {
792         struct fq_sched_data *q = qdisc_priv(sch);
793         u64 now = ktime_get_ns();
794         struct tc_fq_qd_stats st = {
795                 .gc_flows               = q->stat_gc_flows,
796                 .highprio_packets       = q->stat_internal_packets,
797                 .tcp_retrans            = q->stat_tcp_retrans,
798                 .throttled              = q->stat_throttled,
799                 .flows_plimit           = q->stat_flows_plimit,
800                 .pkts_too_long          = q->stat_pkts_too_long,
801                 .allocation_errors      = q->stat_allocation_errors,
802                 .flows                  = q->flows,
803                 .inactive_flows         = q->inactive_flows,
804                 .throttled_flows        = q->throttled_flows,
805                 .time_next_delayed_flow = q->time_next_delayed_flow - now,
806         };
807
808         return gnet_stats_copy_app(d, &st, sizeof(st));
809 }
810
811 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
812         .id             =       "fq",
813         .priv_size      =       sizeof(struct fq_sched_data),
814
815         .enqueue        =       fq_enqueue,
816         .dequeue        =       fq_dequeue,
817         .peek           =       qdisc_peek_dequeued,
818         .init           =       fq_init,
819         .reset          =       fq_reset,
820         .destroy        =       fq_destroy,
821         .change         =       fq_change,
822         .dump           =       fq_dump,
823         .dump_stats     =       fq_dump_stats,
824         .owner          =       THIS_MODULE,
825 };
826
827 static int __init fq_module_init(void)
828 {
829         int ret;
830
831         fq_flow_cachep = kmem_cache_create("fq_flow_cache",
832                                            sizeof(struct fq_flow),
833                                            0, 0, NULL);
834         if (!fq_flow_cachep)
835                 return -ENOMEM;
836
837         ret = register_qdisc(&fq_qdisc_ops);
838         if (ret)
839                 kmem_cache_destroy(fq_flow_cachep);
840         return ret;
841 }
842
843 static void __exit fq_module_exit(void)
844 {
845         unregister_qdisc(&fq_qdisc_ops);
846         kmem_cache_destroy(fq_flow_cachep);
847 }
848
849 module_init(fq_module_init)
850 module_exit(fq_module_exit)
851 MODULE_AUTHOR("Eric Dumazet");
852 MODULE_LICENSE("GPL");