Merge commit 'v2.6.36-rc3' into x86/memblock
[pandora-kernel.git] / net / sched / cls_flow.c
1 /*
2  * net/sched/cls_flow.c         Generic flow classifier
3  *
4  * Copyright (c) 2007, 2008 Patrick McHardy <kaber@trash.net>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/list.h>
15 #include <linux/jhash.h>
16 #include <linux/random.h>
17 #include <linux/pkt_cls.h>
18 #include <linux/skbuff.h>
19 #include <linux/in.h>
20 #include <linux/ip.h>
21 #include <linux/ipv6.h>
22 #include <linux/if_vlan.h>
23 #include <linux/slab.h>
24
25 #include <net/pkt_cls.h>
26 #include <net/ip.h>
27 #include <net/route.h>
28 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
29 #include <net/netfilter/nf_conntrack.h>
30 #endif
31
32 struct flow_head {
33         struct list_head        filters;
34 };
35
36 struct flow_filter {
37         struct list_head        list;
38         struct tcf_exts         exts;
39         struct tcf_ematch_tree  ematches;
40         struct timer_list       perturb_timer;
41         u32                     perturb_period;
42         u32                     handle;
43
44         u32                     nkeys;
45         u32                     keymask;
46         u32                     mode;
47         u32                     mask;
48         u32                     xor;
49         u32                     rshift;
50         u32                     addend;
51         u32                     divisor;
52         u32                     baseclass;
53         u32                     hashrnd;
54 };
55
56 static const struct tcf_ext_map flow_ext_map = {
57         .action = TCA_FLOW_ACT,
58         .police = TCA_FLOW_POLICE,
59 };
60
61 static inline u32 addr_fold(void *addr)
62 {
63         unsigned long a = (unsigned long)addr;
64
65         return (a & 0xFFFFFFFF) ^ (BITS_PER_LONG > 32 ? a >> 32 : 0);
66 }
67
68 static u32 flow_get_src(struct sk_buff *skb)
69 {
70         switch (skb->protocol) {
71         case htons(ETH_P_IP):
72                 if (pskb_network_may_pull(skb, sizeof(struct iphdr)))
73                         return ntohl(ip_hdr(skb)->saddr);
74                 break;
75         case htons(ETH_P_IPV6):
76                 if (pskb_network_may_pull(skb, sizeof(struct ipv6hdr)))
77                         return ntohl(ipv6_hdr(skb)->saddr.s6_addr32[3]);
78                 break;
79         }
80
81         return addr_fold(skb->sk);
82 }
83
84 static u32 flow_get_dst(struct sk_buff *skb)
85 {
86         switch (skb->protocol) {
87         case htons(ETH_P_IP):
88                 if (pskb_network_may_pull(skb, sizeof(struct iphdr)))
89                         return ntohl(ip_hdr(skb)->daddr);
90                 break;
91         case htons(ETH_P_IPV6):
92                 if (pskb_network_may_pull(skb, sizeof(struct ipv6hdr)))
93                         return ntohl(ipv6_hdr(skb)->daddr.s6_addr32[3]);
94                 break;
95         }
96
97         return addr_fold(skb_dst(skb)) ^ (__force u16)skb->protocol;
98 }
99
100 static u32 flow_get_proto(struct sk_buff *skb)
101 {
102         switch (skb->protocol) {
103         case htons(ETH_P_IP):
104                 return pskb_network_may_pull(skb, sizeof(struct iphdr)) ?
105                        ip_hdr(skb)->protocol : 0;
106         case htons(ETH_P_IPV6):
107                 return pskb_network_may_pull(skb, sizeof(struct ipv6hdr)) ?
108                        ipv6_hdr(skb)->nexthdr : 0;
109         default:
110                 return 0;
111         }
112 }
113
114 static int has_ports(u8 protocol)
115 {
116         switch (protocol) {
117         case IPPROTO_TCP:
118         case IPPROTO_UDP:
119         case IPPROTO_UDPLITE:
120         case IPPROTO_SCTP:
121         case IPPROTO_DCCP:
122         case IPPROTO_ESP:
123                 return 1;
124         default:
125                 return 0;
126         }
127 }
128
129 static u32 flow_get_proto_src(struct sk_buff *skb)
130 {
131         switch (skb->protocol) {
132         case htons(ETH_P_IP): {
133                 struct iphdr *iph;
134
135                 if (!pskb_network_may_pull(skb, sizeof(*iph)))
136                         break;
137                 iph = ip_hdr(skb);
138                 if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) &&
139                     has_ports(iph->protocol) &&
140                     pskb_network_may_pull(skb, iph->ihl * 4 + 2))
141                         return ntohs(*(__be16 *)((void *)iph + iph->ihl * 4));
142                 break;
143         }
144         case htons(ETH_P_IPV6): {
145                 struct ipv6hdr *iph;
146
147                 if (!pskb_network_may_pull(skb, sizeof(*iph) + 2))
148                         break;
149                 iph = ipv6_hdr(skb);
150                 if (has_ports(iph->nexthdr))
151                         return ntohs(*(__be16 *)&iph[1]);
152                 break;
153         }
154         }
155
156         return addr_fold(skb->sk);
157 }
158
159 static u32 flow_get_proto_dst(struct sk_buff *skb)
160 {
161         switch (skb->protocol) {
162         case htons(ETH_P_IP): {
163                 struct iphdr *iph;
164
165                 if (!pskb_network_may_pull(skb, sizeof(*iph)))
166                         break;
167                 iph = ip_hdr(skb);
168                 if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) &&
169                     has_ports(iph->protocol) &&
170                     pskb_network_may_pull(skb, iph->ihl * 4 + 4))
171                         return ntohs(*(__be16 *)((void *)iph + iph->ihl * 4 + 2));
172                 break;
173         }
174         case htons(ETH_P_IPV6): {
175                 struct ipv6hdr *iph;
176
177                 if (!pskb_network_may_pull(skb, sizeof(*iph) + 4))
178                         break;
179                 iph = ipv6_hdr(skb);
180                 if (has_ports(iph->nexthdr))
181                         return ntohs(*(__be16 *)((void *)&iph[1] + 2));
182                 break;
183         }
184         }
185
186         return addr_fold(skb_dst(skb)) ^ (__force u16)skb->protocol;
187 }
188
189 static u32 flow_get_iif(const struct sk_buff *skb)
190 {
191         return skb->skb_iif;
192 }
193
194 static u32 flow_get_priority(const struct sk_buff *skb)
195 {
196         return skb->priority;
197 }
198
199 static u32 flow_get_mark(const struct sk_buff *skb)
200 {
201         return skb->mark;
202 }
203
204 static u32 flow_get_nfct(const struct sk_buff *skb)
205 {
206 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
207         return addr_fold(skb->nfct);
208 #else
209         return 0;
210 #endif
211 }
212
213 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
214 #define CTTUPLE(skb, member)                                            \
215 ({                                                                      \
216         enum ip_conntrack_info ctinfo;                                  \
217         struct nf_conn *ct = nf_ct_get(skb, &ctinfo);                   \
218         if (ct == NULL)                                                 \
219                 goto fallback;                                          \
220         ct->tuplehash[CTINFO2DIR(ctinfo)].tuple.member;                 \
221 })
222 #else
223 #define CTTUPLE(skb, member)                                            \
224 ({                                                                      \
225         goto fallback;                                                  \
226         0;                                                              \
227 })
228 #endif
229
230 static u32 flow_get_nfct_src(struct sk_buff *skb)
231 {
232         switch (skb->protocol) {
233         case htons(ETH_P_IP):
234                 return ntohl(CTTUPLE(skb, src.u3.ip));
235         case htons(ETH_P_IPV6):
236                 return ntohl(CTTUPLE(skb, src.u3.ip6[3]));
237         }
238 fallback:
239         return flow_get_src(skb);
240 }
241
242 static u32 flow_get_nfct_dst(struct sk_buff *skb)
243 {
244         switch (skb->protocol) {
245         case htons(ETH_P_IP):
246                 return ntohl(CTTUPLE(skb, dst.u3.ip));
247         case htons(ETH_P_IPV6):
248                 return ntohl(CTTUPLE(skb, dst.u3.ip6[3]));
249         }
250 fallback:
251         return flow_get_dst(skb);
252 }
253
254 static u32 flow_get_nfct_proto_src(struct sk_buff *skb)
255 {
256         return ntohs(CTTUPLE(skb, src.u.all));
257 fallback:
258         return flow_get_proto_src(skb);
259 }
260
261 static u32 flow_get_nfct_proto_dst(struct sk_buff *skb)
262 {
263         return ntohs(CTTUPLE(skb, dst.u.all));
264 fallback:
265         return flow_get_proto_dst(skb);
266 }
267
268 static u32 flow_get_rtclassid(const struct sk_buff *skb)
269 {
270 #ifdef CONFIG_NET_CLS_ROUTE
271         if (skb_dst(skb))
272                 return skb_dst(skb)->tclassid;
273 #endif
274         return 0;
275 }
276
277 static u32 flow_get_skuid(const struct sk_buff *skb)
278 {
279         if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file)
280                 return skb->sk->sk_socket->file->f_cred->fsuid;
281         return 0;
282 }
283
284 static u32 flow_get_skgid(const struct sk_buff *skb)
285 {
286         if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file)
287                 return skb->sk->sk_socket->file->f_cred->fsgid;
288         return 0;
289 }
290
291 static u32 flow_get_vlan_tag(const struct sk_buff *skb)
292 {
293         u16 uninitialized_var(tag);
294
295         if (vlan_get_tag(skb, &tag) < 0)
296                 return 0;
297         return tag & VLAN_VID_MASK;
298 }
299
300 static u32 flow_key_get(struct sk_buff *skb, int key)
301 {
302         switch (key) {
303         case FLOW_KEY_SRC:
304                 return flow_get_src(skb);
305         case FLOW_KEY_DST:
306                 return flow_get_dst(skb);
307         case FLOW_KEY_PROTO:
308                 return flow_get_proto(skb);
309         case FLOW_KEY_PROTO_SRC:
310                 return flow_get_proto_src(skb);
311         case FLOW_KEY_PROTO_DST:
312                 return flow_get_proto_dst(skb);
313         case FLOW_KEY_IIF:
314                 return flow_get_iif(skb);
315         case FLOW_KEY_PRIORITY:
316                 return flow_get_priority(skb);
317         case FLOW_KEY_MARK:
318                 return flow_get_mark(skb);
319         case FLOW_KEY_NFCT:
320                 return flow_get_nfct(skb);
321         case FLOW_KEY_NFCT_SRC:
322                 return flow_get_nfct_src(skb);
323         case FLOW_KEY_NFCT_DST:
324                 return flow_get_nfct_dst(skb);
325         case FLOW_KEY_NFCT_PROTO_SRC:
326                 return flow_get_nfct_proto_src(skb);
327         case FLOW_KEY_NFCT_PROTO_DST:
328                 return flow_get_nfct_proto_dst(skb);
329         case FLOW_KEY_RTCLASSID:
330                 return flow_get_rtclassid(skb);
331         case FLOW_KEY_SKUID:
332                 return flow_get_skuid(skb);
333         case FLOW_KEY_SKGID:
334                 return flow_get_skgid(skb);
335         case FLOW_KEY_VLAN_TAG:
336                 return flow_get_vlan_tag(skb);
337         default:
338                 WARN_ON(1);
339                 return 0;
340         }
341 }
342
343 static int flow_classify(struct sk_buff *skb, struct tcf_proto *tp,
344                          struct tcf_result *res)
345 {
346         struct flow_head *head = tp->root;
347         struct flow_filter *f;
348         u32 keymask;
349         u32 classid;
350         unsigned int n, key;
351         int r;
352
353         list_for_each_entry(f, &head->filters, list) {
354                 u32 keys[f->nkeys];
355
356                 if (!tcf_em_tree_match(skb, &f->ematches, NULL))
357                         continue;
358
359                 keymask = f->keymask;
360
361                 for (n = 0; n < f->nkeys; n++) {
362                         key = ffs(keymask) - 1;
363                         keymask &= ~(1 << key);
364                         keys[n] = flow_key_get(skb, key);
365                 }
366
367                 if (f->mode == FLOW_MODE_HASH)
368                         classid = jhash2(keys, f->nkeys, f->hashrnd);
369                 else {
370                         classid = keys[0];
371                         classid = (classid & f->mask) ^ f->xor;
372                         classid = (classid >> f->rshift) + f->addend;
373                 }
374
375                 if (f->divisor)
376                         classid %= f->divisor;
377
378                 res->class   = 0;
379                 res->classid = TC_H_MAKE(f->baseclass, f->baseclass + classid);
380
381                 r = tcf_exts_exec(skb, &f->exts, res);
382                 if (r < 0)
383                         continue;
384                 return r;
385         }
386         return -1;
387 }
388
389 static void flow_perturbation(unsigned long arg)
390 {
391         struct flow_filter *f = (struct flow_filter *)arg;
392
393         get_random_bytes(&f->hashrnd, 4);
394         if (f->perturb_period)
395                 mod_timer(&f->perturb_timer, jiffies + f->perturb_period);
396 }
397
398 static const struct nla_policy flow_policy[TCA_FLOW_MAX + 1] = {
399         [TCA_FLOW_KEYS]         = { .type = NLA_U32 },
400         [TCA_FLOW_MODE]         = { .type = NLA_U32 },
401         [TCA_FLOW_BASECLASS]    = { .type = NLA_U32 },
402         [TCA_FLOW_RSHIFT]       = { .type = NLA_U32 },
403         [TCA_FLOW_ADDEND]       = { .type = NLA_U32 },
404         [TCA_FLOW_MASK]         = { .type = NLA_U32 },
405         [TCA_FLOW_XOR]          = { .type = NLA_U32 },
406         [TCA_FLOW_DIVISOR]      = { .type = NLA_U32 },
407         [TCA_FLOW_ACT]          = { .type = NLA_NESTED },
408         [TCA_FLOW_POLICE]       = { .type = NLA_NESTED },
409         [TCA_FLOW_EMATCHES]     = { .type = NLA_NESTED },
410         [TCA_FLOW_PERTURB]      = { .type = NLA_U32 },
411 };
412
413 static int flow_change(struct tcf_proto *tp, unsigned long base,
414                        u32 handle, struct nlattr **tca,
415                        unsigned long *arg)
416 {
417         struct flow_head *head = tp->root;
418         struct flow_filter *f;
419         struct nlattr *opt = tca[TCA_OPTIONS];
420         struct nlattr *tb[TCA_FLOW_MAX + 1];
421         struct tcf_exts e;
422         struct tcf_ematch_tree t;
423         unsigned int nkeys = 0;
424         unsigned int perturb_period = 0;
425         u32 baseclass = 0;
426         u32 keymask = 0;
427         u32 mode;
428         int err;
429
430         if (opt == NULL)
431                 return -EINVAL;
432
433         err = nla_parse_nested(tb, TCA_FLOW_MAX, opt, flow_policy);
434         if (err < 0)
435                 return err;
436
437         if (tb[TCA_FLOW_BASECLASS]) {
438                 baseclass = nla_get_u32(tb[TCA_FLOW_BASECLASS]);
439                 if (TC_H_MIN(baseclass) == 0)
440                         return -EINVAL;
441         }
442
443         if (tb[TCA_FLOW_KEYS]) {
444                 keymask = nla_get_u32(tb[TCA_FLOW_KEYS]);
445
446                 nkeys = hweight32(keymask);
447                 if (nkeys == 0)
448                         return -EINVAL;
449
450                 if (fls(keymask) - 1 > FLOW_KEY_MAX)
451                         return -EOPNOTSUPP;
452         }
453
454         err = tcf_exts_validate(tp, tb, tca[TCA_RATE], &e, &flow_ext_map);
455         if (err < 0)
456                 return err;
457
458         err = tcf_em_tree_validate(tp, tb[TCA_FLOW_EMATCHES], &t);
459         if (err < 0)
460                 goto err1;
461
462         f = (struct flow_filter *)*arg;
463         if (f != NULL) {
464                 err = -EINVAL;
465                 if (f->handle != handle && handle)
466                         goto err2;
467
468                 mode = f->mode;
469                 if (tb[TCA_FLOW_MODE])
470                         mode = nla_get_u32(tb[TCA_FLOW_MODE]);
471                 if (mode != FLOW_MODE_HASH && nkeys > 1)
472                         goto err2;
473
474                 if (mode == FLOW_MODE_HASH)
475                         perturb_period = f->perturb_period;
476                 if (tb[TCA_FLOW_PERTURB]) {
477                         if (mode != FLOW_MODE_HASH)
478                                 goto err2;
479                         perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
480                 }
481         } else {
482                 err = -EINVAL;
483                 if (!handle)
484                         goto err2;
485                 if (!tb[TCA_FLOW_KEYS])
486                         goto err2;
487
488                 mode = FLOW_MODE_MAP;
489                 if (tb[TCA_FLOW_MODE])
490                         mode = nla_get_u32(tb[TCA_FLOW_MODE]);
491                 if (mode != FLOW_MODE_HASH && nkeys > 1)
492                         goto err2;
493
494                 if (tb[TCA_FLOW_PERTURB]) {
495                         if (mode != FLOW_MODE_HASH)
496                                 goto err2;
497                         perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
498                 }
499
500                 if (TC_H_MAJ(baseclass) == 0)
501                         baseclass = TC_H_MAKE(tp->q->handle, baseclass);
502                 if (TC_H_MIN(baseclass) == 0)
503                         baseclass = TC_H_MAKE(baseclass, 1);
504
505                 err = -ENOBUFS;
506                 f = kzalloc(sizeof(*f), GFP_KERNEL);
507                 if (f == NULL)
508                         goto err2;
509
510                 f->handle = handle;
511                 f->mask   = ~0U;
512
513                 get_random_bytes(&f->hashrnd, 4);
514                 f->perturb_timer.function = flow_perturbation;
515                 f->perturb_timer.data = (unsigned long)f;
516                 init_timer_deferrable(&f->perturb_timer);
517         }
518
519         tcf_exts_change(tp, &f->exts, &e);
520         tcf_em_tree_change(tp, &f->ematches, &t);
521
522         tcf_tree_lock(tp);
523
524         if (tb[TCA_FLOW_KEYS]) {
525                 f->keymask = keymask;
526                 f->nkeys   = nkeys;
527         }
528
529         f->mode = mode;
530
531         if (tb[TCA_FLOW_MASK])
532                 f->mask = nla_get_u32(tb[TCA_FLOW_MASK]);
533         if (tb[TCA_FLOW_XOR])
534                 f->xor = nla_get_u32(tb[TCA_FLOW_XOR]);
535         if (tb[TCA_FLOW_RSHIFT])
536                 f->rshift = nla_get_u32(tb[TCA_FLOW_RSHIFT]);
537         if (tb[TCA_FLOW_ADDEND])
538                 f->addend = nla_get_u32(tb[TCA_FLOW_ADDEND]);
539
540         if (tb[TCA_FLOW_DIVISOR])
541                 f->divisor = nla_get_u32(tb[TCA_FLOW_DIVISOR]);
542         if (baseclass)
543                 f->baseclass = baseclass;
544
545         f->perturb_period = perturb_period;
546         del_timer(&f->perturb_timer);
547         if (perturb_period)
548                 mod_timer(&f->perturb_timer, jiffies + perturb_period);
549
550         if (*arg == 0)
551                 list_add_tail(&f->list, &head->filters);
552
553         tcf_tree_unlock(tp);
554
555         *arg = (unsigned long)f;
556         return 0;
557
558 err2:
559         tcf_em_tree_destroy(tp, &t);
560 err1:
561         tcf_exts_destroy(tp, &e);
562         return err;
563 }
564
565 static void flow_destroy_filter(struct tcf_proto *tp, struct flow_filter *f)
566 {
567         del_timer_sync(&f->perturb_timer);
568         tcf_exts_destroy(tp, &f->exts);
569         tcf_em_tree_destroy(tp, &f->ematches);
570         kfree(f);
571 }
572
573 static int flow_delete(struct tcf_proto *tp, unsigned long arg)
574 {
575         struct flow_filter *f = (struct flow_filter *)arg;
576
577         tcf_tree_lock(tp);
578         list_del(&f->list);
579         tcf_tree_unlock(tp);
580         flow_destroy_filter(tp, f);
581         return 0;
582 }
583
584 static int flow_init(struct tcf_proto *tp)
585 {
586         struct flow_head *head;
587
588         head = kzalloc(sizeof(*head), GFP_KERNEL);
589         if (head == NULL)
590                 return -ENOBUFS;
591         INIT_LIST_HEAD(&head->filters);
592         tp->root = head;
593         return 0;
594 }
595
596 static void flow_destroy(struct tcf_proto *tp)
597 {
598         struct flow_head *head = tp->root;
599         struct flow_filter *f, *next;
600
601         list_for_each_entry_safe(f, next, &head->filters, list) {
602                 list_del(&f->list);
603                 flow_destroy_filter(tp, f);
604         }
605         kfree(head);
606 }
607
608 static unsigned long flow_get(struct tcf_proto *tp, u32 handle)
609 {
610         struct flow_head *head = tp->root;
611         struct flow_filter *f;
612
613         list_for_each_entry(f, &head->filters, list)
614                 if (f->handle == handle)
615                         return (unsigned long)f;
616         return 0;
617 }
618
619 static void flow_put(struct tcf_proto *tp, unsigned long f)
620 {
621 }
622
623 static int flow_dump(struct tcf_proto *tp, unsigned long fh,
624                      struct sk_buff *skb, struct tcmsg *t)
625 {
626         struct flow_filter *f = (struct flow_filter *)fh;
627         struct nlattr *nest;
628
629         if (f == NULL)
630                 return skb->len;
631
632         t->tcm_handle = f->handle;
633
634         nest = nla_nest_start(skb, TCA_OPTIONS);
635         if (nest == NULL)
636                 goto nla_put_failure;
637
638         NLA_PUT_U32(skb, TCA_FLOW_KEYS, f->keymask);
639         NLA_PUT_U32(skb, TCA_FLOW_MODE, f->mode);
640
641         if (f->mask != ~0 || f->xor != 0) {
642                 NLA_PUT_U32(skb, TCA_FLOW_MASK, f->mask);
643                 NLA_PUT_U32(skb, TCA_FLOW_XOR, f->xor);
644         }
645         if (f->rshift)
646                 NLA_PUT_U32(skb, TCA_FLOW_RSHIFT, f->rshift);
647         if (f->addend)
648                 NLA_PUT_U32(skb, TCA_FLOW_ADDEND, f->addend);
649
650         if (f->divisor)
651                 NLA_PUT_U32(skb, TCA_FLOW_DIVISOR, f->divisor);
652         if (f->baseclass)
653                 NLA_PUT_U32(skb, TCA_FLOW_BASECLASS, f->baseclass);
654
655         if (f->perturb_period)
656                 NLA_PUT_U32(skb, TCA_FLOW_PERTURB, f->perturb_period / HZ);
657
658         if (tcf_exts_dump(skb, &f->exts, &flow_ext_map) < 0)
659                 goto nla_put_failure;
660 #ifdef CONFIG_NET_EMATCH
661         if (f->ematches.hdr.nmatches &&
662             tcf_em_tree_dump(skb, &f->ematches, TCA_FLOW_EMATCHES) < 0)
663                 goto nla_put_failure;
664 #endif
665         nla_nest_end(skb, nest);
666
667         if (tcf_exts_dump_stats(skb, &f->exts, &flow_ext_map) < 0)
668                 goto nla_put_failure;
669
670         return skb->len;
671
672 nla_put_failure:
673         nlmsg_trim(skb, nest);
674         return -1;
675 }
676
677 static void flow_walk(struct tcf_proto *tp, struct tcf_walker *arg)
678 {
679         struct flow_head *head = tp->root;
680         struct flow_filter *f;
681
682         list_for_each_entry(f, &head->filters, list) {
683                 if (arg->count < arg->skip)
684                         goto skip;
685                 if (arg->fn(tp, (unsigned long)f, arg) < 0) {
686                         arg->stop = 1;
687                         break;
688                 }
689 skip:
690                 arg->count++;
691         }
692 }
693
694 static struct tcf_proto_ops cls_flow_ops __read_mostly = {
695         .kind           = "flow",
696         .classify       = flow_classify,
697         .init           = flow_init,
698         .destroy        = flow_destroy,
699         .change         = flow_change,
700         .delete         = flow_delete,
701         .get            = flow_get,
702         .put            = flow_put,
703         .dump           = flow_dump,
704         .walk           = flow_walk,
705         .owner          = THIS_MODULE,
706 };
707
708 static int __init cls_flow_init(void)
709 {
710         return register_tcf_proto_ops(&cls_flow_ops);
711 }
712
713 static void __exit cls_flow_exit(void)
714 {
715         unregister_tcf_proto_ops(&cls_flow_ops);
716 }
717
718 module_init(cls_flow_init);
719 module_exit(cls_flow_exit);
720
721 MODULE_LICENSE("GPL");
722 MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>");
723 MODULE_DESCRIPTION("TC flow classifier");