Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[pandora-kernel.git] / net / mac80211 / tkip.c
1 /*
2  * Copyright 2002-2004, Instant802 Networks, Inc.
3  * Copyright 2005, Devicescape Software, Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9
10 #include <linux/kernel.h>
11 #include <linux/bitops.h>
12 #include <linux/types.h>
13 #include <linux/netdevice.h>
14 #include <asm/unaligned.h>
15
16 #include <net/mac80211.h>
17 #include "key.h"
18 #include "tkip.h"
19 #include "wep.h"
20
21 #define PHASE1_LOOP_COUNT 8
22
23 /*
24  * 2-byte by 2-byte subset of the full AES S-box table; second part of this
25  * table is identical to first part but byte-swapped
26  */
27 static const u16 tkip_sbox[256] =
28 {
29         0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
30         0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
31         0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
32         0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
33         0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
34         0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
35         0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
36         0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
37         0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
38         0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
39         0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
40         0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
41         0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
42         0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
43         0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
44         0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
45         0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
46         0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
47         0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
48         0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
49         0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
50         0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
51         0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
52         0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
53         0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
54         0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
55         0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
56         0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
57         0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
58         0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
59         0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
60         0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
61 };
62
63 static u16 tkipS(u16 val)
64 {
65         return tkip_sbox[val & 0xff] ^ swab16(tkip_sbox[val >> 8]);
66 }
67
68 /*
69  * P1K := Phase1(TA, TK, TSC)
70  * TA = transmitter address (48 bits)
71  * TK = dot11DefaultKeyValue or dot11KeyMappingValue (128 bits)
72  * TSC = TKIP sequence counter (48 bits, only 32 msb bits used)
73  * P1K: 80 bits
74  */
75 static void tkip_mixing_phase1(const u8 *ta, const u8 *tk, u32 tsc_IV32,
76                                u16 *p1k)
77 {
78         int i, j;
79
80         p1k[0] = tsc_IV32 & 0xFFFF;
81         p1k[1] = tsc_IV32 >> 16;
82         p1k[2] = get_unaligned_le16(ta + 0);
83         p1k[3] = get_unaligned_le16(ta + 2);
84         p1k[4] = get_unaligned_le16(ta + 4);
85
86         for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
87                 j = 2 * (i & 1);
88                 p1k[0] += tkipS(p1k[4] ^ get_unaligned_le16(tk + 0 + j));
89                 p1k[1] += tkipS(p1k[0] ^ get_unaligned_le16(tk + 4 + j));
90                 p1k[2] += tkipS(p1k[1] ^ get_unaligned_le16(tk + 8 + j));
91                 p1k[3] += tkipS(p1k[2] ^ get_unaligned_le16(tk + 12 + j));
92                 p1k[4] += tkipS(p1k[3] ^ get_unaligned_le16(tk + 0 + j)) + i;
93         }
94 }
95
96 static void tkip_mixing_phase2(const u16 *p1k, const u8 *tk, u16 tsc_IV16,
97                                u8 *rc4key)
98 {
99         u16 ppk[6];
100         int i;
101
102         ppk[0] = p1k[0];
103         ppk[1] = p1k[1];
104         ppk[2] = p1k[2];
105         ppk[3] = p1k[3];
106         ppk[4] = p1k[4];
107         ppk[5] = p1k[4] + tsc_IV16;
108
109         ppk[0] += tkipS(ppk[5] ^ get_unaligned_le16(tk + 0));
110         ppk[1] += tkipS(ppk[0] ^ get_unaligned_le16(tk + 2));
111         ppk[2] += tkipS(ppk[1] ^ get_unaligned_le16(tk + 4));
112         ppk[3] += tkipS(ppk[2] ^ get_unaligned_le16(tk + 6));
113         ppk[4] += tkipS(ppk[3] ^ get_unaligned_le16(tk + 8));
114         ppk[5] += tkipS(ppk[4] ^ get_unaligned_le16(tk + 10));
115         ppk[0] += ror16(ppk[5] ^ get_unaligned_le16(tk + 12), 1);
116         ppk[1] += ror16(ppk[0] ^ get_unaligned_le16(tk + 14), 1);
117         ppk[2] += ror16(ppk[1], 1);
118         ppk[3] += ror16(ppk[2], 1);
119         ppk[4] += ror16(ppk[3], 1);
120         ppk[5] += ror16(ppk[4], 1);
121
122         rc4key[0] = tsc_IV16 >> 8;
123         rc4key[1] = ((tsc_IV16 >> 8) | 0x20) & 0x7f;
124         rc4key[2] = tsc_IV16 & 0xFF;
125         rc4key[3] = ((ppk[5] ^ get_unaligned_le16(tk)) >> 1) & 0xFF;
126
127         rc4key += 4;
128         for (i = 0; i < 6; i++)
129                 put_unaligned_le16(ppk[i], rc4key + 2 * i);
130 }
131
132 /* Add TKIP IV and Ext. IV at @pos. @iv0, @iv1, and @iv2 are the first octets
133  * of the IV. Returns pointer to the octet following IVs (i.e., beginning of
134  * the packet payload). */
135 u8 * ieee80211_tkip_add_iv(u8 *pos, struct ieee80211_key *key,
136                            u8 iv0, u8 iv1, u8 iv2)
137 {
138         *pos++ = iv0;
139         *pos++ = iv1;
140         *pos++ = iv2;
141         *pos++ = (key->conf.keyidx << 6) | (1 << 5) /* Ext IV */;
142         put_unaligned_le32(key->u.tkip.iv32, pos);
143         return pos + 4;
144 }
145
146 void ieee80211_tkip_gen_phase1key(struct ieee80211_key *key, u8 *ta,
147                                   u16 *phase1key)
148 {
149         tkip_mixing_phase1(ta, &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY],
150                            key->u.tkip.iv32, phase1key);
151 }
152
153 void ieee80211_tkip_gen_rc4key(struct ieee80211_key *key, u8 *ta,
154                                u8 *rc4key)
155 {
156         /* Calculate per-packet key */
157         if (key->u.tkip.iv16 == 0 || !key->u.tkip.tx_initialized) {
158                 /* IV16 wrapped around - perform TKIP phase 1 */
159                 tkip_mixing_phase1(ta, &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY],
160                                    key->u.tkip.iv32, key->u.tkip.p1k);
161                 key->u.tkip.tx_initialized = 1;
162         }
163
164         tkip_mixing_phase2(key->u.tkip.p1k,
165                            &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY],
166                            key->u.tkip.iv16, rc4key);
167 }
168
169 void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
170                         struct sk_buff *skb, enum ieee80211_tkip_key_type type,
171                         u8 *outkey)
172 {
173         struct ieee80211_key *key = (struct ieee80211_key *)
174                         container_of(keyconf, struct ieee80211_key, conf);
175         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
176         u8 *data = (u8 *) hdr;
177         u16 fc = le16_to_cpu(hdr->frame_control);
178         int hdr_len = ieee80211_get_hdrlen(fc);
179         u8 *ta = hdr->addr2;
180         u16 iv16;
181         u32 iv32;
182
183         iv16 = data[hdr_len + 2] | (data[hdr_len] << 8);
184         iv32 = get_unaligned_le32(data + hdr_len + 4);
185
186 #ifdef CONFIG_TKIP_DEBUG
187         printk(KERN_DEBUG "TKIP encrypt: iv16 = 0x%04x, iv32 = 0x%08x\n",
188                         iv16, iv32);
189
190         if (iv32 != key->u.tkip.iv32) {
191                 printk(KERN_DEBUG "skb: iv32 = 0x%08x key: iv32 = 0x%08x\n",
192                         iv32, key->u.tkip.iv32);
193                 printk(KERN_DEBUG "Wrap around of iv16 in the middle of a "
194                         "fragmented packet\n");
195         }
196 #endif /* CONFIG_TKIP_DEBUG */
197
198         /* Update the p1k only when the iv16 in the packet wraps around, this
199          * might occur after the wrap around of iv16 in the key in case of
200          * fragmented packets. */
201         if (iv16 == 0 || !key->u.tkip.tx_initialized) {
202                 /* IV16 wrapped around - perform TKIP phase 1 */
203                 tkip_mixing_phase1(ta, &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY],
204                         iv32, key->u.tkip.p1k);
205                 key->u.tkip.tx_initialized = 1;
206         }
207
208         if (type == IEEE80211_TKIP_P1_KEY) {
209                 memcpy(outkey, key->u.tkip.p1k, sizeof(u16) * 5);
210                 return;
211         }
212
213         tkip_mixing_phase2(key->u.tkip.p1k,
214                 &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY], iv16, outkey);
215 }
216 EXPORT_SYMBOL(ieee80211_get_tkip_key);
217
218 /* Encrypt packet payload with TKIP using @key. @pos is a pointer to the
219  * beginning of the buffer containing payload. This payload must include
220  * headroom of eight octets for IV and Ext. IV and taildroom of four octets
221  * for ICV. @payload_len is the length of payload (_not_ including extra
222  * headroom and tailroom). @ta is the transmitter addresses. */
223 void ieee80211_tkip_encrypt_data(struct crypto_blkcipher *tfm,
224                                  struct ieee80211_key *key,
225                                  u8 *pos, size_t payload_len, u8 *ta)
226 {
227         u8 rc4key[16];
228
229         ieee80211_tkip_gen_rc4key(key, ta, rc4key);
230         pos = ieee80211_tkip_add_iv(pos, key, rc4key[0], rc4key[1], rc4key[2]);
231         ieee80211_wep_encrypt_data(tfm, rc4key, 16, pos, payload_len);
232 }
233
234 /* Decrypt packet payload with TKIP using @key. @pos is a pointer to the
235  * beginning of the buffer containing IEEE 802.11 header payload, i.e.,
236  * including IV, Ext. IV, real data, Michael MIC, ICV. @payload_len is the
237  * length of payload, including IV, Ext. IV, MIC, ICV.  */
238 int ieee80211_tkip_decrypt_data(struct crypto_blkcipher *tfm,
239                                 struct ieee80211_key *key,
240                                 u8 *payload, size_t payload_len, u8 *ta,
241                                 u8 *ra, int only_iv, int queue,
242                                 u32 *out_iv32, u16 *out_iv16)
243 {
244         u32 iv32;
245         u32 iv16;
246         u8 rc4key[16], keyid, *pos = payload;
247         int res;
248
249         if (payload_len < 12)
250                 return -1;
251
252         iv16 = (pos[0] << 8) | pos[2];
253         keyid = pos[3];
254         iv32 = get_unaligned_le32(pos + 4);
255         pos += 8;
256 #ifdef CONFIG_TKIP_DEBUG
257         {
258                 int i;
259                 printk(KERN_DEBUG "TKIP decrypt: data(len=%zd)", payload_len);
260                 for (i = 0; i < payload_len; i++)
261                         printk(" %02x", payload[i]);
262                 printk("\n");
263                 printk(KERN_DEBUG "TKIP decrypt: iv16=%04x iv32=%08x\n",
264                        iv16, iv32);
265         }
266 #endif /* CONFIG_TKIP_DEBUG */
267
268         if (!(keyid & (1 << 5)))
269                 return TKIP_DECRYPT_NO_EXT_IV;
270
271         if ((keyid >> 6) != key->conf.keyidx)
272                 return TKIP_DECRYPT_INVALID_KEYIDX;
273
274         if (key->u.tkip.rx_initialized[queue] &&
275             (iv32 < key->u.tkip.iv32_rx[queue] ||
276              (iv32 == key->u.tkip.iv32_rx[queue] &&
277               iv16 <= key->u.tkip.iv16_rx[queue]))) {
278 #ifdef CONFIG_TKIP_DEBUG
279                 DECLARE_MAC_BUF(mac);
280                 printk(KERN_DEBUG "TKIP replay detected for RX frame from "
281                        "%s (RX IV (%04x,%02x) <= prev. IV (%04x,%02x)\n",
282                        print_mac(mac, ta),
283                        iv32, iv16, key->u.tkip.iv32_rx[queue],
284                        key->u.tkip.iv16_rx[queue]);
285 #endif /* CONFIG_TKIP_DEBUG */
286                 return TKIP_DECRYPT_REPLAY;
287         }
288
289         if (only_iv) {
290                 res = TKIP_DECRYPT_OK;
291                 key->u.tkip.rx_initialized[queue] = 1;
292                 goto done;
293         }
294
295         if (!key->u.tkip.rx_initialized[queue] ||
296             key->u.tkip.iv32_rx[queue] != iv32) {
297                 key->u.tkip.rx_initialized[queue] = 1;
298                 /* IV16 wrapped around - perform TKIP phase 1 */
299                 tkip_mixing_phase1(ta, &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY],
300                                    iv32, key->u.tkip.p1k_rx[queue]);
301 #ifdef CONFIG_TKIP_DEBUG
302                 {
303                         int i;
304                         DECLARE_MAC_BUF(mac);
305                         printk(KERN_DEBUG "TKIP decrypt: Phase1 TA=%s"
306                                " TK=", print_mac(mac, ta));
307                         for (i = 0; i < 16; i++)
308                                 printk("%02x ",
309                                        key->conf.key[
310                                                 ALG_TKIP_TEMP_ENCR_KEY + i]);
311                         printk("\n");
312                         printk(KERN_DEBUG "TKIP decrypt: P1K=");
313                         for (i = 0; i < 5; i++)
314                                 printk("%04x ", key->u.tkip.p1k_rx[queue][i]);
315                         printk("\n");
316                 }
317 #endif /* CONFIG_TKIP_DEBUG */
318                 if (key->local->ops->update_tkip_key &&
319                         key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
320                         u8 bcast[ETH_ALEN] =
321                                 {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
322                         u8 *sta_addr = key->sta->addr;
323
324                         if (is_multicast_ether_addr(ra))
325                                 sta_addr = bcast;
326
327                         key->local->ops->update_tkip_key(
328                                 local_to_hw(key->local), &key->conf,
329                                 sta_addr, iv32, key->u.tkip.p1k_rx[queue]);
330                 }
331         }
332
333         tkip_mixing_phase2(key->u.tkip.p1k_rx[queue],
334                            &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY],
335                            iv16, rc4key);
336 #ifdef CONFIG_TKIP_DEBUG
337         {
338                 int i;
339                 printk(KERN_DEBUG "TKIP decrypt: Phase2 rc4key=");
340                 for (i = 0; i < 16; i++)
341                         printk("%02x ", rc4key[i]);
342                 printk("\n");
343         }
344 #endif /* CONFIG_TKIP_DEBUG */
345
346         res = ieee80211_wep_decrypt_data(tfm, rc4key, 16, pos, payload_len - 12);
347  done:
348         if (res == TKIP_DECRYPT_OK) {
349                 /*
350                  * Record previously received IV, will be copied into the
351                  * key information after MIC verification. It is possible
352                  * that we don't catch replays of fragments but that's ok
353                  * because the Michael MIC verication will then fail.
354                  */
355                 *out_iv32 = iv32;
356                 *out_iv16 = iv16;
357         }
358
359         return res;
360 }