tcp: fix syncookie regression
[pandora-kernel.git] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  *              IPv4 specific functions
9  *
10  *
11  *              code split from:
12  *              linux/ipv4/tcp.c
13  *              linux/ipv4/tcp_input.c
14  *              linux/ipv4/tcp_output.c
15  *
16  *              See tcp.c for author information
17  *
18  *      This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23
24 /*
25  * Changes:
26  *              David S. Miller :       New socket lookup architecture.
27  *                                      This code is dedicated to John Dyson.
28  *              David S. Miller :       Change semantics of established hash,
29  *                                      half is devoted to TIME_WAIT sockets
30  *                                      and the rest go in the other half.
31  *              Andi Kleen :            Add support for syncookies and fixed
32  *                                      some bugs: ip options weren't passed to
33  *                                      the TCP layer, missed a check for an
34  *                                      ACK bit.
35  *              Andi Kleen :            Implemented fast path mtu discovery.
36  *                                      Fixed many serious bugs in the
37  *                                      request_sock handling and moved
38  *                                      most of it into the af independent code.
39  *                                      Added tail drop and some other bugfixes.
40  *                                      Added new listen semantics.
41  *              Mike McLagan    :       Routing by source
42  *      Juan Jose Ciarlante:            ip_dynaddr bits
43  *              Andi Kleen:             various fixes.
44  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
45  *                                      coma.
46  *      Andi Kleen              :       Fix new listen.
47  *      Andi Kleen              :       Fix accept error reporting.
48  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
49  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
50  *                                      a single port at the same time.
51  */
52
53
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
64
65 #include <net/net_namespace.h>
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74 #include <net/netdma.h>
75 #include <net/secure_seq.h>
76
77 #include <linux/inet.h>
78 #include <linux/ipv6.h>
79 #include <linux/stddef.h>
80 #include <linux/proc_fs.h>
81 #include <linux/seq_file.h>
82
83 #include <linux/crypto.h>
84 #include <linux/scatterlist.h>
85
86 int sysctl_tcp_tw_reuse __read_mostly;
87 int sysctl_tcp_low_latency __read_mostly;
88 EXPORT_SYMBOL(sysctl_tcp_low_latency);
89
90
91 #ifdef CONFIG_TCP_MD5SIG
92 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
93                                                    __be32 addr);
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
95                                __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #else
97 static inline
98 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
99 {
100         return NULL;
101 }
102 #endif
103
104 struct inet_hashinfo tcp_hashinfo;
105 EXPORT_SYMBOL(tcp_hashinfo);
106
107 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
108 {
109         return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
110                                           ip_hdr(skb)->saddr,
111                                           tcp_hdr(skb)->dest,
112                                           tcp_hdr(skb)->source);
113 }
114
115 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
116 {
117         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
118         struct tcp_sock *tp = tcp_sk(sk);
119
120         /* With PAWS, it is safe from the viewpoint
121            of data integrity. Even without PAWS it is safe provided sequence
122            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
123
124            Actually, the idea is close to VJ's one, only timestamp cache is
125            held not per host, but per port pair and TW bucket is used as state
126            holder.
127
128            If TW bucket has been already destroyed we fall back to VJ's scheme
129            and use initial timestamp retrieved from peer table.
130          */
131         if (tcptw->tw_ts_recent_stamp &&
132             (twp == NULL || (sysctl_tcp_tw_reuse &&
133                              get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
134                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
135                 if (tp->write_seq == 0)
136                         tp->write_seq = 1;
137                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
138                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
139                 sock_hold(sktw);
140                 return 1;
141         }
142
143         return 0;
144 }
145 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
146
147 /* This will initiate an outgoing connection. */
148 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
149 {
150         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
151         struct inet_sock *inet = inet_sk(sk);
152         struct tcp_sock *tp = tcp_sk(sk);
153         __be16 orig_sport, orig_dport;
154         __be32 daddr, nexthop;
155         struct flowi4 *fl4;
156         struct rtable *rt;
157         int err;
158         struct ip_options_rcu *inet_opt;
159
160         if (addr_len < sizeof(struct sockaddr_in))
161                 return -EINVAL;
162
163         if (usin->sin_family != AF_INET)
164                 return -EAFNOSUPPORT;
165
166         nexthop = daddr = usin->sin_addr.s_addr;
167         inet_opt = rcu_dereference_protected(inet->inet_opt,
168                                              sock_owned_by_user(sk));
169         if (inet_opt && inet_opt->opt.srr) {
170                 if (!daddr)
171                         return -EINVAL;
172                 nexthop = inet_opt->opt.faddr;
173         }
174
175         orig_sport = inet->inet_sport;
176         orig_dport = usin->sin_port;
177         fl4 = &inet->cork.fl.u.ip4;
178         rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
179                               RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
180                               IPPROTO_TCP,
181                               orig_sport, orig_dport, sk, true);
182         if (IS_ERR(rt)) {
183                 err = PTR_ERR(rt);
184                 if (err == -ENETUNREACH)
185                         IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
186                 return err;
187         }
188
189         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
190                 ip_rt_put(rt);
191                 return -ENETUNREACH;
192         }
193
194         if (!inet_opt || !inet_opt->opt.srr)
195                 daddr = fl4->daddr;
196
197         if (!inet->inet_saddr)
198                 inet->inet_saddr = fl4->saddr;
199         inet->inet_rcv_saddr = inet->inet_saddr;
200
201         if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
202                 /* Reset inherited state */
203                 tp->rx_opt.ts_recent       = 0;
204                 tp->rx_opt.ts_recent_stamp = 0;
205                 tp->write_seq              = 0;
206         }
207
208         if (tcp_death_row.sysctl_tw_recycle &&
209             !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
210                 struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
211                 /*
212                  * VJ's idea. We save last timestamp seen from
213                  * the destination in peer table, when entering state
214                  * TIME-WAIT * and initialize rx_opt.ts_recent from it,
215                  * when trying new connection.
216                  */
217                 if (peer) {
218                         inet_peer_refcheck(peer);
219                         if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
220                                 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
221                                 tp->rx_opt.ts_recent = peer->tcp_ts;
222                         }
223                 }
224         }
225
226         inet->inet_dport = usin->sin_port;
227         inet->inet_daddr = daddr;
228
229         inet_csk(sk)->icsk_ext_hdr_len = 0;
230         if (inet_opt)
231                 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
232
233         tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
234
235         /* Socket identity is still unknown (sport may be zero).
236          * However we set state to SYN-SENT and not releasing socket
237          * lock select source port, enter ourselves into the hash tables and
238          * complete initialization after this.
239          */
240         tcp_set_state(sk, TCP_SYN_SENT);
241         err = inet_hash_connect(&tcp_death_row, sk);
242         if (err)
243                 goto failure;
244
245         rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
246                                inet->inet_sport, inet->inet_dport, sk);
247         if (IS_ERR(rt)) {
248                 err = PTR_ERR(rt);
249                 rt = NULL;
250                 goto failure;
251         }
252         /* OK, now commit destination to socket.  */
253         sk->sk_gso_type = SKB_GSO_TCPV4;
254         sk_setup_caps(sk, &rt->dst);
255
256         if (!tp->write_seq)
257                 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
258                                                            inet->inet_daddr,
259                                                            inet->inet_sport,
260                                                            usin->sin_port);
261
262         inet->inet_id = tp->write_seq ^ jiffies;
263
264         err = tcp_connect(sk);
265         rt = NULL;
266         if (err)
267                 goto failure;
268
269         return 0;
270
271 failure:
272         /*
273          * This unhashes the socket and releases the local port,
274          * if necessary.
275          */
276         tcp_set_state(sk, TCP_CLOSE);
277         ip_rt_put(rt);
278         sk->sk_route_caps = 0;
279         inet->inet_dport = 0;
280         return err;
281 }
282 EXPORT_SYMBOL(tcp_v4_connect);
283
284 /*
285  * This routine does path mtu discovery as defined in RFC1191.
286  */
287 static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
288 {
289         struct dst_entry *dst;
290         struct inet_sock *inet = inet_sk(sk);
291
292         /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
293          * send out by Linux are always <576bytes so they should go through
294          * unfragmented).
295          */
296         if (sk->sk_state == TCP_LISTEN)
297                 return;
298
299         /* We don't check in the destentry if pmtu discovery is forbidden
300          * on this route. We just assume that no packet_to_big packets
301          * are send back when pmtu discovery is not active.
302          * There is a small race when the user changes this flag in the
303          * route, but I think that's acceptable.
304          */
305         if ((dst = __sk_dst_check(sk, 0)) == NULL)
306                 return;
307
308         dst->ops->update_pmtu(dst, mtu);
309
310         /* Something is about to be wrong... Remember soft error
311          * for the case, if this connection will not able to recover.
312          */
313         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
314                 sk->sk_err_soft = EMSGSIZE;
315
316         mtu = dst_mtu(dst);
317
318         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
319             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
320                 tcp_sync_mss(sk, mtu);
321
322                 /* Resend the TCP packet because it's
323                  * clear that the old packet has been
324                  * dropped. This is the new "fast" path mtu
325                  * discovery.
326                  */
327                 tcp_simple_retransmit(sk);
328         } /* else let the usual retransmit timer handle it */
329 }
330
331 /*
332  * This routine is called by the ICMP module when it gets some
333  * sort of error condition.  If err < 0 then the socket should
334  * be closed and the error returned to the user.  If err > 0
335  * it's just the icmp type << 8 | icmp code.  After adjustment
336  * header points to the first 8 bytes of the tcp header.  We need
337  * to find the appropriate port.
338  *
339  * The locking strategy used here is very "optimistic". When
340  * someone else accesses the socket the ICMP is just dropped
341  * and for some paths there is no check at all.
342  * A more general error queue to queue errors for later handling
343  * is probably better.
344  *
345  */
346
347 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
348 {
349         const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
350         struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
351         struct inet_connection_sock *icsk;
352         struct tcp_sock *tp;
353         struct inet_sock *inet;
354         const int type = icmp_hdr(icmp_skb)->type;
355         const int code = icmp_hdr(icmp_skb)->code;
356         struct sock *sk;
357         struct sk_buff *skb;
358         __u32 seq;
359         __u32 remaining;
360         int err;
361         struct net *net = dev_net(icmp_skb->dev);
362
363         if (icmp_skb->len < (iph->ihl << 2) + 8) {
364                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
365                 return;
366         }
367
368         sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
369                         iph->saddr, th->source, inet_iif(icmp_skb));
370         if (!sk) {
371                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
372                 return;
373         }
374         if (sk->sk_state == TCP_TIME_WAIT) {
375                 inet_twsk_put(inet_twsk(sk));
376                 return;
377         }
378
379         bh_lock_sock(sk);
380         /* If too many ICMPs get dropped on busy
381          * servers this needs to be solved differently.
382          */
383         if (sock_owned_by_user(sk))
384                 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
385
386         if (sk->sk_state == TCP_CLOSE)
387                 goto out;
388
389         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
390                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
391                 goto out;
392         }
393
394         icsk = inet_csk(sk);
395         tp = tcp_sk(sk);
396         seq = ntohl(th->seq);
397         if (sk->sk_state != TCP_LISTEN &&
398             !between(seq, tp->snd_una, tp->snd_nxt)) {
399                 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
400                 goto out;
401         }
402
403         switch (type) {
404         case ICMP_SOURCE_QUENCH:
405                 /* Just silently ignore these. */
406                 goto out;
407         case ICMP_PARAMETERPROB:
408                 err = EPROTO;
409                 break;
410         case ICMP_DEST_UNREACH:
411                 if (code > NR_ICMP_UNREACH)
412                         goto out;
413
414                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
415                         if (!sock_owned_by_user(sk))
416                                 do_pmtu_discovery(sk, iph, info);
417                         goto out;
418                 }
419
420                 err = icmp_err_convert[code].errno;
421                 /* check if icmp_skb allows revert of backoff
422                  * (see draft-zimmermann-tcp-lcd) */
423                 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
424                         break;
425                 if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
426                     !icsk->icsk_backoff)
427                         break;
428
429                 if (sock_owned_by_user(sk))
430                         break;
431
432                 icsk->icsk_backoff--;
433                 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
434                         TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
435                 tcp_bound_rto(sk);
436
437                 skb = tcp_write_queue_head(sk);
438                 BUG_ON(!skb);
439
440                 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
441                                 tcp_time_stamp - TCP_SKB_CB(skb)->when);
442
443                 if (remaining) {
444                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
445                                                   remaining, TCP_RTO_MAX);
446                 } else {
447                         /* RTO revert clocked out retransmission.
448                          * Will retransmit now */
449                         tcp_retransmit_timer(sk);
450                 }
451
452                 break;
453         case ICMP_TIME_EXCEEDED:
454                 err = EHOSTUNREACH;
455                 break;
456         default:
457                 goto out;
458         }
459
460         switch (sk->sk_state) {
461                 struct request_sock *req, **prev;
462         case TCP_LISTEN:
463                 if (sock_owned_by_user(sk))
464                         goto out;
465
466                 req = inet_csk_search_req(sk, &prev, th->dest,
467                                           iph->daddr, iph->saddr);
468                 if (!req)
469                         goto out;
470
471                 /* ICMPs are not backlogged, hence we cannot get
472                    an established socket here.
473                  */
474                 WARN_ON(req->sk);
475
476                 if (seq != tcp_rsk(req)->snt_isn) {
477                         NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
478                         goto out;
479                 }
480
481                 /*
482                  * Still in SYN_RECV, just remove it silently.
483                  * There is no good way to pass the error to the newly
484                  * created socket, and POSIX does not want network
485                  * errors returned from accept().
486                  */
487                 inet_csk_reqsk_queue_drop(sk, req, prev);
488                 goto out;
489
490         case TCP_SYN_SENT:
491         case TCP_SYN_RECV:  /* Cannot happen.
492                                It can f.e. if SYNs crossed.
493                              */
494                 if (!sock_owned_by_user(sk)) {
495                         sk->sk_err = err;
496
497                         sk->sk_error_report(sk);
498
499                         tcp_done(sk);
500                 } else {
501                         sk->sk_err_soft = err;
502                 }
503                 goto out;
504         }
505
506         /* If we've already connected we will keep trying
507          * until we time out, or the user gives up.
508          *
509          * rfc1122 4.2.3.9 allows to consider as hard errors
510          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
511          * but it is obsoleted by pmtu discovery).
512          *
513          * Note, that in modern internet, where routing is unreliable
514          * and in each dark corner broken firewalls sit, sending random
515          * errors ordered by their masters even this two messages finally lose
516          * their original sense (even Linux sends invalid PORT_UNREACHs)
517          *
518          * Now we are in compliance with RFCs.
519          *                                                      --ANK (980905)
520          */
521
522         inet = inet_sk(sk);
523         if (!sock_owned_by_user(sk) && inet->recverr) {
524                 sk->sk_err = err;
525                 sk->sk_error_report(sk);
526         } else  { /* Only an error on timeout */
527                 sk->sk_err_soft = err;
528         }
529
530 out:
531         bh_unlock_sock(sk);
532         sock_put(sk);
533 }
534
535 static void __tcp_v4_send_check(struct sk_buff *skb,
536                                 __be32 saddr, __be32 daddr)
537 {
538         struct tcphdr *th = tcp_hdr(skb);
539
540         if (skb->ip_summed == CHECKSUM_PARTIAL) {
541                 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
542                 skb->csum_start = skb_transport_header(skb) - skb->head;
543                 skb->csum_offset = offsetof(struct tcphdr, check);
544         } else {
545                 th->check = tcp_v4_check(skb->len, saddr, daddr,
546                                          csum_partial(th,
547                                                       th->doff << 2,
548                                                       skb->csum));
549         }
550 }
551
552 /* This routine computes an IPv4 TCP checksum. */
553 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
554 {
555         const struct inet_sock *inet = inet_sk(sk);
556
557         __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
558 }
559 EXPORT_SYMBOL(tcp_v4_send_check);
560
561 int tcp_v4_gso_send_check(struct sk_buff *skb)
562 {
563         const struct iphdr *iph;
564         struct tcphdr *th;
565
566         if (!pskb_may_pull(skb, sizeof(*th)))
567                 return -EINVAL;
568
569         iph = ip_hdr(skb);
570         th = tcp_hdr(skb);
571
572         th->check = 0;
573         skb->ip_summed = CHECKSUM_PARTIAL;
574         __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
575         return 0;
576 }
577
578 /*
579  *      This routine will send an RST to the other tcp.
580  *
581  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
582  *                    for reset.
583  *      Answer: if a packet caused RST, it is not for a socket
584  *              existing in our system, if it is matched to a socket,
585  *              it is just duplicate segment or bug in other side's TCP.
586  *              So that we build reply only basing on parameters
587  *              arrived with segment.
588  *      Exception: precedence violation. We do not implement it in any case.
589  */
590
591 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
592 {
593         const struct tcphdr *th = tcp_hdr(skb);
594         struct {
595                 struct tcphdr th;
596 #ifdef CONFIG_TCP_MD5SIG
597                 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
598 #endif
599         } rep;
600         struct ip_reply_arg arg;
601 #ifdef CONFIG_TCP_MD5SIG
602         struct tcp_md5sig_key *key;
603 #endif
604         struct net *net;
605
606         /* Never send a reset in response to a reset. */
607         if (th->rst)
608                 return;
609
610         if (skb_rtable(skb)->rt_type != RTN_LOCAL)
611                 return;
612
613         /* Swap the send and the receive. */
614         memset(&rep, 0, sizeof(rep));
615         rep.th.dest   = th->source;
616         rep.th.source = th->dest;
617         rep.th.doff   = sizeof(struct tcphdr) / 4;
618         rep.th.rst    = 1;
619
620         if (th->ack) {
621                 rep.th.seq = th->ack_seq;
622         } else {
623                 rep.th.ack = 1;
624                 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
625                                        skb->len - (th->doff << 2));
626         }
627
628         memset(&arg, 0, sizeof(arg));
629         arg.iov[0].iov_base = (unsigned char *)&rep;
630         arg.iov[0].iov_len  = sizeof(rep.th);
631
632 #ifdef CONFIG_TCP_MD5SIG
633         key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->saddr) : NULL;
634         if (key) {
635                 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
636                                    (TCPOPT_NOP << 16) |
637                                    (TCPOPT_MD5SIG << 8) |
638                                    TCPOLEN_MD5SIG);
639                 /* Update length and the length the header thinks exists */
640                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
641                 rep.th.doff = arg.iov[0].iov_len / 4;
642
643                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
644                                      key, ip_hdr(skb)->saddr,
645                                      ip_hdr(skb)->daddr, &rep.th);
646         }
647 #endif
648         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
649                                       ip_hdr(skb)->saddr, /* XXX */
650                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
651         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
652         arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
653         /* When socket is gone, all binding information is lost.
654          * routing might fail in this case. using iif for oif to
655          * make sure we can deliver it
656          */
657         arg.bound_dev_if = sk ? sk->sk_bound_dev_if : inet_iif(skb);
658
659         net = dev_net(skb_dst(skb)->dev);
660         arg.tos = ip_hdr(skb)->tos;
661         ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
662                       &arg, arg.iov[0].iov_len);
663
664         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
665         TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
666 }
667
668 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
669    outside socket context is ugly, certainly. What can I do?
670  */
671
672 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
673                             u32 win, u32 ts, int oif,
674                             struct tcp_md5sig_key *key,
675                             int reply_flags, u8 tos)
676 {
677         const struct tcphdr *th = tcp_hdr(skb);
678         struct {
679                 struct tcphdr th;
680                 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
681 #ifdef CONFIG_TCP_MD5SIG
682                            + (TCPOLEN_MD5SIG_ALIGNED >> 2)
683 #endif
684                         ];
685         } rep;
686         struct ip_reply_arg arg;
687         struct net *net = dev_net(skb_dst(skb)->dev);
688
689         memset(&rep.th, 0, sizeof(struct tcphdr));
690         memset(&arg, 0, sizeof(arg));
691
692         arg.iov[0].iov_base = (unsigned char *)&rep;
693         arg.iov[0].iov_len  = sizeof(rep.th);
694         if (ts) {
695                 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
696                                    (TCPOPT_TIMESTAMP << 8) |
697                                    TCPOLEN_TIMESTAMP);
698                 rep.opt[1] = htonl(tcp_time_stamp);
699                 rep.opt[2] = htonl(ts);
700                 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
701         }
702
703         /* Swap the send and the receive. */
704         rep.th.dest    = th->source;
705         rep.th.source  = th->dest;
706         rep.th.doff    = arg.iov[0].iov_len / 4;
707         rep.th.seq     = htonl(seq);
708         rep.th.ack_seq = htonl(ack);
709         rep.th.ack     = 1;
710         rep.th.window  = htons(win);
711
712 #ifdef CONFIG_TCP_MD5SIG
713         if (key) {
714                 int offset = (ts) ? 3 : 0;
715
716                 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
717                                           (TCPOPT_NOP << 16) |
718                                           (TCPOPT_MD5SIG << 8) |
719                                           TCPOLEN_MD5SIG);
720                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
721                 rep.th.doff = arg.iov[0].iov_len/4;
722
723                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
724                                     key, ip_hdr(skb)->saddr,
725                                     ip_hdr(skb)->daddr, &rep.th);
726         }
727 #endif
728         arg.flags = reply_flags;
729         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
730                                       ip_hdr(skb)->saddr, /* XXX */
731                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
732         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
733         if (oif)
734                 arg.bound_dev_if = oif;
735         arg.tos = tos;
736         ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
737                       &arg, arg.iov[0].iov_len);
738
739         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
740 }
741
742 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
743 {
744         struct inet_timewait_sock *tw = inet_twsk(sk);
745         struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
746
747         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
748                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
749                         tcptw->tw_ts_recent,
750                         tw->tw_bound_dev_if,
751                         tcp_twsk_md5_key(tcptw),
752                         tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
753                         tw->tw_tos
754                         );
755
756         inet_twsk_put(tw);
757 }
758
759 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
760                                   struct request_sock *req)
761 {
762         tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
763                         tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
764                         req->ts_recent,
765                         0,
766                         tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
767                         inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
768                         ip_hdr(skb)->tos);
769 }
770
771 /*
772  *      Send a SYN-ACK after having received a SYN.
773  *      This still operates on a request_sock only, not on a big
774  *      socket.
775  */
776 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
777                               struct request_sock *req,
778                               struct request_values *rvp)
779 {
780         const struct inet_request_sock *ireq = inet_rsk(req);
781         struct flowi4 fl4;
782         int err = -1;
783         struct sk_buff * skb;
784
785         /* First, grab a route. */
786         if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
787                 return -1;
788
789         skb = tcp_make_synack(sk, dst, req, rvp);
790
791         if (skb) {
792                 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
793
794                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
795                                             ireq->rmt_addr,
796                                             ireq->opt);
797                 err = net_xmit_eval(err);
798         }
799
800         dst_release(dst);
801         return err;
802 }
803
804 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
805                               struct request_values *rvp)
806 {
807         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
808         return tcp_v4_send_synack(sk, NULL, req, rvp);
809 }
810
811 /*
812  *      IPv4 request_sock destructor.
813  */
814 static void tcp_v4_reqsk_destructor(struct request_sock *req)
815 {
816         kfree(inet_rsk(req)->opt);
817 }
818
819 /*
820  * Return 1 if a syncookie should be sent
821  */
822 int tcp_syn_flood_action(struct sock *sk,
823                          const struct sk_buff *skb,
824                          const char *proto)
825 {
826         const char *msg = "Dropping request";
827         int want_cookie = 0;
828         struct listen_sock *lopt;
829
830
831
832 #ifdef CONFIG_SYN_COOKIES
833         if (sysctl_tcp_syncookies) {
834                 msg = "Sending cookies";
835                 want_cookie = 1;
836                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
837         } else
838 #endif
839                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
840
841         lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
842         if (!lopt->synflood_warned) {
843                 lopt->synflood_warned = 1;
844                 pr_info("%s: Possible SYN flooding on port %d. %s. "
845                         " Check SNMP counters.\n",
846                         proto, ntohs(tcp_hdr(skb)->dest), msg);
847         }
848         return want_cookie;
849 }
850 EXPORT_SYMBOL(tcp_syn_flood_action);
851
852 /*
853  * Save and compile IPv4 options into the request_sock if needed.
854  */
855 static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
856                                                   struct sk_buff *skb)
857 {
858         const struct ip_options *opt = &(IPCB(skb)->opt);
859         struct ip_options_rcu *dopt = NULL;
860
861         if (opt && opt->optlen) {
862                 int opt_size = sizeof(*dopt) + opt->optlen;
863
864                 dopt = kmalloc(opt_size, GFP_ATOMIC);
865                 if (dopt) {
866                         if (ip_options_echo(&dopt->opt, skb)) {
867                                 kfree(dopt);
868                                 dopt = NULL;
869                         }
870                 }
871         }
872         return dopt;
873 }
874
875 #ifdef CONFIG_TCP_MD5SIG
876 /*
877  * RFC2385 MD5 checksumming requires a mapping of
878  * IP address->MD5 Key.
879  * We need to maintain these in the sk structure.
880  */
881
882 /* Find the Key structure for an address.  */
883 static struct tcp_md5sig_key *
884                         tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
885 {
886         struct tcp_sock *tp = tcp_sk(sk);
887         int i;
888
889         if (!tp->md5sig_info || !tp->md5sig_info->entries4)
890                 return NULL;
891         for (i = 0; i < tp->md5sig_info->entries4; i++) {
892                 if (tp->md5sig_info->keys4[i].addr == addr)
893                         return &tp->md5sig_info->keys4[i].base;
894         }
895         return NULL;
896 }
897
898 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
899                                          struct sock *addr_sk)
900 {
901         return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
902 }
903 EXPORT_SYMBOL(tcp_v4_md5_lookup);
904
905 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
906                                                       struct request_sock *req)
907 {
908         return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
909 }
910
911 /* This can be called on a newly created socket, from other files */
912 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
913                       u8 *newkey, u8 newkeylen)
914 {
915         /* Add Key to the list */
916         struct tcp_md5sig_key *key;
917         struct tcp_sock *tp = tcp_sk(sk);
918         struct tcp4_md5sig_key *keys;
919
920         key = tcp_v4_md5_do_lookup(sk, addr);
921         if (key) {
922                 /* Pre-existing entry - just update that one. */
923                 kfree(key->key);
924                 key->key = newkey;
925                 key->keylen = newkeylen;
926         } else {
927                 struct tcp_md5sig_info *md5sig;
928
929                 if (!tp->md5sig_info) {
930                         tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
931                                                   GFP_ATOMIC);
932                         if (!tp->md5sig_info) {
933                                 kfree(newkey);
934                                 return -ENOMEM;
935                         }
936                         sk_nocaps_add(sk, NETIF_F_GSO_MASK);
937                 }
938
939                 md5sig = tp->md5sig_info;
940                 if (md5sig->entries4 == 0 &&
941                     tcp_alloc_md5sig_pool(sk) == NULL) {
942                         kfree(newkey);
943                         return -ENOMEM;
944                 }
945
946                 if (md5sig->alloced4 == md5sig->entries4) {
947                         keys = kmalloc((sizeof(*keys) *
948                                         (md5sig->entries4 + 1)), GFP_ATOMIC);
949                         if (!keys) {
950                                 kfree(newkey);
951                                 if (md5sig->entries4 == 0)
952                                         tcp_free_md5sig_pool();
953                                 return -ENOMEM;
954                         }
955
956                         if (md5sig->entries4)
957                                 memcpy(keys, md5sig->keys4,
958                                        sizeof(*keys) * md5sig->entries4);
959
960                         /* Free old key list, and reference new one */
961                         kfree(md5sig->keys4);
962                         md5sig->keys4 = keys;
963                         md5sig->alloced4++;
964                 }
965                 md5sig->entries4++;
966                 md5sig->keys4[md5sig->entries4 - 1].addr        = addr;
967                 md5sig->keys4[md5sig->entries4 - 1].base.key    = newkey;
968                 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
969         }
970         return 0;
971 }
972 EXPORT_SYMBOL(tcp_v4_md5_do_add);
973
974 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
975                                u8 *newkey, u8 newkeylen)
976 {
977         return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
978                                  newkey, newkeylen);
979 }
980
981 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
982 {
983         struct tcp_sock *tp = tcp_sk(sk);
984         int i;
985
986         for (i = 0; i < tp->md5sig_info->entries4; i++) {
987                 if (tp->md5sig_info->keys4[i].addr == addr) {
988                         /* Free the key */
989                         kfree(tp->md5sig_info->keys4[i].base.key);
990                         tp->md5sig_info->entries4--;
991
992                         if (tp->md5sig_info->entries4 == 0) {
993                                 kfree(tp->md5sig_info->keys4);
994                                 tp->md5sig_info->keys4 = NULL;
995                                 tp->md5sig_info->alloced4 = 0;
996                                 tcp_free_md5sig_pool();
997                         } else if (tp->md5sig_info->entries4 != i) {
998                                 /* Need to do some manipulation */
999                                 memmove(&tp->md5sig_info->keys4[i],
1000                                         &tp->md5sig_info->keys4[i+1],
1001                                         (tp->md5sig_info->entries4 - i) *
1002                                          sizeof(struct tcp4_md5sig_key));
1003                         }
1004                         return 0;
1005                 }
1006         }
1007         return -ENOENT;
1008 }
1009 EXPORT_SYMBOL(tcp_v4_md5_do_del);
1010
1011 static void tcp_v4_clear_md5_list(struct sock *sk)
1012 {
1013         struct tcp_sock *tp = tcp_sk(sk);
1014
1015         /* Free each key, then the set of key keys,
1016          * the crypto element, and then decrement our
1017          * hold on the last resort crypto.
1018          */
1019         if (tp->md5sig_info->entries4) {
1020                 int i;
1021                 for (i = 0; i < tp->md5sig_info->entries4; i++)
1022                         kfree(tp->md5sig_info->keys4[i].base.key);
1023                 tp->md5sig_info->entries4 = 0;
1024                 tcp_free_md5sig_pool();
1025         }
1026         if (tp->md5sig_info->keys4) {
1027                 kfree(tp->md5sig_info->keys4);
1028                 tp->md5sig_info->keys4 = NULL;
1029                 tp->md5sig_info->alloced4  = 0;
1030         }
1031 }
1032
1033 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1034                                  int optlen)
1035 {
1036         struct tcp_md5sig cmd;
1037         struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1038         u8 *newkey;
1039
1040         if (optlen < sizeof(cmd))
1041                 return -EINVAL;
1042
1043         if (copy_from_user(&cmd, optval, sizeof(cmd)))
1044                 return -EFAULT;
1045
1046         if (sin->sin_family != AF_INET)
1047                 return -EINVAL;
1048
1049         if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1050                 if (!tcp_sk(sk)->md5sig_info)
1051                         return -ENOENT;
1052                 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1053         }
1054
1055         if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1056                 return -EINVAL;
1057
1058         if (!tcp_sk(sk)->md5sig_info) {
1059                 struct tcp_sock *tp = tcp_sk(sk);
1060                 struct tcp_md5sig_info *p;
1061
1062                 p = kzalloc(sizeof(*p), sk->sk_allocation);
1063                 if (!p)
1064                         return -EINVAL;
1065
1066                 tp->md5sig_info = p;
1067                 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1068         }
1069
1070         newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1071         if (!newkey)
1072                 return -ENOMEM;
1073         return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1074                                  newkey, cmd.tcpm_keylen);
1075 }
1076
1077 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1078                                         __be32 daddr, __be32 saddr, int nbytes)
1079 {
1080         struct tcp4_pseudohdr *bp;
1081         struct scatterlist sg;
1082
1083         bp = &hp->md5_blk.ip4;
1084
1085         /*
1086          * 1. the TCP pseudo-header (in the order: source IP address,
1087          * destination IP address, zero-padded protocol number, and
1088          * segment length)
1089          */
1090         bp->saddr = saddr;
1091         bp->daddr = daddr;
1092         bp->pad = 0;
1093         bp->protocol = IPPROTO_TCP;
1094         bp->len = cpu_to_be16(nbytes);
1095
1096         sg_init_one(&sg, bp, sizeof(*bp));
1097         return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1098 }
1099
1100 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1101                                __be32 daddr, __be32 saddr, const struct tcphdr *th)
1102 {
1103         struct tcp_md5sig_pool *hp;
1104         struct hash_desc *desc;
1105
1106         hp = tcp_get_md5sig_pool();
1107         if (!hp)
1108                 goto clear_hash_noput;
1109         desc = &hp->md5_desc;
1110
1111         if (crypto_hash_init(desc))
1112                 goto clear_hash;
1113         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1114                 goto clear_hash;
1115         if (tcp_md5_hash_header(hp, th))
1116                 goto clear_hash;
1117         if (tcp_md5_hash_key(hp, key))
1118                 goto clear_hash;
1119         if (crypto_hash_final(desc, md5_hash))
1120                 goto clear_hash;
1121
1122         tcp_put_md5sig_pool();
1123         return 0;
1124
1125 clear_hash:
1126         tcp_put_md5sig_pool();
1127 clear_hash_noput:
1128         memset(md5_hash, 0, 16);
1129         return 1;
1130 }
1131
1132 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1133                         const struct sock *sk, const struct request_sock *req,
1134                         const struct sk_buff *skb)
1135 {
1136         struct tcp_md5sig_pool *hp;
1137         struct hash_desc *desc;
1138         const struct tcphdr *th = tcp_hdr(skb);
1139         __be32 saddr, daddr;
1140
1141         if (sk) {
1142                 saddr = inet_sk(sk)->inet_saddr;
1143                 daddr = inet_sk(sk)->inet_daddr;
1144         } else if (req) {
1145                 saddr = inet_rsk(req)->loc_addr;
1146                 daddr = inet_rsk(req)->rmt_addr;
1147         } else {
1148                 const struct iphdr *iph = ip_hdr(skb);
1149                 saddr = iph->saddr;
1150                 daddr = iph->daddr;
1151         }
1152
1153         hp = tcp_get_md5sig_pool();
1154         if (!hp)
1155                 goto clear_hash_noput;
1156         desc = &hp->md5_desc;
1157
1158         if (crypto_hash_init(desc))
1159                 goto clear_hash;
1160
1161         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1162                 goto clear_hash;
1163         if (tcp_md5_hash_header(hp, th))
1164                 goto clear_hash;
1165         if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1166                 goto clear_hash;
1167         if (tcp_md5_hash_key(hp, key))
1168                 goto clear_hash;
1169         if (crypto_hash_final(desc, md5_hash))
1170                 goto clear_hash;
1171
1172         tcp_put_md5sig_pool();
1173         return 0;
1174
1175 clear_hash:
1176         tcp_put_md5sig_pool();
1177 clear_hash_noput:
1178         memset(md5_hash, 0, 16);
1179         return 1;
1180 }
1181 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1182
1183 static int tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1184 {
1185         /*
1186          * This gets called for each TCP segment that arrives
1187          * so we want to be efficient.
1188          * We have 3 drop cases:
1189          * o No MD5 hash and one expected.
1190          * o MD5 hash and we're not expecting one.
1191          * o MD5 hash and its wrong.
1192          */
1193         const __u8 *hash_location = NULL;
1194         struct tcp_md5sig_key *hash_expected;
1195         const struct iphdr *iph = ip_hdr(skb);
1196         const struct tcphdr *th = tcp_hdr(skb);
1197         int genhash;
1198         unsigned char newhash[16];
1199
1200         hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1201         hash_location = tcp_parse_md5sig_option(th);
1202
1203         /* We've parsed the options - do we have a hash? */
1204         if (!hash_expected && !hash_location)
1205                 return 0;
1206
1207         if (hash_expected && !hash_location) {
1208                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1209                 return 1;
1210         }
1211
1212         if (!hash_expected && hash_location) {
1213                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1214                 return 1;
1215         }
1216
1217         /* Okay, so this is hash_expected and hash_location -
1218          * so we need to calculate the checksum.
1219          */
1220         genhash = tcp_v4_md5_hash_skb(newhash,
1221                                       hash_expected,
1222                                       NULL, NULL, skb);
1223
1224         if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1225                 if (net_ratelimit()) {
1226                         printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1227                                &iph->saddr, ntohs(th->source),
1228                                &iph->daddr, ntohs(th->dest),
1229                                genhash ? " tcp_v4_calc_md5_hash failed" : "");
1230                 }
1231                 return 1;
1232         }
1233         return 0;
1234 }
1235
1236 #endif
1237
1238 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1239         .family         =       PF_INET,
1240         .obj_size       =       sizeof(struct tcp_request_sock),
1241         .rtx_syn_ack    =       tcp_v4_rtx_synack,
1242         .send_ack       =       tcp_v4_reqsk_send_ack,
1243         .destructor     =       tcp_v4_reqsk_destructor,
1244         .send_reset     =       tcp_v4_send_reset,
1245         .syn_ack_timeout =      tcp_syn_ack_timeout,
1246 };
1247
1248 #ifdef CONFIG_TCP_MD5SIG
1249 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1250         .md5_lookup     =       tcp_v4_reqsk_md5_lookup,
1251         .calc_md5_hash  =       tcp_v4_md5_hash_skb,
1252 };
1253 #endif
1254
1255 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1256 {
1257         struct tcp_extend_values tmp_ext;
1258         struct tcp_options_received tmp_opt;
1259         const u8 *hash_location;
1260         struct request_sock *req;
1261         struct inet_request_sock *ireq;
1262         struct tcp_sock *tp = tcp_sk(sk);
1263         struct dst_entry *dst = NULL;
1264         __be32 saddr = ip_hdr(skb)->saddr;
1265         __be32 daddr = ip_hdr(skb)->daddr;
1266         __u32 isn = TCP_SKB_CB(skb)->when;
1267         int want_cookie = 0;
1268
1269         /* Never answer to SYNs send to broadcast or multicast */
1270         if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1271                 goto drop;
1272
1273         /* TW buckets are converted to open requests without
1274          * limitations, they conserve resources and peer is
1275          * evidently real one.
1276          */
1277         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1278                 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1279                 if (!want_cookie)
1280                         goto drop;
1281         }
1282
1283         /* Accept backlog is full. If we have already queued enough
1284          * of warm entries in syn queue, drop request. It is better than
1285          * clogging syn queue with openreqs with exponentially increasing
1286          * timeout.
1287          */
1288         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1289                 goto drop;
1290
1291         req = inet_reqsk_alloc(&tcp_request_sock_ops);
1292         if (!req)
1293                 goto drop;
1294
1295 #ifdef CONFIG_TCP_MD5SIG
1296         tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1297 #endif
1298
1299         tcp_clear_options(&tmp_opt);
1300         tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1301         tmp_opt.user_mss  = tp->rx_opt.user_mss;
1302         tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1303
1304         if (tmp_opt.cookie_plus > 0 &&
1305             tmp_opt.saw_tstamp &&
1306             !tp->rx_opt.cookie_out_never &&
1307             (sysctl_tcp_cookie_size > 0 ||
1308              (tp->cookie_values != NULL &&
1309               tp->cookie_values->cookie_desired > 0))) {
1310                 u8 *c;
1311                 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1312                 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1313
1314                 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1315                         goto drop_and_release;
1316
1317                 /* Secret recipe starts with IP addresses */
1318                 *mess++ ^= (__force u32)daddr;
1319                 *mess++ ^= (__force u32)saddr;
1320
1321                 /* plus variable length Initiator Cookie */
1322                 c = (u8 *)mess;
1323                 while (l-- > 0)
1324                         *c++ ^= *hash_location++;
1325
1326                 want_cookie = 0;        /* not our kind of cookie */
1327                 tmp_ext.cookie_out_never = 0; /* false */
1328                 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1329         } else if (!tp->rx_opt.cookie_in_always) {
1330                 /* redundant indications, but ensure initialization. */
1331                 tmp_ext.cookie_out_never = 1; /* true */
1332                 tmp_ext.cookie_plus = 0;
1333         } else {
1334                 goto drop_and_release;
1335         }
1336         tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1337
1338         if (want_cookie && !tmp_opt.saw_tstamp)
1339                 tcp_clear_options(&tmp_opt);
1340
1341         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1342         tcp_openreq_init(req, &tmp_opt, skb);
1343
1344         ireq = inet_rsk(req);
1345         ireq->loc_addr = daddr;
1346         ireq->rmt_addr = saddr;
1347         ireq->no_srccheck = inet_sk(sk)->transparent;
1348         ireq->opt = tcp_v4_save_options(sk, skb);
1349
1350         if (security_inet_conn_request(sk, skb, req))
1351                 goto drop_and_free;
1352
1353         if (!want_cookie || tmp_opt.tstamp_ok)
1354                 TCP_ECN_create_request(req, tcp_hdr(skb));
1355
1356         if (want_cookie) {
1357                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1358                 req->cookie_ts = tmp_opt.tstamp_ok;
1359         } else if (!isn) {
1360                 struct inet_peer *peer = NULL;
1361                 struct flowi4 fl4;
1362
1363                 /* VJ's idea. We save last timestamp seen
1364                  * from the destination in peer table, when entering
1365                  * state TIME-WAIT, and check against it before
1366                  * accepting new connection request.
1367                  *
1368                  * If "isn" is not zero, this request hit alive
1369                  * timewait bucket, so that all the necessary checks
1370                  * are made in the function processing timewait state.
1371                  */
1372                 if (tmp_opt.saw_tstamp &&
1373                     tcp_death_row.sysctl_tw_recycle &&
1374                     (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1375                     fl4.daddr == saddr &&
1376                     (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1377                         inet_peer_refcheck(peer);
1378                         if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1379                             (s32)(peer->tcp_ts - req->ts_recent) >
1380                                                         TCP_PAWS_WINDOW) {
1381                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1382                                 goto drop_and_release;
1383                         }
1384                 }
1385                 /* Kill the following clause, if you dislike this way. */
1386                 else if (!sysctl_tcp_syncookies &&
1387                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1388                           (sysctl_max_syn_backlog >> 2)) &&
1389                          (!peer || !peer->tcp_ts_stamp) &&
1390                          (!dst || !dst_metric(dst, RTAX_RTT))) {
1391                         /* Without syncookies last quarter of
1392                          * backlog is filled with destinations,
1393                          * proven to be alive.
1394                          * It means that we continue to communicate
1395                          * to destinations, already remembered
1396                          * to the moment of synflood.
1397                          */
1398                         LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1399                                        &saddr, ntohs(tcp_hdr(skb)->source));
1400                         goto drop_and_release;
1401                 }
1402
1403                 isn = tcp_v4_init_sequence(skb);
1404         }
1405         tcp_rsk(req)->snt_isn = isn;
1406         tcp_rsk(req)->snt_synack = tcp_time_stamp;
1407
1408         if (tcp_v4_send_synack(sk, dst, req,
1409                                (struct request_values *)&tmp_ext) ||
1410             want_cookie)
1411                 goto drop_and_free;
1412
1413         inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1414         return 0;
1415
1416 drop_and_release:
1417         dst_release(dst);
1418 drop_and_free:
1419         reqsk_free(req);
1420 drop:
1421         return 0;
1422 }
1423 EXPORT_SYMBOL(tcp_v4_conn_request);
1424
1425
1426 /*
1427  * The three way handshake has completed - we got a valid synack -
1428  * now create the new socket.
1429  */
1430 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1431                                   struct request_sock *req,
1432                                   struct dst_entry *dst)
1433 {
1434         struct inet_request_sock *ireq;
1435         struct inet_sock *newinet;
1436         struct tcp_sock *newtp;
1437         struct sock *newsk;
1438 #ifdef CONFIG_TCP_MD5SIG
1439         struct tcp_md5sig_key *key;
1440 #endif
1441         struct ip_options_rcu *inet_opt;
1442
1443         if (sk_acceptq_is_full(sk))
1444                 goto exit_overflow;
1445
1446         newsk = tcp_create_openreq_child(sk, req, skb);
1447         if (!newsk)
1448                 goto exit_nonewsk;
1449
1450         newsk->sk_gso_type = SKB_GSO_TCPV4;
1451
1452         newtp                 = tcp_sk(newsk);
1453         newinet               = inet_sk(newsk);
1454         ireq                  = inet_rsk(req);
1455         newinet->inet_daddr   = ireq->rmt_addr;
1456         newinet->inet_rcv_saddr = ireq->loc_addr;
1457         newinet->inet_saddr           = ireq->loc_addr;
1458         inet_opt              = ireq->opt;
1459         rcu_assign_pointer(newinet->inet_opt, inet_opt);
1460         ireq->opt             = NULL;
1461         newinet->mc_index     = inet_iif(skb);
1462         newinet->mc_ttl       = ip_hdr(skb)->ttl;
1463         inet_csk(newsk)->icsk_ext_hdr_len = 0;
1464         if (inet_opt)
1465                 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1466         newinet->inet_id = newtp->write_seq ^ jiffies;
1467
1468         if (!dst) {
1469                 dst = inet_csk_route_child_sock(sk, newsk, req);
1470                 if (!dst)
1471                         goto put_and_exit;
1472         } else {
1473                 /* syncookie case : see end of cookie_v4_check() */
1474         }
1475         sk_setup_caps(newsk, dst);
1476
1477         tcp_mtup_init(newsk);
1478         tcp_sync_mss(newsk, dst_mtu(dst));
1479         newtp->advmss = dst_metric_advmss(dst);
1480         if (tcp_sk(sk)->rx_opt.user_mss &&
1481             tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1482                 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1483
1484         tcp_initialize_rcv_mss(newsk);
1485         if (tcp_rsk(req)->snt_synack)
1486                 tcp_valid_rtt_meas(newsk,
1487                     tcp_time_stamp - tcp_rsk(req)->snt_synack);
1488         newtp->total_retrans = req->retrans;
1489
1490 #ifdef CONFIG_TCP_MD5SIG
1491         /* Copy over the MD5 key from the original socket */
1492         key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1493         if (key != NULL) {
1494                 /*
1495                  * We're using one, so create a matching key
1496                  * on the newsk structure. If we fail to get
1497                  * memory, then we end up not copying the key
1498                  * across. Shucks.
1499                  */
1500                 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1501                 if (newkey != NULL)
1502                         tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1503                                           newkey, key->keylen);
1504                 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1505         }
1506 #endif
1507
1508         if (__inet_inherit_port(sk, newsk) < 0)
1509                 goto put_and_exit;
1510         __inet_hash_nolisten(newsk, NULL);
1511
1512         return newsk;
1513
1514 exit_overflow:
1515         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1516 exit_nonewsk:
1517         dst_release(dst);
1518 exit:
1519         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1520         return NULL;
1521 put_and_exit:
1522         tcp_clear_xmit_timers(newsk);
1523         bh_unlock_sock(newsk);
1524         sock_put(newsk);
1525         goto exit;
1526 }
1527 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1528
1529 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1530 {
1531         struct tcphdr *th = tcp_hdr(skb);
1532         const struct iphdr *iph = ip_hdr(skb);
1533         struct sock *nsk;
1534         struct request_sock **prev;
1535         /* Find possible connection requests. */
1536         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1537                                                        iph->saddr, iph->daddr);
1538         if (req)
1539                 return tcp_check_req(sk, skb, req, prev);
1540
1541         nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1542                         th->source, iph->daddr, th->dest, inet_iif(skb));
1543
1544         if (nsk) {
1545                 if (nsk->sk_state != TCP_TIME_WAIT) {
1546                         bh_lock_sock(nsk);
1547                         return nsk;
1548                 }
1549                 inet_twsk_put(inet_twsk(nsk));
1550                 return NULL;
1551         }
1552
1553 #ifdef CONFIG_SYN_COOKIES
1554         if (!th->syn)
1555                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1556 #endif
1557         return sk;
1558 }
1559
1560 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1561 {
1562         const struct iphdr *iph = ip_hdr(skb);
1563
1564         if (skb->ip_summed == CHECKSUM_COMPLETE) {
1565                 if (!tcp_v4_check(skb->len, iph->saddr,
1566                                   iph->daddr, skb->csum)) {
1567                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1568                         return 0;
1569                 }
1570         }
1571
1572         skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1573                                        skb->len, IPPROTO_TCP, 0);
1574
1575         if (skb->len <= 76) {
1576                 return __skb_checksum_complete(skb);
1577         }
1578         return 0;
1579 }
1580
1581
1582 /* The socket must have it's spinlock held when we get
1583  * here.
1584  *
1585  * We have a potential double-lock case here, so even when
1586  * doing backlog processing we use the BH locking scheme.
1587  * This is because we cannot sleep with the original spinlock
1588  * held.
1589  */
1590 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1591 {
1592         struct sock *rsk;
1593 #ifdef CONFIG_TCP_MD5SIG
1594         /*
1595          * We really want to reject the packet as early as possible
1596          * if:
1597          *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1598          *  o There is an MD5 option and we're not expecting one
1599          */
1600         if (tcp_v4_inbound_md5_hash(sk, skb))
1601                 goto discard;
1602 #endif
1603
1604         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1605                 sock_rps_save_rxhash(sk, skb);
1606                 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1607                         rsk = sk;
1608                         goto reset;
1609                 }
1610                 return 0;
1611         }
1612
1613         if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1614                 goto csum_err;
1615
1616         if (sk->sk_state == TCP_LISTEN) {
1617                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1618                 if (!nsk)
1619                         goto discard;
1620
1621                 if (nsk != sk) {
1622                         sock_rps_save_rxhash(nsk, skb);
1623                         if (tcp_child_process(sk, nsk, skb)) {
1624                                 rsk = nsk;
1625                                 goto reset;
1626                         }
1627                         return 0;
1628                 }
1629         } else
1630                 sock_rps_save_rxhash(sk, skb);
1631
1632         if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1633                 rsk = sk;
1634                 goto reset;
1635         }
1636         return 0;
1637
1638 reset:
1639         tcp_v4_send_reset(rsk, skb);
1640 discard:
1641         kfree_skb(skb);
1642         /* Be careful here. If this function gets more complicated and
1643          * gcc suffers from register pressure on the x86, sk (in %ebx)
1644          * might be destroyed here. This current version compiles correctly,
1645          * but you have been warned.
1646          */
1647         return 0;
1648
1649 csum_err:
1650         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1651         goto discard;
1652 }
1653 EXPORT_SYMBOL(tcp_v4_do_rcv);
1654
1655 /*
1656  *      From tcp_input.c
1657  */
1658
1659 int tcp_v4_rcv(struct sk_buff *skb)
1660 {
1661         const struct iphdr *iph;
1662         const struct tcphdr *th;
1663         struct sock *sk;
1664         int ret;
1665         struct net *net = dev_net(skb->dev);
1666
1667         if (skb->pkt_type != PACKET_HOST)
1668                 goto discard_it;
1669
1670         /* Count it even if it's bad */
1671         TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1672
1673         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1674                 goto discard_it;
1675
1676         th = tcp_hdr(skb);
1677
1678         if (th->doff < sizeof(struct tcphdr) / 4)
1679                 goto bad_packet;
1680         if (!pskb_may_pull(skb, th->doff * 4))
1681                 goto discard_it;
1682
1683         /* An explanation is required here, I think.
1684          * Packet length and doff are validated by header prediction,
1685          * provided case of th->doff==0 is eliminated.
1686          * So, we defer the checks. */
1687         if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1688                 goto bad_packet;
1689
1690         th = tcp_hdr(skb);
1691         iph = ip_hdr(skb);
1692         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1693         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1694                                     skb->len - th->doff * 4);
1695         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1696         TCP_SKB_CB(skb)->when    = 0;
1697         TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1698         TCP_SKB_CB(skb)->sacked  = 0;
1699
1700         sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1701         if (!sk)
1702                 goto no_tcp_socket;
1703
1704 process:
1705         if (sk->sk_state == TCP_TIME_WAIT)
1706                 goto do_time_wait;
1707
1708         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1709                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1710                 goto discard_and_relse;
1711         }
1712
1713         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1714                 goto discard_and_relse;
1715         nf_reset(skb);
1716
1717         if (sk_filter(sk, skb))
1718                 goto discard_and_relse;
1719
1720         skb->dev = NULL;
1721
1722         bh_lock_sock_nested(sk);
1723         ret = 0;
1724         if (!sock_owned_by_user(sk)) {
1725 #ifdef CONFIG_NET_DMA
1726                 struct tcp_sock *tp = tcp_sk(sk);
1727                 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1728                         tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1729                 if (tp->ucopy.dma_chan)
1730                         ret = tcp_v4_do_rcv(sk, skb);
1731                 else
1732 #endif
1733                 {
1734                         if (!tcp_prequeue(sk, skb))
1735                                 ret = tcp_v4_do_rcv(sk, skb);
1736                 }
1737         } else if (unlikely(sk_add_backlog(sk, skb))) {
1738                 bh_unlock_sock(sk);
1739                 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1740                 goto discard_and_relse;
1741         }
1742         bh_unlock_sock(sk);
1743
1744         sock_put(sk);
1745
1746         return ret;
1747
1748 no_tcp_socket:
1749         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1750                 goto discard_it;
1751
1752         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1753 bad_packet:
1754                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1755         } else {
1756                 tcp_v4_send_reset(NULL, skb);
1757         }
1758
1759 discard_it:
1760         /* Discard frame. */
1761         kfree_skb(skb);
1762         return 0;
1763
1764 discard_and_relse:
1765         sock_put(sk);
1766         goto discard_it;
1767
1768 do_time_wait:
1769         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1770                 inet_twsk_put(inet_twsk(sk));
1771                 goto discard_it;
1772         }
1773
1774         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1775                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1776                 inet_twsk_put(inet_twsk(sk));
1777                 goto discard_it;
1778         }
1779         switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1780         case TCP_TW_SYN: {
1781                 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1782                                                         &tcp_hashinfo,
1783                                                         iph->daddr, th->dest,
1784                                                         inet_iif(skb));
1785                 if (sk2) {
1786                         inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1787                         inet_twsk_put(inet_twsk(sk));
1788                         sk = sk2;
1789                         goto process;
1790                 }
1791                 /* Fall through to ACK */
1792         }
1793         case TCP_TW_ACK:
1794                 tcp_v4_timewait_ack(sk, skb);
1795                 break;
1796         case TCP_TW_RST:
1797                 goto no_tcp_socket;
1798         case TCP_TW_SUCCESS:;
1799         }
1800         goto discard_it;
1801 }
1802
1803 struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1804 {
1805         struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1806         struct inet_sock *inet = inet_sk(sk);
1807         struct inet_peer *peer;
1808
1809         if (!rt ||
1810             inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1811                 peer = inet_getpeer_v4(inet->inet_daddr, 1);
1812                 *release_it = true;
1813         } else {
1814                 if (!rt->peer)
1815                         rt_bind_peer(rt, inet->inet_daddr, 1);
1816                 peer = rt->peer;
1817                 *release_it = false;
1818         }
1819
1820         return peer;
1821 }
1822 EXPORT_SYMBOL(tcp_v4_get_peer);
1823
1824 void *tcp_v4_tw_get_peer(struct sock *sk)
1825 {
1826         const struct inet_timewait_sock *tw = inet_twsk(sk);
1827
1828         return inet_getpeer_v4(tw->tw_daddr, 1);
1829 }
1830 EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1831
1832 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1833         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
1834         .twsk_unique    = tcp_twsk_unique,
1835         .twsk_destructor= tcp_twsk_destructor,
1836         .twsk_getpeer   = tcp_v4_tw_get_peer,
1837 };
1838
1839 const struct inet_connection_sock_af_ops ipv4_specific = {
1840         .queue_xmit        = ip_queue_xmit,
1841         .send_check        = tcp_v4_send_check,
1842         .rebuild_header    = inet_sk_rebuild_header,
1843         .conn_request      = tcp_v4_conn_request,
1844         .syn_recv_sock     = tcp_v4_syn_recv_sock,
1845         .get_peer          = tcp_v4_get_peer,
1846         .net_header_len    = sizeof(struct iphdr),
1847         .setsockopt        = ip_setsockopt,
1848         .getsockopt        = ip_getsockopt,
1849         .addr2sockaddr     = inet_csk_addr2sockaddr,
1850         .sockaddr_len      = sizeof(struct sockaddr_in),
1851         .bind_conflict     = inet_csk_bind_conflict,
1852 #ifdef CONFIG_COMPAT
1853         .compat_setsockopt = compat_ip_setsockopt,
1854         .compat_getsockopt = compat_ip_getsockopt,
1855 #endif
1856 };
1857 EXPORT_SYMBOL(ipv4_specific);
1858
1859 #ifdef CONFIG_TCP_MD5SIG
1860 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1861         .md5_lookup             = tcp_v4_md5_lookup,
1862         .calc_md5_hash          = tcp_v4_md5_hash_skb,
1863         .md5_add                = tcp_v4_md5_add_func,
1864         .md5_parse              = tcp_v4_parse_md5_keys,
1865 };
1866 #endif
1867
1868 /* NOTE: A lot of things set to zero explicitly by call to
1869  *       sk_alloc() so need not be done here.
1870  */
1871 static int tcp_v4_init_sock(struct sock *sk)
1872 {
1873         struct inet_connection_sock *icsk = inet_csk(sk);
1874         struct tcp_sock *tp = tcp_sk(sk);
1875
1876         skb_queue_head_init(&tp->out_of_order_queue);
1877         tcp_init_xmit_timers(sk);
1878         tcp_prequeue_init(tp);
1879
1880         icsk->icsk_rto = TCP_TIMEOUT_INIT;
1881         tp->mdev = TCP_TIMEOUT_INIT;
1882
1883         /* So many TCP implementations out there (incorrectly) count the
1884          * initial SYN frame in their delayed-ACK and congestion control
1885          * algorithms that we must have the following bandaid to talk
1886          * efficiently to them.  -DaveM
1887          */
1888         tp->snd_cwnd = TCP_INIT_CWND;
1889
1890         /* See draft-stevens-tcpca-spec-01 for discussion of the
1891          * initialization of these values.
1892          */
1893         tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1894         tp->snd_cwnd_clamp = ~0;
1895         tp->mss_cache = TCP_MSS_DEFAULT;
1896
1897         tp->reordering = sysctl_tcp_reordering;
1898         icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1899
1900         sk->sk_state = TCP_CLOSE;
1901
1902         sk->sk_write_space = sk_stream_write_space;
1903         sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1904
1905         icsk->icsk_af_ops = &ipv4_specific;
1906         icsk->icsk_sync_mss = tcp_sync_mss;
1907 #ifdef CONFIG_TCP_MD5SIG
1908         tp->af_specific = &tcp_sock_ipv4_specific;
1909 #endif
1910
1911         /* TCP Cookie Transactions */
1912         if (sysctl_tcp_cookie_size > 0) {
1913                 /* Default, cookies without s_data_payload. */
1914                 tp->cookie_values =
1915                         kzalloc(sizeof(*tp->cookie_values),
1916                                 sk->sk_allocation);
1917                 if (tp->cookie_values != NULL)
1918                         kref_init(&tp->cookie_values->kref);
1919         }
1920         /* Presumed zeroed, in order of appearance:
1921          *      cookie_in_always, cookie_out_never,
1922          *      s_data_constant, s_data_in, s_data_out
1923          */
1924         sk->sk_sndbuf = sysctl_tcp_wmem[1];
1925         sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1926
1927         local_bh_disable();
1928         percpu_counter_inc(&tcp_sockets_allocated);
1929         local_bh_enable();
1930
1931         return 0;
1932 }
1933
1934 void tcp_v4_destroy_sock(struct sock *sk)
1935 {
1936         struct tcp_sock *tp = tcp_sk(sk);
1937
1938         tcp_clear_xmit_timers(sk);
1939
1940         tcp_cleanup_congestion_control(sk);
1941
1942         /* Cleanup up the write buffer. */
1943         tcp_write_queue_purge(sk);
1944
1945         /* Cleans up our, hopefully empty, out_of_order_queue. */
1946         __skb_queue_purge(&tp->out_of_order_queue);
1947
1948 #ifdef CONFIG_TCP_MD5SIG
1949         /* Clean up the MD5 key list, if any */
1950         if (tp->md5sig_info) {
1951                 tcp_v4_clear_md5_list(sk);
1952                 kfree(tp->md5sig_info);
1953                 tp->md5sig_info = NULL;
1954         }
1955 #endif
1956
1957 #ifdef CONFIG_NET_DMA
1958         /* Cleans up our sk_async_wait_queue */
1959         __skb_queue_purge(&sk->sk_async_wait_queue);
1960 #endif
1961
1962         /* Clean prequeue, it must be empty really */
1963         __skb_queue_purge(&tp->ucopy.prequeue);
1964
1965         /* Clean up a referenced TCP bind bucket. */
1966         if (inet_csk(sk)->icsk_bind_hash)
1967                 inet_put_port(sk);
1968
1969         /*
1970          * If sendmsg cached page exists, toss it.
1971          */
1972         if (sk->sk_sndmsg_page) {
1973                 __free_page(sk->sk_sndmsg_page);
1974                 sk->sk_sndmsg_page = NULL;
1975         }
1976
1977         /* TCP Cookie Transactions */
1978         if (tp->cookie_values != NULL) {
1979                 kref_put(&tp->cookie_values->kref,
1980                          tcp_cookie_values_release);
1981                 tp->cookie_values = NULL;
1982         }
1983
1984         percpu_counter_dec(&tcp_sockets_allocated);
1985 }
1986 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1987
1988 #ifdef CONFIG_PROC_FS
1989 /* Proc filesystem TCP sock list dumping. */
1990
1991 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1992 {
1993         return hlist_nulls_empty(head) ? NULL :
1994                 list_entry(head->first, struct inet_timewait_sock, tw_node);
1995 }
1996
1997 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1998 {
1999         return !is_a_nulls(tw->tw_node.next) ?
2000                 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2001 }
2002
2003 /*
2004  * Get next listener socket follow cur.  If cur is NULL, get first socket
2005  * starting from bucket given in st->bucket; when st->bucket is zero the
2006  * very first socket in the hash table is returned.
2007  */
2008 static void *listening_get_next(struct seq_file *seq, void *cur)
2009 {
2010         struct inet_connection_sock *icsk;
2011         struct hlist_nulls_node *node;
2012         struct sock *sk = cur;
2013         struct inet_listen_hashbucket *ilb;
2014         struct tcp_iter_state *st = seq->private;
2015         struct net *net = seq_file_net(seq);
2016
2017         if (!sk) {
2018                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2019                 spin_lock_bh(&ilb->lock);
2020                 sk = sk_nulls_head(&ilb->head);
2021                 st->offset = 0;
2022                 goto get_sk;
2023         }
2024         ilb = &tcp_hashinfo.listening_hash[st->bucket];
2025         ++st->num;
2026         ++st->offset;
2027
2028         if (st->state == TCP_SEQ_STATE_OPENREQ) {
2029                 struct request_sock *req = cur;
2030
2031                 icsk = inet_csk(st->syn_wait_sk);
2032                 req = req->dl_next;
2033                 while (1) {
2034                         while (req) {
2035                                 if (req->rsk_ops->family == st->family) {
2036                                         cur = req;
2037                                         goto out;
2038                                 }
2039                                 req = req->dl_next;
2040                         }
2041                         if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2042                                 break;
2043 get_req:
2044                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2045                 }
2046                 sk        = sk_nulls_next(st->syn_wait_sk);
2047                 st->state = TCP_SEQ_STATE_LISTENING;
2048                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2049         } else {
2050                 icsk = inet_csk(sk);
2051                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2052                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2053                         goto start_req;
2054                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2055                 sk = sk_nulls_next(sk);
2056         }
2057 get_sk:
2058         sk_nulls_for_each_from(sk, node) {
2059                 if (!net_eq(sock_net(sk), net))
2060                         continue;
2061                 if (sk->sk_family == st->family) {
2062                         cur = sk;
2063                         goto out;
2064                 }
2065                 icsk = inet_csk(sk);
2066                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2067                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2068 start_req:
2069                         st->uid         = sock_i_uid(sk);
2070                         st->syn_wait_sk = sk;
2071                         st->state       = TCP_SEQ_STATE_OPENREQ;
2072                         st->sbucket     = 0;
2073                         goto get_req;
2074                 }
2075                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2076         }
2077         spin_unlock_bh(&ilb->lock);
2078         st->offset = 0;
2079         if (++st->bucket < INET_LHTABLE_SIZE) {
2080                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2081                 spin_lock_bh(&ilb->lock);
2082                 sk = sk_nulls_head(&ilb->head);
2083                 goto get_sk;
2084         }
2085         cur = NULL;
2086 out:
2087         return cur;
2088 }
2089
2090 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2091 {
2092         struct tcp_iter_state *st = seq->private;
2093         void *rc;
2094
2095         st->bucket = 0;
2096         st->offset = 0;
2097         rc = listening_get_next(seq, NULL);
2098
2099         while (rc && *pos) {
2100                 rc = listening_get_next(seq, rc);
2101                 --*pos;
2102         }
2103         return rc;
2104 }
2105
2106 static inline int empty_bucket(struct tcp_iter_state *st)
2107 {
2108         return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2109                 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2110 }
2111
2112 /*
2113  * Get first established socket starting from bucket given in st->bucket.
2114  * If st->bucket is zero, the very first socket in the hash is returned.
2115  */
2116 static void *established_get_first(struct seq_file *seq)
2117 {
2118         struct tcp_iter_state *st = seq->private;
2119         struct net *net = seq_file_net(seq);
2120         void *rc = NULL;
2121
2122         st->offset = 0;
2123         for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2124                 struct sock *sk;
2125                 struct hlist_nulls_node *node;
2126                 struct inet_timewait_sock *tw;
2127                 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2128
2129                 /* Lockless fast path for the common case of empty buckets */
2130                 if (empty_bucket(st))
2131                         continue;
2132
2133                 spin_lock_bh(lock);
2134                 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2135                         if (sk->sk_family != st->family ||
2136                             !net_eq(sock_net(sk), net)) {
2137                                 continue;
2138                         }
2139                         rc = sk;
2140                         goto out;
2141                 }
2142                 st->state = TCP_SEQ_STATE_TIME_WAIT;
2143                 inet_twsk_for_each(tw, node,
2144                                    &tcp_hashinfo.ehash[st->bucket].twchain) {
2145                         if (tw->tw_family != st->family ||
2146                             !net_eq(twsk_net(tw), net)) {
2147                                 continue;
2148                         }
2149                         rc = tw;
2150                         goto out;
2151                 }
2152                 spin_unlock_bh(lock);
2153                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2154         }
2155 out:
2156         return rc;
2157 }
2158
2159 static void *established_get_next(struct seq_file *seq, void *cur)
2160 {
2161         struct sock *sk = cur;
2162         struct inet_timewait_sock *tw;
2163         struct hlist_nulls_node *node;
2164         struct tcp_iter_state *st = seq->private;
2165         struct net *net = seq_file_net(seq);
2166
2167         ++st->num;
2168         ++st->offset;
2169
2170         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2171                 tw = cur;
2172                 tw = tw_next(tw);
2173 get_tw:
2174                 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2175                         tw = tw_next(tw);
2176                 }
2177                 if (tw) {
2178                         cur = tw;
2179                         goto out;
2180                 }
2181                 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2182                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2183
2184                 /* Look for next non empty bucket */
2185                 st->offset = 0;
2186                 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2187                                 empty_bucket(st))
2188                         ;
2189                 if (st->bucket > tcp_hashinfo.ehash_mask)
2190                         return NULL;
2191
2192                 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2193                 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2194         } else
2195                 sk = sk_nulls_next(sk);
2196
2197         sk_nulls_for_each_from(sk, node) {
2198                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2199                         goto found;
2200         }
2201
2202         st->state = TCP_SEQ_STATE_TIME_WAIT;
2203         tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2204         goto get_tw;
2205 found:
2206         cur = sk;
2207 out:
2208         return cur;
2209 }
2210
2211 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2212 {
2213         struct tcp_iter_state *st = seq->private;
2214         void *rc;
2215
2216         st->bucket = 0;
2217         rc = established_get_first(seq);
2218
2219         while (rc && pos) {
2220                 rc = established_get_next(seq, rc);
2221                 --pos;
2222         }
2223         return rc;
2224 }
2225
2226 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2227 {
2228         void *rc;
2229         struct tcp_iter_state *st = seq->private;
2230
2231         st->state = TCP_SEQ_STATE_LISTENING;
2232         rc        = listening_get_idx(seq, &pos);
2233
2234         if (!rc) {
2235                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2236                 rc        = established_get_idx(seq, pos);
2237         }
2238
2239         return rc;
2240 }
2241
2242 static void *tcp_seek_last_pos(struct seq_file *seq)
2243 {
2244         struct tcp_iter_state *st = seq->private;
2245         int offset = st->offset;
2246         int orig_num = st->num;
2247         void *rc = NULL;
2248
2249         switch (st->state) {
2250         case TCP_SEQ_STATE_OPENREQ:
2251         case TCP_SEQ_STATE_LISTENING:
2252                 if (st->bucket >= INET_LHTABLE_SIZE)
2253                         break;
2254                 st->state = TCP_SEQ_STATE_LISTENING;
2255                 rc = listening_get_next(seq, NULL);
2256                 while (offset-- && rc)
2257                         rc = listening_get_next(seq, rc);
2258                 if (rc)
2259                         break;
2260                 st->bucket = 0;
2261                 /* Fallthrough */
2262         case TCP_SEQ_STATE_ESTABLISHED:
2263         case TCP_SEQ_STATE_TIME_WAIT:
2264                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2265                 if (st->bucket > tcp_hashinfo.ehash_mask)
2266                         break;
2267                 rc = established_get_first(seq);
2268                 while (offset-- && rc)
2269                         rc = established_get_next(seq, rc);
2270         }
2271
2272         st->num = orig_num;
2273
2274         return rc;
2275 }
2276
2277 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2278 {
2279         struct tcp_iter_state *st = seq->private;
2280         void *rc;
2281
2282         if (*pos && *pos == st->last_pos) {
2283                 rc = tcp_seek_last_pos(seq);
2284                 if (rc)
2285                         goto out;
2286         }
2287
2288         st->state = TCP_SEQ_STATE_LISTENING;
2289         st->num = 0;
2290         st->bucket = 0;
2291         st->offset = 0;
2292         rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2293
2294 out:
2295         st->last_pos = *pos;
2296         return rc;
2297 }
2298
2299 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2300 {
2301         struct tcp_iter_state *st = seq->private;
2302         void *rc = NULL;
2303
2304         if (v == SEQ_START_TOKEN) {
2305                 rc = tcp_get_idx(seq, 0);
2306                 goto out;
2307         }
2308
2309         switch (st->state) {
2310         case TCP_SEQ_STATE_OPENREQ:
2311         case TCP_SEQ_STATE_LISTENING:
2312                 rc = listening_get_next(seq, v);
2313                 if (!rc) {
2314                         st->state = TCP_SEQ_STATE_ESTABLISHED;
2315                         st->bucket = 0;
2316                         st->offset = 0;
2317                         rc        = established_get_first(seq);
2318                 }
2319                 break;
2320         case TCP_SEQ_STATE_ESTABLISHED:
2321         case TCP_SEQ_STATE_TIME_WAIT:
2322                 rc = established_get_next(seq, v);
2323                 break;
2324         }
2325 out:
2326         ++*pos;
2327         st->last_pos = *pos;
2328         return rc;
2329 }
2330
2331 static void tcp_seq_stop(struct seq_file *seq, void *v)
2332 {
2333         struct tcp_iter_state *st = seq->private;
2334
2335         switch (st->state) {
2336         case TCP_SEQ_STATE_OPENREQ:
2337                 if (v) {
2338                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2339                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2340                 }
2341         case TCP_SEQ_STATE_LISTENING:
2342                 if (v != SEQ_START_TOKEN)
2343                         spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2344                 break;
2345         case TCP_SEQ_STATE_TIME_WAIT:
2346         case TCP_SEQ_STATE_ESTABLISHED:
2347                 if (v)
2348                         spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2349                 break;
2350         }
2351 }
2352
2353 int tcp_seq_open(struct inode *inode, struct file *file)
2354 {
2355         struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2356         struct tcp_iter_state *s;
2357         int err;
2358
2359         err = seq_open_net(inode, file, &afinfo->seq_ops,
2360                           sizeof(struct tcp_iter_state));
2361         if (err < 0)
2362                 return err;
2363
2364         s = ((struct seq_file *)file->private_data)->private;
2365         s->family               = afinfo->family;
2366         s->last_pos             = 0;
2367         return 0;
2368 }
2369 EXPORT_SYMBOL(tcp_seq_open);
2370
2371 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2372 {
2373         int rc = 0;
2374         struct proc_dir_entry *p;
2375
2376         afinfo->seq_ops.start           = tcp_seq_start;
2377         afinfo->seq_ops.next            = tcp_seq_next;
2378         afinfo->seq_ops.stop            = tcp_seq_stop;
2379
2380         p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2381                              afinfo->seq_fops, afinfo);
2382         if (!p)
2383                 rc = -ENOMEM;
2384         return rc;
2385 }
2386 EXPORT_SYMBOL(tcp_proc_register);
2387
2388 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2389 {
2390         proc_net_remove(net, afinfo->name);
2391 }
2392 EXPORT_SYMBOL(tcp_proc_unregister);
2393
2394 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2395                          struct seq_file *f, int i, int uid, int *len)
2396 {
2397         const struct inet_request_sock *ireq = inet_rsk(req);
2398         int ttd = req->expires - jiffies;
2399
2400         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2401                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2402                 i,
2403                 ireq->loc_addr,
2404                 ntohs(inet_sk(sk)->inet_sport),
2405                 ireq->rmt_addr,
2406                 ntohs(ireq->rmt_port),
2407                 TCP_SYN_RECV,
2408                 0, 0, /* could print option size, but that is af dependent. */
2409                 1,    /* timers active (only the expire timer) */
2410                 jiffies_to_clock_t(ttd),
2411                 req->retrans,
2412                 uid,
2413                 0,  /* non standard timer */
2414                 0, /* open_requests have no inode */
2415                 atomic_read(&sk->sk_refcnt),
2416                 req,
2417                 len);
2418 }
2419
2420 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2421 {
2422         int timer_active;
2423         unsigned long timer_expires;
2424         const struct tcp_sock *tp = tcp_sk(sk);
2425         const struct inet_connection_sock *icsk = inet_csk(sk);
2426         const struct inet_sock *inet = inet_sk(sk);
2427         __be32 dest = inet->inet_daddr;
2428         __be32 src = inet->inet_rcv_saddr;
2429         __u16 destp = ntohs(inet->inet_dport);
2430         __u16 srcp = ntohs(inet->inet_sport);
2431         int rx_queue;
2432
2433         if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2434                 timer_active    = 1;
2435                 timer_expires   = icsk->icsk_timeout;
2436         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2437                 timer_active    = 4;
2438                 timer_expires   = icsk->icsk_timeout;
2439         } else if (timer_pending(&sk->sk_timer)) {
2440                 timer_active    = 2;
2441                 timer_expires   = sk->sk_timer.expires;
2442         } else {
2443                 timer_active    = 0;
2444                 timer_expires = jiffies;
2445         }
2446
2447         if (sk->sk_state == TCP_LISTEN)
2448                 rx_queue = sk->sk_ack_backlog;
2449         else
2450                 /*
2451                  * because we dont lock socket, we might find a transient negative value
2452                  */
2453                 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2454
2455         seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2456                         "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2457                 i, src, srcp, dest, destp, sk->sk_state,
2458                 tp->write_seq - tp->snd_una,
2459                 rx_queue,
2460                 timer_active,
2461                 jiffies_to_clock_t(timer_expires - jiffies),
2462                 icsk->icsk_retransmits,
2463                 sock_i_uid(sk),
2464                 icsk->icsk_probes_out,
2465                 sock_i_ino(sk),
2466                 atomic_read(&sk->sk_refcnt), sk,
2467                 jiffies_to_clock_t(icsk->icsk_rto),
2468                 jiffies_to_clock_t(icsk->icsk_ack.ato),
2469                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2470                 tp->snd_cwnd,
2471                 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2472                 len);
2473 }
2474
2475 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2476                                struct seq_file *f, int i, int *len)
2477 {
2478         __be32 dest, src;
2479         __u16 destp, srcp;
2480         int ttd = tw->tw_ttd - jiffies;
2481
2482         if (ttd < 0)
2483                 ttd = 0;
2484
2485         dest  = tw->tw_daddr;
2486         src   = tw->tw_rcv_saddr;
2487         destp = ntohs(tw->tw_dport);
2488         srcp  = ntohs(tw->tw_sport);
2489
2490         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2491                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2492                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2493                 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2494                 atomic_read(&tw->tw_refcnt), tw, len);
2495 }
2496
2497 #define TMPSZ 150
2498
2499 static int tcp4_seq_show(struct seq_file *seq, void *v)
2500 {
2501         struct tcp_iter_state *st;
2502         int len;
2503
2504         if (v == SEQ_START_TOKEN) {
2505                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2506                            "  sl  local_address rem_address   st tx_queue "
2507                            "rx_queue tr tm->when retrnsmt   uid  timeout "
2508                            "inode");
2509                 goto out;
2510         }
2511         st = seq->private;
2512
2513         switch (st->state) {
2514         case TCP_SEQ_STATE_LISTENING:
2515         case TCP_SEQ_STATE_ESTABLISHED:
2516                 get_tcp4_sock(v, seq, st->num, &len);
2517                 break;
2518         case TCP_SEQ_STATE_OPENREQ:
2519                 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2520                 break;
2521         case TCP_SEQ_STATE_TIME_WAIT:
2522                 get_timewait4_sock(v, seq, st->num, &len);
2523                 break;
2524         }
2525         seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2526 out:
2527         return 0;
2528 }
2529
2530 static const struct file_operations tcp_afinfo_seq_fops = {
2531         .owner   = THIS_MODULE,
2532         .open    = tcp_seq_open,
2533         .read    = seq_read,
2534         .llseek  = seq_lseek,
2535         .release = seq_release_net
2536 };
2537
2538 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2539         .name           = "tcp",
2540         .family         = AF_INET,
2541         .seq_fops       = &tcp_afinfo_seq_fops,
2542         .seq_ops        = {
2543                 .show           = tcp4_seq_show,
2544         },
2545 };
2546
2547 static int __net_init tcp4_proc_init_net(struct net *net)
2548 {
2549         return tcp_proc_register(net, &tcp4_seq_afinfo);
2550 }
2551
2552 static void __net_exit tcp4_proc_exit_net(struct net *net)
2553 {
2554         tcp_proc_unregister(net, &tcp4_seq_afinfo);
2555 }
2556
2557 static struct pernet_operations tcp4_net_ops = {
2558         .init = tcp4_proc_init_net,
2559         .exit = tcp4_proc_exit_net,
2560 };
2561
2562 int __init tcp4_proc_init(void)
2563 {
2564         return register_pernet_subsys(&tcp4_net_ops);
2565 }
2566
2567 void tcp4_proc_exit(void)
2568 {
2569         unregister_pernet_subsys(&tcp4_net_ops);
2570 }
2571 #endif /* CONFIG_PROC_FS */
2572
2573 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2574 {
2575         const struct iphdr *iph = skb_gro_network_header(skb);
2576
2577         switch (skb->ip_summed) {
2578         case CHECKSUM_COMPLETE:
2579                 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2580                                   skb->csum)) {
2581                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2582                         break;
2583                 }
2584
2585                 /* fall through */
2586         case CHECKSUM_NONE:
2587                 NAPI_GRO_CB(skb)->flush = 1;
2588                 return NULL;
2589         }
2590
2591         return tcp_gro_receive(head, skb);
2592 }
2593
2594 int tcp4_gro_complete(struct sk_buff *skb)
2595 {
2596         const struct iphdr *iph = ip_hdr(skb);
2597         struct tcphdr *th = tcp_hdr(skb);
2598
2599         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2600                                   iph->saddr, iph->daddr, 0);
2601         skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2602
2603         return tcp_gro_complete(skb);
2604 }
2605
2606 struct proto tcp_prot = {
2607         .name                   = "TCP",
2608         .owner                  = THIS_MODULE,
2609         .close                  = tcp_close,
2610         .connect                = tcp_v4_connect,
2611         .disconnect             = tcp_disconnect,
2612         .accept                 = inet_csk_accept,
2613         .ioctl                  = tcp_ioctl,
2614         .init                   = tcp_v4_init_sock,
2615         .destroy                = tcp_v4_destroy_sock,
2616         .shutdown               = tcp_shutdown,
2617         .setsockopt             = tcp_setsockopt,
2618         .getsockopt             = tcp_getsockopt,
2619         .recvmsg                = tcp_recvmsg,
2620         .sendmsg                = tcp_sendmsg,
2621         .sendpage               = tcp_sendpage,
2622         .backlog_rcv            = tcp_v4_do_rcv,
2623         .hash                   = inet_hash,
2624         .unhash                 = inet_unhash,
2625         .get_port               = inet_csk_get_port,
2626         .enter_memory_pressure  = tcp_enter_memory_pressure,
2627         .sockets_allocated      = &tcp_sockets_allocated,
2628         .orphan_count           = &tcp_orphan_count,
2629         .memory_allocated       = &tcp_memory_allocated,
2630         .memory_pressure        = &tcp_memory_pressure,
2631         .sysctl_mem             = sysctl_tcp_mem,
2632         .sysctl_wmem            = sysctl_tcp_wmem,
2633         .sysctl_rmem            = sysctl_tcp_rmem,
2634         .max_header             = MAX_TCP_HEADER,
2635         .obj_size               = sizeof(struct tcp_sock),
2636         .slab_flags             = SLAB_DESTROY_BY_RCU,
2637         .twsk_prot              = &tcp_timewait_sock_ops,
2638         .rsk_prot               = &tcp_request_sock_ops,
2639         .h.hashinfo             = &tcp_hashinfo,
2640         .no_autobind            = true,
2641 #ifdef CONFIG_COMPAT
2642         .compat_setsockopt      = compat_tcp_setsockopt,
2643         .compat_getsockopt      = compat_tcp_getsockopt,
2644 #endif
2645 };
2646 EXPORT_SYMBOL(tcp_prot);
2647
2648
2649 static int __net_init tcp_sk_init(struct net *net)
2650 {
2651         return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2652                                     PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2653 }
2654
2655 static void __net_exit tcp_sk_exit(struct net *net)
2656 {
2657         inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2658 }
2659
2660 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2661 {
2662         inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2663 }
2664
2665 static struct pernet_operations __net_initdata tcp_sk_ops = {
2666        .init       = tcp_sk_init,
2667        .exit       = tcp_sk_exit,
2668        .exit_batch = tcp_sk_exit_batch,
2669 };
2670
2671 void __init tcp_v4_init(void)
2672 {
2673         inet_hashinfo_init(&tcp_hashinfo);
2674         if (register_pernet_subsys(&tcp_sk_ops))
2675                 panic("Failed to create the TCP control socket.\n");
2676 }