lro: kill lro_vlan_hwaccel_receive_frags
[pandora-kernel.git] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  *              IPv4 specific functions
9  *
10  *
11  *              code split from:
12  *              linux/ipv4/tcp.c
13  *              linux/ipv4/tcp_input.c
14  *              linux/ipv4/tcp_output.c
15  *
16  *              See tcp.c for author information
17  *
18  *      This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23
24 /*
25  * Changes:
26  *              David S. Miller :       New socket lookup architecture.
27  *                                      This code is dedicated to John Dyson.
28  *              David S. Miller :       Change semantics of established hash,
29  *                                      half is devoted to TIME_WAIT sockets
30  *                                      and the rest go in the other half.
31  *              Andi Kleen :            Add support for syncookies and fixed
32  *                                      some bugs: ip options weren't passed to
33  *                                      the TCP layer, missed a check for an
34  *                                      ACK bit.
35  *              Andi Kleen :            Implemented fast path mtu discovery.
36  *                                      Fixed many serious bugs in the
37  *                                      request_sock handling and moved
38  *                                      most of it into the af independent code.
39  *                                      Added tail drop and some other bugfixes.
40  *                                      Added new listen semantics.
41  *              Mike McLagan    :       Routing by source
42  *      Juan Jose Ciarlante:            ip_dynaddr bits
43  *              Andi Kleen:             various fixes.
44  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
45  *                                      coma.
46  *      Andi Kleen              :       Fix new listen.
47  *      Andi Kleen              :       Fix accept error reporting.
48  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
49  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
50  *                                      a single port at the same time.
51  */
52
53
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
64
65 #include <net/net_namespace.h>
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74 #include <net/netdma.h>
75
76 #include <linux/inet.h>
77 #include <linux/ipv6.h>
78 #include <linux/stddef.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
81
82 #include <linux/crypto.h>
83 #include <linux/scatterlist.h>
84
85 int sysctl_tcp_tw_reuse __read_mostly;
86 int sysctl_tcp_low_latency __read_mostly;
87 EXPORT_SYMBOL(sysctl_tcp_low_latency);
88
89
90 #ifdef CONFIG_TCP_MD5SIG
91 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
92                                                    __be32 addr);
93 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
94                                __be32 daddr, __be32 saddr, struct tcphdr *th);
95 #else
96 static inline
97 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
98 {
99         return NULL;
100 }
101 #endif
102
103 struct inet_hashinfo tcp_hashinfo;
104 EXPORT_SYMBOL(tcp_hashinfo);
105
106 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
107 {
108         return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
109                                           ip_hdr(skb)->saddr,
110                                           tcp_hdr(skb)->dest,
111                                           tcp_hdr(skb)->source);
112 }
113
114 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
115 {
116         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
117         struct tcp_sock *tp = tcp_sk(sk);
118
119         /* With PAWS, it is safe from the viewpoint
120            of data integrity. Even without PAWS it is safe provided sequence
121            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
122
123            Actually, the idea is close to VJ's one, only timestamp cache is
124            held not per host, but per port pair and TW bucket is used as state
125            holder.
126
127            If TW bucket has been already destroyed we fall back to VJ's scheme
128            and use initial timestamp retrieved from peer table.
129          */
130         if (tcptw->tw_ts_recent_stamp &&
131             (twp == NULL || (sysctl_tcp_tw_reuse &&
132                              get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
133                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
134                 if (tp->write_seq == 0)
135                         tp->write_seq = 1;
136                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
137                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
138                 sock_hold(sktw);
139                 return 1;
140         }
141
142         return 0;
143 }
144 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
145
146 /* This will initiate an outgoing connection. */
147 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
148 {
149         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
150         struct inet_sock *inet = inet_sk(sk);
151         struct tcp_sock *tp = tcp_sk(sk);
152         __be16 orig_sport, orig_dport;
153         __be32 daddr, nexthop;
154         struct flowi4 *fl4;
155         struct rtable *rt;
156         int err;
157         struct ip_options_rcu *inet_opt;
158
159         if (addr_len < sizeof(struct sockaddr_in))
160                 return -EINVAL;
161
162         if (usin->sin_family != AF_INET)
163                 return -EAFNOSUPPORT;
164
165         nexthop = daddr = usin->sin_addr.s_addr;
166         inet_opt = rcu_dereference_protected(inet->inet_opt,
167                                              sock_owned_by_user(sk));
168         if (inet_opt && inet_opt->opt.srr) {
169                 if (!daddr)
170                         return -EINVAL;
171                 nexthop = inet_opt->opt.faddr;
172         }
173
174         orig_sport = inet->inet_sport;
175         orig_dport = usin->sin_port;
176         fl4 = &inet->cork.fl.u.ip4;
177         rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
178                               RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
179                               IPPROTO_TCP,
180                               orig_sport, orig_dport, sk, true);
181         if (IS_ERR(rt)) {
182                 err = PTR_ERR(rt);
183                 if (err == -ENETUNREACH)
184                         IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
185                 return err;
186         }
187
188         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
189                 ip_rt_put(rt);
190                 return -ENETUNREACH;
191         }
192
193         if (!inet_opt || !inet_opt->opt.srr)
194                 daddr = fl4->daddr;
195
196         if (!inet->inet_saddr)
197                 inet->inet_saddr = fl4->saddr;
198         inet->inet_rcv_saddr = inet->inet_saddr;
199
200         if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
201                 /* Reset inherited state */
202                 tp->rx_opt.ts_recent       = 0;
203                 tp->rx_opt.ts_recent_stamp = 0;
204                 tp->write_seq              = 0;
205         }
206
207         if (tcp_death_row.sysctl_tw_recycle &&
208             !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
209                 struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
210                 /*
211                  * VJ's idea. We save last timestamp seen from
212                  * the destination in peer table, when entering state
213                  * TIME-WAIT * and initialize rx_opt.ts_recent from it,
214                  * when trying new connection.
215                  */
216                 if (peer) {
217                         inet_peer_refcheck(peer);
218                         if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
219                                 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
220                                 tp->rx_opt.ts_recent = peer->tcp_ts;
221                         }
222                 }
223         }
224
225         inet->inet_dport = usin->sin_port;
226         inet->inet_daddr = daddr;
227
228         inet_csk(sk)->icsk_ext_hdr_len = 0;
229         if (inet_opt)
230                 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
231
232         tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
233
234         /* Socket identity is still unknown (sport may be zero).
235          * However we set state to SYN-SENT and not releasing socket
236          * lock select source port, enter ourselves into the hash tables and
237          * complete initialization after this.
238          */
239         tcp_set_state(sk, TCP_SYN_SENT);
240         err = inet_hash_connect(&tcp_death_row, sk);
241         if (err)
242                 goto failure;
243
244         rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
245                                inet->inet_sport, inet->inet_dport, sk);
246         if (IS_ERR(rt)) {
247                 err = PTR_ERR(rt);
248                 rt = NULL;
249                 goto failure;
250         }
251         /* OK, now commit destination to socket.  */
252         sk->sk_gso_type = SKB_GSO_TCPV4;
253         sk_setup_caps(sk, &rt->dst);
254
255         if (!tp->write_seq)
256                 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
257                                                            inet->inet_daddr,
258                                                            inet->inet_sport,
259                                                            usin->sin_port);
260
261         inet->inet_id = tp->write_seq ^ jiffies;
262
263         err = tcp_connect(sk);
264         rt = NULL;
265         if (err)
266                 goto failure;
267
268         return 0;
269
270 failure:
271         /*
272          * This unhashes the socket and releases the local port,
273          * if necessary.
274          */
275         tcp_set_state(sk, TCP_CLOSE);
276         ip_rt_put(rt);
277         sk->sk_route_caps = 0;
278         inet->inet_dport = 0;
279         return err;
280 }
281 EXPORT_SYMBOL(tcp_v4_connect);
282
283 /*
284  * This routine does path mtu discovery as defined in RFC1191.
285  */
286 static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
287 {
288         struct dst_entry *dst;
289         struct inet_sock *inet = inet_sk(sk);
290
291         /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
292          * send out by Linux are always <576bytes so they should go through
293          * unfragmented).
294          */
295         if (sk->sk_state == TCP_LISTEN)
296                 return;
297
298         /* We don't check in the destentry if pmtu discovery is forbidden
299          * on this route. We just assume that no packet_to_big packets
300          * are send back when pmtu discovery is not active.
301          * There is a small race when the user changes this flag in the
302          * route, but I think that's acceptable.
303          */
304         if ((dst = __sk_dst_check(sk, 0)) == NULL)
305                 return;
306
307         dst->ops->update_pmtu(dst, mtu);
308
309         /* Something is about to be wrong... Remember soft error
310          * for the case, if this connection will not able to recover.
311          */
312         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
313                 sk->sk_err_soft = EMSGSIZE;
314
315         mtu = dst_mtu(dst);
316
317         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
318             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
319                 tcp_sync_mss(sk, mtu);
320
321                 /* Resend the TCP packet because it's
322                  * clear that the old packet has been
323                  * dropped. This is the new "fast" path mtu
324                  * discovery.
325                  */
326                 tcp_simple_retransmit(sk);
327         } /* else let the usual retransmit timer handle it */
328 }
329
330 /*
331  * This routine is called by the ICMP module when it gets some
332  * sort of error condition.  If err < 0 then the socket should
333  * be closed and the error returned to the user.  If err > 0
334  * it's just the icmp type << 8 | icmp code.  After adjustment
335  * header points to the first 8 bytes of the tcp header.  We need
336  * to find the appropriate port.
337  *
338  * The locking strategy used here is very "optimistic". When
339  * someone else accesses the socket the ICMP is just dropped
340  * and for some paths there is no check at all.
341  * A more general error queue to queue errors for later handling
342  * is probably better.
343  *
344  */
345
346 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
347 {
348         const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
349         struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
350         struct inet_connection_sock *icsk;
351         struct tcp_sock *tp;
352         struct inet_sock *inet;
353         const int type = icmp_hdr(icmp_skb)->type;
354         const int code = icmp_hdr(icmp_skb)->code;
355         struct sock *sk;
356         struct sk_buff *skb;
357         __u32 seq;
358         __u32 remaining;
359         int err;
360         struct net *net = dev_net(icmp_skb->dev);
361
362         if (icmp_skb->len < (iph->ihl << 2) + 8) {
363                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
364                 return;
365         }
366
367         sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
368                         iph->saddr, th->source, inet_iif(icmp_skb));
369         if (!sk) {
370                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
371                 return;
372         }
373         if (sk->sk_state == TCP_TIME_WAIT) {
374                 inet_twsk_put(inet_twsk(sk));
375                 return;
376         }
377
378         bh_lock_sock(sk);
379         /* If too many ICMPs get dropped on busy
380          * servers this needs to be solved differently.
381          */
382         if (sock_owned_by_user(sk))
383                 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
384
385         if (sk->sk_state == TCP_CLOSE)
386                 goto out;
387
388         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
389                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
390                 goto out;
391         }
392
393         icsk = inet_csk(sk);
394         tp = tcp_sk(sk);
395         seq = ntohl(th->seq);
396         if (sk->sk_state != TCP_LISTEN &&
397             !between(seq, tp->snd_una, tp->snd_nxt)) {
398                 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
399                 goto out;
400         }
401
402         switch (type) {
403         case ICMP_SOURCE_QUENCH:
404                 /* Just silently ignore these. */
405                 goto out;
406         case ICMP_PARAMETERPROB:
407                 err = EPROTO;
408                 break;
409         case ICMP_DEST_UNREACH:
410                 if (code > NR_ICMP_UNREACH)
411                         goto out;
412
413                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
414                         if (!sock_owned_by_user(sk))
415                                 do_pmtu_discovery(sk, iph, info);
416                         goto out;
417                 }
418
419                 err = icmp_err_convert[code].errno;
420                 /* check if icmp_skb allows revert of backoff
421                  * (see draft-zimmermann-tcp-lcd) */
422                 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
423                         break;
424                 if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
425                     !icsk->icsk_backoff)
426                         break;
427
428                 if (sock_owned_by_user(sk))
429                         break;
430
431                 icsk->icsk_backoff--;
432                 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
433                         TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
434                 tcp_bound_rto(sk);
435
436                 skb = tcp_write_queue_head(sk);
437                 BUG_ON(!skb);
438
439                 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
440                                 tcp_time_stamp - TCP_SKB_CB(skb)->when);
441
442                 if (remaining) {
443                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
444                                                   remaining, TCP_RTO_MAX);
445                 } else {
446                         /* RTO revert clocked out retransmission.
447                          * Will retransmit now */
448                         tcp_retransmit_timer(sk);
449                 }
450
451                 break;
452         case ICMP_TIME_EXCEEDED:
453                 err = EHOSTUNREACH;
454                 break;
455         default:
456                 goto out;
457         }
458
459         switch (sk->sk_state) {
460                 struct request_sock *req, **prev;
461         case TCP_LISTEN:
462                 if (sock_owned_by_user(sk))
463                         goto out;
464
465                 req = inet_csk_search_req(sk, &prev, th->dest,
466                                           iph->daddr, iph->saddr);
467                 if (!req)
468                         goto out;
469
470                 /* ICMPs are not backlogged, hence we cannot get
471                    an established socket here.
472                  */
473                 WARN_ON(req->sk);
474
475                 if (seq != tcp_rsk(req)->snt_isn) {
476                         NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
477                         goto out;
478                 }
479
480                 /*
481                  * Still in SYN_RECV, just remove it silently.
482                  * There is no good way to pass the error to the newly
483                  * created socket, and POSIX does not want network
484                  * errors returned from accept().
485                  */
486                 inet_csk_reqsk_queue_drop(sk, req, prev);
487                 goto out;
488
489         case TCP_SYN_SENT:
490         case TCP_SYN_RECV:  /* Cannot happen.
491                                It can f.e. if SYNs crossed.
492                              */
493                 if (!sock_owned_by_user(sk)) {
494                         sk->sk_err = err;
495
496                         sk->sk_error_report(sk);
497
498                         tcp_done(sk);
499                 } else {
500                         sk->sk_err_soft = err;
501                 }
502                 goto out;
503         }
504
505         /* If we've already connected we will keep trying
506          * until we time out, or the user gives up.
507          *
508          * rfc1122 4.2.3.9 allows to consider as hard errors
509          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
510          * but it is obsoleted by pmtu discovery).
511          *
512          * Note, that in modern internet, where routing is unreliable
513          * and in each dark corner broken firewalls sit, sending random
514          * errors ordered by their masters even this two messages finally lose
515          * their original sense (even Linux sends invalid PORT_UNREACHs)
516          *
517          * Now we are in compliance with RFCs.
518          *                                                      --ANK (980905)
519          */
520
521         inet = inet_sk(sk);
522         if (!sock_owned_by_user(sk) && inet->recverr) {
523                 sk->sk_err = err;
524                 sk->sk_error_report(sk);
525         } else  { /* Only an error on timeout */
526                 sk->sk_err_soft = err;
527         }
528
529 out:
530         bh_unlock_sock(sk);
531         sock_put(sk);
532 }
533
534 static void __tcp_v4_send_check(struct sk_buff *skb,
535                                 __be32 saddr, __be32 daddr)
536 {
537         struct tcphdr *th = tcp_hdr(skb);
538
539         if (skb->ip_summed == CHECKSUM_PARTIAL) {
540                 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
541                 skb->csum_start = skb_transport_header(skb) - skb->head;
542                 skb->csum_offset = offsetof(struct tcphdr, check);
543         } else {
544                 th->check = tcp_v4_check(skb->len, saddr, daddr,
545                                          csum_partial(th,
546                                                       th->doff << 2,
547                                                       skb->csum));
548         }
549 }
550
551 /* This routine computes an IPv4 TCP checksum. */
552 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
553 {
554         struct inet_sock *inet = inet_sk(sk);
555
556         __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
557 }
558 EXPORT_SYMBOL(tcp_v4_send_check);
559
560 int tcp_v4_gso_send_check(struct sk_buff *skb)
561 {
562         const struct iphdr *iph;
563         struct tcphdr *th;
564
565         if (!pskb_may_pull(skb, sizeof(*th)))
566                 return -EINVAL;
567
568         iph = ip_hdr(skb);
569         th = tcp_hdr(skb);
570
571         th->check = 0;
572         skb->ip_summed = CHECKSUM_PARTIAL;
573         __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
574         return 0;
575 }
576
577 /*
578  *      This routine will send an RST to the other tcp.
579  *
580  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
581  *                    for reset.
582  *      Answer: if a packet caused RST, it is not for a socket
583  *              existing in our system, if it is matched to a socket,
584  *              it is just duplicate segment or bug in other side's TCP.
585  *              So that we build reply only basing on parameters
586  *              arrived with segment.
587  *      Exception: precedence violation. We do not implement it in any case.
588  */
589
590 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
591 {
592         struct tcphdr *th = tcp_hdr(skb);
593         struct {
594                 struct tcphdr th;
595 #ifdef CONFIG_TCP_MD5SIG
596                 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
597 #endif
598         } rep;
599         struct ip_reply_arg arg;
600 #ifdef CONFIG_TCP_MD5SIG
601         struct tcp_md5sig_key *key;
602 #endif
603         struct net *net;
604
605         /* Never send a reset in response to a reset. */
606         if (th->rst)
607                 return;
608
609         if (skb_rtable(skb)->rt_type != RTN_LOCAL)
610                 return;
611
612         /* Swap the send and the receive. */
613         memset(&rep, 0, sizeof(rep));
614         rep.th.dest   = th->source;
615         rep.th.source = th->dest;
616         rep.th.doff   = sizeof(struct tcphdr) / 4;
617         rep.th.rst    = 1;
618
619         if (th->ack) {
620                 rep.th.seq = th->ack_seq;
621         } else {
622                 rep.th.ack = 1;
623                 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
624                                        skb->len - (th->doff << 2));
625         }
626
627         memset(&arg, 0, sizeof(arg));
628         arg.iov[0].iov_base = (unsigned char *)&rep;
629         arg.iov[0].iov_len  = sizeof(rep.th);
630
631 #ifdef CONFIG_TCP_MD5SIG
632         key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
633         if (key) {
634                 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
635                                    (TCPOPT_NOP << 16) |
636                                    (TCPOPT_MD5SIG << 8) |
637                                    TCPOLEN_MD5SIG);
638                 /* Update length and the length the header thinks exists */
639                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
640                 rep.th.doff = arg.iov[0].iov_len / 4;
641
642                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
643                                      key, ip_hdr(skb)->saddr,
644                                      ip_hdr(skb)->daddr, &rep.th);
645         }
646 #endif
647         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
648                                       ip_hdr(skb)->saddr, /* XXX */
649                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
650         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
651         arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
652
653         net = dev_net(skb_dst(skb)->dev);
654         ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
655                       &arg, arg.iov[0].iov_len);
656
657         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
658         TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
659 }
660
661 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
662    outside socket context is ugly, certainly. What can I do?
663  */
664
665 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
666                             u32 win, u32 ts, int oif,
667                             struct tcp_md5sig_key *key,
668                             int reply_flags)
669 {
670         struct tcphdr *th = tcp_hdr(skb);
671         struct {
672                 struct tcphdr th;
673                 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
674 #ifdef CONFIG_TCP_MD5SIG
675                            + (TCPOLEN_MD5SIG_ALIGNED >> 2)
676 #endif
677                         ];
678         } rep;
679         struct ip_reply_arg arg;
680         struct net *net = dev_net(skb_dst(skb)->dev);
681
682         memset(&rep.th, 0, sizeof(struct tcphdr));
683         memset(&arg, 0, sizeof(arg));
684
685         arg.iov[0].iov_base = (unsigned char *)&rep;
686         arg.iov[0].iov_len  = sizeof(rep.th);
687         if (ts) {
688                 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
689                                    (TCPOPT_TIMESTAMP << 8) |
690                                    TCPOLEN_TIMESTAMP);
691                 rep.opt[1] = htonl(tcp_time_stamp);
692                 rep.opt[2] = htonl(ts);
693                 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
694         }
695
696         /* Swap the send and the receive. */
697         rep.th.dest    = th->source;
698         rep.th.source  = th->dest;
699         rep.th.doff    = arg.iov[0].iov_len / 4;
700         rep.th.seq     = htonl(seq);
701         rep.th.ack_seq = htonl(ack);
702         rep.th.ack     = 1;
703         rep.th.window  = htons(win);
704
705 #ifdef CONFIG_TCP_MD5SIG
706         if (key) {
707                 int offset = (ts) ? 3 : 0;
708
709                 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
710                                           (TCPOPT_NOP << 16) |
711                                           (TCPOPT_MD5SIG << 8) |
712                                           TCPOLEN_MD5SIG);
713                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
714                 rep.th.doff = arg.iov[0].iov_len/4;
715
716                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
717                                     key, ip_hdr(skb)->saddr,
718                                     ip_hdr(skb)->daddr, &rep.th);
719         }
720 #endif
721         arg.flags = reply_flags;
722         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
723                                       ip_hdr(skb)->saddr, /* XXX */
724                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
725         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
726         if (oif)
727                 arg.bound_dev_if = oif;
728
729         ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
730                       &arg, arg.iov[0].iov_len);
731
732         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
733 }
734
735 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
736 {
737         struct inet_timewait_sock *tw = inet_twsk(sk);
738         struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
739
740         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
741                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
742                         tcptw->tw_ts_recent,
743                         tw->tw_bound_dev_if,
744                         tcp_twsk_md5_key(tcptw),
745                         tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
746                         );
747
748         inet_twsk_put(tw);
749 }
750
751 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
752                                   struct request_sock *req)
753 {
754         tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
755                         tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
756                         req->ts_recent,
757                         0,
758                         tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
759                         inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
760 }
761
762 /*
763  *      Send a SYN-ACK after having received a SYN.
764  *      This still operates on a request_sock only, not on a big
765  *      socket.
766  */
767 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
768                               struct request_sock *req,
769                               struct request_values *rvp)
770 {
771         const struct inet_request_sock *ireq = inet_rsk(req);
772         struct flowi4 fl4;
773         int err = -1;
774         struct sk_buff * skb;
775
776         /* First, grab a route. */
777         if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
778                 return -1;
779
780         skb = tcp_make_synack(sk, dst, req, rvp);
781
782         if (skb) {
783                 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
784
785                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
786                                             ireq->rmt_addr,
787                                             ireq->opt);
788                 err = net_xmit_eval(err);
789         }
790
791         dst_release(dst);
792         return err;
793 }
794
795 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
796                               struct request_values *rvp)
797 {
798         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
799         return tcp_v4_send_synack(sk, NULL, req, rvp);
800 }
801
802 /*
803  *      IPv4 request_sock destructor.
804  */
805 static void tcp_v4_reqsk_destructor(struct request_sock *req)
806 {
807         kfree(inet_rsk(req)->opt);
808 }
809
810 static void syn_flood_warning(const struct sk_buff *skb)
811 {
812         const char *msg;
813
814 #ifdef CONFIG_SYN_COOKIES
815         if (sysctl_tcp_syncookies)
816                 msg = "Sending cookies";
817         else
818 #endif
819                 msg = "Dropping request";
820
821         pr_info("TCP: Possible SYN flooding on port %d. %s.\n",
822                                 ntohs(tcp_hdr(skb)->dest), msg);
823 }
824
825 /*
826  * Save and compile IPv4 options into the request_sock if needed.
827  */
828 static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
829                                                   struct sk_buff *skb)
830 {
831         const struct ip_options *opt = &(IPCB(skb)->opt);
832         struct ip_options_rcu *dopt = NULL;
833
834         if (opt && opt->optlen) {
835                 int opt_size = sizeof(*dopt) + opt->optlen;
836
837                 dopt = kmalloc(opt_size, GFP_ATOMIC);
838                 if (dopt) {
839                         if (ip_options_echo(&dopt->opt, skb)) {
840                                 kfree(dopt);
841                                 dopt = NULL;
842                         }
843                 }
844         }
845         return dopt;
846 }
847
848 #ifdef CONFIG_TCP_MD5SIG
849 /*
850  * RFC2385 MD5 checksumming requires a mapping of
851  * IP address->MD5 Key.
852  * We need to maintain these in the sk structure.
853  */
854
855 /* Find the Key structure for an address.  */
856 static struct tcp_md5sig_key *
857                         tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
858 {
859         struct tcp_sock *tp = tcp_sk(sk);
860         int i;
861
862         if (!tp->md5sig_info || !tp->md5sig_info->entries4)
863                 return NULL;
864         for (i = 0; i < tp->md5sig_info->entries4; i++) {
865                 if (tp->md5sig_info->keys4[i].addr == addr)
866                         return &tp->md5sig_info->keys4[i].base;
867         }
868         return NULL;
869 }
870
871 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
872                                          struct sock *addr_sk)
873 {
874         return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
875 }
876 EXPORT_SYMBOL(tcp_v4_md5_lookup);
877
878 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
879                                                       struct request_sock *req)
880 {
881         return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
882 }
883
884 /* This can be called on a newly created socket, from other files */
885 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
886                       u8 *newkey, u8 newkeylen)
887 {
888         /* Add Key to the list */
889         struct tcp_md5sig_key *key;
890         struct tcp_sock *tp = tcp_sk(sk);
891         struct tcp4_md5sig_key *keys;
892
893         key = tcp_v4_md5_do_lookup(sk, addr);
894         if (key) {
895                 /* Pre-existing entry - just update that one. */
896                 kfree(key->key);
897                 key->key = newkey;
898                 key->keylen = newkeylen;
899         } else {
900                 struct tcp_md5sig_info *md5sig;
901
902                 if (!tp->md5sig_info) {
903                         tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
904                                                   GFP_ATOMIC);
905                         if (!tp->md5sig_info) {
906                                 kfree(newkey);
907                                 return -ENOMEM;
908                         }
909                         sk_nocaps_add(sk, NETIF_F_GSO_MASK);
910                 }
911                 if (tcp_alloc_md5sig_pool(sk) == NULL) {
912                         kfree(newkey);
913                         return -ENOMEM;
914                 }
915                 md5sig = tp->md5sig_info;
916
917                 if (md5sig->alloced4 == md5sig->entries4) {
918                         keys = kmalloc((sizeof(*keys) *
919                                         (md5sig->entries4 + 1)), GFP_ATOMIC);
920                         if (!keys) {
921                                 kfree(newkey);
922                                 tcp_free_md5sig_pool();
923                                 return -ENOMEM;
924                         }
925
926                         if (md5sig->entries4)
927                                 memcpy(keys, md5sig->keys4,
928                                        sizeof(*keys) * md5sig->entries4);
929
930                         /* Free old key list, and reference new one */
931                         kfree(md5sig->keys4);
932                         md5sig->keys4 = keys;
933                         md5sig->alloced4++;
934                 }
935                 md5sig->entries4++;
936                 md5sig->keys4[md5sig->entries4 - 1].addr        = addr;
937                 md5sig->keys4[md5sig->entries4 - 1].base.key    = newkey;
938                 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
939         }
940         return 0;
941 }
942 EXPORT_SYMBOL(tcp_v4_md5_do_add);
943
944 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
945                                u8 *newkey, u8 newkeylen)
946 {
947         return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
948                                  newkey, newkeylen);
949 }
950
951 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
952 {
953         struct tcp_sock *tp = tcp_sk(sk);
954         int i;
955
956         for (i = 0; i < tp->md5sig_info->entries4; i++) {
957                 if (tp->md5sig_info->keys4[i].addr == addr) {
958                         /* Free the key */
959                         kfree(tp->md5sig_info->keys4[i].base.key);
960                         tp->md5sig_info->entries4--;
961
962                         if (tp->md5sig_info->entries4 == 0) {
963                                 kfree(tp->md5sig_info->keys4);
964                                 tp->md5sig_info->keys4 = NULL;
965                                 tp->md5sig_info->alloced4 = 0;
966                         } else if (tp->md5sig_info->entries4 != i) {
967                                 /* Need to do some manipulation */
968                                 memmove(&tp->md5sig_info->keys4[i],
969                                         &tp->md5sig_info->keys4[i+1],
970                                         (tp->md5sig_info->entries4 - i) *
971                                          sizeof(struct tcp4_md5sig_key));
972                         }
973                         tcp_free_md5sig_pool();
974                         return 0;
975                 }
976         }
977         return -ENOENT;
978 }
979 EXPORT_SYMBOL(tcp_v4_md5_do_del);
980
981 static void tcp_v4_clear_md5_list(struct sock *sk)
982 {
983         struct tcp_sock *tp = tcp_sk(sk);
984
985         /* Free each key, then the set of key keys,
986          * the crypto element, and then decrement our
987          * hold on the last resort crypto.
988          */
989         if (tp->md5sig_info->entries4) {
990                 int i;
991                 for (i = 0; i < tp->md5sig_info->entries4; i++)
992                         kfree(tp->md5sig_info->keys4[i].base.key);
993                 tp->md5sig_info->entries4 = 0;
994                 tcp_free_md5sig_pool();
995         }
996         if (tp->md5sig_info->keys4) {
997                 kfree(tp->md5sig_info->keys4);
998                 tp->md5sig_info->keys4 = NULL;
999                 tp->md5sig_info->alloced4  = 0;
1000         }
1001 }
1002
1003 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1004                                  int optlen)
1005 {
1006         struct tcp_md5sig cmd;
1007         struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1008         u8 *newkey;
1009
1010         if (optlen < sizeof(cmd))
1011                 return -EINVAL;
1012
1013         if (copy_from_user(&cmd, optval, sizeof(cmd)))
1014                 return -EFAULT;
1015
1016         if (sin->sin_family != AF_INET)
1017                 return -EINVAL;
1018
1019         if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1020                 if (!tcp_sk(sk)->md5sig_info)
1021                         return -ENOENT;
1022                 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1023         }
1024
1025         if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1026                 return -EINVAL;
1027
1028         if (!tcp_sk(sk)->md5sig_info) {
1029                 struct tcp_sock *tp = tcp_sk(sk);
1030                 struct tcp_md5sig_info *p;
1031
1032                 p = kzalloc(sizeof(*p), sk->sk_allocation);
1033                 if (!p)
1034                         return -EINVAL;
1035
1036                 tp->md5sig_info = p;
1037                 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1038         }
1039
1040         newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1041         if (!newkey)
1042                 return -ENOMEM;
1043         return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1044                                  newkey, cmd.tcpm_keylen);
1045 }
1046
1047 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1048                                         __be32 daddr, __be32 saddr, int nbytes)
1049 {
1050         struct tcp4_pseudohdr *bp;
1051         struct scatterlist sg;
1052
1053         bp = &hp->md5_blk.ip4;
1054
1055         /*
1056          * 1. the TCP pseudo-header (in the order: source IP address,
1057          * destination IP address, zero-padded protocol number, and
1058          * segment length)
1059          */
1060         bp->saddr = saddr;
1061         bp->daddr = daddr;
1062         bp->pad = 0;
1063         bp->protocol = IPPROTO_TCP;
1064         bp->len = cpu_to_be16(nbytes);
1065
1066         sg_init_one(&sg, bp, sizeof(*bp));
1067         return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1068 }
1069
1070 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1071                                __be32 daddr, __be32 saddr, struct tcphdr *th)
1072 {
1073         struct tcp_md5sig_pool *hp;
1074         struct hash_desc *desc;
1075
1076         hp = tcp_get_md5sig_pool();
1077         if (!hp)
1078                 goto clear_hash_noput;
1079         desc = &hp->md5_desc;
1080
1081         if (crypto_hash_init(desc))
1082                 goto clear_hash;
1083         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1084                 goto clear_hash;
1085         if (tcp_md5_hash_header(hp, th))
1086                 goto clear_hash;
1087         if (tcp_md5_hash_key(hp, key))
1088                 goto clear_hash;
1089         if (crypto_hash_final(desc, md5_hash))
1090                 goto clear_hash;
1091
1092         tcp_put_md5sig_pool();
1093         return 0;
1094
1095 clear_hash:
1096         tcp_put_md5sig_pool();
1097 clear_hash_noput:
1098         memset(md5_hash, 0, 16);
1099         return 1;
1100 }
1101
1102 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1103                         struct sock *sk, struct request_sock *req,
1104                         struct sk_buff *skb)
1105 {
1106         struct tcp_md5sig_pool *hp;
1107         struct hash_desc *desc;
1108         struct tcphdr *th = tcp_hdr(skb);
1109         __be32 saddr, daddr;
1110
1111         if (sk) {
1112                 saddr = inet_sk(sk)->inet_saddr;
1113                 daddr = inet_sk(sk)->inet_daddr;
1114         } else if (req) {
1115                 saddr = inet_rsk(req)->loc_addr;
1116                 daddr = inet_rsk(req)->rmt_addr;
1117         } else {
1118                 const struct iphdr *iph = ip_hdr(skb);
1119                 saddr = iph->saddr;
1120                 daddr = iph->daddr;
1121         }
1122
1123         hp = tcp_get_md5sig_pool();
1124         if (!hp)
1125                 goto clear_hash_noput;
1126         desc = &hp->md5_desc;
1127
1128         if (crypto_hash_init(desc))
1129                 goto clear_hash;
1130
1131         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1132                 goto clear_hash;
1133         if (tcp_md5_hash_header(hp, th))
1134                 goto clear_hash;
1135         if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1136                 goto clear_hash;
1137         if (tcp_md5_hash_key(hp, key))
1138                 goto clear_hash;
1139         if (crypto_hash_final(desc, md5_hash))
1140                 goto clear_hash;
1141
1142         tcp_put_md5sig_pool();
1143         return 0;
1144
1145 clear_hash:
1146         tcp_put_md5sig_pool();
1147 clear_hash_noput:
1148         memset(md5_hash, 0, 16);
1149         return 1;
1150 }
1151 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1152
1153 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1154 {
1155         /*
1156          * This gets called for each TCP segment that arrives
1157          * so we want to be efficient.
1158          * We have 3 drop cases:
1159          * o No MD5 hash and one expected.
1160          * o MD5 hash and we're not expecting one.
1161          * o MD5 hash and its wrong.
1162          */
1163         __u8 *hash_location = NULL;
1164         struct tcp_md5sig_key *hash_expected;
1165         const struct iphdr *iph = ip_hdr(skb);
1166         struct tcphdr *th = tcp_hdr(skb);
1167         int genhash;
1168         unsigned char newhash[16];
1169
1170         hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1171         hash_location = tcp_parse_md5sig_option(th);
1172
1173         /* We've parsed the options - do we have a hash? */
1174         if (!hash_expected && !hash_location)
1175                 return 0;
1176
1177         if (hash_expected && !hash_location) {
1178                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1179                 return 1;
1180         }
1181
1182         if (!hash_expected && hash_location) {
1183                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1184                 return 1;
1185         }
1186
1187         /* Okay, so this is hash_expected and hash_location -
1188          * so we need to calculate the checksum.
1189          */
1190         genhash = tcp_v4_md5_hash_skb(newhash,
1191                                       hash_expected,
1192                                       NULL, NULL, skb);
1193
1194         if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1195                 if (net_ratelimit()) {
1196                         printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1197                                &iph->saddr, ntohs(th->source),
1198                                &iph->daddr, ntohs(th->dest),
1199                                genhash ? " tcp_v4_calc_md5_hash failed" : "");
1200                 }
1201                 return 1;
1202         }
1203         return 0;
1204 }
1205
1206 #endif
1207
1208 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1209         .family         =       PF_INET,
1210         .obj_size       =       sizeof(struct tcp_request_sock),
1211         .rtx_syn_ack    =       tcp_v4_rtx_synack,
1212         .send_ack       =       tcp_v4_reqsk_send_ack,
1213         .destructor     =       tcp_v4_reqsk_destructor,
1214         .send_reset     =       tcp_v4_send_reset,
1215         .syn_ack_timeout =      tcp_syn_ack_timeout,
1216 };
1217
1218 #ifdef CONFIG_TCP_MD5SIG
1219 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1220         .md5_lookup     =       tcp_v4_reqsk_md5_lookup,
1221         .calc_md5_hash  =       tcp_v4_md5_hash_skb,
1222 };
1223 #endif
1224
1225 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1226 {
1227         struct tcp_extend_values tmp_ext;
1228         struct tcp_options_received tmp_opt;
1229         u8 *hash_location;
1230         struct request_sock *req;
1231         struct inet_request_sock *ireq;
1232         struct tcp_sock *tp = tcp_sk(sk);
1233         struct dst_entry *dst = NULL;
1234         __be32 saddr = ip_hdr(skb)->saddr;
1235         __be32 daddr = ip_hdr(skb)->daddr;
1236         __u32 isn = TCP_SKB_CB(skb)->when;
1237 #ifdef CONFIG_SYN_COOKIES
1238         int want_cookie = 0;
1239 #else
1240 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1241 #endif
1242
1243         /* Never answer to SYNs send to broadcast or multicast */
1244         if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1245                 goto drop;
1246
1247         /* TW buckets are converted to open requests without
1248          * limitations, they conserve resources and peer is
1249          * evidently real one.
1250          */
1251         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1252                 if (net_ratelimit())
1253                         syn_flood_warning(skb);
1254 #ifdef CONFIG_SYN_COOKIES
1255                 if (sysctl_tcp_syncookies) {
1256                         want_cookie = 1;
1257                 } else
1258 #endif
1259                 goto drop;
1260         }
1261
1262         /* Accept backlog is full. If we have already queued enough
1263          * of warm entries in syn queue, drop request. It is better than
1264          * clogging syn queue with openreqs with exponentially increasing
1265          * timeout.
1266          */
1267         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1268                 goto drop;
1269
1270         req = inet_reqsk_alloc(&tcp_request_sock_ops);
1271         if (!req)
1272                 goto drop;
1273
1274 #ifdef CONFIG_TCP_MD5SIG
1275         tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1276 #endif
1277
1278         tcp_clear_options(&tmp_opt);
1279         tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1280         tmp_opt.user_mss  = tp->rx_opt.user_mss;
1281         tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1282
1283         if (tmp_opt.cookie_plus > 0 &&
1284             tmp_opt.saw_tstamp &&
1285             !tp->rx_opt.cookie_out_never &&
1286             (sysctl_tcp_cookie_size > 0 ||
1287              (tp->cookie_values != NULL &&
1288               tp->cookie_values->cookie_desired > 0))) {
1289                 u8 *c;
1290                 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1291                 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1292
1293                 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1294                         goto drop_and_release;
1295
1296                 /* Secret recipe starts with IP addresses */
1297                 *mess++ ^= (__force u32)daddr;
1298                 *mess++ ^= (__force u32)saddr;
1299
1300                 /* plus variable length Initiator Cookie */
1301                 c = (u8 *)mess;
1302                 while (l-- > 0)
1303                         *c++ ^= *hash_location++;
1304
1305 #ifdef CONFIG_SYN_COOKIES
1306                 want_cookie = 0;        /* not our kind of cookie */
1307 #endif
1308                 tmp_ext.cookie_out_never = 0; /* false */
1309                 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1310         } else if (!tp->rx_opt.cookie_in_always) {
1311                 /* redundant indications, but ensure initialization. */
1312                 tmp_ext.cookie_out_never = 1; /* true */
1313                 tmp_ext.cookie_plus = 0;
1314         } else {
1315                 goto drop_and_release;
1316         }
1317         tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1318
1319         if (want_cookie && !tmp_opt.saw_tstamp)
1320                 tcp_clear_options(&tmp_opt);
1321
1322         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1323         tcp_openreq_init(req, &tmp_opt, skb);
1324
1325         ireq = inet_rsk(req);
1326         ireq->loc_addr = daddr;
1327         ireq->rmt_addr = saddr;
1328         ireq->no_srccheck = inet_sk(sk)->transparent;
1329         ireq->opt = tcp_v4_save_options(sk, skb);
1330
1331         if (security_inet_conn_request(sk, skb, req))
1332                 goto drop_and_free;
1333
1334         if (!want_cookie || tmp_opt.tstamp_ok)
1335                 TCP_ECN_create_request(req, tcp_hdr(skb));
1336
1337         if (want_cookie) {
1338                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1339                 req->cookie_ts = tmp_opt.tstamp_ok;
1340         } else if (!isn) {
1341                 struct inet_peer *peer = NULL;
1342                 struct flowi4 fl4;
1343
1344                 /* VJ's idea. We save last timestamp seen
1345                  * from the destination in peer table, when entering
1346                  * state TIME-WAIT, and check against it before
1347                  * accepting new connection request.
1348                  *
1349                  * If "isn" is not zero, this request hit alive
1350                  * timewait bucket, so that all the necessary checks
1351                  * are made in the function processing timewait state.
1352                  */
1353                 if (tmp_opt.saw_tstamp &&
1354                     tcp_death_row.sysctl_tw_recycle &&
1355                     (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1356                     fl4.daddr == saddr &&
1357                     (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1358                         inet_peer_refcheck(peer);
1359                         if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1360                             (s32)(peer->tcp_ts - req->ts_recent) >
1361                                                         TCP_PAWS_WINDOW) {
1362                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1363                                 goto drop_and_release;
1364                         }
1365                 }
1366                 /* Kill the following clause, if you dislike this way. */
1367                 else if (!sysctl_tcp_syncookies &&
1368                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1369                           (sysctl_max_syn_backlog >> 2)) &&
1370                          (!peer || !peer->tcp_ts_stamp) &&
1371                          (!dst || !dst_metric(dst, RTAX_RTT))) {
1372                         /* Without syncookies last quarter of
1373                          * backlog is filled with destinations,
1374                          * proven to be alive.
1375                          * It means that we continue to communicate
1376                          * to destinations, already remembered
1377                          * to the moment of synflood.
1378                          */
1379                         LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1380                                        &saddr, ntohs(tcp_hdr(skb)->source));
1381                         goto drop_and_release;
1382                 }
1383
1384                 isn = tcp_v4_init_sequence(skb);
1385         }
1386         tcp_rsk(req)->snt_isn = isn;
1387         tcp_rsk(req)->snt_synack = tcp_time_stamp;
1388
1389         if (tcp_v4_send_synack(sk, dst, req,
1390                                (struct request_values *)&tmp_ext) ||
1391             want_cookie)
1392                 goto drop_and_free;
1393
1394         inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1395         return 0;
1396
1397 drop_and_release:
1398         dst_release(dst);
1399 drop_and_free:
1400         reqsk_free(req);
1401 drop:
1402         return 0;
1403 }
1404 EXPORT_SYMBOL(tcp_v4_conn_request);
1405
1406
1407 /*
1408  * The three way handshake has completed - we got a valid synack -
1409  * now create the new socket.
1410  */
1411 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1412                                   struct request_sock *req,
1413                                   struct dst_entry *dst)
1414 {
1415         struct inet_request_sock *ireq;
1416         struct inet_sock *newinet;
1417         struct tcp_sock *newtp;
1418         struct sock *newsk;
1419 #ifdef CONFIG_TCP_MD5SIG
1420         struct tcp_md5sig_key *key;
1421 #endif
1422         struct ip_options_rcu *inet_opt;
1423
1424         if (sk_acceptq_is_full(sk))
1425                 goto exit_overflow;
1426
1427         newsk = tcp_create_openreq_child(sk, req, skb);
1428         if (!newsk)
1429                 goto exit_nonewsk;
1430
1431         newsk->sk_gso_type = SKB_GSO_TCPV4;
1432
1433         newtp                 = tcp_sk(newsk);
1434         newinet               = inet_sk(newsk);
1435         ireq                  = inet_rsk(req);
1436         newinet->inet_daddr   = ireq->rmt_addr;
1437         newinet->inet_rcv_saddr = ireq->loc_addr;
1438         newinet->inet_saddr           = ireq->loc_addr;
1439         inet_opt              = ireq->opt;
1440         rcu_assign_pointer(newinet->inet_opt, inet_opt);
1441         ireq->opt             = NULL;
1442         newinet->mc_index     = inet_iif(skb);
1443         newinet->mc_ttl       = ip_hdr(skb)->ttl;
1444         inet_csk(newsk)->icsk_ext_hdr_len = 0;
1445         if (inet_opt)
1446                 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1447         newinet->inet_id = newtp->write_seq ^ jiffies;
1448
1449         if (!dst && (dst = inet_csk_route_child_sock(sk, newsk, req)) == NULL)
1450                 goto put_and_exit;
1451
1452         sk_setup_caps(newsk, dst);
1453
1454         tcp_mtup_init(newsk);
1455         tcp_sync_mss(newsk, dst_mtu(dst));
1456         newtp->advmss = dst_metric_advmss(dst);
1457         if (tcp_sk(sk)->rx_opt.user_mss &&
1458             tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1459                 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1460
1461         tcp_initialize_rcv_mss(newsk);
1462         if (tcp_rsk(req)->snt_synack)
1463                 tcp_valid_rtt_meas(newsk,
1464                     tcp_time_stamp - tcp_rsk(req)->snt_synack);
1465         newtp->total_retrans = req->retrans;
1466
1467 #ifdef CONFIG_TCP_MD5SIG
1468         /* Copy over the MD5 key from the original socket */
1469         key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1470         if (key != NULL) {
1471                 /*
1472                  * We're using one, so create a matching key
1473                  * on the newsk structure. If we fail to get
1474                  * memory, then we end up not copying the key
1475                  * across. Shucks.
1476                  */
1477                 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1478                 if (newkey != NULL)
1479                         tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1480                                           newkey, key->keylen);
1481                 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1482         }
1483 #endif
1484
1485         if (__inet_inherit_port(sk, newsk) < 0)
1486                 goto put_and_exit;
1487         __inet_hash_nolisten(newsk, NULL);
1488
1489         return newsk;
1490
1491 exit_overflow:
1492         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1493 exit_nonewsk:
1494         dst_release(dst);
1495 exit:
1496         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1497         return NULL;
1498 put_and_exit:
1499         sock_put(newsk);
1500         goto exit;
1501 }
1502 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1503
1504 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1505 {
1506         struct tcphdr *th = tcp_hdr(skb);
1507         const struct iphdr *iph = ip_hdr(skb);
1508         struct sock *nsk;
1509         struct request_sock **prev;
1510         /* Find possible connection requests. */
1511         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1512                                                        iph->saddr, iph->daddr);
1513         if (req)
1514                 return tcp_check_req(sk, skb, req, prev);
1515
1516         nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1517                         th->source, iph->daddr, th->dest, inet_iif(skb));
1518
1519         if (nsk) {
1520                 if (nsk->sk_state != TCP_TIME_WAIT) {
1521                         bh_lock_sock(nsk);
1522                         return nsk;
1523                 }
1524                 inet_twsk_put(inet_twsk(nsk));
1525                 return NULL;
1526         }
1527
1528 #ifdef CONFIG_SYN_COOKIES
1529         if (!th->syn)
1530                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1531 #endif
1532         return sk;
1533 }
1534
1535 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1536 {
1537         const struct iphdr *iph = ip_hdr(skb);
1538
1539         if (skb->ip_summed == CHECKSUM_COMPLETE) {
1540                 if (!tcp_v4_check(skb->len, iph->saddr,
1541                                   iph->daddr, skb->csum)) {
1542                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1543                         return 0;
1544                 }
1545         }
1546
1547         skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1548                                        skb->len, IPPROTO_TCP, 0);
1549
1550         if (skb->len <= 76) {
1551                 return __skb_checksum_complete(skb);
1552         }
1553         return 0;
1554 }
1555
1556
1557 /* The socket must have it's spinlock held when we get
1558  * here.
1559  *
1560  * We have a potential double-lock case here, so even when
1561  * doing backlog processing we use the BH locking scheme.
1562  * This is because we cannot sleep with the original spinlock
1563  * held.
1564  */
1565 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1566 {
1567         struct sock *rsk;
1568 #ifdef CONFIG_TCP_MD5SIG
1569         /*
1570          * We really want to reject the packet as early as possible
1571          * if:
1572          *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1573          *  o There is an MD5 option and we're not expecting one
1574          */
1575         if (tcp_v4_inbound_md5_hash(sk, skb))
1576                 goto discard;
1577 #endif
1578
1579         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1580                 sock_rps_save_rxhash(sk, skb->rxhash);
1581                 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1582                         rsk = sk;
1583                         goto reset;
1584                 }
1585                 return 0;
1586         }
1587
1588         if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1589                 goto csum_err;
1590
1591         if (sk->sk_state == TCP_LISTEN) {
1592                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1593                 if (!nsk)
1594                         goto discard;
1595
1596                 if (nsk != sk) {
1597                         sock_rps_save_rxhash(nsk, skb->rxhash);
1598                         if (tcp_child_process(sk, nsk, skb)) {
1599                                 rsk = nsk;
1600                                 goto reset;
1601                         }
1602                         return 0;
1603                 }
1604         } else
1605                 sock_rps_save_rxhash(sk, skb->rxhash);
1606
1607         if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1608                 rsk = sk;
1609                 goto reset;
1610         }
1611         return 0;
1612
1613 reset:
1614         tcp_v4_send_reset(rsk, skb);
1615 discard:
1616         kfree_skb(skb);
1617         /* Be careful here. If this function gets more complicated and
1618          * gcc suffers from register pressure on the x86, sk (in %ebx)
1619          * might be destroyed here. This current version compiles correctly,
1620          * but you have been warned.
1621          */
1622         return 0;
1623
1624 csum_err:
1625         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1626         goto discard;
1627 }
1628 EXPORT_SYMBOL(tcp_v4_do_rcv);
1629
1630 /*
1631  *      From tcp_input.c
1632  */
1633
1634 int tcp_v4_rcv(struct sk_buff *skb)
1635 {
1636         const struct iphdr *iph;
1637         struct tcphdr *th;
1638         struct sock *sk;
1639         int ret;
1640         struct net *net = dev_net(skb->dev);
1641
1642         if (skb->pkt_type != PACKET_HOST)
1643                 goto discard_it;
1644
1645         /* Count it even if it's bad */
1646         TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1647
1648         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1649                 goto discard_it;
1650
1651         th = tcp_hdr(skb);
1652
1653         if (th->doff < sizeof(struct tcphdr) / 4)
1654                 goto bad_packet;
1655         if (!pskb_may_pull(skb, th->doff * 4))
1656                 goto discard_it;
1657
1658         /* An explanation is required here, I think.
1659          * Packet length and doff are validated by header prediction,
1660          * provided case of th->doff==0 is eliminated.
1661          * So, we defer the checks. */
1662         if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1663                 goto bad_packet;
1664
1665         th = tcp_hdr(skb);
1666         iph = ip_hdr(skb);
1667         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1668         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1669                                     skb->len - th->doff * 4);
1670         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1671         TCP_SKB_CB(skb)->when    = 0;
1672         TCP_SKB_CB(skb)->flags   = iph->tos;
1673         TCP_SKB_CB(skb)->sacked  = 0;
1674
1675         sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1676         if (!sk)
1677                 goto no_tcp_socket;
1678
1679 process:
1680         if (sk->sk_state == TCP_TIME_WAIT)
1681                 goto do_time_wait;
1682
1683         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1684                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1685                 goto discard_and_relse;
1686         }
1687
1688         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1689                 goto discard_and_relse;
1690         nf_reset(skb);
1691
1692         if (sk_filter(sk, skb))
1693                 goto discard_and_relse;
1694
1695         skb->dev = NULL;
1696
1697         bh_lock_sock_nested(sk);
1698         ret = 0;
1699         if (!sock_owned_by_user(sk)) {
1700 #ifdef CONFIG_NET_DMA
1701                 struct tcp_sock *tp = tcp_sk(sk);
1702                 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1703                         tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1704                 if (tp->ucopy.dma_chan)
1705                         ret = tcp_v4_do_rcv(sk, skb);
1706                 else
1707 #endif
1708                 {
1709                         if (!tcp_prequeue(sk, skb))
1710                                 ret = tcp_v4_do_rcv(sk, skb);
1711                 }
1712         } else if (unlikely(sk_add_backlog(sk, skb))) {
1713                 bh_unlock_sock(sk);
1714                 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1715                 goto discard_and_relse;
1716         }
1717         bh_unlock_sock(sk);
1718
1719         sock_put(sk);
1720
1721         return ret;
1722
1723 no_tcp_socket:
1724         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1725                 goto discard_it;
1726
1727         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1728 bad_packet:
1729                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1730         } else {
1731                 tcp_v4_send_reset(NULL, skb);
1732         }
1733
1734 discard_it:
1735         /* Discard frame. */
1736         kfree_skb(skb);
1737         return 0;
1738
1739 discard_and_relse:
1740         sock_put(sk);
1741         goto discard_it;
1742
1743 do_time_wait:
1744         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1745                 inet_twsk_put(inet_twsk(sk));
1746                 goto discard_it;
1747         }
1748
1749         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1750                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1751                 inet_twsk_put(inet_twsk(sk));
1752                 goto discard_it;
1753         }
1754         switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1755         case TCP_TW_SYN: {
1756                 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1757                                                         &tcp_hashinfo,
1758                                                         iph->daddr, th->dest,
1759                                                         inet_iif(skb));
1760                 if (sk2) {
1761                         inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1762                         inet_twsk_put(inet_twsk(sk));
1763                         sk = sk2;
1764                         goto process;
1765                 }
1766                 /* Fall through to ACK */
1767         }
1768         case TCP_TW_ACK:
1769                 tcp_v4_timewait_ack(sk, skb);
1770                 break;
1771         case TCP_TW_RST:
1772                 goto no_tcp_socket;
1773         case TCP_TW_SUCCESS:;
1774         }
1775         goto discard_it;
1776 }
1777
1778 struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1779 {
1780         struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1781         struct inet_sock *inet = inet_sk(sk);
1782         struct inet_peer *peer;
1783
1784         if (!rt ||
1785             inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1786                 peer = inet_getpeer_v4(inet->inet_daddr, 1);
1787                 *release_it = true;
1788         } else {
1789                 if (!rt->peer)
1790                         rt_bind_peer(rt, inet->inet_daddr, 1);
1791                 peer = rt->peer;
1792                 *release_it = false;
1793         }
1794
1795         return peer;
1796 }
1797 EXPORT_SYMBOL(tcp_v4_get_peer);
1798
1799 void *tcp_v4_tw_get_peer(struct sock *sk)
1800 {
1801         struct inet_timewait_sock *tw = inet_twsk(sk);
1802
1803         return inet_getpeer_v4(tw->tw_daddr, 1);
1804 }
1805 EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1806
1807 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1808         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
1809         .twsk_unique    = tcp_twsk_unique,
1810         .twsk_destructor= tcp_twsk_destructor,
1811         .twsk_getpeer   = tcp_v4_tw_get_peer,
1812 };
1813
1814 const struct inet_connection_sock_af_ops ipv4_specific = {
1815         .queue_xmit        = ip_queue_xmit,
1816         .send_check        = tcp_v4_send_check,
1817         .rebuild_header    = inet_sk_rebuild_header,
1818         .conn_request      = tcp_v4_conn_request,
1819         .syn_recv_sock     = tcp_v4_syn_recv_sock,
1820         .get_peer          = tcp_v4_get_peer,
1821         .net_header_len    = sizeof(struct iphdr),
1822         .setsockopt        = ip_setsockopt,
1823         .getsockopt        = ip_getsockopt,
1824         .addr2sockaddr     = inet_csk_addr2sockaddr,
1825         .sockaddr_len      = sizeof(struct sockaddr_in),
1826         .bind_conflict     = inet_csk_bind_conflict,
1827 #ifdef CONFIG_COMPAT
1828         .compat_setsockopt = compat_ip_setsockopt,
1829         .compat_getsockopt = compat_ip_getsockopt,
1830 #endif
1831 };
1832 EXPORT_SYMBOL(ipv4_specific);
1833
1834 #ifdef CONFIG_TCP_MD5SIG
1835 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1836         .md5_lookup             = tcp_v4_md5_lookup,
1837         .calc_md5_hash          = tcp_v4_md5_hash_skb,
1838         .md5_add                = tcp_v4_md5_add_func,
1839         .md5_parse              = tcp_v4_parse_md5_keys,
1840 };
1841 #endif
1842
1843 /* NOTE: A lot of things set to zero explicitly by call to
1844  *       sk_alloc() so need not be done here.
1845  */
1846 static int tcp_v4_init_sock(struct sock *sk)
1847 {
1848         struct inet_connection_sock *icsk = inet_csk(sk);
1849         struct tcp_sock *tp = tcp_sk(sk);
1850
1851         skb_queue_head_init(&tp->out_of_order_queue);
1852         tcp_init_xmit_timers(sk);
1853         tcp_prequeue_init(tp);
1854
1855         icsk->icsk_rto = TCP_TIMEOUT_INIT;
1856         tp->mdev = TCP_TIMEOUT_INIT;
1857
1858         /* So many TCP implementations out there (incorrectly) count the
1859          * initial SYN frame in their delayed-ACK and congestion control
1860          * algorithms that we must have the following bandaid to talk
1861          * efficiently to them.  -DaveM
1862          */
1863         tp->snd_cwnd = TCP_INIT_CWND;
1864
1865         /* See draft-stevens-tcpca-spec-01 for discussion of the
1866          * initialization of these values.
1867          */
1868         tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1869         tp->snd_cwnd_clamp = ~0;
1870         tp->mss_cache = TCP_MSS_DEFAULT;
1871
1872         tp->reordering = sysctl_tcp_reordering;
1873         icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1874
1875         sk->sk_state = TCP_CLOSE;
1876
1877         sk->sk_write_space = sk_stream_write_space;
1878         sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1879
1880         icsk->icsk_af_ops = &ipv4_specific;
1881         icsk->icsk_sync_mss = tcp_sync_mss;
1882 #ifdef CONFIG_TCP_MD5SIG
1883         tp->af_specific = &tcp_sock_ipv4_specific;
1884 #endif
1885
1886         /* TCP Cookie Transactions */
1887         if (sysctl_tcp_cookie_size > 0) {
1888                 /* Default, cookies without s_data_payload. */
1889                 tp->cookie_values =
1890                         kzalloc(sizeof(*tp->cookie_values),
1891                                 sk->sk_allocation);
1892                 if (tp->cookie_values != NULL)
1893                         kref_init(&tp->cookie_values->kref);
1894         }
1895         /* Presumed zeroed, in order of appearance:
1896          *      cookie_in_always, cookie_out_never,
1897          *      s_data_constant, s_data_in, s_data_out
1898          */
1899         sk->sk_sndbuf = sysctl_tcp_wmem[1];
1900         sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1901
1902         local_bh_disable();
1903         percpu_counter_inc(&tcp_sockets_allocated);
1904         local_bh_enable();
1905
1906         return 0;
1907 }
1908
1909 void tcp_v4_destroy_sock(struct sock *sk)
1910 {
1911         struct tcp_sock *tp = tcp_sk(sk);
1912
1913         tcp_clear_xmit_timers(sk);
1914
1915         tcp_cleanup_congestion_control(sk);
1916
1917         /* Cleanup up the write buffer. */
1918         tcp_write_queue_purge(sk);
1919
1920         /* Cleans up our, hopefully empty, out_of_order_queue. */
1921         __skb_queue_purge(&tp->out_of_order_queue);
1922
1923 #ifdef CONFIG_TCP_MD5SIG
1924         /* Clean up the MD5 key list, if any */
1925         if (tp->md5sig_info) {
1926                 tcp_v4_clear_md5_list(sk);
1927                 kfree(tp->md5sig_info);
1928                 tp->md5sig_info = NULL;
1929         }
1930 #endif
1931
1932 #ifdef CONFIG_NET_DMA
1933         /* Cleans up our sk_async_wait_queue */
1934         __skb_queue_purge(&sk->sk_async_wait_queue);
1935 #endif
1936
1937         /* Clean prequeue, it must be empty really */
1938         __skb_queue_purge(&tp->ucopy.prequeue);
1939
1940         /* Clean up a referenced TCP bind bucket. */
1941         if (inet_csk(sk)->icsk_bind_hash)
1942                 inet_put_port(sk);
1943
1944         /*
1945          * If sendmsg cached page exists, toss it.
1946          */
1947         if (sk->sk_sndmsg_page) {
1948                 __free_page(sk->sk_sndmsg_page);
1949                 sk->sk_sndmsg_page = NULL;
1950         }
1951
1952         /* TCP Cookie Transactions */
1953         if (tp->cookie_values != NULL) {
1954                 kref_put(&tp->cookie_values->kref,
1955                          tcp_cookie_values_release);
1956                 tp->cookie_values = NULL;
1957         }
1958
1959         percpu_counter_dec(&tcp_sockets_allocated);
1960 }
1961 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1962
1963 #ifdef CONFIG_PROC_FS
1964 /* Proc filesystem TCP sock list dumping. */
1965
1966 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1967 {
1968         return hlist_nulls_empty(head) ? NULL :
1969                 list_entry(head->first, struct inet_timewait_sock, tw_node);
1970 }
1971
1972 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1973 {
1974         return !is_a_nulls(tw->tw_node.next) ?
1975                 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1976 }
1977
1978 /*
1979  * Get next listener socket follow cur.  If cur is NULL, get first socket
1980  * starting from bucket given in st->bucket; when st->bucket is zero the
1981  * very first socket in the hash table is returned.
1982  */
1983 static void *listening_get_next(struct seq_file *seq, void *cur)
1984 {
1985         struct inet_connection_sock *icsk;
1986         struct hlist_nulls_node *node;
1987         struct sock *sk = cur;
1988         struct inet_listen_hashbucket *ilb;
1989         struct tcp_iter_state *st = seq->private;
1990         struct net *net = seq_file_net(seq);
1991
1992         if (!sk) {
1993                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1994                 spin_lock_bh(&ilb->lock);
1995                 sk = sk_nulls_head(&ilb->head);
1996                 st->offset = 0;
1997                 goto get_sk;
1998         }
1999         ilb = &tcp_hashinfo.listening_hash[st->bucket];
2000         ++st->num;
2001         ++st->offset;
2002
2003         if (st->state == TCP_SEQ_STATE_OPENREQ) {
2004                 struct request_sock *req = cur;
2005
2006                 icsk = inet_csk(st->syn_wait_sk);
2007                 req = req->dl_next;
2008                 while (1) {
2009                         while (req) {
2010                                 if (req->rsk_ops->family == st->family) {
2011                                         cur = req;
2012                                         goto out;
2013                                 }
2014                                 req = req->dl_next;
2015                         }
2016                         if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2017                                 break;
2018 get_req:
2019                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2020                 }
2021                 sk        = sk_nulls_next(st->syn_wait_sk);
2022                 st->state = TCP_SEQ_STATE_LISTENING;
2023                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2024         } else {
2025                 icsk = inet_csk(sk);
2026                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2027                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2028                         goto start_req;
2029                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2030                 sk = sk_nulls_next(sk);
2031         }
2032 get_sk:
2033         sk_nulls_for_each_from(sk, node) {
2034                 if (!net_eq(sock_net(sk), net))
2035                         continue;
2036                 if (sk->sk_family == st->family) {
2037                         cur = sk;
2038                         goto out;
2039                 }
2040                 icsk = inet_csk(sk);
2041                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2042                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2043 start_req:
2044                         st->uid         = sock_i_uid(sk);
2045                         st->syn_wait_sk = sk;
2046                         st->state       = TCP_SEQ_STATE_OPENREQ;
2047                         st->sbucket     = 0;
2048                         goto get_req;
2049                 }
2050                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2051         }
2052         spin_unlock_bh(&ilb->lock);
2053         st->offset = 0;
2054         if (++st->bucket < INET_LHTABLE_SIZE) {
2055                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2056                 spin_lock_bh(&ilb->lock);
2057                 sk = sk_nulls_head(&ilb->head);
2058                 goto get_sk;
2059         }
2060         cur = NULL;
2061 out:
2062         return cur;
2063 }
2064
2065 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2066 {
2067         struct tcp_iter_state *st = seq->private;
2068         void *rc;
2069
2070         st->bucket = 0;
2071         st->offset = 0;
2072         rc = listening_get_next(seq, NULL);
2073
2074         while (rc && *pos) {
2075                 rc = listening_get_next(seq, rc);
2076                 --*pos;
2077         }
2078         return rc;
2079 }
2080
2081 static inline int empty_bucket(struct tcp_iter_state *st)
2082 {
2083         return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2084                 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2085 }
2086
2087 /*
2088  * Get first established socket starting from bucket given in st->bucket.
2089  * If st->bucket is zero, the very first socket in the hash is returned.
2090  */
2091 static void *established_get_first(struct seq_file *seq)
2092 {
2093         struct tcp_iter_state *st = seq->private;
2094         struct net *net = seq_file_net(seq);
2095         void *rc = NULL;
2096
2097         st->offset = 0;
2098         for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2099                 struct sock *sk;
2100                 struct hlist_nulls_node *node;
2101                 struct inet_timewait_sock *tw;
2102                 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2103
2104                 /* Lockless fast path for the common case of empty buckets */
2105                 if (empty_bucket(st))
2106                         continue;
2107
2108                 spin_lock_bh(lock);
2109                 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2110                         if (sk->sk_family != st->family ||
2111                             !net_eq(sock_net(sk), net)) {
2112                                 continue;
2113                         }
2114                         rc = sk;
2115                         goto out;
2116                 }
2117                 st->state = TCP_SEQ_STATE_TIME_WAIT;
2118                 inet_twsk_for_each(tw, node,
2119                                    &tcp_hashinfo.ehash[st->bucket].twchain) {
2120                         if (tw->tw_family != st->family ||
2121                             !net_eq(twsk_net(tw), net)) {
2122                                 continue;
2123                         }
2124                         rc = tw;
2125                         goto out;
2126                 }
2127                 spin_unlock_bh(lock);
2128                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2129         }
2130 out:
2131         return rc;
2132 }
2133
2134 static void *established_get_next(struct seq_file *seq, void *cur)
2135 {
2136         struct sock *sk = cur;
2137         struct inet_timewait_sock *tw;
2138         struct hlist_nulls_node *node;
2139         struct tcp_iter_state *st = seq->private;
2140         struct net *net = seq_file_net(seq);
2141
2142         ++st->num;
2143         ++st->offset;
2144
2145         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2146                 tw = cur;
2147                 tw = tw_next(tw);
2148 get_tw:
2149                 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2150                         tw = tw_next(tw);
2151                 }
2152                 if (tw) {
2153                         cur = tw;
2154                         goto out;
2155                 }
2156                 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2157                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2158
2159                 /* Look for next non empty bucket */
2160                 st->offset = 0;
2161                 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2162                                 empty_bucket(st))
2163                         ;
2164                 if (st->bucket > tcp_hashinfo.ehash_mask)
2165                         return NULL;
2166
2167                 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2168                 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2169         } else
2170                 sk = sk_nulls_next(sk);
2171
2172         sk_nulls_for_each_from(sk, node) {
2173                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2174                         goto found;
2175         }
2176
2177         st->state = TCP_SEQ_STATE_TIME_WAIT;
2178         tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2179         goto get_tw;
2180 found:
2181         cur = sk;
2182 out:
2183         return cur;
2184 }
2185
2186 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2187 {
2188         struct tcp_iter_state *st = seq->private;
2189         void *rc;
2190
2191         st->bucket = 0;
2192         rc = established_get_first(seq);
2193
2194         while (rc && pos) {
2195                 rc = established_get_next(seq, rc);
2196                 --pos;
2197         }
2198         return rc;
2199 }
2200
2201 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2202 {
2203         void *rc;
2204         struct tcp_iter_state *st = seq->private;
2205
2206         st->state = TCP_SEQ_STATE_LISTENING;
2207         rc        = listening_get_idx(seq, &pos);
2208
2209         if (!rc) {
2210                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2211                 rc        = established_get_idx(seq, pos);
2212         }
2213
2214         return rc;
2215 }
2216
2217 static void *tcp_seek_last_pos(struct seq_file *seq)
2218 {
2219         struct tcp_iter_state *st = seq->private;
2220         int offset = st->offset;
2221         int orig_num = st->num;
2222         void *rc = NULL;
2223
2224         switch (st->state) {
2225         case TCP_SEQ_STATE_OPENREQ:
2226         case TCP_SEQ_STATE_LISTENING:
2227                 if (st->bucket >= INET_LHTABLE_SIZE)
2228                         break;
2229                 st->state = TCP_SEQ_STATE_LISTENING;
2230                 rc = listening_get_next(seq, NULL);
2231                 while (offset-- && rc)
2232                         rc = listening_get_next(seq, rc);
2233                 if (rc)
2234                         break;
2235                 st->bucket = 0;
2236                 /* Fallthrough */
2237         case TCP_SEQ_STATE_ESTABLISHED:
2238         case TCP_SEQ_STATE_TIME_WAIT:
2239                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2240                 if (st->bucket > tcp_hashinfo.ehash_mask)
2241                         break;
2242                 rc = established_get_first(seq);
2243                 while (offset-- && rc)
2244                         rc = established_get_next(seq, rc);
2245         }
2246
2247         st->num = orig_num;
2248
2249         return rc;
2250 }
2251
2252 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2253 {
2254         struct tcp_iter_state *st = seq->private;
2255         void *rc;
2256
2257         if (*pos && *pos == st->last_pos) {
2258                 rc = tcp_seek_last_pos(seq);
2259                 if (rc)
2260                         goto out;
2261         }
2262
2263         st->state = TCP_SEQ_STATE_LISTENING;
2264         st->num = 0;
2265         st->bucket = 0;
2266         st->offset = 0;
2267         rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2268
2269 out:
2270         st->last_pos = *pos;
2271         return rc;
2272 }
2273
2274 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2275 {
2276         struct tcp_iter_state *st = seq->private;
2277         void *rc = NULL;
2278
2279         if (v == SEQ_START_TOKEN) {
2280                 rc = tcp_get_idx(seq, 0);
2281                 goto out;
2282         }
2283
2284         switch (st->state) {
2285         case TCP_SEQ_STATE_OPENREQ:
2286         case TCP_SEQ_STATE_LISTENING:
2287                 rc = listening_get_next(seq, v);
2288                 if (!rc) {
2289                         st->state = TCP_SEQ_STATE_ESTABLISHED;
2290                         st->bucket = 0;
2291                         st->offset = 0;
2292                         rc        = established_get_first(seq);
2293                 }
2294                 break;
2295         case TCP_SEQ_STATE_ESTABLISHED:
2296         case TCP_SEQ_STATE_TIME_WAIT:
2297                 rc = established_get_next(seq, v);
2298                 break;
2299         }
2300 out:
2301         ++*pos;
2302         st->last_pos = *pos;
2303         return rc;
2304 }
2305
2306 static void tcp_seq_stop(struct seq_file *seq, void *v)
2307 {
2308         struct tcp_iter_state *st = seq->private;
2309
2310         switch (st->state) {
2311         case TCP_SEQ_STATE_OPENREQ:
2312                 if (v) {
2313                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2314                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2315                 }
2316         case TCP_SEQ_STATE_LISTENING:
2317                 if (v != SEQ_START_TOKEN)
2318                         spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2319                 break;
2320         case TCP_SEQ_STATE_TIME_WAIT:
2321         case TCP_SEQ_STATE_ESTABLISHED:
2322                 if (v)
2323                         spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2324                 break;
2325         }
2326 }
2327
2328 static int tcp_seq_open(struct inode *inode, struct file *file)
2329 {
2330         struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2331         struct tcp_iter_state *s;
2332         int err;
2333
2334         err = seq_open_net(inode, file, &afinfo->seq_ops,
2335                           sizeof(struct tcp_iter_state));
2336         if (err < 0)
2337                 return err;
2338
2339         s = ((struct seq_file *)file->private_data)->private;
2340         s->family               = afinfo->family;
2341         s->last_pos             = 0;
2342         return 0;
2343 }
2344
2345 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2346 {
2347         int rc = 0;
2348         struct proc_dir_entry *p;
2349
2350         afinfo->seq_fops.open           = tcp_seq_open;
2351         afinfo->seq_fops.read           = seq_read;
2352         afinfo->seq_fops.llseek         = seq_lseek;
2353         afinfo->seq_fops.release        = seq_release_net;
2354
2355         afinfo->seq_ops.start           = tcp_seq_start;
2356         afinfo->seq_ops.next            = tcp_seq_next;
2357         afinfo->seq_ops.stop            = tcp_seq_stop;
2358
2359         p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2360                              &afinfo->seq_fops, afinfo);
2361         if (!p)
2362                 rc = -ENOMEM;
2363         return rc;
2364 }
2365 EXPORT_SYMBOL(tcp_proc_register);
2366
2367 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2368 {
2369         proc_net_remove(net, afinfo->name);
2370 }
2371 EXPORT_SYMBOL(tcp_proc_unregister);
2372
2373 static void get_openreq4(struct sock *sk, struct request_sock *req,
2374                          struct seq_file *f, int i, int uid, int *len)
2375 {
2376         const struct inet_request_sock *ireq = inet_rsk(req);
2377         int ttd = req->expires - jiffies;
2378
2379         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2380                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2381                 i,
2382                 ireq->loc_addr,
2383                 ntohs(inet_sk(sk)->inet_sport),
2384                 ireq->rmt_addr,
2385                 ntohs(ireq->rmt_port),
2386                 TCP_SYN_RECV,
2387                 0, 0, /* could print option size, but that is af dependent. */
2388                 1,    /* timers active (only the expire timer) */
2389                 jiffies_to_clock_t(ttd),
2390                 req->retrans,
2391                 uid,
2392                 0,  /* non standard timer */
2393                 0, /* open_requests have no inode */
2394                 atomic_read(&sk->sk_refcnt),
2395                 req,
2396                 len);
2397 }
2398
2399 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2400 {
2401         int timer_active;
2402         unsigned long timer_expires;
2403         struct tcp_sock *tp = tcp_sk(sk);
2404         const struct inet_connection_sock *icsk = inet_csk(sk);
2405         struct inet_sock *inet = inet_sk(sk);
2406         __be32 dest = inet->inet_daddr;
2407         __be32 src = inet->inet_rcv_saddr;
2408         __u16 destp = ntohs(inet->inet_dport);
2409         __u16 srcp = ntohs(inet->inet_sport);
2410         int rx_queue;
2411
2412         if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2413                 timer_active    = 1;
2414                 timer_expires   = icsk->icsk_timeout;
2415         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2416                 timer_active    = 4;
2417                 timer_expires   = icsk->icsk_timeout;
2418         } else if (timer_pending(&sk->sk_timer)) {
2419                 timer_active    = 2;
2420                 timer_expires   = sk->sk_timer.expires;
2421         } else {
2422                 timer_active    = 0;
2423                 timer_expires = jiffies;
2424         }
2425
2426         if (sk->sk_state == TCP_LISTEN)
2427                 rx_queue = sk->sk_ack_backlog;
2428         else
2429                 /*
2430                  * because we dont lock socket, we might find a transient negative value
2431                  */
2432                 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2433
2434         seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2435                         "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2436                 i, src, srcp, dest, destp, sk->sk_state,
2437                 tp->write_seq - tp->snd_una,
2438                 rx_queue,
2439                 timer_active,
2440                 jiffies_to_clock_t(timer_expires - jiffies),
2441                 icsk->icsk_retransmits,
2442                 sock_i_uid(sk),
2443                 icsk->icsk_probes_out,
2444                 sock_i_ino(sk),
2445                 atomic_read(&sk->sk_refcnt), sk,
2446                 jiffies_to_clock_t(icsk->icsk_rto),
2447                 jiffies_to_clock_t(icsk->icsk_ack.ato),
2448                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2449                 tp->snd_cwnd,
2450                 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2451                 len);
2452 }
2453
2454 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2455                                struct seq_file *f, int i, int *len)
2456 {
2457         __be32 dest, src;
2458         __u16 destp, srcp;
2459         int ttd = tw->tw_ttd - jiffies;
2460
2461         if (ttd < 0)
2462                 ttd = 0;
2463
2464         dest  = tw->tw_daddr;
2465         src   = tw->tw_rcv_saddr;
2466         destp = ntohs(tw->tw_dport);
2467         srcp  = ntohs(tw->tw_sport);
2468
2469         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2470                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2471                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2472                 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2473                 atomic_read(&tw->tw_refcnt), tw, len);
2474 }
2475
2476 #define TMPSZ 150
2477
2478 static int tcp4_seq_show(struct seq_file *seq, void *v)
2479 {
2480         struct tcp_iter_state *st;
2481         int len;
2482
2483         if (v == SEQ_START_TOKEN) {
2484                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2485                            "  sl  local_address rem_address   st tx_queue "
2486                            "rx_queue tr tm->when retrnsmt   uid  timeout "
2487                            "inode");
2488                 goto out;
2489         }
2490         st = seq->private;
2491
2492         switch (st->state) {
2493         case TCP_SEQ_STATE_LISTENING:
2494         case TCP_SEQ_STATE_ESTABLISHED:
2495                 get_tcp4_sock(v, seq, st->num, &len);
2496                 break;
2497         case TCP_SEQ_STATE_OPENREQ:
2498                 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2499                 break;
2500         case TCP_SEQ_STATE_TIME_WAIT:
2501                 get_timewait4_sock(v, seq, st->num, &len);
2502                 break;
2503         }
2504         seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2505 out:
2506         return 0;
2507 }
2508
2509 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2510         .name           = "tcp",
2511         .family         = AF_INET,
2512         .seq_fops       = {
2513                 .owner          = THIS_MODULE,
2514         },
2515         .seq_ops        = {
2516                 .show           = tcp4_seq_show,
2517         },
2518 };
2519
2520 static int __net_init tcp4_proc_init_net(struct net *net)
2521 {
2522         return tcp_proc_register(net, &tcp4_seq_afinfo);
2523 }
2524
2525 static void __net_exit tcp4_proc_exit_net(struct net *net)
2526 {
2527         tcp_proc_unregister(net, &tcp4_seq_afinfo);
2528 }
2529
2530 static struct pernet_operations tcp4_net_ops = {
2531         .init = tcp4_proc_init_net,
2532         .exit = tcp4_proc_exit_net,
2533 };
2534
2535 int __init tcp4_proc_init(void)
2536 {
2537         return register_pernet_subsys(&tcp4_net_ops);
2538 }
2539
2540 void tcp4_proc_exit(void)
2541 {
2542         unregister_pernet_subsys(&tcp4_net_ops);
2543 }
2544 #endif /* CONFIG_PROC_FS */
2545
2546 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2547 {
2548         const struct iphdr *iph = skb_gro_network_header(skb);
2549
2550         switch (skb->ip_summed) {
2551         case CHECKSUM_COMPLETE:
2552                 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2553                                   skb->csum)) {
2554                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2555                         break;
2556                 }
2557
2558                 /* fall through */
2559         case CHECKSUM_NONE:
2560                 NAPI_GRO_CB(skb)->flush = 1;
2561                 return NULL;
2562         }
2563
2564         return tcp_gro_receive(head, skb);
2565 }
2566
2567 int tcp4_gro_complete(struct sk_buff *skb)
2568 {
2569         const struct iphdr *iph = ip_hdr(skb);
2570         struct tcphdr *th = tcp_hdr(skb);
2571
2572         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2573                                   iph->saddr, iph->daddr, 0);
2574         skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2575
2576         return tcp_gro_complete(skb);
2577 }
2578
2579 struct proto tcp_prot = {
2580         .name                   = "TCP",
2581         .owner                  = THIS_MODULE,
2582         .close                  = tcp_close,
2583         .connect                = tcp_v4_connect,
2584         .disconnect             = tcp_disconnect,
2585         .accept                 = inet_csk_accept,
2586         .ioctl                  = tcp_ioctl,
2587         .init                   = tcp_v4_init_sock,
2588         .destroy                = tcp_v4_destroy_sock,
2589         .shutdown               = tcp_shutdown,
2590         .setsockopt             = tcp_setsockopt,
2591         .getsockopt             = tcp_getsockopt,
2592         .recvmsg                = tcp_recvmsg,
2593         .sendmsg                = tcp_sendmsg,
2594         .sendpage               = tcp_sendpage,
2595         .backlog_rcv            = tcp_v4_do_rcv,
2596         .hash                   = inet_hash,
2597         .unhash                 = inet_unhash,
2598         .get_port               = inet_csk_get_port,
2599         .enter_memory_pressure  = tcp_enter_memory_pressure,
2600         .sockets_allocated      = &tcp_sockets_allocated,
2601         .orphan_count           = &tcp_orphan_count,
2602         .memory_allocated       = &tcp_memory_allocated,
2603         .memory_pressure        = &tcp_memory_pressure,
2604         .sysctl_mem             = sysctl_tcp_mem,
2605         .sysctl_wmem            = sysctl_tcp_wmem,
2606         .sysctl_rmem            = sysctl_tcp_rmem,
2607         .max_header             = MAX_TCP_HEADER,
2608         .obj_size               = sizeof(struct tcp_sock),
2609         .slab_flags             = SLAB_DESTROY_BY_RCU,
2610         .twsk_prot              = &tcp_timewait_sock_ops,
2611         .rsk_prot               = &tcp_request_sock_ops,
2612         .h.hashinfo             = &tcp_hashinfo,
2613         .no_autobind            = true,
2614 #ifdef CONFIG_COMPAT
2615         .compat_setsockopt      = compat_tcp_setsockopt,
2616         .compat_getsockopt      = compat_tcp_getsockopt,
2617 #endif
2618 };
2619 EXPORT_SYMBOL(tcp_prot);
2620
2621
2622 static int __net_init tcp_sk_init(struct net *net)
2623 {
2624         return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2625                                     PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2626 }
2627
2628 static void __net_exit tcp_sk_exit(struct net *net)
2629 {
2630         inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2631 }
2632
2633 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2634 {
2635         inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2636 }
2637
2638 static struct pernet_operations __net_initdata tcp_sk_ops = {
2639        .init       = tcp_sk_init,
2640        .exit       = tcp_sk_exit,
2641        .exit_batch = tcp_sk_exit_batch,
2642 };
2643
2644 void __init tcp_v4_init(void)
2645 {
2646         inet_hashinfo_init(&tcp_hashinfo);
2647         if (register_pernet_subsys(&tcp_sk_ops))
2648                 panic("Failed to create the TCP control socket.\n");
2649 }