Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[pandora-kernel.git] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  *              IPv4 specific functions
9  *
10  *
11  *              code split from:
12  *              linux/ipv4/tcp.c
13  *              linux/ipv4/tcp_input.c
14  *              linux/ipv4/tcp_output.c
15  *
16  *              See tcp.c for author information
17  *
18  *      This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23
24 /*
25  * Changes:
26  *              David S. Miller :       New socket lookup architecture.
27  *                                      This code is dedicated to John Dyson.
28  *              David S. Miller :       Change semantics of established hash,
29  *                                      half is devoted to TIME_WAIT sockets
30  *                                      and the rest go in the other half.
31  *              Andi Kleen :            Add support for syncookies and fixed
32  *                                      some bugs: ip options weren't passed to
33  *                                      the TCP layer, missed a check for an
34  *                                      ACK bit.
35  *              Andi Kleen :            Implemented fast path mtu discovery.
36  *                                      Fixed many serious bugs in the
37  *                                      request_sock handling and moved
38  *                                      most of it into the af independent code.
39  *                                      Added tail drop and some other bugfixes.
40  *                                      Added new listen semantics.
41  *              Mike McLagan    :       Routing by source
42  *      Juan Jose Ciarlante:            ip_dynaddr bits
43  *              Andi Kleen:             various fixes.
44  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
45  *                                      coma.
46  *      Andi Kleen              :       Fix new listen.
47  *      Andi Kleen              :       Fix accept error reporting.
48  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
49  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
50  *                                      a single port at the same time.
51  */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95                                __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103         return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104                                           ip_hdr(skb)->saddr,
105                                           tcp_hdr(skb)->dest,
106                                           tcp_hdr(skb)->source);
107 }
108
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112         struct tcp_sock *tp = tcp_sk(sk);
113
114         /* With PAWS, it is safe from the viewpoint
115            of data integrity. Even without PAWS it is safe provided sequence
116            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118            Actually, the idea is close to VJ's one, only timestamp cache is
119            held not per host, but per port pair and TW bucket is used as state
120            holder.
121
122            If TW bucket has been already destroyed we fall back to VJ's scheme
123            and use initial timestamp retrieved from peer table.
124          */
125         if (tcptw->tw_ts_recent_stamp &&
126             (twp == NULL || (sysctl_tcp_tw_reuse &&
127                              get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129                 if (tp->write_seq == 0)
130                         tp->write_seq = 1;
131                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
132                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133                 sock_hold(sktw);
134                 return 1;
135         }
136
137         return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141 /* This will initiate an outgoing connection. */
142 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
143 {
144         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
145         struct inet_sock *inet = inet_sk(sk);
146         struct tcp_sock *tp = tcp_sk(sk);
147         __be16 orig_sport, orig_dport;
148         __be32 daddr, nexthop;
149         struct flowi4 *fl4;
150         struct rtable *rt;
151         int err;
152         struct ip_options_rcu *inet_opt;
153
154         if (addr_len < sizeof(struct sockaddr_in))
155                 return -EINVAL;
156
157         if (usin->sin_family != AF_INET)
158                 return -EAFNOSUPPORT;
159
160         nexthop = daddr = usin->sin_addr.s_addr;
161         inet_opt = rcu_dereference_protected(inet->inet_opt,
162                                              sock_owned_by_user(sk));
163         if (inet_opt && inet_opt->opt.srr) {
164                 if (!daddr)
165                         return -EINVAL;
166                 nexthop = inet_opt->opt.faddr;
167         }
168
169         orig_sport = inet->inet_sport;
170         orig_dport = usin->sin_port;
171         fl4 = &inet->cork.fl.u.ip4;
172         rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
173                               RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
174                               IPPROTO_TCP,
175                               orig_sport, orig_dport, sk, true);
176         if (IS_ERR(rt)) {
177                 err = PTR_ERR(rt);
178                 if (err == -ENETUNREACH)
179                         IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
180                 return err;
181         }
182
183         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
184                 ip_rt_put(rt);
185                 return -ENETUNREACH;
186         }
187
188         if (!inet_opt || !inet_opt->opt.srr)
189                 daddr = fl4->daddr;
190
191         if (!inet->inet_saddr)
192                 inet->inet_saddr = fl4->saddr;
193         inet->inet_rcv_saddr = inet->inet_saddr;
194
195         if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
196                 /* Reset inherited state */
197                 tp->rx_opt.ts_recent       = 0;
198                 tp->rx_opt.ts_recent_stamp = 0;
199                 if (likely(!tp->repair))
200                         tp->write_seq      = 0;
201         }
202
203         if (tcp_death_row.sysctl_tw_recycle &&
204             !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
205                 tcp_fetch_timewait_stamp(sk, &rt->dst);
206
207         inet->inet_dport = usin->sin_port;
208         inet->inet_daddr = daddr;
209
210         inet_csk(sk)->icsk_ext_hdr_len = 0;
211         if (inet_opt)
212                 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
213
214         tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
215
216         /* Socket identity is still unknown (sport may be zero).
217          * However we set state to SYN-SENT and not releasing socket
218          * lock select source port, enter ourselves into the hash tables and
219          * complete initialization after this.
220          */
221         tcp_set_state(sk, TCP_SYN_SENT);
222         err = inet_hash_connect(&tcp_death_row, sk);
223         if (err)
224                 goto failure;
225
226         rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
227                                inet->inet_sport, inet->inet_dport, sk);
228         if (IS_ERR(rt)) {
229                 err = PTR_ERR(rt);
230                 rt = NULL;
231                 goto failure;
232         }
233         /* OK, now commit destination to socket.  */
234         sk->sk_gso_type = SKB_GSO_TCPV4;
235         sk_setup_caps(sk, &rt->dst);
236
237         if (!tp->write_seq && likely(!tp->repair))
238                 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
239                                                            inet->inet_daddr,
240                                                            inet->inet_sport,
241                                                            usin->sin_port);
242
243         inet->inet_id = tp->write_seq ^ jiffies;
244
245         err = tcp_connect(sk);
246
247         rt = NULL;
248         if (err)
249                 goto failure;
250
251         return 0;
252
253 failure:
254         /*
255          * This unhashes the socket and releases the local port,
256          * if necessary.
257          */
258         tcp_set_state(sk, TCP_CLOSE);
259         ip_rt_put(rt);
260         sk->sk_route_caps = 0;
261         inet->inet_dport = 0;
262         return err;
263 }
264 EXPORT_SYMBOL(tcp_v4_connect);
265
266 /*
267  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
268  * It can be called through tcp_release_cb() if socket was owned by user
269  * at the time tcp_v4_err() was called to handle ICMP message.
270  */
271 static void tcp_v4_mtu_reduced(struct sock *sk)
272 {
273         struct dst_entry *dst;
274         struct inet_sock *inet = inet_sk(sk);
275         u32 mtu = tcp_sk(sk)->mtu_info;
276
277         /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
278          * send out by Linux are always <576bytes so they should go through
279          * unfragmented).
280          */
281         if (sk->sk_state == TCP_LISTEN)
282                 return;
283
284         dst = inet_csk_update_pmtu(sk, mtu);
285         if (!dst)
286                 return;
287
288         /* Something is about to be wrong... Remember soft error
289          * for the case, if this connection will not able to recover.
290          */
291         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
292                 sk->sk_err_soft = EMSGSIZE;
293
294         mtu = dst_mtu(dst);
295
296         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
297             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
298                 tcp_sync_mss(sk, mtu);
299
300                 /* Resend the TCP packet because it's
301                  * clear that the old packet has been
302                  * dropped. This is the new "fast" path mtu
303                  * discovery.
304                  */
305                 tcp_simple_retransmit(sk);
306         } /* else let the usual retransmit timer handle it */
307 }
308
309 static void do_redirect(struct sk_buff *skb, struct sock *sk)
310 {
311         struct dst_entry *dst = __sk_dst_check(sk, 0);
312
313         if (dst)
314                 dst->ops->redirect(dst, sk, skb);
315 }
316
317 /*
318  * This routine is called by the ICMP module when it gets some
319  * sort of error condition.  If err < 0 then the socket should
320  * be closed and the error returned to the user.  If err > 0
321  * it's just the icmp type << 8 | icmp code.  After adjustment
322  * header points to the first 8 bytes of the tcp header.  We need
323  * to find the appropriate port.
324  *
325  * The locking strategy used here is very "optimistic". When
326  * someone else accesses the socket the ICMP is just dropped
327  * and for some paths there is no check at all.
328  * A more general error queue to queue errors for later handling
329  * is probably better.
330  *
331  */
332
333 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
334 {
335         const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
336         struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
337         struct inet_connection_sock *icsk;
338         struct tcp_sock *tp;
339         struct inet_sock *inet;
340         const int type = icmp_hdr(icmp_skb)->type;
341         const int code = icmp_hdr(icmp_skb)->code;
342         struct sock *sk;
343         struct sk_buff *skb;
344         struct request_sock *req;
345         __u32 seq;
346         __u32 remaining;
347         int err;
348         struct net *net = dev_net(icmp_skb->dev);
349
350         if (icmp_skb->len < (iph->ihl << 2) + 8) {
351                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
352                 return;
353         }
354
355         sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
356                         iph->saddr, th->source, inet_iif(icmp_skb));
357         if (!sk) {
358                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
359                 return;
360         }
361         if (sk->sk_state == TCP_TIME_WAIT) {
362                 inet_twsk_put(inet_twsk(sk));
363                 return;
364         }
365
366         bh_lock_sock(sk);
367         /* If too many ICMPs get dropped on busy
368          * servers this needs to be solved differently.
369          * We do take care of PMTU discovery (RFC1191) special case :
370          * we can receive locally generated ICMP messages while socket is held.
371          */
372         if (sock_owned_by_user(sk)) {
373                 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
374                         NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
375         }
376         if (sk->sk_state == TCP_CLOSE)
377                 goto out;
378
379         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
380                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
381                 goto out;
382         }
383
384         icsk = inet_csk(sk);
385         tp = tcp_sk(sk);
386         req = tp->fastopen_rsk;
387         seq = ntohl(th->seq);
388         if (sk->sk_state != TCP_LISTEN &&
389             !between(seq, tp->snd_una, tp->snd_nxt) &&
390             (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
391                 /* For a Fast Open socket, allow seq to be snt_isn. */
392                 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
393                 goto out;
394         }
395
396         switch (type) {
397         case ICMP_REDIRECT:
398                 do_redirect(icmp_skb, sk);
399                 goto out;
400         case ICMP_SOURCE_QUENCH:
401                 /* Just silently ignore these. */
402                 goto out;
403         case ICMP_PARAMETERPROB:
404                 err = EPROTO;
405                 break;
406         case ICMP_DEST_UNREACH:
407                 if (code > NR_ICMP_UNREACH)
408                         goto out;
409
410                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
411                         tp->mtu_info = info;
412                         if (!sock_owned_by_user(sk)) {
413                                 tcp_v4_mtu_reduced(sk);
414                         } else {
415                                 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
416                                         sock_hold(sk);
417                         }
418                         goto out;
419                 }
420
421                 err = icmp_err_convert[code].errno;
422                 /* check if icmp_skb allows revert of backoff
423                  * (see draft-zimmermann-tcp-lcd) */
424                 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
425                         break;
426                 if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
427                     !icsk->icsk_backoff)
428                         break;
429
430                 /* XXX (TFO) - revisit the following logic for TFO */
431
432                 if (sock_owned_by_user(sk))
433                         break;
434
435                 icsk->icsk_backoff--;
436                 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
437                         TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
438                 tcp_bound_rto(sk);
439
440                 skb = tcp_write_queue_head(sk);
441                 BUG_ON(!skb);
442
443                 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
444                                 tcp_time_stamp - TCP_SKB_CB(skb)->when);
445
446                 if (remaining) {
447                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
448                                                   remaining, TCP_RTO_MAX);
449                 } else {
450                         /* RTO revert clocked out retransmission.
451                          * Will retransmit now */
452                         tcp_retransmit_timer(sk);
453                 }
454
455                 break;
456         case ICMP_TIME_EXCEEDED:
457                 err = EHOSTUNREACH;
458                 break;
459         default:
460                 goto out;
461         }
462
463         /* XXX (TFO) - if it's a TFO socket and has been accepted, rather
464          * than following the TCP_SYN_RECV case and closing the socket,
465          * we ignore the ICMP error and keep trying like a fully established
466          * socket. Is this the right thing to do?
467          */
468         if (req && req->sk == NULL)
469                 goto out;
470
471         switch (sk->sk_state) {
472                 struct request_sock *req, **prev;
473         case TCP_LISTEN:
474                 if (sock_owned_by_user(sk))
475                         goto out;
476
477                 req = inet_csk_search_req(sk, &prev, th->dest,
478                                           iph->daddr, iph->saddr);
479                 if (!req)
480                         goto out;
481
482                 /* ICMPs are not backlogged, hence we cannot get
483                    an established socket here.
484                  */
485                 WARN_ON(req->sk);
486
487                 if (seq != tcp_rsk(req)->snt_isn) {
488                         NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
489                         goto out;
490                 }
491
492                 /*
493                  * Still in SYN_RECV, just remove it silently.
494                  * There is no good way to pass the error to the newly
495                  * created socket, and POSIX does not want network
496                  * errors returned from accept().
497                  */
498                 inet_csk_reqsk_queue_drop(sk, req, prev);
499                 goto out;
500
501         case TCP_SYN_SENT:
502         case TCP_SYN_RECV:  /* Cannot happen.
503                                It can f.e. if SYNs crossed,
504                                or Fast Open.
505                              */
506                 if (!sock_owned_by_user(sk)) {
507                         sk->sk_err = err;
508
509                         sk->sk_error_report(sk);
510
511                         tcp_done(sk);
512                 } else {
513                         sk->sk_err_soft = err;
514                 }
515                 goto out;
516         }
517
518         /* If we've already connected we will keep trying
519          * until we time out, or the user gives up.
520          *
521          * rfc1122 4.2.3.9 allows to consider as hard errors
522          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
523          * but it is obsoleted by pmtu discovery).
524          *
525          * Note, that in modern internet, where routing is unreliable
526          * and in each dark corner broken firewalls sit, sending random
527          * errors ordered by their masters even this two messages finally lose
528          * their original sense (even Linux sends invalid PORT_UNREACHs)
529          *
530          * Now we are in compliance with RFCs.
531          *                                                      --ANK (980905)
532          */
533
534         inet = inet_sk(sk);
535         if (!sock_owned_by_user(sk) && inet->recverr) {
536                 sk->sk_err = err;
537                 sk->sk_error_report(sk);
538         } else  { /* Only an error on timeout */
539                 sk->sk_err_soft = err;
540         }
541
542 out:
543         bh_unlock_sock(sk);
544         sock_put(sk);
545 }
546
547 static void __tcp_v4_send_check(struct sk_buff *skb,
548                                 __be32 saddr, __be32 daddr)
549 {
550         struct tcphdr *th = tcp_hdr(skb);
551
552         if (skb->ip_summed == CHECKSUM_PARTIAL) {
553                 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
554                 skb->csum_start = skb_transport_header(skb) - skb->head;
555                 skb->csum_offset = offsetof(struct tcphdr, check);
556         } else {
557                 th->check = tcp_v4_check(skb->len, saddr, daddr,
558                                          csum_partial(th,
559                                                       th->doff << 2,
560                                                       skb->csum));
561         }
562 }
563
564 /* This routine computes an IPv4 TCP checksum. */
565 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
566 {
567         const struct inet_sock *inet = inet_sk(sk);
568
569         __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
570 }
571 EXPORT_SYMBOL(tcp_v4_send_check);
572
573 int tcp_v4_gso_send_check(struct sk_buff *skb)
574 {
575         const struct iphdr *iph;
576         struct tcphdr *th;
577
578         if (!pskb_may_pull(skb, sizeof(*th)))
579                 return -EINVAL;
580
581         iph = ip_hdr(skb);
582         th = tcp_hdr(skb);
583
584         th->check = 0;
585         skb->ip_summed = CHECKSUM_PARTIAL;
586         __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
587         return 0;
588 }
589
590 /*
591  *      This routine will send an RST to the other tcp.
592  *
593  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
594  *                    for reset.
595  *      Answer: if a packet caused RST, it is not for a socket
596  *              existing in our system, if it is matched to a socket,
597  *              it is just duplicate segment or bug in other side's TCP.
598  *              So that we build reply only basing on parameters
599  *              arrived with segment.
600  *      Exception: precedence violation. We do not implement it in any case.
601  */
602
603 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
604 {
605         const struct tcphdr *th = tcp_hdr(skb);
606         struct {
607                 struct tcphdr th;
608 #ifdef CONFIG_TCP_MD5SIG
609                 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
610 #endif
611         } rep;
612         struct ip_reply_arg arg;
613 #ifdef CONFIG_TCP_MD5SIG
614         struct tcp_md5sig_key *key;
615         const __u8 *hash_location = NULL;
616         unsigned char newhash[16];
617         int genhash;
618         struct sock *sk1 = NULL;
619 #endif
620         struct net *net;
621
622         /* Never send a reset in response to a reset. */
623         if (th->rst)
624                 return;
625
626         if (skb_rtable(skb)->rt_type != RTN_LOCAL)
627                 return;
628
629         /* Swap the send and the receive. */
630         memset(&rep, 0, sizeof(rep));
631         rep.th.dest   = th->source;
632         rep.th.source = th->dest;
633         rep.th.doff   = sizeof(struct tcphdr) / 4;
634         rep.th.rst    = 1;
635
636         if (th->ack) {
637                 rep.th.seq = th->ack_seq;
638         } else {
639                 rep.th.ack = 1;
640                 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
641                                        skb->len - (th->doff << 2));
642         }
643
644         memset(&arg, 0, sizeof(arg));
645         arg.iov[0].iov_base = (unsigned char *)&rep;
646         arg.iov[0].iov_len  = sizeof(rep.th);
647
648 #ifdef CONFIG_TCP_MD5SIG
649         hash_location = tcp_parse_md5sig_option(th);
650         if (!sk && hash_location) {
651                 /*
652                  * active side is lost. Try to find listening socket through
653                  * source port, and then find md5 key through listening socket.
654                  * we are not loose security here:
655                  * Incoming packet is checked with md5 hash with finding key,
656                  * no RST generated if md5 hash doesn't match.
657                  */
658                 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
659                                              &tcp_hashinfo, ip_hdr(skb)->saddr,
660                                              th->source, ip_hdr(skb)->daddr,
661                                              ntohs(th->source), inet_iif(skb));
662                 /* don't send rst if it can't find key */
663                 if (!sk1)
664                         return;
665                 rcu_read_lock();
666                 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
667                                         &ip_hdr(skb)->saddr, AF_INET);
668                 if (!key)
669                         goto release_sk1;
670
671                 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
672                 if (genhash || memcmp(hash_location, newhash, 16) != 0)
673                         goto release_sk1;
674         } else {
675                 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
676                                              &ip_hdr(skb)->saddr,
677                                              AF_INET) : NULL;
678         }
679
680         if (key) {
681                 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
682                                    (TCPOPT_NOP << 16) |
683                                    (TCPOPT_MD5SIG << 8) |
684                                    TCPOLEN_MD5SIG);
685                 /* Update length and the length the header thinks exists */
686                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
687                 rep.th.doff = arg.iov[0].iov_len / 4;
688
689                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
690                                      key, ip_hdr(skb)->saddr,
691                                      ip_hdr(skb)->daddr, &rep.th);
692         }
693 #endif
694         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
695                                       ip_hdr(skb)->saddr, /* XXX */
696                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
697         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
698         arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
699         /* When socket is gone, all binding information is lost.
700          * routing might fail in this case. No choice here, if we choose to force
701          * input interface, we will misroute in case of asymmetric route.
702          */
703         if (sk)
704                 arg.bound_dev_if = sk->sk_bound_dev_if;
705
706         net = dev_net(skb_dst(skb)->dev);
707         arg.tos = ip_hdr(skb)->tos;
708         ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
709                               ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
710
711         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
712         TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
713
714 #ifdef CONFIG_TCP_MD5SIG
715 release_sk1:
716         if (sk1) {
717                 rcu_read_unlock();
718                 sock_put(sk1);
719         }
720 #endif
721 }
722
723 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
724    outside socket context is ugly, certainly. What can I do?
725  */
726
727 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
728                             u32 win, u32 ts, int oif,
729                             struct tcp_md5sig_key *key,
730                             int reply_flags, u8 tos)
731 {
732         const struct tcphdr *th = tcp_hdr(skb);
733         struct {
734                 struct tcphdr th;
735                 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
736 #ifdef CONFIG_TCP_MD5SIG
737                            + (TCPOLEN_MD5SIG_ALIGNED >> 2)
738 #endif
739                         ];
740         } rep;
741         struct ip_reply_arg arg;
742         struct net *net = dev_net(skb_dst(skb)->dev);
743
744         memset(&rep.th, 0, sizeof(struct tcphdr));
745         memset(&arg, 0, sizeof(arg));
746
747         arg.iov[0].iov_base = (unsigned char *)&rep;
748         arg.iov[0].iov_len  = sizeof(rep.th);
749         if (ts) {
750                 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
751                                    (TCPOPT_TIMESTAMP << 8) |
752                                    TCPOLEN_TIMESTAMP);
753                 rep.opt[1] = htonl(tcp_time_stamp);
754                 rep.opt[2] = htonl(ts);
755                 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
756         }
757
758         /* Swap the send and the receive. */
759         rep.th.dest    = th->source;
760         rep.th.source  = th->dest;
761         rep.th.doff    = arg.iov[0].iov_len / 4;
762         rep.th.seq     = htonl(seq);
763         rep.th.ack_seq = htonl(ack);
764         rep.th.ack     = 1;
765         rep.th.window  = htons(win);
766
767 #ifdef CONFIG_TCP_MD5SIG
768         if (key) {
769                 int offset = (ts) ? 3 : 0;
770
771                 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
772                                           (TCPOPT_NOP << 16) |
773                                           (TCPOPT_MD5SIG << 8) |
774                                           TCPOLEN_MD5SIG);
775                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
776                 rep.th.doff = arg.iov[0].iov_len/4;
777
778                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
779                                     key, ip_hdr(skb)->saddr,
780                                     ip_hdr(skb)->daddr, &rep.th);
781         }
782 #endif
783         arg.flags = reply_flags;
784         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
785                                       ip_hdr(skb)->saddr, /* XXX */
786                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
787         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
788         if (oif)
789                 arg.bound_dev_if = oif;
790         arg.tos = tos;
791         ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
792                               ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
793
794         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
795 }
796
797 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
798 {
799         struct inet_timewait_sock *tw = inet_twsk(sk);
800         struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
801
802         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
803                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
804                         tcptw->tw_ts_recent,
805                         tw->tw_bound_dev_if,
806                         tcp_twsk_md5_key(tcptw),
807                         tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
808                         tw->tw_tos
809                         );
810
811         inet_twsk_put(tw);
812 }
813
814 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
815                                   struct request_sock *req)
816 {
817         /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
818          * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
819          */
820         tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
821                         tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
822                         tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
823                         req->ts_recent,
824                         0,
825                         tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
826                                           AF_INET),
827                         inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
828                         ip_hdr(skb)->tos);
829 }
830
831 /*
832  *      Send a SYN-ACK after having received a SYN.
833  *      This still operates on a request_sock only, not on a big
834  *      socket.
835  */
836 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
837                               struct request_sock *req,
838                               struct request_values *rvp,
839                               u16 queue_mapping,
840                               bool nocache)
841 {
842         const struct inet_request_sock *ireq = inet_rsk(req);
843         struct flowi4 fl4;
844         int err = -1;
845         struct sk_buff * skb;
846
847         /* First, grab a route. */
848         if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
849                 return -1;
850
851         skb = tcp_make_synack(sk, dst, req, rvp, NULL);
852
853         if (skb) {
854                 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
855
856                 skb_set_queue_mapping(skb, queue_mapping);
857                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
858                                             ireq->rmt_addr,
859                                             ireq->opt);
860                 err = net_xmit_eval(err);
861                 if (!tcp_rsk(req)->snt_synack && !err)
862                         tcp_rsk(req)->snt_synack = tcp_time_stamp;
863         }
864
865         return err;
866 }
867
868 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
869                              struct request_values *rvp)
870 {
871         int res = tcp_v4_send_synack(sk, NULL, req, rvp, 0, false);
872
873         if (!res)
874                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
875         return res;
876 }
877
878 /*
879  *      IPv4 request_sock destructor.
880  */
881 static void tcp_v4_reqsk_destructor(struct request_sock *req)
882 {
883         kfree(inet_rsk(req)->opt);
884 }
885
886 /*
887  * Return true if a syncookie should be sent
888  */
889 bool tcp_syn_flood_action(struct sock *sk,
890                          const struct sk_buff *skb,
891                          const char *proto)
892 {
893         const char *msg = "Dropping request";
894         bool want_cookie = false;
895         struct listen_sock *lopt;
896
897
898
899 #ifdef CONFIG_SYN_COOKIES
900         if (sysctl_tcp_syncookies) {
901                 msg = "Sending cookies";
902                 want_cookie = true;
903                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
904         } else
905 #endif
906                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
907
908         lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
909         if (!lopt->synflood_warned) {
910                 lopt->synflood_warned = 1;
911                 pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
912                         proto, ntohs(tcp_hdr(skb)->dest), msg);
913         }
914         return want_cookie;
915 }
916 EXPORT_SYMBOL(tcp_syn_flood_action);
917
918 /*
919  * Save and compile IPv4 options into the request_sock if needed.
920  */
921 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
922 {
923         const struct ip_options *opt = &(IPCB(skb)->opt);
924         struct ip_options_rcu *dopt = NULL;
925
926         if (opt && opt->optlen) {
927                 int opt_size = sizeof(*dopt) + opt->optlen;
928
929                 dopt = kmalloc(opt_size, GFP_ATOMIC);
930                 if (dopt) {
931                         if (ip_options_echo(&dopt->opt, skb)) {
932                                 kfree(dopt);
933                                 dopt = NULL;
934                         }
935                 }
936         }
937         return dopt;
938 }
939
940 #ifdef CONFIG_TCP_MD5SIG
941 /*
942  * RFC2385 MD5 checksumming requires a mapping of
943  * IP address->MD5 Key.
944  * We need to maintain these in the sk structure.
945  */
946
947 /* Find the Key structure for an address.  */
948 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
949                                          const union tcp_md5_addr *addr,
950                                          int family)
951 {
952         struct tcp_sock *tp = tcp_sk(sk);
953         struct tcp_md5sig_key *key;
954         struct hlist_node *pos;
955         unsigned int size = sizeof(struct in_addr);
956         struct tcp_md5sig_info *md5sig;
957
958         /* caller either holds rcu_read_lock() or socket lock */
959         md5sig = rcu_dereference_check(tp->md5sig_info,
960                                        sock_owned_by_user(sk) ||
961                                        lockdep_is_held(&sk->sk_lock.slock));
962         if (!md5sig)
963                 return NULL;
964 #if IS_ENABLED(CONFIG_IPV6)
965         if (family == AF_INET6)
966                 size = sizeof(struct in6_addr);
967 #endif
968         hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
969                 if (key->family != family)
970                         continue;
971                 if (!memcmp(&key->addr, addr, size))
972                         return key;
973         }
974         return NULL;
975 }
976 EXPORT_SYMBOL(tcp_md5_do_lookup);
977
978 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
979                                          struct sock *addr_sk)
980 {
981         union tcp_md5_addr *addr;
982
983         addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
984         return tcp_md5_do_lookup(sk, addr, AF_INET);
985 }
986 EXPORT_SYMBOL(tcp_v4_md5_lookup);
987
988 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
989                                                       struct request_sock *req)
990 {
991         union tcp_md5_addr *addr;
992
993         addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
994         return tcp_md5_do_lookup(sk, addr, AF_INET);
995 }
996
997 /* This can be called on a newly created socket, from other files */
998 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
999                    int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
1000 {
1001         /* Add Key to the list */
1002         struct tcp_md5sig_key *key;
1003         struct tcp_sock *tp = tcp_sk(sk);
1004         struct tcp_md5sig_info *md5sig;
1005
1006         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1007         if (key) {
1008                 /* Pre-existing entry - just update that one. */
1009                 memcpy(key->key, newkey, newkeylen);
1010                 key->keylen = newkeylen;
1011                 return 0;
1012         }
1013
1014         md5sig = rcu_dereference_protected(tp->md5sig_info,
1015                                            sock_owned_by_user(sk));
1016         if (!md5sig) {
1017                 md5sig = kmalloc(sizeof(*md5sig), gfp);
1018                 if (!md5sig)
1019                         return -ENOMEM;
1020
1021                 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1022                 INIT_HLIST_HEAD(&md5sig->head);
1023                 rcu_assign_pointer(tp->md5sig_info, md5sig);
1024         }
1025
1026         key = sock_kmalloc(sk, sizeof(*key), gfp);
1027         if (!key)
1028                 return -ENOMEM;
1029         if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1030                 sock_kfree_s(sk, key, sizeof(*key));
1031                 return -ENOMEM;
1032         }
1033
1034         memcpy(key->key, newkey, newkeylen);
1035         key->keylen = newkeylen;
1036         key->family = family;
1037         memcpy(&key->addr, addr,
1038                (family == AF_INET6) ? sizeof(struct in6_addr) :
1039                                       sizeof(struct in_addr));
1040         hlist_add_head_rcu(&key->node, &md5sig->head);
1041         return 0;
1042 }
1043 EXPORT_SYMBOL(tcp_md5_do_add);
1044
1045 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1046 {
1047         struct tcp_sock *tp = tcp_sk(sk);
1048         struct tcp_md5sig_key *key;
1049         struct tcp_md5sig_info *md5sig;
1050
1051         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1052         if (!key)
1053                 return -ENOENT;
1054         hlist_del_rcu(&key->node);
1055         atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1056         kfree_rcu(key, rcu);
1057         md5sig = rcu_dereference_protected(tp->md5sig_info,
1058                                            sock_owned_by_user(sk));
1059         if (hlist_empty(&md5sig->head))
1060                 tcp_free_md5sig_pool();
1061         return 0;
1062 }
1063 EXPORT_SYMBOL(tcp_md5_do_del);
1064
1065 static void tcp_clear_md5_list(struct sock *sk)
1066 {
1067         struct tcp_sock *tp = tcp_sk(sk);
1068         struct tcp_md5sig_key *key;
1069         struct hlist_node *pos, *n;
1070         struct tcp_md5sig_info *md5sig;
1071
1072         md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1073
1074         if (!hlist_empty(&md5sig->head))
1075                 tcp_free_md5sig_pool();
1076         hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1077                 hlist_del_rcu(&key->node);
1078                 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1079                 kfree_rcu(key, rcu);
1080         }
1081 }
1082
1083 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1084                                  int optlen)
1085 {
1086         struct tcp_md5sig cmd;
1087         struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1088
1089         if (optlen < sizeof(cmd))
1090                 return -EINVAL;
1091
1092         if (copy_from_user(&cmd, optval, sizeof(cmd)))
1093                 return -EFAULT;
1094
1095         if (sin->sin_family != AF_INET)
1096                 return -EINVAL;
1097
1098         if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1099                 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1100                                       AF_INET);
1101
1102         if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1103                 return -EINVAL;
1104
1105         return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1106                               AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1107                               GFP_KERNEL);
1108 }
1109
1110 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1111                                         __be32 daddr, __be32 saddr, int nbytes)
1112 {
1113         struct tcp4_pseudohdr *bp;
1114         struct scatterlist sg;
1115
1116         bp = &hp->md5_blk.ip4;
1117
1118         /*
1119          * 1. the TCP pseudo-header (in the order: source IP address,
1120          * destination IP address, zero-padded protocol number, and
1121          * segment length)
1122          */
1123         bp->saddr = saddr;
1124         bp->daddr = daddr;
1125         bp->pad = 0;
1126         bp->protocol = IPPROTO_TCP;
1127         bp->len = cpu_to_be16(nbytes);
1128
1129         sg_init_one(&sg, bp, sizeof(*bp));
1130         return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1131 }
1132
1133 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1134                                __be32 daddr, __be32 saddr, const struct tcphdr *th)
1135 {
1136         struct tcp_md5sig_pool *hp;
1137         struct hash_desc *desc;
1138
1139         hp = tcp_get_md5sig_pool();
1140         if (!hp)
1141                 goto clear_hash_noput;
1142         desc = &hp->md5_desc;
1143
1144         if (crypto_hash_init(desc))
1145                 goto clear_hash;
1146         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1147                 goto clear_hash;
1148         if (tcp_md5_hash_header(hp, th))
1149                 goto clear_hash;
1150         if (tcp_md5_hash_key(hp, key))
1151                 goto clear_hash;
1152         if (crypto_hash_final(desc, md5_hash))
1153                 goto clear_hash;
1154
1155         tcp_put_md5sig_pool();
1156         return 0;
1157
1158 clear_hash:
1159         tcp_put_md5sig_pool();
1160 clear_hash_noput:
1161         memset(md5_hash, 0, 16);
1162         return 1;
1163 }
1164
1165 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1166                         const struct sock *sk, const struct request_sock *req,
1167                         const struct sk_buff *skb)
1168 {
1169         struct tcp_md5sig_pool *hp;
1170         struct hash_desc *desc;
1171         const struct tcphdr *th = tcp_hdr(skb);
1172         __be32 saddr, daddr;
1173
1174         if (sk) {
1175                 saddr = inet_sk(sk)->inet_saddr;
1176                 daddr = inet_sk(sk)->inet_daddr;
1177         } else if (req) {
1178                 saddr = inet_rsk(req)->loc_addr;
1179                 daddr = inet_rsk(req)->rmt_addr;
1180         } else {
1181                 const struct iphdr *iph = ip_hdr(skb);
1182                 saddr = iph->saddr;
1183                 daddr = iph->daddr;
1184         }
1185
1186         hp = tcp_get_md5sig_pool();
1187         if (!hp)
1188                 goto clear_hash_noput;
1189         desc = &hp->md5_desc;
1190
1191         if (crypto_hash_init(desc))
1192                 goto clear_hash;
1193
1194         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1195                 goto clear_hash;
1196         if (tcp_md5_hash_header(hp, th))
1197                 goto clear_hash;
1198         if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1199                 goto clear_hash;
1200         if (tcp_md5_hash_key(hp, key))
1201                 goto clear_hash;
1202         if (crypto_hash_final(desc, md5_hash))
1203                 goto clear_hash;
1204
1205         tcp_put_md5sig_pool();
1206         return 0;
1207
1208 clear_hash:
1209         tcp_put_md5sig_pool();
1210 clear_hash_noput:
1211         memset(md5_hash, 0, 16);
1212         return 1;
1213 }
1214 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1215
1216 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1217 {
1218         /*
1219          * This gets called for each TCP segment that arrives
1220          * so we want to be efficient.
1221          * We have 3 drop cases:
1222          * o No MD5 hash and one expected.
1223          * o MD5 hash and we're not expecting one.
1224          * o MD5 hash and its wrong.
1225          */
1226         const __u8 *hash_location = NULL;
1227         struct tcp_md5sig_key *hash_expected;
1228         const struct iphdr *iph = ip_hdr(skb);
1229         const struct tcphdr *th = tcp_hdr(skb);
1230         int genhash;
1231         unsigned char newhash[16];
1232
1233         hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1234                                           AF_INET);
1235         hash_location = tcp_parse_md5sig_option(th);
1236
1237         /* We've parsed the options - do we have a hash? */
1238         if (!hash_expected && !hash_location)
1239                 return false;
1240
1241         if (hash_expected && !hash_location) {
1242                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1243                 return true;
1244         }
1245
1246         if (!hash_expected && hash_location) {
1247                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1248                 return true;
1249         }
1250
1251         /* Okay, so this is hash_expected and hash_location -
1252          * so we need to calculate the checksum.
1253          */
1254         genhash = tcp_v4_md5_hash_skb(newhash,
1255                                       hash_expected,
1256                                       NULL, NULL, skb);
1257
1258         if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1259                 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1260                                      &iph->saddr, ntohs(th->source),
1261                                      &iph->daddr, ntohs(th->dest),
1262                                      genhash ? " tcp_v4_calc_md5_hash failed"
1263                                      : "");
1264                 return true;
1265         }
1266         return false;
1267 }
1268
1269 #endif
1270
1271 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1272         .family         =       PF_INET,
1273         .obj_size       =       sizeof(struct tcp_request_sock),
1274         .rtx_syn_ack    =       tcp_v4_rtx_synack,
1275         .send_ack       =       tcp_v4_reqsk_send_ack,
1276         .destructor     =       tcp_v4_reqsk_destructor,
1277         .send_reset     =       tcp_v4_send_reset,
1278         .syn_ack_timeout =      tcp_syn_ack_timeout,
1279 };
1280
1281 #ifdef CONFIG_TCP_MD5SIG
1282 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1283         .md5_lookup     =       tcp_v4_reqsk_md5_lookup,
1284         .calc_md5_hash  =       tcp_v4_md5_hash_skb,
1285 };
1286 #endif
1287
1288 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1289                                struct request_sock *req,
1290                                struct tcp_fastopen_cookie *foc,
1291                                struct tcp_fastopen_cookie *valid_foc)
1292 {
1293         bool skip_cookie = false;
1294         struct fastopen_queue *fastopenq;
1295
1296         if (likely(!fastopen_cookie_present(foc))) {
1297                 /* See include/net/tcp.h for the meaning of these knobs */
1298                 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1299                     ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1300                     (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1301                         skip_cookie = true; /* no cookie to validate */
1302                 else
1303                         return false;
1304         }
1305         fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1306         /* A FO option is present; bump the counter. */
1307         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1308
1309         /* Make sure the listener has enabled fastopen, and we don't
1310          * exceed the max # of pending TFO requests allowed before trying
1311          * to validating the cookie in order to avoid burning CPU cycles
1312          * unnecessarily.
1313          *
1314          * XXX (TFO) - The implication of checking the max_qlen before
1315          * processing a cookie request is that clients can't differentiate
1316          * between qlen overflow causing Fast Open to be disabled
1317          * temporarily vs a server not supporting Fast Open at all.
1318          */
1319         if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1320             fastopenq == NULL || fastopenq->max_qlen == 0)
1321                 return false;
1322
1323         if (fastopenq->qlen >= fastopenq->max_qlen) {
1324                 struct request_sock *req1;
1325                 spin_lock(&fastopenq->lock);
1326                 req1 = fastopenq->rskq_rst_head;
1327                 if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1328                         spin_unlock(&fastopenq->lock);
1329                         NET_INC_STATS_BH(sock_net(sk),
1330                             LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1331                         /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1332                         foc->len = -1;
1333                         return false;
1334                 }
1335                 fastopenq->rskq_rst_head = req1->dl_next;
1336                 fastopenq->qlen--;
1337                 spin_unlock(&fastopenq->lock);
1338                 reqsk_free(req1);
1339         }
1340         if (skip_cookie) {
1341                 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1342                 return true;
1343         }
1344         if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1345                 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1346                         tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1347                         if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1348                             memcmp(&foc->val[0], &valid_foc->val[0],
1349                             TCP_FASTOPEN_COOKIE_SIZE) != 0)
1350                                 return false;
1351                         valid_foc->len = -1;
1352                 }
1353                 /* Acknowledge the data received from the peer. */
1354                 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1355                 return true;
1356         } else if (foc->len == 0) { /* Client requesting a cookie */
1357                 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1358                 NET_INC_STATS_BH(sock_net(sk),
1359                     LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1360         } else {
1361                 /* Client sent a cookie with wrong size. Treat it
1362                  * the same as invalid and return a valid one.
1363                  */
1364                 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1365         }
1366         return false;
1367 }
1368
1369 static int tcp_v4_conn_req_fastopen(struct sock *sk,
1370                                     struct sk_buff *skb,
1371                                     struct sk_buff *skb_synack,
1372                                     struct request_sock *req,
1373                                     struct request_values *rvp)
1374 {
1375         struct tcp_sock *tp = tcp_sk(sk);
1376         struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1377         const struct inet_request_sock *ireq = inet_rsk(req);
1378         struct sock *child;
1379         int err;
1380
1381         req->num_retrans = 0;
1382         req->num_timeout = 0;
1383         req->sk = NULL;
1384
1385         child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1386         if (child == NULL) {
1387                 NET_INC_STATS_BH(sock_net(sk),
1388                                  LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1389                 kfree_skb(skb_synack);
1390                 return -1;
1391         }
1392         err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1393                                     ireq->rmt_addr, ireq->opt);
1394         err = net_xmit_eval(err);
1395         if (!err)
1396                 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1397         /* XXX (TFO) - is it ok to ignore error and continue? */
1398
1399         spin_lock(&queue->fastopenq->lock);
1400         queue->fastopenq->qlen++;
1401         spin_unlock(&queue->fastopenq->lock);
1402
1403         /* Initialize the child socket. Have to fix some values to take
1404          * into account the child is a Fast Open socket and is created
1405          * only out of the bits carried in the SYN packet.
1406          */
1407         tp = tcp_sk(child);
1408
1409         tp->fastopen_rsk = req;
1410         /* Do a hold on the listner sk so that if the listener is being
1411          * closed, the child that has been accepted can live on and still
1412          * access listen_lock.
1413          */
1414         sock_hold(sk);
1415         tcp_rsk(req)->listener = sk;
1416
1417         /* RFC1323: The window in SYN & SYN/ACK segments is never
1418          * scaled. So correct it appropriately.
1419          */
1420         tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1421
1422         /* Activate the retrans timer so that SYNACK can be retransmitted.
1423          * The request socket is not added to the SYN table of the parent
1424          * because it's been added to the accept queue directly.
1425          */
1426         inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1427             TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1428
1429         /* Add the child socket directly into the accept queue */
1430         inet_csk_reqsk_queue_add(sk, req, child);
1431
1432         /* Now finish processing the fastopen child socket. */
1433         inet_csk(child)->icsk_af_ops->rebuild_header(child);
1434         tcp_init_congestion_control(child);
1435         tcp_mtup_init(child);
1436         tcp_init_buffer_space(child);
1437         tcp_init_metrics(child);
1438
1439         /* Queue the data carried in the SYN packet. We need to first
1440          * bump skb's refcnt because the caller will attempt to free it.
1441          *
1442          * XXX (TFO) - we honor a zero-payload TFO request for now.
1443          * (Any reason not to?)
1444          */
1445         if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1446                 /* Don't queue the skb if there is no payload in SYN.
1447                  * XXX (TFO) - How about SYN+FIN?
1448                  */
1449                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1450         } else {
1451                 skb = skb_get(skb);
1452                 skb_dst_drop(skb);
1453                 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
1454                 skb_set_owner_r(skb, child);
1455                 __skb_queue_tail(&child->sk_receive_queue, skb);
1456                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1457                 tp->syn_data_acked = 1;
1458         }
1459         sk->sk_data_ready(sk, 0);
1460         bh_unlock_sock(child);
1461         sock_put(child);
1462         WARN_ON(req->sk == NULL);
1463         return 0;
1464 }
1465
1466 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1467 {
1468         struct tcp_extend_values tmp_ext;
1469         struct tcp_options_received tmp_opt;
1470         const u8 *hash_location;
1471         struct request_sock *req;
1472         struct inet_request_sock *ireq;
1473         struct tcp_sock *tp = tcp_sk(sk);
1474         struct dst_entry *dst = NULL;
1475         __be32 saddr = ip_hdr(skb)->saddr;
1476         __be32 daddr = ip_hdr(skb)->daddr;
1477         __u32 isn = TCP_SKB_CB(skb)->when;
1478         bool want_cookie = false;
1479         struct flowi4 fl4;
1480         struct tcp_fastopen_cookie foc = { .len = -1 };
1481         struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1482         struct sk_buff *skb_synack;
1483         int do_fastopen;
1484
1485         /* Never answer to SYNs send to broadcast or multicast */
1486         if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1487                 goto drop;
1488
1489         /* TW buckets are converted to open requests without
1490          * limitations, they conserve resources and peer is
1491          * evidently real one.
1492          */
1493         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1494                 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1495                 if (!want_cookie)
1496                         goto drop;
1497         }
1498
1499         /* Accept backlog is full. If we have already queued enough
1500          * of warm entries in syn queue, drop request. It is better than
1501          * clogging syn queue with openreqs with exponentially increasing
1502          * timeout.
1503          */
1504         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1505                 goto drop;
1506
1507         req = inet_reqsk_alloc(&tcp_request_sock_ops);
1508         if (!req)
1509                 goto drop;
1510
1511 #ifdef CONFIG_TCP_MD5SIG
1512         tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1513 #endif
1514
1515         tcp_clear_options(&tmp_opt);
1516         tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1517         tmp_opt.user_mss  = tp->rx_opt.user_mss;
1518         tcp_parse_options(skb, &tmp_opt, &hash_location, 0,
1519             want_cookie ? NULL : &foc);
1520
1521         if (tmp_opt.cookie_plus > 0 &&
1522             tmp_opt.saw_tstamp &&
1523             !tp->rx_opt.cookie_out_never &&
1524             (sysctl_tcp_cookie_size > 0 ||
1525              (tp->cookie_values != NULL &&
1526               tp->cookie_values->cookie_desired > 0))) {
1527                 u8 *c;
1528                 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1529                 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1530
1531                 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1532                         goto drop_and_release;
1533
1534                 /* Secret recipe starts with IP addresses */
1535                 *mess++ ^= (__force u32)daddr;
1536                 *mess++ ^= (__force u32)saddr;
1537
1538                 /* plus variable length Initiator Cookie */
1539                 c = (u8 *)mess;
1540                 while (l-- > 0)
1541                         *c++ ^= *hash_location++;
1542
1543                 want_cookie = false;    /* not our kind of cookie */
1544                 tmp_ext.cookie_out_never = 0; /* false */
1545                 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1546         } else if (!tp->rx_opt.cookie_in_always) {
1547                 /* redundant indications, but ensure initialization. */
1548                 tmp_ext.cookie_out_never = 1; /* true */
1549                 tmp_ext.cookie_plus = 0;
1550         } else {
1551                 goto drop_and_release;
1552         }
1553         tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1554
1555         if (want_cookie && !tmp_opt.saw_tstamp)
1556                 tcp_clear_options(&tmp_opt);
1557
1558         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1559         tcp_openreq_init(req, &tmp_opt, skb);
1560
1561         ireq = inet_rsk(req);
1562         ireq->loc_addr = daddr;
1563         ireq->rmt_addr = saddr;
1564         ireq->no_srccheck = inet_sk(sk)->transparent;
1565         ireq->opt = tcp_v4_save_options(skb);
1566
1567         if (security_inet_conn_request(sk, skb, req))
1568                 goto drop_and_free;
1569
1570         if (!want_cookie || tmp_opt.tstamp_ok)
1571                 TCP_ECN_create_request(req, skb, sock_net(sk));
1572
1573         if (want_cookie) {
1574                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1575                 req->cookie_ts = tmp_opt.tstamp_ok;
1576         } else if (!isn) {
1577                 /* VJ's idea. We save last timestamp seen
1578                  * from the destination in peer table, when entering
1579                  * state TIME-WAIT, and check against it before
1580                  * accepting new connection request.
1581                  *
1582                  * If "isn" is not zero, this request hit alive
1583                  * timewait bucket, so that all the necessary checks
1584                  * are made in the function processing timewait state.
1585                  */
1586                 if (tmp_opt.saw_tstamp &&
1587                     tcp_death_row.sysctl_tw_recycle &&
1588                     (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1589                     fl4.daddr == saddr) {
1590                         if (!tcp_peer_is_proven(req, dst, true)) {
1591                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1592                                 goto drop_and_release;
1593                         }
1594                 }
1595                 /* Kill the following clause, if you dislike this way. */
1596                 else if (!sysctl_tcp_syncookies &&
1597                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1598                           (sysctl_max_syn_backlog >> 2)) &&
1599                          !tcp_peer_is_proven(req, dst, false)) {
1600                         /* Without syncookies last quarter of
1601                          * backlog is filled with destinations,
1602                          * proven to be alive.
1603                          * It means that we continue to communicate
1604                          * to destinations, already remembered
1605                          * to the moment of synflood.
1606                          */
1607                         LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1608                                        &saddr, ntohs(tcp_hdr(skb)->source));
1609                         goto drop_and_release;
1610                 }
1611
1612                 isn = tcp_v4_init_sequence(skb);
1613         }
1614         tcp_rsk(req)->snt_isn = isn;
1615
1616         if (dst == NULL) {
1617                 dst = inet_csk_route_req(sk, &fl4, req);
1618                 if (dst == NULL)
1619                         goto drop_and_free;
1620         }
1621         do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1622
1623         /* We don't call tcp_v4_send_synack() directly because we need
1624          * to make sure a child socket can be created successfully before
1625          * sending back synack!
1626          *
1627          * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1628          * (or better yet, call tcp_send_synack() in the child context
1629          * directly, but will have to fix bunch of other code first)
1630          * after syn_recv_sock() except one will need to first fix the
1631          * latter to remove its dependency on the current implementation
1632          * of tcp_v4_send_synack()->tcp_select_initial_window().
1633          */
1634         skb_synack = tcp_make_synack(sk, dst, req,
1635             (struct request_values *)&tmp_ext,
1636             fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1637
1638         if (skb_synack) {
1639                 __tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr);
1640                 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1641         } else
1642                 goto drop_and_free;
1643
1644         if (likely(!do_fastopen)) {
1645                 int err;
1646                 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1647                      ireq->rmt_addr, ireq->opt);
1648                 err = net_xmit_eval(err);
1649                 if (err || want_cookie)
1650                         goto drop_and_free;
1651
1652                 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1653                 tcp_rsk(req)->listener = NULL;
1654                 /* Add the request_sock to the SYN table */
1655                 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1656                 if (fastopen_cookie_present(&foc) && foc.len != 0)
1657                         NET_INC_STATS_BH(sock_net(sk),
1658                             LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1659         } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req,
1660             (struct request_values *)&tmp_ext))
1661                 goto drop_and_free;
1662
1663         return 0;
1664
1665 drop_and_release:
1666         dst_release(dst);
1667 drop_and_free:
1668         reqsk_free(req);
1669 drop:
1670         return 0;
1671 }
1672 EXPORT_SYMBOL(tcp_v4_conn_request);
1673
1674
1675 /*
1676  * The three way handshake has completed - we got a valid synack -
1677  * now create the new socket.
1678  */
1679 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1680                                   struct request_sock *req,
1681                                   struct dst_entry *dst)
1682 {
1683         struct inet_request_sock *ireq;
1684         struct inet_sock *newinet;
1685         struct tcp_sock *newtp;
1686         struct sock *newsk;
1687 #ifdef CONFIG_TCP_MD5SIG
1688         struct tcp_md5sig_key *key;
1689 #endif
1690         struct ip_options_rcu *inet_opt;
1691
1692         if (sk_acceptq_is_full(sk))
1693                 goto exit_overflow;
1694
1695         newsk = tcp_create_openreq_child(sk, req, skb);
1696         if (!newsk)
1697                 goto exit_nonewsk;
1698
1699         newsk->sk_gso_type = SKB_GSO_TCPV4;
1700         inet_sk_rx_dst_set(newsk, skb);
1701
1702         newtp                 = tcp_sk(newsk);
1703         newinet               = inet_sk(newsk);
1704         ireq                  = inet_rsk(req);
1705         newinet->inet_daddr   = ireq->rmt_addr;
1706         newinet->inet_rcv_saddr = ireq->loc_addr;
1707         newinet->inet_saddr           = ireq->loc_addr;
1708         inet_opt              = ireq->opt;
1709         rcu_assign_pointer(newinet->inet_opt, inet_opt);
1710         ireq->opt             = NULL;
1711         newinet->mc_index     = inet_iif(skb);
1712         newinet->mc_ttl       = ip_hdr(skb)->ttl;
1713         newinet->rcv_tos      = ip_hdr(skb)->tos;
1714         inet_csk(newsk)->icsk_ext_hdr_len = 0;
1715         if (inet_opt)
1716                 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1717         newinet->inet_id = newtp->write_seq ^ jiffies;
1718
1719         if (!dst) {
1720                 dst = inet_csk_route_child_sock(sk, newsk, req);
1721                 if (!dst)
1722                         goto put_and_exit;
1723         } else {
1724                 /* syncookie case : see end of cookie_v4_check() */
1725         }
1726         sk_setup_caps(newsk, dst);
1727
1728         tcp_mtup_init(newsk);
1729         tcp_sync_mss(newsk, dst_mtu(dst));
1730         newtp->advmss = dst_metric_advmss(dst);
1731         if (tcp_sk(sk)->rx_opt.user_mss &&
1732             tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1733                 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1734
1735         tcp_initialize_rcv_mss(newsk);
1736         tcp_synack_rtt_meas(newsk, req);
1737         newtp->total_retrans = req->num_retrans;
1738
1739 #ifdef CONFIG_TCP_MD5SIG
1740         /* Copy over the MD5 key from the original socket */
1741         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1742                                 AF_INET);
1743         if (key != NULL) {
1744                 /*
1745                  * We're using one, so create a matching key
1746                  * on the newsk structure. If we fail to get
1747                  * memory, then we end up not copying the key
1748                  * across. Shucks.
1749                  */
1750                 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1751                                AF_INET, key->key, key->keylen, GFP_ATOMIC);
1752                 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1753         }
1754 #endif
1755
1756         if (__inet_inherit_port(sk, newsk) < 0)
1757                 goto put_and_exit;
1758         __inet_hash_nolisten(newsk, NULL);
1759
1760         return newsk;
1761
1762 exit_overflow:
1763         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1764 exit_nonewsk:
1765         dst_release(dst);
1766 exit:
1767         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1768         return NULL;
1769 put_and_exit:
1770         inet_csk_prepare_forced_close(newsk);
1771         tcp_done(newsk);
1772         goto exit;
1773 }
1774 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1775
1776 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1777 {
1778         struct tcphdr *th = tcp_hdr(skb);
1779         const struct iphdr *iph = ip_hdr(skb);
1780         struct sock *nsk;
1781         struct request_sock **prev;
1782         /* Find possible connection requests. */
1783         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1784                                                        iph->saddr, iph->daddr);
1785         if (req)
1786                 return tcp_check_req(sk, skb, req, prev, false);
1787
1788         nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1789                         th->source, iph->daddr, th->dest, inet_iif(skb));
1790
1791         if (nsk) {
1792                 if (nsk->sk_state != TCP_TIME_WAIT) {
1793                         bh_lock_sock(nsk);
1794                         return nsk;
1795                 }
1796                 inet_twsk_put(inet_twsk(nsk));
1797                 return NULL;
1798         }
1799
1800 #ifdef CONFIG_SYN_COOKIES
1801         if (!th->syn)
1802                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1803 #endif
1804         return sk;
1805 }
1806
1807 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1808 {
1809         const struct iphdr *iph = ip_hdr(skb);
1810
1811         if (skb->ip_summed == CHECKSUM_COMPLETE) {
1812                 if (!tcp_v4_check(skb->len, iph->saddr,
1813                                   iph->daddr, skb->csum)) {
1814                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1815                         return 0;
1816                 }
1817         }
1818
1819         skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1820                                        skb->len, IPPROTO_TCP, 0);
1821
1822         if (skb->len <= 76) {
1823                 return __skb_checksum_complete(skb);
1824         }
1825         return 0;
1826 }
1827
1828
1829 /* The socket must have it's spinlock held when we get
1830  * here.
1831  *
1832  * We have a potential double-lock case here, so even when
1833  * doing backlog processing we use the BH locking scheme.
1834  * This is because we cannot sleep with the original spinlock
1835  * held.
1836  */
1837 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1838 {
1839         struct sock *rsk;
1840 #ifdef CONFIG_TCP_MD5SIG
1841         /*
1842          * We really want to reject the packet as early as possible
1843          * if:
1844          *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1845          *  o There is an MD5 option and we're not expecting one
1846          */
1847         if (tcp_v4_inbound_md5_hash(sk, skb))
1848                 goto discard;
1849 #endif
1850
1851         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1852                 struct dst_entry *dst = sk->sk_rx_dst;
1853
1854                 sock_rps_save_rxhash(sk, skb);
1855                 if (dst) {
1856                         if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1857                             dst->ops->check(dst, 0) == NULL) {
1858                                 dst_release(dst);
1859                                 sk->sk_rx_dst = NULL;
1860                         }
1861                 }
1862                 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1863                         rsk = sk;
1864                         goto reset;
1865                 }
1866                 return 0;
1867         }
1868
1869         if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1870                 goto csum_err;
1871
1872         if (sk->sk_state == TCP_LISTEN) {
1873                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1874                 if (!nsk)
1875                         goto discard;
1876
1877                 if (nsk != sk) {
1878                         sock_rps_save_rxhash(nsk, skb);
1879                         if (tcp_child_process(sk, nsk, skb)) {
1880                                 rsk = nsk;
1881                                 goto reset;
1882                         }
1883                         return 0;
1884                 }
1885         } else
1886                 sock_rps_save_rxhash(sk, skb);
1887
1888         if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1889                 rsk = sk;
1890                 goto reset;
1891         }
1892         return 0;
1893
1894 reset:
1895         tcp_v4_send_reset(rsk, skb);
1896 discard:
1897         kfree_skb(skb);
1898         /* Be careful here. If this function gets more complicated and
1899          * gcc suffers from register pressure on the x86, sk (in %ebx)
1900          * might be destroyed here. This current version compiles correctly,
1901          * but you have been warned.
1902          */
1903         return 0;
1904
1905 csum_err:
1906         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1907         goto discard;
1908 }
1909 EXPORT_SYMBOL(tcp_v4_do_rcv);
1910
1911 void tcp_v4_early_demux(struct sk_buff *skb)
1912 {
1913         const struct iphdr *iph;
1914         const struct tcphdr *th;
1915         struct sock *sk;
1916
1917         if (skb->pkt_type != PACKET_HOST)
1918                 return;
1919
1920         if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1921                 return;
1922
1923         iph = ip_hdr(skb);
1924         th = tcp_hdr(skb);
1925
1926         if (th->doff < sizeof(struct tcphdr) / 4)
1927                 return;
1928
1929         sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1930                                        iph->saddr, th->source,
1931                                        iph->daddr, ntohs(th->dest),
1932                                        skb->skb_iif);
1933         if (sk) {
1934                 skb->sk = sk;
1935                 skb->destructor = sock_edemux;
1936                 if (sk->sk_state != TCP_TIME_WAIT) {
1937                         struct dst_entry *dst = sk->sk_rx_dst;
1938
1939                         if (dst)
1940                                 dst = dst_check(dst, 0);
1941                         if (dst &&
1942                             inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1943                                 skb_dst_set_noref(skb, dst);
1944                 }
1945         }
1946 }
1947
1948 /*
1949  *      From tcp_input.c
1950  */
1951
1952 int tcp_v4_rcv(struct sk_buff *skb)
1953 {
1954         const struct iphdr *iph;
1955         const struct tcphdr *th;
1956         struct sock *sk;
1957         int ret;
1958         struct net *net = dev_net(skb->dev);
1959
1960         if (skb->pkt_type != PACKET_HOST)
1961                 goto discard_it;
1962
1963         /* Count it even if it's bad */
1964         TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1965
1966         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1967                 goto discard_it;
1968
1969         th = tcp_hdr(skb);
1970
1971         if (th->doff < sizeof(struct tcphdr) / 4)
1972                 goto bad_packet;
1973         if (!pskb_may_pull(skb, th->doff * 4))
1974                 goto discard_it;
1975
1976         /* An explanation is required here, I think.
1977          * Packet length and doff are validated by header prediction,
1978          * provided case of th->doff==0 is eliminated.
1979          * So, we defer the checks. */
1980         if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1981                 goto bad_packet;
1982
1983         th = tcp_hdr(skb);
1984         iph = ip_hdr(skb);
1985         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1986         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1987                                     skb->len - th->doff * 4);
1988         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1989         TCP_SKB_CB(skb)->when    = 0;
1990         TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1991         TCP_SKB_CB(skb)->sacked  = 0;
1992
1993         sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1994         if (!sk)
1995                 goto no_tcp_socket;
1996
1997 process:
1998         if (sk->sk_state == TCP_TIME_WAIT)
1999                 goto do_time_wait;
2000
2001         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
2002                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
2003                 goto discard_and_relse;
2004         }
2005
2006         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2007                 goto discard_and_relse;
2008         nf_reset(skb);
2009
2010         if (sk_filter(sk, skb))
2011                 goto discard_and_relse;
2012
2013         skb->dev = NULL;
2014
2015         bh_lock_sock_nested(sk);
2016         ret = 0;
2017         if (!sock_owned_by_user(sk)) {
2018 #ifdef CONFIG_NET_DMA
2019                 struct tcp_sock *tp = tcp_sk(sk);
2020                 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2021                         tp->ucopy.dma_chan = net_dma_find_channel();
2022                 if (tp->ucopy.dma_chan)
2023                         ret = tcp_v4_do_rcv(sk, skb);
2024                 else
2025 #endif
2026                 {
2027                         if (!tcp_prequeue(sk, skb))
2028                                 ret = tcp_v4_do_rcv(sk, skb);
2029                 }
2030         } else if (unlikely(sk_add_backlog(sk, skb,
2031                                            sk->sk_rcvbuf + sk->sk_sndbuf))) {
2032                 bh_unlock_sock(sk);
2033                 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2034                 goto discard_and_relse;
2035         }
2036         bh_unlock_sock(sk);
2037
2038         sock_put(sk);
2039
2040         return ret;
2041
2042 no_tcp_socket:
2043         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2044                 goto discard_it;
2045
2046         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2047 bad_packet:
2048                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2049         } else {
2050                 tcp_v4_send_reset(NULL, skb);
2051         }
2052
2053 discard_it:
2054         /* Discard frame. */
2055         kfree_skb(skb);
2056         return 0;
2057
2058 discard_and_relse:
2059         sock_put(sk);
2060         goto discard_it;
2061
2062 do_time_wait:
2063         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2064                 inet_twsk_put(inet_twsk(sk));
2065                 goto discard_it;
2066         }
2067
2068         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2069                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2070                 inet_twsk_put(inet_twsk(sk));
2071                 goto discard_it;
2072         }
2073         switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2074         case TCP_TW_SYN: {
2075                 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2076                                                         &tcp_hashinfo,
2077                                                         iph->saddr, th->source,
2078                                                         iph->daddr, th->dest,
2079                                                         inet_iif(skb));
2080                 if (sk2) {
2081                         inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2082                         inet_twsk_put(inet_twsk(sk));
2083                         sk = sk2;
2084                         goto process;
2085                 }
2086                 /* Fall through to ACK */
2087         }
2088         case TCP_TW_ACK:
2089                 tcp_v4_timewait_ack(sk, skb);
2090                 break;
2091         case TCP_TW_RST:
2092                 goto no_tcp_socket;
2093         case TCP_TW_SUCCESS:;
2094         }
2095         goto discard_it;
2096 }
2097
2098 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2099         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
2100         .twsk_unique    = tcp_twsk_unique,
2101         .twsk_destructor= tcp_twsk_destructor,
2102 };
2103
2104 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2105 {
2106         struct dst_entry *dst = skb_dst(skb);
2107
2108         dst_hold(dst);
2109         sk->sk_rx_dst = dst;
2110         inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2111 }
2112 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2113
2114 const struct inet_connection_sock_af_ops ipv4_specific = {
2115         .queue_xmit        = ip_queue_xmit,
2116         .send_check        = tcp_v4_send_check,
2117         .rebuild_header    = inet_sk_rebuild_header,
2118         .sk_rx_dst_set     = inet_sk_rx_dst_set,
2119         .conn_request      = tcp_v4_conn_request,
2120         .syn_recv_sock     = tcp_v4_syn_recv_sock,
2121         .net_header_len    = sizeof(struct iphdr),
2122         .setsockopt        = ip_setsockopt,
2123         .getsockopt        = ip_getsockopt,
2124         .addr2sockaddr     = inet_csk_addr2sockaddr,
2125         .sockaddr_len      = sizeof(struct sockaddr_in),
2126         .bind_conflict     = inet_csk_bind_conflict,
2127 #ifdef CONFIG_COMPAT
2128         .compat_setsockopt = compat_ip_setsockopt,
2129         .compat_getsockopt = compat_ip_getsockopt,
2130 #endif
2131 };
2132 EXPORT_SYMBOL(ipv4_specific);
2133
2134 #ifdef CONFIG_TCP_MD5SIG
2135 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2136         .md5_lookup             = tcp_v4_md5_lookup,
2137         .calc_md5_hash          = tcp_v4_md5_hash_skb,
2138         .md5_parse              = tcp_v4_parse_md5_keys,
2139 };
2140 #endif
2141
2142 /* NOTE: A lot of things set to zero explicitly by call to
2143  *       sk_alloc() so need not be done here.
2144  */
2145 static int tcp_v4_init_sock(struct sock *sk)
2146 {
2147         struct inet_connection_sock *icsk = inet_csk(sk);
2148
2149         tcp_init_sock(sk);
2150
2151         icsk->icsk_af_ops = &ipv4_specific;
2152
2153 #ifdef CONFIG_TCP_MD5SIG
2154         tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2155 #endif
2156
2157         return 0;
2158 }
2159
2160 void tcp_v4_destroy_sock(struct sock *sk)
2161 {
2162         struct tcp_sock *tp = tcp_sk(sk);
2163
2164         tcp_clear_xmit_timers(sk);
2165
2166         tcp_cleanup_congestion_control(sk);
2167
2168         /* Cleanup up the write buffer. */
2169         tcp_write_queue_purge(sk);
2170
2171         /* Cleans up our, hopefully empty, out_of_order_queue. */
2172         __skb_queue_purge(&tp->out_of_order_queue);
2173
2174 #ifdef CONFIG_TCP_MD5SIG
2175         /* Clean up the MD5 key list, if any */
2176         if (tp->md5sig_info) {
2177                 tcp_clear_md5_list(sk);
2178                 kfree_rcu(tp->md5sig_info, rcu);
2179                 tp->md5sig_info = NULL;
2180         }
2181 #endif
2182
2183 #ifdef CONFIG_NET_DMA
2184         /* Cleans up our sk_async_wait_queue */
2185         __skb_queue_purge(&sk->sk_async_wait_queue);
2186 #endif
2187
2188         /* Clean prequeue, it must be empty really */
2189         __skb_queue_purge(&tp->ucopy.prequeue);
2190
2191         /* Clean up a referenced TCP bind bucket. */
2192         if (inet_csk(sk)->icsk_bind_hash)
2193                 inet_put_port(sk);
2194
2195         /* TCP Cookie Transactions */
2196         if (tp->cookie_values != NULL) {
2197                 kref_put(&tp->cookie_values->kref,
2198                          tcp_cookie_values_release);
2199                 tp->cookie_values = NULL;
2200         }
2201         BUG_ON(tp->fastopen_rsk != NULL);
2202
2203         /* If socket is aborted during connect operation */
2204         tcp_free_fastopen_req(tp);
2205
2206         sk_sockets_allocated_dec(sk);
2207         sock_release_memcg(sk);
2208 }
2209 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2210
2211 #ifdef CONFIG_PROC_FS
2212 /* Proc filesystem TCP sock list dumping. */
2213
2214 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
2215 {
2216         return hlist_nulls_empty(head) ? NULL :
2217                 list_entry(head->first, struct inet_timewait_sock, tw_node);
2218 }
2219
2220 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2221 {
2222         return !is_a_nulls(tw->tw_node.next) ?
2223                 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2224 }
2225
2226 /*
2227  * Get next listener socket follow cur.  If cur is NULL, get first socket
2228  * starting from bucket given in st->bucket; when st->bucket is zero the
2229  * very first socket in the hash table is returned.
2230  */
2231 static void *listening_get_next(struct seq_file *seq, void *cur)
2232 {
2233         struct inet_connection_sock *icsk;
2234         struct hlist_nulls_node *node;
2235         struct sock *sk = cur;
2236         struct inet_listen_hashbucket *ilb;
2237         struct tcp_iter_state *st = seq->private;
2238         struct net *net = seq_file_net(seq);
2239
2240         if (!sk) {
2241                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2242                 spin_lock_bh(&ilb->lock);
2243                 sk = sk_nulls_head(&ilb->head);
2244                 st->offset = 0;
2245                 goto get_sk;
2246         }
2247         ilb = &tcp_hashinfo.listening_hash[st->bucket];
2248         ++st->num;
2249         ++st->offset;
2250
2251         if (st->state == TCP_SEQ_STATE_OPENREQ) {
2252                 struct request_sock *req = cur;
2253
2254                 icsk = inet_csk(st->syn_wait_sk);
2255                 req = req->dl_next;
2256                 while (1) {
2257                         while (req) {
2258                                 if (req->rsk_ops->family == st->family) {
2259                                         cur = req;
2260                                         goto out;
2261                                 }
2262                                 req = req->dl_next;
2263                         }
2264                         if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2265                                 break;
2266 get_req:
2267                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2268                 }
2269                 sk        = sk_nulls_next(st->syn_wait_sk);
2270                 st->state = TCP_SEQ_STATE_LISTENING;
2271                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2272         } else {
2273                 icsk = inet_csk(sk);
2274                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2275                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2276                         goto start_req;
2277                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2278                 sk = sk_nulls_next(sk);
2279         }
2280 get_sk:
2281         sk_nulls_for_each_from(sk, node) {
2282                 if (!net_eq(sock_net(sk), net))
2283                         continue;
2284                 if (sk->sk_family == st->family) {
2285                         cur = sk;
2286                         goto out;
2287                 }
2288                 icsk = inet_csk(sk);
2289                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2290                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2291 start_req:
2292                         st->uid         = sock_i_uid(sk);
2293                         st->syn_wait_sk = sk;
2294                         st->state       = TCP_SEQ_STATE_OPENREQ;
2295                         st->sbucket     = 0;
2296                         goto get_req;
2297                 }
2298                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2299         }
2300         spin_unlock_bh(&ilb->lock);
2301         st->offset = 0;
2302         if (++st->bucket < INET_LHTABLE_SIZE) {
2303                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2304                 spin_lock_bh(&ilb->lock);
2305                 sk = sk_nulls_head(&ilb->head);
2306                 goto get_sk;
2307         }
2308         cur = NULL;
2309 out:
2310         return cur;
2311 }
2312
2313 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2314 {
2315         struct tcp_iter_state *st = seq->private;
2316         void *rc;
2317
2318         st->bucket = 0;
2319         st->offset = 0;
2320         rc = listening_get_next(seq, NULL);
2321
2322         while (rc && *pos) {
2323                 rc = listening_get_next(seq, rc);
2324                 --*pos;
2325         }
2326         return rc;
2327 }
2328
2329 static inline bool empty_bucket(struct tcp_iter_state *st)
2330 {
2331         return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2332                 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2333 }
2334
2335 /*
2336  * Get first established socket starting from bucket given in st->bucket.
2337  * If st->bucket is zero, the very first socket in the hash is returned.
2338  */
2339 static void *established_get_first(struct seq_file *seq)
2340 {
2341         struct tcp_iter_state *st = seq->private;
2342         struct net *net = seq_file_net(seq);
2343         void *rc = NULL;
2344
2345         st->offset = 0;
2346         for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2347                 struct sock *sk;
2348                 struct hlist_nulls_node *node;
2349                 struct inet_timewait_sock *tw;
2350                 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2351
2352                 /* Lockless fast path for the common case of empty buckets */
2353                 if (empty_bucket(st))
2354                         continue;
2355
2356                 spin_lock_bh(lock);
2357                 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2358                         if (sk->sk_family != st->family ||
2359                             !net_eq(sock_net(sk), net)) {
2360                                 continue;
2361                         }
2362                         rc = sk;
2363                         goto out;
2364                 }
2365                 st->state = TCP_SEQ_STATE_TIME_WAIT;
2366                 inet_twsk_for_each(tw, node,
2367                                    &tcp_hashinfo.ehash[st->bucket].twchain) {
2368                         if (tw->tw_family != st->family ||
2369                             !net_eq(twsk_net(tw), net)) {
2370                                 continue;
2371                         }
2372                         rc = tw;
2373                         goto out;
2374                 }
2375                 spin_unlock_bh(lock);
2376                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2377         }
2378 out:
2379         return rc;
2380 }
2381
2382 static void *established_get_next(struct seq_file *seq, void *cur)
2383 {
2384         struct sock *sk = cur;
2385         struct inet_timewait_sock *tw;
2386         struct hlist_nulls_node *node;
2387         struct tcp_iter_state *st = seq->private;
2388         struct net *net = seq_file_net(seq);
2389
2390         ++st->num;
2391         ++st->offset;
2392
2393         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2394                 tw = cur;
2395                 tw = tw_next(tw);
2396 get_tw:
2397                 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2398                         tw = tw_next(tw);
2399                 }
2400                 if (tw) {
2401                         cur = tw;
2402                         goto out;
2403                 }
2404                 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2405                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2406
2407                 /* Look for next non empty bucket */
2408                 st->offset = 0;
2409                 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2410                                 empty_bucket(st))
2411                         ;
2412                 if (st->bucket > tcp_hashinfo.ehash_mask)
2413                         return NULL;
2414
2415                 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2416                 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2417         } else
2418                 sk = sk_nulls_next(sk);
2419
2420         sk_nulls_for_each_from(sk, node) {
2421                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2422                         goto found;
2423         }
2424
2425         st->state = TCP_SEQ_STATE_TIME_WAIT;
2426         tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2427         goto get_tw;
2428 found:
2429         cur = sk;
2430 out:
2431         return cur;
2432 }
2433
2434 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2435 {
2436         struct tcp_iter_state *st = seq->private;
2437         void *rc;
2438
2439         st->bucket = 0;
2440         rc = established_get_first(seq);
2441
2442         while (rc && pos) {
2443                 rc = established_get_next(seq, rc);
2444                 --pos;
2445         }
2446         return rc;
2447 }
2448
2449 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2450 {
2451         void *rc;
2452         struct tcp_iter_state *st = seq->private;
2453
2454         st->state = TCP_SEQ_STATE_LISTENING;
2455         rc        = listening_get_idx(seq, &pos);
2456
2457         if (!rc) {
2458                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2459                 rc        = established_get_idx(seq, pos);
2460         }
2461
2462         return rc;
2463 }
2464
2465 static void *tcp_seek_last_pos(struct seq_file *seq)
2466 {
2467         struct tcp_iter_state *st = seq->private;
2468         int offset = st->offset;
2469         int orig_num = st->num;
2470         void *rc = NULL;
2471
2472         switch (st->state) {
2473         case TCP_SEQ_STATE_OPENREQ:
2474         case TCP_SEQ_STATE_LISTENING:
2475                 if (st->bucket >= INET_LHTABLE_SIZE)
2476                         break;
2477                 st->state = TCP_SEQ_STATE_LISTENING;
2478                 rc = listening_get_next(seq, NULL);
2479                 while (offset-- && rc)
2480                         rc = listening_get_next(seq, rc);
2481                 if (rc)
2482                         break;
2483                 st->bucket = 0;
2484                 /* Fallthrough */
2485         case TCP_SEQ_STATE_ESTABLISHED:
2486         case TCP_SEQ_STATE_TIME_WAIT:
2487                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2488                 if (st->bucket > tcp_hashinfo.ehash_mask)
2489                         break;
2490                 rc = established_get_first(seq);
2491                 while (offset-- && rc)
2492                         rc = established_get_next(seq, rc);
2493         }
2494
2495         st->num = orig_num;
2496
2497         return rc;
2498 }
2499
2500 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2501 {
2502         struct tcp_iter_state *st = seq->private;
2503         void *rc;
2504
2505         if (*pos && *pos == st->last_pos) {
2506                 rc = tcp_seek_last_pos(seq);
2507                 if (rc)
2508                         goto out;
2509         }
2510
2511         st->state = TCP_SEQ_STATE_LISTENING;
2512         st->num = 0;
2513         st->bucket = 0;
2514         st->offset = 0;
2515         rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2516
2517 out:
2518         st->last_pos = *pos;
2519         return rc;
2520 }
2521
2522 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2523 {
2524         struct tcp_iter_state *st = seq->private;
2525         void *rc = NULL;
2526
2527         if (v == SEQ_START_TOKEN) {
2528                 rc = tcp_get_idx(seq, 0);
2529                 goto out;
2530         }
2531
2532         switch (st->state) {
2533         case TCP_SEQ_STATE_OPENREQ:
2534         case TCP_SEQ_STATE_LISTENING:
2535                 rc = listening_get_next(seq, v);
2536                 if (!rc) {
2537                         st->state = TCP_SEQ_STATE_ESTABLISHED;
2538                         st->bucket = 0;
2539                         st->offset = 0;
2540                         rc        = established_get_first(seq);
2541                 }
2542                 break;
2543         case TCP_SEQ_STATE_ESTABLISHED:
2544         case TCP_SEQ_STATE_TIME_WAIT:
2545                 rc = established_get_next(seq, v);
2546                 break;
2547         }
2548 out:
2549         ++*pos;
2550         st->last_pos = *pos;
2551         return rc;
2552 }
2553
2554 static void tcp_seq_stop(struct seq_file *seq, void *v)
2555 {
2556         struct tcp_iter_state *st = seq->private;
2557
2558         switch (st->state) {
2559         case TCP_SEQ_STATE_OPENREQ:
2560                 if (v) {
2561                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2562                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2563                 }
2564         case TCP_SEQ_STATE_LISTENING:
2565                 if (v != SEQ_START_TOKEN)
2566                         spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2567                 break;
2568         case TCP_SEQ_STATE_TIME_WAIT:
2569         case TCP_SEQ_STATE_ESTABLISHED:
2570                 if (v)
2571                         spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2572                 break;
2573         }
2574 }
2575
2576 int tcp_seq_open(struct inode *inode, struct file *file)
2577 {
2578         struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2579         struct tcp_iter_state *s;
2580         int err;
2581
2582         err = seq_open_net(inode, file, &afinfo->seq_ops,
2583                           sizeof(struct tcp_iter_state));
2584         if (err < 0)
2585                 return err;
2586
2587         s = ((struct seq_file *)file->private_data)->private;
2588         s->family               = afinfo->family;
2589         s->last_pos             = 0;
2590         return 0;
2591 }
2592 EXPORT_SYMBOL(tcp_seq_open);
2593
2594 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2595 {
2596         int rc = 0;
2597         struct proc_dir_entry *p;
2598
2599         afinfo->seq_ops.start           = tcp_seq_start;
2600         afinfo->seq_ops.next            = tcp_seq_next;
2601         afinfo->seq_ops.stop            = tcp_seq_stop;
2602
2603         p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2604                              afinfo->seq_fops, afinfo);
2605         if (!p)
2606                 rc = -ENOMEM;
2607         return rc;
2608 }
2609 EXPORT_SYMBOL(tcp_proc_register);
2610
2611 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2612 {
2613         proc_net_remove(net, afinfo->name);
2614 }
2615 EXPORT_SYMBOL(tcp_proc_unregister);
2616
2617 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2618                          struct seq_file *f, int i, kuid_t uid, int *len)
2619 {
2620         const struct inet_request_sock *ireq = inet_rsk(req);
2621         long delta = req->expires - jiffies;
2622
2623         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2624                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2625                 i,
2626                 ireq->loc_addr,
2627                 ntohs(inet_sk(sk)->inet_sport),
2628                 ireq->rmt_addr,
2629                 ntohs(ireq->rmt_port),
2630                 TCP_SYN_RECV,
2631                 0, 0, /* could print option size, but that is af dependent. */
2632                 1,    /* timers active (only the expire timer) */
2633                 jiffies_delta_to_clock_t(delta),
2634                 req->num_timeout,
2635                 from_kuid_munged(seq_user_ns(f), uid),
2636                 0,  /* non standard timer */
2637                 0, /* open_requests have no inode */
2638                 atomic_read(&sk->sk_refcnt),
2639                 req,
2640                 len);
2641 }
2642
2643 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2644 {
2645         int timer_active;
2646         unsigned long timer_expires;
2647         const struct tcp_sock *tp = tcp_sk(sk);
2648         const struct inet_connection_sock *icsk = inet_csk(sk);
2649         const struct inet_sock *inet = inet_sk(sk);
2650         struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2651         __be32 dest = inet->inet_daddr;
2652         __be32 src = inet->inet_rcv_saddr;
2653         __u16 destp = ntohs(inet->inet_dport);
2654         __u16 srcp = ntohs(inet->inet_sport);
2655         int rx_queue;
2656
2657         if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2658                 timer_active    = 1;
2659                 timer_expires   = icsk->icsk_timeout;
2660         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2661                 timer_active    = 4;
2662                 timer_expires   = icsk->icsk_timeout;
2663         } else if (timer_pending(&sk->sk_timer)) {
2664                 timer_active    = 2;
2665                 timer_expires   = sk->sk_timer.expires;
2666         } else {
2667                 timer_active    = 0;
2668                 timer_expires = jiffies;
2669         }
2670
2671         if (sk->sk_state == TCP_LISTEN)
2672                 rx_queue = sk->sk_ack_backlog;
2673         else
2674                 /*
2675                  * because we dont lock socket, we might find a transient negative value
2676                  */
2677                 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2678
2679         seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2680                         "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2681                 i, src, srcp, dest, destp, sk->sk_state,
2682                 tp->write_seq - tp->snd_una,
2683                 rx_queue,
2684                 timer_active,
2685                 jiffies_delta_to_clock_t(timer_expires - jiffies),
2686                 icsk->icsk_retransmits,
2687                 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2688                 icsk->icsk_probes_out,
2689                 sock_i_ino(sk),
2690                 atomic_read(&sk->sk_refcnt), sk,
2691                 jiffies_to_clock_t(icsk->icsk_rto),
2692                 jiffies_to_clock_t(icsk->icsk_ack.ato),
2693                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2694                 tp->snd_cwnd,
2695                 sk->sk_state == TCP_LISTEN ?
2696                     (fastopenq ? fastopenq->max_qlen : 0) :
2697                     (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh),
2698                 len);
2699 }
2700
2701 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2702                                struct seq_file *f, int i, int *len)
2703 {
2704         __be32 dest, src;
2705         __u16 destp, srcp;
2706         long delta = tw->tw_ttd - jiffies;
2707
2708         dest  = tw->tw_daddr;
2709         src   = tw->tw_rcv_saddr;
2710         destp = ntohs(tw->tw_dport);
2711         srcp  = ntohs(tw->tw_sport);
2712
2713         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2714                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2715                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2716                 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2717                 atomic_read(&tw->tw_refcnt), tw, len);
2718 }
2719
2720 #define TMPSZ 150
2721
2722 static int tcp4_seq_show(struct seq_file *seq, void *v)
2723 {
2724         struct tcp_iter_state *st;
2725         int len;
2726
2727         if (v == SEQ_START_TOKEN) {
2728                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2729                            "  sl  local_address rem_address   st tx_queue "
2730                            "rx_queue tr tm->when retrnsmt   uid  timeout "
2731                            "inode");
2732                 goto out;
2733         }
2734         st = seq->private;
2735
2736         switch (st->state) {
2737         case TCP_SEQ_STATE_LISTENING:
2738         case TCP_SEQ_STATE_ESTABLISHED:
2739                 get_tcp4_sock(v, seq, st->num, &len);
2740                 break;
2741         case TCP_SEQ_STATE_OPENREQ:
2742                 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2743                 break;
2744         case TCP_SEQ_STATE_TIME_WAIT:
2745                 get_timewait4_sock(v, seq, st->num, &len);
2746                 break;
2747         }
2748         seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2749 out:
2750         return 0;
2751 }
2752
2753 static const struct file_operations tcp_afinfo_seq_fops = {
2754         .owner   = THIS_MODULE,
2755         .open    = tcp_seq_open,
2756         .read    = seq_read,
2757         .llseek  = seq_lseek,
2758         .release = seq_release_net
2759 };
2760
2761 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2762         .name           = "tcp",
2763         .family         = AF_INET,
2764         .seq_fops       = &tcp_afinfo_seq_fops,
2765         .seq_ops        = {
2766                 .show           = tcp4_seq_show,
2767         },
2768 };
2769
2770 static int __net_init tcp4_proc_init_net(struct net *net)
2771 {
2772         return tcp_proc_register(net, &tcp4_seq_afinfo);
2773 }
2774
2775 static void __net_exit tcp4_proc_exit_net(struct net *net)
2776 {
2777         tcp_proc_unregister(net, &tcp4_seq_afinfo);
2778 }
2779
2780 static struct pernet_operations tcp4_net_ops = {
2781         .init = tcp4_proc_init_net,
2782         .exit = tcp4_proc_exit_net,
2783 };
2784
2785 int __init tcp4_proc_init(void)
2786 {
2787         return register_pernet_subsys(&tcp4_net_ops);
2788 }
2789
2790 void tcp4_proc_exit(void)
2791 {
2792         unregister_pernet_subsys(&tcp4_net_ops);
2793 }
2794 #endif /* CONFIG_PROC_FS */
2795
2796 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2797 {
2798         const struct iphdr *iph = skb_gro_network_header(skb);
2799         __wsum wsum;
2800         __sum16 sum;
2801
2802         switch (skb->ip_summed) {
2803         case CHECKSUM_COMPLETE:
2804                 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2805                                   skb->csum)) {
2806                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2807                         break;
2808                 }
2809 flush:
2810                 NAPI_GRO_CB(skb)->flush = 1;
2811                 return NULL;
2812
2813         case CHECKSUM_NONE:
2814                 wsum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
2815                                           skb_gro_len(skb), IPPROTO_TCP, 0);
2816                 sum = csum_fold(skb_checksum(skb,
2817                                              skb_gro_offset(skb),
2818                                              skb_gro_len(skb),
2819                                              wsum));
2820                 if (sum)
2821                         goto flush;
2822
2823                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2824                 break;
2825         }
2826
2827         return tcp_gro_receive(head, skb);
2828 }
2829
2830 int tcp4_gro_complete(struct sk_buff *skb)
2831 {
2832         const struct iphdr *iph = ip_hdr(skb);
2833         struct tcphdr *th = tcp_hdr(skb);
2834
2835         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2836                                   iph->saddr, iph->daddr, 0);
2837         skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2838
2839         return tcp_gro_complete(skb);
2840 }
2841
2842 struct proto tcp_prot = {
2843         .name                   = "TCP",
2844         .owner                  = THIS_MODULE,
2845         .close                  = tcp_close,
2846         .connect                = tcp_v4_connect,
2847         .disconnect             = tcp_disconnect,
2848         .accept                 = inet_csk_accept,
2849         .ioctl                  = tcp_ioctl,
2850         .init                   = tcp_v4_init_sock,
2851         .destroy                = tcp_v4_destroy_sock,
2852         .shutdown               = tcp_shutdown,
2853         .setsockopt             = tcp_setsockopt,
2854         .getsockopt             = tcp_getsockopt,
2855         .recvmsg                = tcp_recvmsg,
2856         .sendmsg                = tcp_sendmsg,
2857         .sendpage               = tcp_sendpage,
2858         .backlog_rcv            = tcp_v4_do_rcv,
2859         .release_cb             = tcp_release_cb,
2860         .mtu_reduced            = tcp_v4_mtu_reduced,
2861         .hash                   = inet_hash,
2862         .unhash                 = inet_unhash,
2863         .get_port               = inet_csk_get_port,
2864         .enter_memory_pressure  = tcp_enter_memory_pressure,
2865         .sockets_allocated      = &tcp_sockets_allocated,
2866         .orphan_count           = &tcp_orphan_count,
2867         .memory_allocated       = &tcp_memory_allocated,
2868         .memory_pressure        = &tcp_memory_pressure,
2869         .sysctl_wmem            = sysctl_tcp_wmem,
2870         .sysctl_rmem            = sysctl_tcp_rmem,
2871         .max_header             = MAX_TCP_HEADER,
2872         .obj_size               = sizeof(struct tcp_sock),
2873         .slab_flags             = SLAB_DESTROY_BY_RCU,
2874         .twsk_prot              = &tcp_timewait_sock_ops,
2875         .rsk_prot               = &tcp_request_sock_ops,
2876         .h.hashinfo             = &tcp_hashinfo,
2877         .no_autobind            = true,
2878 #ifdef CONFIG_COMPAT
2879         .compat_setsockopt      = compat_tcp_setsockopt,
2880         .compat_getsockopt      = compat_tcp_getsockopt,
2881 #endif
2882 #ifdef CONFIG_MEMCG_KMEM
2883         .init_cgroup            = tcp_init_cgroup,
2884         .destroy_cgroup         = tcp_destroy_cgroup,
2885         .proto_cgroup           = tcp_proto_cgroup,
2886 #endif
2887 };
2888 EXPORT_SYMBOL(tcp_prot);
2889
2890 static int __net_init tcp_sk_init(struct net *net)
2891 {
2892         net->ipv4.sysctl_tcp_ecn = 2;
2893         return 0;
2894 }
2895
2896 static void __net_exit tcp_sk_exit(struct net *net)
2897 {
2898 }
2899
2900 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2901 {
2902         inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2903 }
2904
2905 static struct pernet_operations __net_initdata tcp_sk_ops = {
2906        .init       = tcp_sk_init,
2907        .exit       = tcp_sk_exit,
2908        .exit_batch = tcp_sk_exit_batch,
2909 };
2910
2911 void __init tcp_v4_init(void)
2912 {
2913         inet_hashinfo_init(&tcp_hashinfo);
2914         if (register_pernet_subsys(&tcp_sk_ops))
2915                 panic("Failed to create the TCP control socket.\n");
2916 }