brcmsmac: rework of mac80211 .flush() callback operation
[pandora-kernel.git] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  *              IPv4 specific functions
9  *
10  *
11  *              code split from:
12  *              linux/ipv4/tcp.c
13  *              linux/ipv4/tcp_input.c
14  *              linux/ipv4/tcp_output.c
15  *
16  *              See tcp.c for author information
17  *
18  *      This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23
24 /*
25  * Changes:
26  *              David S. Miller :       New socket lookup architecture.
27  *                                      This code is dedicated to John Dyson.
28  *              David S. Miller :       Change semantics of established hash,
29  *                                      half is devoted to TIME_WAIT sockets
30  *                                      and the rest go in the other half.
31  *              Andi Kleen :            Add support for syncookies and fixed
32  *                                      some bugs: ip options weren't passed to
33  *                                      the TCP layer, missed a check for an
34  *                                      ACK bit.
35  *              Andi Kleen :            Implemented fast path mtu discovery.
36  *                                      Fixed many serious bugs in the
37  *                                      request_sock handling and moved
38  *                                      most of it into the af independent code.
39  *                                      Added tail drop and some other bugfixes.
40  *                                      Added new listen semantics.
41  *              Mike McLagan    :       Routing by source
42  *      Juan Jose Ciarlante:            ip_dynaddr bits
43  *              Andi Kleen:             various fixes.
44  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
45  *                                      coma.
46  *      Andi Kleen              :       Fix new listen.
47  *      Andi Kleen              :       Fix accept error reporting.
48  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
49  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
50  *                                      a single port at the same time.
51  */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95                                __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103         return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104                                           ip_hdr(skb)->saddr,
105                                           tcp_hdr(skb)->dest,
106                                           tcp_hdr(skb)->source);
107 }
108
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112         struct tcp_sock *tp = tcp_sk(sk);
113
114         /* With PAWS, it is safe from the viewpoint
115            of data integrity. Even without PAWS it is safe provided sequence
116            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118            Actually, the idea is close to VJ's one, only timestamp cache is
119            held not per host, but per port pair and TW bucket is used as state
120            holder.
121
122            If TW bucket has been already destroyed we fall back to VJ's scheme
123            and use initial timestamp retrieved from peer table.
124          */
125         if (tcptw->tw_ts_recent_stamp &&
126             (twp == NULL || (sysctl_tcp_tw_reuse &&
127                              get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129                 if (tp->write_seq == 0)
130                         tp->write_seq = 1;
131                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
132                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133                 sock_hold(sktw);
134                 return 1;
135         }
136
137         return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141 /* This will initiate an outgoing connection. */
142 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
143 {
144         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
145         struct inet_sock *inet = inet_sk(sk);
146         struct tcp_sock *tp = tcp_sk(sk);
147         __be16 orig_sport, orig_dport;
148         __be32 daddr, nexthop;
149         struct flowi4 *fl4;
150         struct rtable *rt;
151         int err;
152         struct ip_options_rcu *inet_opt;
153
154         if (addr_len < sizeof(struct sockaddr_in))
155                 return -EINVAL;
156
157         if (usin->sin_family != AF_INET)
158                 return -EAFNOSUPPORT;
159
160         nexthop = daddr = usin->sin_addr.s_addr;
161         inet_opt = rcu_dereference_protected(inet->inet_opt,
162                                              sock_owned_by_user(sk));
163         if (inet_opt && inet_opt->opt.srr) {
164                 if (!daddr)
165                         return -EINVAL;
166                 nexthop = inet_opt->opt.faddr;
167         }
168
169         orig_sport = inet->inet_sport;
170         orig_dport = usin->sin_port;
171         fl4 = &inet->cork.fl.u.ip4;
172         rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
173                               RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
174                               IPPROTO_TCP,
175                               orig_sport, orig_dport, sk, true);
176         if (IS_ERR(rt)) {
177                 err = PTR_ERR(rt);
178                 if (err == -ENETUNREACH)
179                         IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
180                 return err;
181         }
182
183         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
184                 ip_rt_put(rt);
185                 return -ENETUNREACH;
186         }
187
188         if (!inet_opt || !inet_opt->opt.srr)
189                 daddr = fl4->daddr;
190
191         if (!inet->inet_saddr)
192                 inet->inet_saddr = fl4->saddr;
193         inet->inet_rcv_saddr = inet->inet_saddr;
194
195         if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
196                 /* Reset inherited state */
197                 tp->rx_opt.ts_recent       = 0;
198                 tp->rx_opt.ts_recent_stamp = 0;
199                 if (likely(!tp->repair))
200                         tp->write_seq      = 0;
201         }
202
203         if (tcp_death_row.sysctl_tw_recycle &&
204             !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
205                 tcp_fetch_timewait_stamp(sk, &rt->dst);
206
207         inet->inet_dport = usin->sin_port;
208         inet->inet_daddr = daddr;
209
210         inet_csk(sk)->icsk_ext_hdr_len = 0;
211         if (inet_opt)
212                 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
213
214         tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
215
216         /* Socket identity is still unknown (sport may be zero).
217          * However we set state to SYN-SENT and not releasing socket
218          * lock select source port, enter ourselves into the hash tables and
219          * complete initialization after this.
220          */
221         tcp_set_state(sk, TCP_SYN_SENT);
222         err = inet_hash_connect(&tcp_death_row, sk);
223         if (err)
224                 goto failure;
225
226         rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
227                                inet->inet_sport, inet->inet_dport, sk);
228         if (IS_ERR(rt)) {
229                 err = PTR_ERR(rt);
230                 rt = NULL;
231                 goto failure;
232         }
233         /* OK, now commit destination to socket.  */
234         sk->sk_gso_type = SKB_GSO_TCPV4;
235         sk_setup_caps(sk, &rt->dst);
236
237         if (!tp->write_seq && likely(!tp->repair))
238                 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
239                                                            inet->inet_daddr,
240                                                            inet->inet_sport,
241                                                            usin->sin_port);
242
243         inet->inet_id = tp->write_seq ^ jiffies;
244
245         err = tcp_connect(sk);
246
247         rt = NULL;
248         if (err)
249                 goto failure;
250
251         return 0;
252
253 failure:
254         /*
255          * This unhashes the socket and releases the local port,
256          * if necessary.
257          */
258         tcp_set_state(sk, TCP_CLOSE);
259         ip_rt_put(rt);
260         sk->sk_route_caps = 0;
261         inet->inet_dport = 0;
262         return err;
263 }
264 EXPORT_SYMBOL(tcp_v4_connect);
265
266 /*
267  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
268  * It can be called through tcp_release_cb() if socket was owned by user
269  * at the time tcp_v4_err() was called to handle ICMP message.
270  */
271 static void tcp_v4_mtu_reduced(struct sock *sk)
272 {
273         struct dst_entry *dst;
274         struct inet_sock *inet = inet_sk(sk);
275         u32 mtu = tcp_sk(sk)->mtu_info;
276
277         /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
278          * send out by Linux are always <576bytes so they should go through
279          * unfragmented).
280          */
281         if (sk->sk_state == TCP_LISTEN)
282                 return;
283
284         dst = inet_csk_update_pmtu(sk, mtu);
285         if (!dst)
286                 return;
287
288         /* Something is about to be wrong... Remember soft error
289          * for the case, if this connection will not able to recover.
290          */
291         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
292                 sk->sk_err_soft = EMSGSIZE;
293
294         mtu = dst_mtu(dst);
295
296         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
297             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
298                 tcp_sync_mss(sk, mtu);
299
300                 /* Resend the TCP packet because it's
301                  * clear that the old packet has been
302                  * dropped. This is the new "fast" path mtu
303                  * discovery.
304                  */
305                 tcp_simple_retransmit(sk);
306         } /* else let the usual retransmit timer handle it */
307 }
308
309 static void do_redirect(struct sk_buff *skb, struct sock *sk)
310 {
311         struct dst_entry *dst = __sk_dst_check(sk, 0);
312
313         if (dst)
314                 dst->ops->redirect(dst, sk, skb);
315 }
316
317 /*
318  * This routine is called by the ICMP module when it gets some
319  * sort of error condition.  If err < 0 then the socket should
320  * be closed and the error returned to the user.  If err > 0
321  * it's just the icmp type << 8 | icmp code.  After adjustment
322  * header points to the first 8 bytes of the tcp header.  We need
323  * to find the appropriate port.
324  *
325  * The locking strategy used here is very "optimistic". When
326  * someone else accesses the socket the ICMP is just dropped
327  * and for some paths there is no check at all.
328  * A more general error queue to queue errors for later handling
329  * is probably better.
330  *
331  */
332
333 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
334 {
335         const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
336         struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
337         struct inet_connection_sock *icsk;
338         struct tcp_sock *tp;
339         struct inet_sock *inet;
340         const int type = icmp_hdr(icmp_skb)->type;
341         const int code = icmp_hdr(icmp_skb)->code;
342         struct sock *sk;
343         struct sk_buff *skb;
344         struct request_sock *req;
345         __u32 seq;
346         __u32 remaining;
347         int err;
348         struct net *net = dev_net(icmp_skb->dev);
349
350         if (icmp_skb->len < (iph->ihl << 2) + 8) {
351                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
352                 return;
353         }
354
355         sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
356                         iph->saddr, th->source, inet_iif(icmp_skb));
357         if (!sk) {
358                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
359                 return;
360         }
361         if (sk->sk_state == TCP_TIME_WAIT) {
362                 inet_twsk_put(inet_twsk(sk));
363                 return;
364         }
365
366         bh_lock_sock(sk);
367         /* If too many ICMPs get dropped on busy
368          * servers this needs to be solved differently.
369          * We do take care of PMTU discovery (RFC1191) special case :
370          * we can receive locally generated ICMP messages while socket is held.
371          */
372         if (sock_owned_by_user(sk) &&
373             type != ICMP_DEST_UNREACH &&
374             code != ICMP_FRAG_NEEDED)
375                 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
376
377         if (sk->sk_state == TCP_CLOSE)
378                 goto out;
379
380         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
381                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
382                 goto out;
383         }
384
385         icsk = inet_csk(sk);
386         tp = tcp_sk(sk);
387         req = tp->fastopen_rsk;
388         seq = ntohl(th->seq);
389         if (sk->sk_state != TCP_LISTEN &&
390             !between(seq, tp->snd_una, tp->snd_nxt) &&
391             (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
392                 /* For a Fast Open socket, allow seq to be snt_isn. */
393                 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
394                 goto out;
395         }
396
397         switch (type) {
398         case ICMP_REDIRECT:
399                 do_redirect(icmp_skb, sk);
400                 goto out;
401         case ICMP_SOURCE_QUENCH:
402                 /* Just silently ignore these. */
403                 goto out;
404         case ICMP_PARAMETERPROB:
405                 err = EPROTO;
406                 break;
407         case ICMP_DEST_UNREACH:
408                 if (code > NR_ICMP_UNREACH)
409                         goto out;
410
411                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
412                         tp->mtu_info = info;
413                         if (!sock_owned_by_user(sk)) {
414                                 tcp_v4_mtu_reduced(sk);
415                         } else {
416                                 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
417                                         sock_hold(sk);
418                         }
419                         goto out;
420                 }
421
422                 err = icmp_err_convert[code].errno;
423                 /* check if icmp_skb allows revert of backoff
424                  * (see draft-zimmermann-tcp-lcd) */
425                 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
426                         break;
427                 if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
428                     !icsk->icsk_backoff)
429                         break;
430
431                 /* XXX (TFO) - revisit the following logic for TFO */
432
433                 if (sock_owned_by_user(sk))
434                         break;
435
436                 icsk->icsk_backoff--;
437                 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
438                         TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
439                 tcp_bound_rto(sk);
440
441                 skb = tcp_write_queue_head(sk);
442                 BUG_ON(!skb);
443
444                 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
445                                 tcp_time_stamp - TCP_SKB_CB(skb)->when);
446
447                 if (remaining) {
448                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
449                                                   remaining, TCP_RTO_MAX);
450                 } else {
451                         /* RTO revert clocked out retransmission.
452                          * Will retransmit now */
453                         tcp_retransmit_timer(sk);
454                 }
455
456                 break;
457         case ICMP_TIME_EXCEEDED:
458                 err = EHOSTUNREACH;
459                 break;
460         default:
461                 goto out;
462         }
463
464         /* XXX (TFO) - if it's a TFO socket and has been accepted, rather
465          * than following the TCP_SYN_RECV case and closing the socket,
466          * we ignore the ICMP error and keep trying like a fully established
467          * socket. Is this the right thing to do?
468          */
469         if (req && req->sk == NULL)
470                 goto out;
471
472         switch (sk->sk_state) {
473                 struct request_sock *req, **prev;
474         case TCP_LISTEN:
475                 if (sock_owned_by_user(sk))
476                         goto out;
477
478                 req = inet_csk_search_req(sk, &prev, th->dest,
479                                           iph->daddr, iph->saddr);
480                 if (!req)
481                         goto out;
482
483                 /* ICMPs are not backlogged, hence we cannot get
484                    an established socket here.
485                  */
486                 WARN_ON(req->sk);
487
488                 if (seq != tcp_rsk(req)->snt_isn) {
489                         NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
490                         goto out;
491                 }
492
493                 /*
494                  * Still in SYN_RECV, just remove it silently.
495                  * There is no good way to pass the error to the newly
496                  * created socket, and POSIX does not want network
497                  * errors returned from accept().
498                  */
499                 inet_csk_reqsk_queue_drop(sk, req, prev);
500                 goto out;
501
502         case TCP_SYN_SENT:
503         case TCP_SYN_RECV:  /* Cannot happen.
504                                It can f.e. if SYNs crossed,
505                                or Fast Open.
506                              */
507                 if (!sock_owned_by_user(sk)) {
508                         sk->sk_err = err;
509
510                         sk->sk_error_report(sk);
511
512                         tcp_done(sk);
513                 } else {
514                         sk->sk_err_soft = err;
515                 }
516                 goto out;
517         }
518
519         /* If we've already connected we will keep trying
520          * until we time out, or the user gives up.
521          *
522          * rfc1122 4.2.3.9 allows to consider as hard errors
523          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
524          * but it is obsoleted by pmtu discovery).
525          *
526          * Note, that in modern internet, where routing is unreliable
527          * and in each dark corner broken firewalls sit, sending random
528          * errors ordered by their masters even this two messages finally lose
529          * their original sense (even Linux sends invalid PORT_UNREACHs)
530          *
531          * Now we are in compliance with RFCs.
532          *                                                      --ANK (980905)
533          */
534
535         inet = inet_sk(sk);
536         if (!sock_owned_by_user(sk) && inet->recverr) {
537                 sk->sk_err = err;
538                 sk->sk_error_report(sk);
539         } else  { /* Only an error on timeout */
540                 sk->sk_err_soft = err;
541         }
542
543 out:
544         bh_unlock_sock(sk);
545         sock_put(sk);
546 }
547
548 static void __tcp_v4_send_check(struct sk_buff *skb,
549                                 __be32 saddr, __be32 daddr)
550 {
551         struct tcphdr *th = tcp_hdr(skb);
552
553         if (skb->ip_summed == CHECKSUM_PARTIAL) {
554                 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
555                 skb->csum_start = skb_transport_header(skb) - skb->head;
556                 skb->csum_offset = offsetof(struct tcphdr, check);
557         } else {
558                 th->check = tcp_v4_check(skb->len, saddr, daddr,
559                                          csum_partial(th,
560                                                       th->doff << 2,
561                                                       skb->csum));
562         }
563 }
564
565 /* This routine computes an IPv4 TCP checksum. */
566 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
567 {
568         const struct inet_sock *inet = inet_sk(sk);
569
570         __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
571 }
572 EXPORT_SYMBOL(tcp_v4_send_check);
573
574 int tcp_v4_gso_send_check(struct sk_buff *skb)
575 {
576         const struct iphdr *iph;
577         struct tcphdr *th;
578
579         if (!pskb_may_pull(skb, sizeof(*th)))
580                 return -EINVAL;
581
582         iph = ip_hdr(skb);
583         th = tcp_hdr(skb);
584
585         th->check = 0;
586         skb->ip_summed = CHECKSUM_PARTIAL;
587         __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
588         return 0;
589 }
590
591 /*
592  *      This routine will send an RST to the other tcp.
593  *
594  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
595  *                    for reset.
596  *      Answer: if a packet caused RST, it is not for a socket
597  *              existing in our system, if it is matched to a socket,
598  *              it is just duplicate segment or bug in other side's TCP.
599  *              So that we build reply only basing on parameters
600  *              arrived with segment.
601  *      Exception: precedence violation. We do not implement it in any case.
602  */
603
604 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
605 {
606         const struct tcphdr *th = tcp_hdr(skb);
607         struct {
608                 struct tcphdr th;
609 #ifdef CONFIG_TCP_MD5SIG
610                 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
611 #endif
612         } rep;
613         struct ip_reply_arg arg;
614 #ifdef CONFIG_TCP_MD5SIG
615         struct tcp_md5sig_key *key;
616         const __u8 *hash_location = NULL;
617         unsigned char newhash[16];
618         int genhash;
619         struct sock *sk1 = NULL;
620 #endif
621         struct net *net;
622
623         /* Never send a reset in response to a reset. */
624         if (th->rst)
625                 return;
626
627         if (skb_rtable(skb)->rt_type != RTN_LOCAL)
628                 return;
629
630         /* Swap the send and the receive. */
631         memset(&rep, 0, sizeof(rep));
632         rep.th.dest   = th->source;
633         rep.th.source = th->dest;
634         rep.th.doff   = sizeof(struct tcphdr) / 4;
635         rep.th.rst    = 1;
636
637         if (th->ack) {
638                 rep.th.seq = th->ack_seq;
639         } else {
640                 rep.th.ack = 1;
641                 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
642                                        skb->len - (th->doff << 2));
643         }
644
645         memset(&arg, 0, sizeof(arg));
646         arg.iov[0].iov_base = (unsigned char *)&rep;
647         arg.iov[0].iov_len  = sizeof(rep.th);
648
649 #ifdef CONFIG_TCP_MD5SIG
650         hash_location = tcp_parse_md5sig_option(th);
651         if (!sk && hash_location) {
652                 /*
653                  * active side is lost. Try to find listening socket through
654                  * source port, and then find md5 key through listening socket.
655                  * we are not loose security here:
656                  * Incoming packet is checked with md5 hash with finding key,
657                  * no RST generated if md5 hash doesn't match.
658                  */
659                 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
660                                              &tcp_hashinfo, ip_hdr(skb)->daddr,
661                                              ntohs(th->source), inet_iif(skb));
662                 /* don't send rst if it can't find key */
663                 if (!sk1)
664                         return;
665                 rcu_read_lock();
666                 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
667                                         &ip_hdr(skb)->saddr, AF_INET);
668                 if (!key)
669                         goto release_sk1;
670
671                 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
672                 if (genhash || memcmp(hash_location, newhash, 16) != 0)
673                         goto release_sk1;
674         } else {
675                 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
676                                              &ip_hdr(skb)->saddr,
677                                              AF_INET) : NULL;
678         }
679
680         if (key) {
681                 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
682                                    (TCPOPT_NOP << 16) |
683                                    (TCPOPT_MD5SIG << 8) |
684                                    TCPOLEN_MD5SIG);
685                 /* Update length and the length the header thinks exists */
686                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
687                 rep.th.doff = arg.iov[0].iov_len / 4;
688
689                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
690                                      key, ip_hdr(skb)->saddr,
691                                      ip_hdr(skb)->daddr, &rep.th);
692         }
693 #endif
694         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
695                                       ip_hdr(skb)->saddr, /* XXX */
696                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
697         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
698         arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
699         /* When socket is gone, all binding information is lost.
700          * routing might fail in this case. No choice here, if we choose to force
701          * input interface, we will misroute in case of asymmetric route.
702          */
703         if (sk)
704                 arg.bound_dev_if = sk->sk_bound_dev_if;
705
706         net = dev_net(skb_dst(skb)->dev);
707         arg.tos = ip_hdr(skb)->tos;
708         ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
709                               ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
710
711         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
712         TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
713
714 #ifdef CONFIG_TCP_MD5SIG
715 release_sk1:
716         if (sk1) {
717                 rcu_read_unlock();
718                 sock_put(sk1);
719         }
720 #endif
721 }
722
723 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
724    outside socket context is ugly, certainly. What can I do?
725  */
726
727 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
728                             u32 win, u32 ts, int oif,
729                             struct tcp_md5sig_key *key,
730                             int reply_flags, u8 tos)
731 {
732         const struct tcphdr *th = tcp_hdr(skb);
733         struct {
734                 struct tcphdr th;
735                 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
736 #ifdef CONFIG_TCP_MD5SIG
737                            + (TCPOLEN_MD5SIG_ALIGNED >> 2)
738 #endif
739                         ];
740         } rep;
741         struct ip_reply_arg arg;
742         struct net *net = dev_net(skb_dst(skb)->dev);
743
744         memset(&rep.th, 0, sizeof(struct tcphdr));
745         memset(&arg, 0, sizeof(arg));
746
747         arg.iov[0].iov_base = (unsigned char *)&rep;
748         arg.iov[0].iov_len  = sizeof(rep.th);
749         if (ts) {
750                 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
751                                    (TCPOPT_TIMESTAMP << 8) |
752                                    TCPOLEN_TIMESTAMP);
753                 rep.opt[1] = htonl(tcp_time_stamp);
754                 rep.opt[2] = htonl(ts);
755                 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
756         }
757
758         /* Swap the send and the receive. */
759         rep.th.dest    = th->source;
760         rep.th.source  = th->dest;
761         rep.th.doff    = arg.iov[0].iov_len / 4;
762         rep.th.seq     = htonl(seq);
763         rep.th.ack_seq = htonl(ack);
764         rep.th.ack     = 1;
765         rep.th.window  = htons(win);
766
767 #ifdef CONFIG_TCP_MD5SIG
768         if (key) {
769                 int offset = (ts) ? 3 : 0;
770
771                 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
772                                           (TCPOPT_NOP << 16) |
773                                           (TCPOPT_MD5SIG << 8) |
774                                           TCPOLEN_MD5SIG);
775                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
776                 rep.th.doff = arg.iov[0].iov_len/4;
777
778                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
779                                     key, ip_hdr(skb)->saddr,
780                                     ip_hdr(skb)->daddr, &rep.th);
781         }
782 #endif
783         arg.flags = reply_flags;
784         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
785                                       ip_hdr(skb)->saddr, /* XXX */
786                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
787         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
788         if (oif)
789                 arg.bound_dev_if = oif;
790         arg.tos = tos;
791         ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
792                               ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
793
794         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
795 }
796
797 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
798 {
799         struct inet_timewait_sock *tw = inet_twsk(sk);
800         struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
801
802         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
803                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
804                         tcptw->tw_ts_recent,
805                         tw->tw_bound_dev_if,
806                         tcp_twsk_md5_key(tcptw),
807                         tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
808                         tw->tw_tos
809                         );
810
811         inet_twsk_put(tw);
812 }
813
814 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
815                                   struct request_sock *req)
816 {
817         /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
818          * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
819          */
820         tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
821                         tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
822                         tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
823                         req->ts_recent,
824                         0,
825                         tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
826                                           AF_INET),
827                         inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
828                         ip_hdr(skb)->tos);
829 }
830
831 /*
832  *      Send a SYN-ACK after having received a SYN.
833  *      This still operates on a request_sock only, not on a big
834  *      socket.
835  */
836 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
837                               struct request_sock *req,
838                               struct request_values *rvp,
839                               u16 queue_mapping,
840                               bool nocache)
841 {
842         const struct inet_request_sock *ireq = inet_rsk(req);
843         struct flowi4 fl4;
844         int err = -1;
845         struct sk_buff * skb;
846
847         /* First, grab a route. */
848         if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
849                 return -1;
850
851         skb = tcp_make_synack(sk, dst, req, rvp, NULL);
852
853         if (skb) {
854                 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
855
856                 skb_set_queue_mapping(skb, queue_mapping);
857                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
858                                             ireq->rmt_addr,
859                                             ireq->opt);
860                 err = net_xmit_eval(err);
861                 if (!tcp_rsk(req)->snt_synack && !err)
862                         tcp_rsk(req)->snt_synack = tcp_time_stamp;
863         }
864
865         return err;
866 }
867
868 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
869                              struct request_values *rvp)
870 {
871         int res = tcp_v4_send_synack(sk, NULL, req, rvp, 0, false);
872
873         if (!res)
874                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
875         return res;
876 }
877
878 /*
879  *      IPv4 request_sock destructor.
880  */
881 static void tcp_v4_reqsk_destructor(struct request_sock *req)
882 {
883         kfree(inet_rsk(req)->opt);
884 }
885
886 /*
887  * Return true if a syncookie should be sent
888  */
889 bool tcp_syn_flood_action(struct sock *sk,
890                          const struct sk_buff *skb,
891                          const char *proto)
892 {
893         const char *msg = "Dropping request";
894         bool want_cookie = false;
895         struct listen_sock *lopt;
896
897
898
899 #ifdef CONFIG_SYN_COOKIES
900         if (sysctl_tcp_syncookies) {
901                 msg = "Sending cookies";
902                 want_cookie = true;
903                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
904         } else
905 #endif
906                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
907
908         lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
909         if (!lopt->synflood_warned) {
910                 lopt->synflood_warned = 1;
911                 pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
912                         proto, ntohs(tcp_hdr(skb)->dest), msg);
913         }
914         return want_cookie;
915 }
916 EXPORT_SYMBOL(tcp_syn_flood_action);
917
918 /*
919  * Save and compile IPv4 options into the request_sock if needed.
920  */
921 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
922 {
923         const struct ip_options *opt = &(IPCB(skb)->opt);
924         struct ip_options_rcu *dopt = NULL;
925
926         if (opt && opt->optlen) {
927                 int opt_size = sizeof(*dopt) + opt->optlen;
928
929                 dopt = kmalloc(opt_size, GFP_ATOMIC);
930                 if (dopt) {
931                         if (ip_options_echo(&dopt->opt, skb)) {
932                                 kfree(dopt);
933                                 dopt = NULL;
934                         }
935                 }
936         }
937         return dopt;
938 }
939
940 #ifdef CONFIG_TCP_MD5SIG
941 /*
942  * RFC2385 MD5 checksumming requires a mapping of
943  * IP address->MD5 Key.
944  * We need to maintain these in the sk structure.
945  */
946
947 /* Find the Key structure for an address.  */
948 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
949                                          const union tcp_md5_addr *addr,
950                                          int family)
951 {
952         struct tcp_sock *tp = tcp_sk(sk);
953         struct tcp_md5sig_key *key;
954         struct hlist_node *pos;
955         unsigned int size = sizeof(struct in_addr);
956         struct tcp_md5sig_info *md5sig;
957
958         /* caller either holds rcu_read_lock() or socket lock */
959         md5sig = rcu_dereference_check(tp->md5sig_info,
960                                        sock_owned_by_user(sk) ||
961                                        lockdep_is_held(&sk->sk_lock.slock));
962         if (!md5sig)
963                 return NULL;
964 #if IS_ENABLED(CONFIG_IPV6)
965         if (family == AF_INET6)
966                 size = sizeof(struct in6_addr);
967 #endif
968         hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
969                 if (key->family != family)
970                         continue;
971                 if (!memcmp(&key->addr, addr, size))
972                         return key;
973         }
974         return NULL;
975 }
976 EXPORT_SYMBOL(tcp_md5_do_lookup);
977
978 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
979                                          struct sock *addr_sk)
980 {
981         union tcp_md5_addr *addr;
982
983         addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
984         return tcp_md5_do_lookup(sk, addr, AF_INET);
985 }
986 EXPORT_SYMBOL(tcp_v4_md5_lookup);
987
988 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
989                                                       struct request_sock *req)
990 {
991         union tcp_md5_addr *addr;
992
993         addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
994         return tcp_md5_do_lookup(sk, addr, AF_INET);
995 }
996
997 /* This can be called on a newly created socket, from other files */
998 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
999                    int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
1000 {
1001         /* Add Key to the list */
1002         struct tcp_md5sig_key *key;
1003         struct tcp_sock *tp = tcp_sk(sk);
1004         struct tcp_md5sig_info *md5sig;
1005
1006         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1007         if (key) {
1008                 /* Pre-existing entry - just update that one. */
1009                 memcpy(key->key, newkey, newkeylen);
1010                 key->keylen = newkeylen;
1011                 return 0;
1012         }
1013
1014         md5sig = rcu_dereference_protected(tp->md5sig_info,
1015                                            sock_owned_by_user(sk));
1016         if (!md5sig) {
1017                 md5sig = kmalloc(sizeof(*md5sig), gfp);
1018                 if (!md5sig)
1019                         return -ENOMEM;
1020
1021                 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1022                 INIT_HLIST_HEAD(&md5sig->head);
1023                 rcu_assign_pointer(tp->md5sig_info, md5sig);
1024         }
1025
1026         key = sock_kmalloc(sk, sizeof(*key), gfp);
1027         if (!key)
1028                 return -ENOMEM;
1029         if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1030                 sock_kfree_s(sk, key, sizeof(*key));
1031                 return -ENOMEM;
1032         }
1033
1034         memcpy(key->key, newkey, newkeylen);
1035         key->keylen = newkeylen;
1036         key->family = family;
1037         memcpy(&key->addr, addr,
1038                (family == AF_INET6) ? sizeof(struct in6_addr) :
1039                                       sizeof(struct in_addr));
1040         hlist_add_head_rcu(&key->node, &md5sig->head);
1041         return 0;
1042 }
1043 EXPORT_SYMBOL(tcp_md5_do_add);
1044
1045 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1046 {
1047         struct tcp_sock *tp = tcp_sk(sk);
1048         struct tcp_md5sig_key *key;
1049         struct tcp_md5sig_info *md5sig;
1050
1051         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1052         if (!key)
1053                 return -ENOENT;
1054         hlist_del_rcu(&key->node);
1055         atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1056         kfree_rcu(key, rcu);
1057         md5sig = rcu_dereference_protected(tp->md5sig_info,
1058                                            sock_owned_by_user(sk));
1059         if (hlist_empty(&md5sig->head))
1060                 tcp_free_md5sig_pool();
1061         return 0;
1062 }
1063 EXPORT_SYMBOL(tcp_md5_do_del);
1064
1065 static void tcp_clear_md5_list(struct sock *sk)
1066 {
1067         struct tcp_sock *tp = tcp_sk(sk);
1068         struct tcp_md5sig_key *key;
1069         struct hlist_node *pos, *n;
1070         struct tcp_md5sig_info *md5sig;
1071
1072         md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1073
1074         if (!hlist_empty(&md5sig->head))
1075                 tcp_free_md5sig_pool();
1076         hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1077                 hlist_del_rcu(&key->node);
1078                 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1079                 kfree_rcu(key, rcu);
1080         }
1081 }
1082
1083 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1084                                  int optlen)
1085 {
1086         struct tcp_md5sig cmd;
1087         struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1088
1089         if (optlen < sizeof(cmd))
1090                 return -EINVAL;
1091
1092         if (copy_from_user(&cmd, optval, sizeof(cmd)))
1093                 return -EFAULT;
1094
1095         if (sin->sin_family != AF_INET)
1096                 return -EINVAL;
1097
1098         if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1099                 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1100                                       AF_INET);
1101
1102         if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1103                 return -EINVAL;
1104
1105         return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1106                               AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1107                               GFP_KERNEL);
1108 }
1109
1110 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1111                                         __be32 daddr, __be32 saddr, int nbytes)
1112 {
1113         struct tcp4_pseudohdr *bp;
1114         struct scatterlist sg;
1115
1116         bp = &hp->md5_blk.ip4;
1117
1118         /*
1119          * 1. the TCP pseudo-header (in the order: source IP address,
1120          * destination IP address, zero-padded protocol number, and
1121          * segment length)
1122          */
1123         bp->saddr = saddr;
1124         bp->daddr = daddr;
1125         bp->pad = 0;
1126         bp->protocol = IPPROTO_TCP;
1127         bp->len = cpu_to_be16(nbytes);
1128
1129         sg_init_one(&sg, bp, sizeof(*bp));
1130         return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1131 }
1132
1133 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1134                                __be32 daddr, __be32 saddr, const struct tcphdr *th)
1135 {
1136         struct tcp_md5sig_pool *hp;
1137         struct hash_desc *desc;
1138
1139         hp = tcp_get_md5sig_pool();
1140         if (!hp)
1141                 goto clear_hash_noput;
1142         desc = &hp->md5_desc;
1143
1144         if (crypto_hash_init(desc))
1145                 goto clear_hash;
1146         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1147                 goto clear_hash;
1148         if (tcp_md5_hash_header(hp, th))
1149                 goto clear_hash;
1150         if (tcp_md5_hash_key(hp, key))
1151                 goto clear_hash;
1152         if (crypto_hash_final(desc, md5_hash))
1153                 goto clear_hash;
1154
1155         tcp_put_md5sig_pool();
1156         return 0;
1157
1158 clear_hash:
1159         tcp_put_md5sig_pool();
1160 clear_hash_noput:
1161         memset(md5_hash, 0, 16);
1162         return 1;
1163 }
1164
1165 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1166                         const struct sock *sk, const struct request_sock *req,
1167                         const struct sk_buff *skb)
1168 {
1169         struct tcp_md5sig_pool *hp;
1170         struct hash_desc *desc;
1171         const struct tcphdr *th = tcp_hdr(skb);
1172         __be32 saddr, daddr;
1173
1174         if (sk) {
1175                 saddr = inet_sk(sk)->inet_saddr;
1176                 daddr = inet_sk(sk)->inet_daddr;
1177         } else if (req) {
1178                 saddr = inet_rsk(req)->loc_addr;
1179                 daddr = inet_rsk(req)->rmt_addr;
1180         } else {
1181                 const struct iphdr *iph = ip_hdr(skb);
1182                 saddr = iph->saddr;
1183                 daddr = iph->daddr;
1184         }
1185
1186         hp = tcp_get_md5sig_pool();
1187         if (!hp)
1188                 goto clear_hash_noput;
1189         desc = &hp->md5_desc;
1190
1191         if (crypto_hash_init(desc))
1192                 goto clear_hash;
1193
1194         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1195                 goto clear_hash;
1196         if (tcp_md5_hash_header(hp, th))
1197                 goto clear_hash;
1198         if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1199                 goto clear_hash;
1200         if (tcp_md5_hash_key(hp, key))
1201                 goto clear_hash;
1202         if (crypto_hash_final(desc, md5_hash))
1203                 goto clear_hash;
1204
1205         tcp_put_md5sig_pool();
1206         return 0;
1207
1208 clear_hash:
1209         tcp_put_md5sig_pool();
1210 clear_hash_noput:
1211         memset(md5_hash, 0, 16);
1212         return 1;
1213 }
1214 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1215
1216 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1217 {
1218         /*
1219          * This gets called for each TCP segment that arrives
1220          * so we want to be efficient.
1221          * We have 3 drop cases:
1222          * o No MD5 hash and one expected.
1223          * o MD5 hash and we're not expecting one.
1224          * o MD5 hash and its wrong.
1225          */
1226         const __u8 *hash_location = NULL;
1227         struct tcp_md5sig_key *hash_expected;
1228         const struct iphdr *iph = ip_hdr(skb);
1229         const struct tcphdr *th = tcp_hdr(skb);
1230         int genhash;
1231         unsigned char newhash[16];
1232
1233         hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1234                                           AF_INET);
1235         hash_location = tcp_parse_md5sig_option(th);
1236
1237         /* We've parsed the options - do we have a hash? */
1238         if (!hash_expected && !hash_location)
1239                 return false;
1240
1241         if (hash_expected && !hash_location) {
1242                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1243                 return true;
1244         }
1245
1246         if (!hash_expected && hash_location) {
1247                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1248                 return true;
1249         }
1250
1251         /* Okay, so this is hash_expected and hash_location -
1252          * so we need to calculate the checksum.
1253          */
1254         genhash = tcp_v4_md5_hash_skb(newhash,
1255                                       hash_expected,
1256                                       NULL, NULL, skb);
1257
1258         if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1259                 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1260                                      &iph->saddr, ntohs(th->source),
1261                                      &iph->daddr, ntohs(th->dest),
1262                                      genhash ? " tcp_v4_calc_md5_hash failed"
1263                                      : "");
1264                 return true;
1265         }
1266         return false;
1267 }
1268
1269 #endif
1270
1271 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1272         .family         =       PF_INET,
1273         .obj_size       =       sizeof(struct tcp_request_sock),
1274         .rtx_syn_ack    =       tcp_v4_rtx_synack,
1275         .send_ack       =       tcp_v4_reqsk_send_ack,
1276         .destructor     =       tcp_v4_reqsk_destructor,
1277         .send_reset     =       tcp_v4_send_reset,
1278         .syn_ack_timeout =      tcp_syn_ack_timeout,
1279 };
1280
1281 #ifdef CONFIG_TCP_MD5SIG
1282 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1283         .md5_lookup     =       tcp_v4_reqsk_md5_lookup,
1284         .calc_md5_hash  =       tcp_v4_md5_hash_skb,
1285 };
1286 #endif
1287
1288 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1289                                struct request_sock *req,
1290                                struct tcp_fastopen_cookie *foc,
1291                                struct tcp_fastopen_cookie *valid_foc)
1292 {
1293         bool skip_cookie = false;
1294         struct fastopen_queue *fastopenq;
1295
1296         if (likely(!fastopen_cookie_present(foc))) {
1297                 /* See include/net/tcp.h for the meaning of these knobs */
1298                 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1299                     ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1300                     (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1301                         skip_cookie = true; /* no cookie to validate */
1302                 else
1303                         return false;
1304         }
1305         fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1306         /* A FO option is present; bump the counter. */
1307         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1308
1309         /* Make sure the listener has enabled fastopen, and we don't
1310          * exceed the max # of pending TFO requests allowed before trying
1311          * to validating the cookie in order to avoid burning CPU cycles
1312          * unnecessarily.
1313          *
1314          * XXX (TFO) - The implication of checking the max_qlen before
1315          * processing a cookie request is that clients can't differentiate
1316          * between qlen overflow causing Fast Open to be disabled
1317          * temporarily vs a server not supporting Fast Open at all.
1318          */
1319         if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1320             fastopenq == NULL || fastopenq->max_qlen == 0)
1321                 return false;
1322
1323         if (fastopenq->qlen >= fastopenq->max_qlen) {
1324                 struct request_sock *req1;
1325                 spin_lock(&fastopenq->lock);
1326                 req1 = fastopenq->rskq_rst_head;
1327                 if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1328                         spin_unlock(&fastopenq->lock);
1329                         NET_INC_STATS_BH(sock_net(sk),
1330                             LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1331                         /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1332                         foc->len = -1;
1333                         return false;
1334                 }
1335                 fastopenq->rskq_rst_head = req1->dl_next;
1336                 fastopenq->qlen--;
1337                 spin_unlock(&fastopenq->lock);
1338                 reqsk_free(req1);
1339         }
1340         if (skip_cookie) {
1341                 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1342                 return true;
1343         }
1344         if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1345                 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1346                         tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1347                         if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1348                             memcmp(&foc->val[0], &valid_foc->val[0],
1349                             TCP_FASTOPEN_COOKIE_SIZE) != 0)
1350                                 return false;
1351                         valid_foc->len = -1;
1352                 }
1353                 /* Acknowledge the data received from the peer. */
1354                 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1355                 return true;
1356         } else if (foc->len == 0) { /* Client requesting a cookie */
1357                 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1358                 NET_INC_STATS_BH(sock_net(sk),
1359                     LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1360         } else {
1361                 /* Client sent a cookie with wrong size. Treat it
1362                  * the same as invalid and return a valid one.
1363                  */
1364                 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1365         }
1366         return false;
1367 }
1368
1369 static int tcp_v4_conn_req_fastopen(struct sock *sk,
1370                                     struct sk_buff *skb,
1371                                     struct sk_buff *skb_synack,
1372                                     struct request_sock *req,
1373                                     struct request_values *rvp)
1374 {
1375         struct tcp_sock *tp = tcp_sk(sk);
1376         struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1377         const struct inet_request_sock *ireq = inet_rsk(req);
1378         struct sock *child;
1379         int err;
1380
1381         req->num_retrans = 0;
1382         req->num_timeout = 0;
1383         req->sk = NULL;
1384
1385         child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1386         if (child == NULL) {
1387                 NET_INC_STATS_BH(sock_net(sk),
1388                                  LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1389                 kfree_skb(skb_synack);
1390                 return -1;
1391         }
1392         err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1393                                     ireq->rmt_addr, ireq->opt);
1394         err = net_xmit_eval(err);
1395         if (!err)
1396                 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1397         /* XXX (TFO) - is it ok to ignore error and continue? */
1398
1399         spin_lock(&queue->fastopenq->lock);
1400         queue->fastopenq->qlen++;
1401         spin_unlock(&queue->fastopenq->lock);
1402
1403         /* Initialize the child socket. Have to fix some values to take
1404          * into account the child is a Fast Open socket and is created
1405          * only out of the bits carried in the SYN packet.
1406          */
1407         tp = tcp_sk(child);
1408
1409         tp->fastopen_rsk = req;
1410         /* Do a hold on the listner sk so that if the listener is being
1411          * closed, the child that has been accepted can live on and still
1412          * access listen_lock.
1413          */
1414         sock_hold(sk);
1415         tcp_rsk(req)->listener = sk;
1416
1417         /* RFC1323: The window in SYN & SYN/ACK segments is never
1418          * scaled. So correct it appropriately.
1419          */
1420         tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1421
1422         /* Activate the retrans timer so that SYNACK can be retransmitted.
1423          * The request socket is not added to the SYN table of the parent
1424          * because it's been added to the accept queue directly.
1425          */
1426         inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1427             TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1428
1429         /* Add the child socket directly into the accept queue */
1430         inet_csk_reqsk_queue_add(sk, req, child);
1431
1432         /* Now finish processing the fastopen child socket. */
1433         inet_csk(child)->icsk_af_ops->rebuild_header(child);
1434         tcp_init_congestion_control(child);
1435         tcp_mtup_init(child);
1436         tcp_init_buffer_space(child);
1437         tcp_init_metrics(child);
1438
1439         /* Queue the data carried in the SYN packet. We need to first
1440          * bump skb's refcnt because the caller will attempt to free it.
1441          *
1442          * XXX (TFO) - we honor a zero-payload TFO request for now.
1443          * (Any reason not to?)
1444          */
1445         if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1446                 /* Don't queue the skb if there is no payload in SYN.
1447                  * XXX (TFO) - How about SYN+FIN?
1448                  */
1449                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1450         } else {
1451                 skb = skb_get(skb);
1452                 skb_dst_drop(skb);
1453                 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
1454                 skb_set_owner_r(skb, child);
1455                 __skb_queue_tail(&child->sk_receive_queue, skb);
1456                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1457                 tp->syn_data_acked = 1;
1458         }
1459         sk->sk_data_ready(sk, 0);
1460         bh_unlock_sock(child);
1461         sock_put(child);
1462         WARN_ON(req->sk == NULL);
1463         return 0;
1464 }
1465
1466 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1467 {
1468         struct tcp_extend_values tmp_ext;
1469         struct tcp_options_received tmp_opt;
1470         const u8 *hash_location;
1471         struct request_sock *req;
1472         struct inet_request_sock *ireq;
1473         struct tcp_sock *tp = tcp_sk(sk);
1474         struct dst_entry *dst = NULL;
1475         __be32 saddr = ip_hdr(skb)->saddr;
1476         __be32 daddr = ip_hdr(skb)->daddr;
1477         __u32 isn = TCP_SKB_CB(skb)->when;
1478         bool want_cookie = false;
1479         struct flowi4 fl4;
1480         struct tcp_fastopen_cookie foc = { .len = -1 };
1481         struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1482         struct sk_buff *skb_synack;
1483         int do_fastopen;
1484
1485         /* Never answer to SYNs send to broadcast or multicast */
1486         if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1487                 goto drop;
1488
1489         /* TW buckets are converted to open requests without
1490          * limitations, they conserve resources and peer is
1491          * evidently real one.
1492          */
1493         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1494                 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1495                 if (!want_cookie)
1496                         goto drop;
1497         }
1498
1499         /* Accept backlog is full. If we have already queued enough
1500          * of warm entries in syn queue, drop request. It is better than
1501          * clogging syn queue with openreqs with exponentially increasing
1502          * timeout.
1503          */
1504         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1505                 goto drop;
1506
1507         req = inet_reqsk_alloc(&tcp_request_sock_ops);
1508         if (!req)
1509                 goto drop;
1510
1511 #ifdef CONFIG_TCP_MD5SIG
1512         tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1513 #endif
1514
1515         tcp_clear_options(&tmp_opt);
1516         tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1517         tmp_opt.user_mss  = tp->rx_opt.user_mss;
1518         tcp_parse_options(skb, &tmp_opt, &hash_location, 0,
1519             want_cookie ? NULL : &foc);
1520
1521         if (tmp_opt.cookie_plus > 0 &&
1522             tmp_opt.saw_tstamp &&
1523             !tp->rx_opt.cookie_out_never &&
1524             (sysctl_tcp_cookie_size > 0 ||
1525              (tp->cookie_values != NULL &&
1526               tp->cookie_values->cookie_desired > 0))) {
1527                 u8 *c;
1528                 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1529                 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1530
1531                 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1532                         goto drop_and_release;
1533
1534                 /* Secret recipe starts with IP addresses */
1535                 *mess++ ^= (__force u32)daddr;
1536                 *mess++ ^= (__force u32)saddr;
1537
1538                 /* plus variable length Initiator Cookie */
1539                 c = (u8 *)mess;
1540                 while (l-- > 0)
1541                         *c++ ^= *hash_location++;
1542
1543                 want_cookie = false;    /* not our kind of cookie */
1544                 tmp_ext.cookie_out_never = 0; /* false */
1545                 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1546         } else if (!tp->rx_opt.cookie_in_always) {
1547                 /* redundant indications, but ensure initialization. */
1548                 tmp_ext.cookie_out_never = 1; /* true */
1549                 tmp_ext.cookie_plus = 0;
1550         } else {
1551                 goto drop_and_release;
1552         }
1553         tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1554
1555         if (want_cookie && !tmp_opt.saw_tstamp)
1556                 tcp_clear_options(&tmp_opt);
1557
1558         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1559         tcp_openreq_init(req, &tmp_opt, skb);
1560
1561         ireq = inet_rsk(req);
1562         ireq->loc_addr = daddr;
1563         ireq->rmt_addr = saddr;
1564         ireq->no_srccheck = inet_sk(sk)->transparent;
1565         ireq->opt = tcp_v4_save_options(skb);
1566
1567         if (security_inet_conn_request(sk, skb, req))
1568                 goto drop_and_free;
1569
1570         if (!want_cookie || tmp_opt.tstamp_ok)
1571                 TCP_ECN_create_request(req, skb);
1572
1573         if (want_cookie) {
1574                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1575                 req->cookie_ts = tmp_opt.tstamp_ok;
1576         } else if (!isn) {
1577                 /* VJ's idea. We save last timestamp seen
1578                  * from the destination in peer table, when entering
1579                  * state TIME-WAIT, and check against it before
1580                  * accepting new connection request.
1581                  *
1582                  * If "isn" is not zero, this request hit alive
1583                  * timewait bucket, so that all the necessary checks
1584                  * are made in the function processing timewait state.
1585                  */
1586                 if (tmp_opt.saw_tstamp &&
1587                     tcp_death_row.sysctl_tw_recycle &&
1588                     (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1589                     fl4.daddr == saddr) {
1590                         if (!tcp_peer_is_proven(req, dst, true)) {
1591                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1592                                 goto drop_and_release;
1593                         }
1594                 }
1595                 /* Kill the following clause, if you dislike this way. */
1596                 else if (!sysctl_tcp_syncookies &&
1597                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1598                           (sysctl_max_syn_backlog >> 2)) &&
1599                          !tcp_peer_is_proven(req, dst, false)) {
1600                         /* Without syncookies last quarter of
1601                          * backlog is filled with destinations,
1602                          * proven to be alive.
1603                          * It means that we continue to communicate
1604                          * to destinations, already remembered
1605                          * to the moment of synflood.
1606                          */
1607                         LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1608                                        &saddr, ntohs(tcp_hdr(skb)->source));
1609                         goto drop_and_release;
1610                 }
1611
1612                 isn = tcp_v4_init_sequence(skb);
1613         }
1614         tcp_rsk(req)->snt_isn = isn;
1615
1616         if (dst == NULL) {
1617                 dst = inet_csk_route_req(sk, &fl4, req);
1618                 if (dst == NULL)
1619                         goto drop_and_free;
1620         }
1621         do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1622
1623         /* We don't call tcp_v4_send_synack() directly because we need
1624          * to make sure a child socket can be created successfully before
1625          * sending back synack!
1626          *
1627          * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1628          * (or better yet, call tcp_send_synack() in the child context
1629          * directly, but will have to fix bunch of other code first)
1630          * after syn_recv_sock() except one will need to first fix the
1631          * latter to remove its dependency on the current implementation
1632          * of tcp_v4_send_synack()->tcp_select_initial_window().
1633          */
1634         skb_synack = tcp_make_synack(sk, dst, req,
1635             (struct request_values *)&tmp_ext,
1636             fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1637
1638         if (skb_synack) {
1639                 __tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr);
1640                 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1641         } else
1642                 goto drop_and_free;
1643
1644         if (likely(!do_fastopen)) {
1645                 int err;
1646                 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1647                      ireq->rmt_addr, ireq->opt);
1648                 err = net_xmit_eval(err);
1649                 if (err || want_cookie)
1650                         goto drop_and_free;
1651
1652                 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1653                 tcp_rsk(req)->listener = NULL;
1654                 /* Add the request_sock to the SYN table */
1655                 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1656                 if (fastopen_cookie_present(&foc) && foc.len != 0)
1657                         NET_INC_STATS_BH(sock_net(sk),
1658                             LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1659         } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req,
1660             (struct request_values *)&tmp_ext))
1661                 goto drop_and_free;
1662
1663         return 0;
1664
1665 drop_and_release:
1666         dst_release(dst);
1667 drop_and_free:
1668         reqsk_free(req);
1669 drop:
1670         return 0;
1671 }
1672 EXPORT_SYMBOL(tcp_v4_conn_request);
1673
1674
1675 /*
1676  * The three way handshake has completed - we got a valid synack -
1677  * now create the new socket.
1678  */
1679 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1680                                   struct request_sock *req,
1681                                   struct dst_entry *dst)
1682 {
1683         struct inet_request_sock *ireq;
1684         struct inet_sock *newinet;
1685         struct tcp_sock *newtp;
1686         struct sock *newsk;
1687 #ifdef CONFIG_TCP_MD5SIG
1688         struct tcp_md5sig_key *key;
1689 #endif
1690         struct ip_options_rcu *inet_opt;
1691
1692         if (sk_acceptq_is_full(sk))
1693                 goto exit_overflow;
1694
1695         newsk = tcp_create_openreq_child(sk, req, skb);
1696         if (!newsk)
1697                 goto exit_nonewsk;
1698
1699         newsk->sk_gso_type = SKB_GSO_TCPV4;
1700         inet_sk_rx_dst_set(newsk, skb);
1701
1702         newtp                 = tcp_sk(newsk);
1703         newinet               = inet_sk(newsk);
1704         ireq                  = inet_rsk(req);
1705         newinet->inet_daddr   = ireq->rmt_addr;
1706         newinet->inet_rcv_saddr = ireq->loc_addr;
1707         newinet->inet_saddr           = ireq->loc_addr;
1708         inet_opt              = ireq->opt;
1709         rcu_assign_pointer(newinet->inet_opt, inet_opt);
1710         ireq->opt             = NULL;
1711         newinet->mc_index     = inet_iif(skb);
1712         newinet->mc_ttl       = ip_hdr(skb)->ttl;
1713         newinet->rcv_tos      = ip_hdr(skb)->tos;
1714         inet_csk(newsk)->icsk_ext_hdr_len = 0;
1715         if (inet_opt)
1716                 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1717         newinet->inet_id = newtp->write_seq ^ jiffies;
1718
1719         if (!dst) {
1720                 dst = inet_csk_route_child_sock(sk, newsk, req);
1721                 if (!dst)
1722                         goto put_and_exit;
1723         } else {
1724                 /* syncookie case : see end of cookie_v4_check() */
1725         }
1726         sk_setup_caps(newsk, dst);
1727
1728         tcp_mtup_init(newsk);
1729         tcp_sync_mss(newsk, dst_mtu(dst));
1730         newtp->advmss = dst_metric_advmss(dst);
1731         if (tcp_sk(sk)->rx_opt.user_mss &&
1732             tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1733                 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1734
1735         tcp_initialize_rcv_mss(newsk);
1736         tcp_synack_rtt_meas(newsk, req);
1737         newtp->total_retrans = req->num_retrans;
1738
1739 #ifdef CONFIG_TCP_MD5SIG
1740         /* Copy over the MD5 key from the original socket */
1741         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1742                                 AF_INET);
1743         if (key != NULL) {
1744                 /*
1745                  * We're using one, so create a matching key
1746                  * on the newsk structure. If we fail to get
1747                  * memory, then we end up not copying the key
1748                  * across. Shucks.
1749                  */
1750                 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1751                                AF_INET, key->key, key->keylen, GFP_ATOMIC);
1752                 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1753         }
1754 #endif
1755
1756         if (__inet_inherit_port(sk, newsk) < 0)
1757                 goto put_and_exit;
1758         __inet_hash_nolisten(newsk, NULL);
1759
1760         return newsk;
1761
1762 exit_overflow:
1763         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1764 exit_nonewsk:
1765         dst_release(dst);
1766 exit:
1767         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1768         return NULL;
1769 put_and_exit:
1770         inet_csk_prepare_forced_close(newsk);
1771         tcp_done(newsk);
1772         goto exit;
1773 }
1774 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1775
1776 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1777 {
1778         struct tcphdr *th = tcp_hdr(skb);
1779         const struct iphdr *iph = ip_hdr(skb);
1780         struct sock *nsk;
1781         struct request_sock **prev;
1782         /* Find possible connection requests. */
1783         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1784                                                        iph->saddr, iph->daddr);
1785         if (req)
1786                 return tcp_check_req(sk, skb, req, prev, false);
1787
1788         nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1789                         th->source, iph->daddr, th->dest, inet_iif(skb));
1790
1791         if (nsk) {
1792                 if (nsk->sk_state != TCP_TIME_WAIT) {
1793                         bh_lock_sock(nsk);
1794                         return nsk;
1795                 }
1796                 inet_twsk_put(inet_twsk(nsk));
1797                 return NULL;
1798         }
1799
1800 #ifdef CONFIG_SYN_COOKIES
1801         if (!th->syn)
1802                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1803 #endif
1804         return sk;
1805 }
1806
1807 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1808 {
1809         const struct iphdr *iph = ip_hdr(skb);
1810
1811         if (skb->ip_summed == CHECKSUM_COMPLETE) {
1812                 if (!tcp_v4_check(skb->len, iph->saddr,
1813                                   iph->daddr, skb->csum)) {
1814                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1815                         return 0;
1816                 }
1817         }
1818
1819         skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1820                                        skb->len, IPPROTO_TCP, 0);
1821
1822         if (skb->len <= 76) {
1823                 return __skb_checksum_complete(skb);
1824         }
1825         return 0;
1826 }
1827
1828
1829 /* The socket must have it's spinlock held when we get
1830  * here.
1831  *
1832  * We have a potential double-lock case here, so even when
1833  * doing backlog processing we use the BH locking scheme.
1834  * This is because we cannot sleep with the original spinlock
1835  * held.
1836  */
1837 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1838 {
1839         struct sock *rsk;
1840 #ifdef CONFIG_TCP_MD5SIG
1841         /*
1842          * We really want to reject the packet as early as possible
1843          * if:
1844          *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1845          *  o There is an MD5 option and we're not expecting one
1846          */
1847         if (tcp_v4_inbound_md5_hash(sk, skb))
1848                 goto discard;
1849 #endif
1850
1851         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1852                 struct dst_entry *dst = sk->sk_rx_dst;
1853
1854                 sock_rps_save_rxhash(sk, skb);
1855                 if (dst) {
1856                         if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1857                             dst->ops->check(dst, 0) == NULL) {
1858                                 dst_release(dst);
1859                                 sk->sk_rx_dst = NULL;
1860                         }
1861                 }
1862                 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1863                         rsk = sk;
1864                         goto reset;
1865                 }
1866                 return 0;
1867         }
1868
1869         if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1870                 goto csum_err;
1871
1872         if (sk->sk_state == TCP_LISTEN) {
1873                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1874                 if (!nsk)
1875                         goto discard;
1876
1877                 if (nsk != sk) {
1878                         sock_rps_save_rxhash(nsk, skb);
1879                         if (tcp_child_process(sk, nsk, skb)) {
1880                                 rsk = nsk;
1881                                 goto reset;
1882                         }
1883                         return 0;
1884                 }
1885         } else
1886                 sock_rps_save_rxhash(sk, skb);
1887
1888         if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1889                 rsk = sk;
1890                 goto reset;
1891         }
1892         return 0;
1893
1894 reset:
1895         tcp_v4_send_reset(rsk, skb);
1896 discard:
1897         kfree_skb(skb);
1898         /* Be careful here. If this function gets more complicated and
1899          * gcc suffers from register pressure on the x86, sk (in %ebx)
1900          * might be destroyed here. This current version compiles correctly,
1901          * but you have been warned.
1902          */
1903         return 0;
1904
1905 csum_err:
1906         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1907         goto discard;
1908 }
1909 EXPORT_SYMBOL(tcp_v4_do_rcv);
1910
1911 void tcp_v4_early_demux(struct sk_buff *skb)
1912 {
1913         const struct iphdr *iph;
1914         const struct tcphdr *th;
1915         struct sock *sk;
1916
1917         if (skb->pkt_type != PACKET_HOST)
1918                 return;
1919
1920         if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1921                 return;
1922
1923         iph = ip_hdr(skb);
1924         th = tcp_hdr(skb);
1925
1926         if (th->doff < sizeof(struct tcphdr) / 4)
1927                 return;
1928
1929         sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1930                                        iph->saddr, th->source,
1931                                        iph->daddr, ntohs(th->dest),
1932                                        skb->skb_iif);
1933         if (sk) {
1934                 skb->sk = sk;
1935                 skb->destructor = sock_edemux;
1936                 if (sk->sk_state != TCP_TIME_WAIT) {
1937                         struct dst_entry *dst = sk->sk_rx_dst;
1938
1939                         if (dst)
1940                                 dst = dst_check(dst, 0);
1941                         if (dst &&
1942                             inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1943                                 skb_dst_set_noref(skb, dst);
1944                 }
1945         }
1946 }
1947
1948 /*
1949  *      From tcp_input.c
1950  */
1951
1952 int tcp_v4_rcv(struct sk_buff *skb)
1953 {
1954         const struct iphdr *iph;
1955         const struct tcphdr *th;
1956         struct sock *sk;
1957         int ret;
1958         struct net *net = dev_net(skb->dev);
1959
1960         if (skb->pkt_type != PACKET_HOST)
1961                 goto discard_it;
1962
1963         /* Count it even if it's bad */
1964         TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1965
1966         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1967                 goto discard_it;
1968
1969         th = tcp_hdr(skb);
1970
1971         if (th->doff < sizeof(struct tcphdr) / 4)
1972                 goto bad_packet;
1973         if (!pskb_may_pull(skb, th->doff * 4))
1974                 goto discard_it;
1975
1976         /* An explanation is required here, I think.
1977          * Packet length and doff are validated by header prediction,
1978          * provided case of th->doff==0 is eliminated.
1979          * So, we defer the checks. */
1980         if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1981                 goto bad_packet;
1982
1983         th = tcp_hdr(skb);
1984         iph = ip_hdr(skb);
1985         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1986         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1987                                     skb->len - th->doff * 4);
1988         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1989         TCP_SKB_CB(skb)->when    = 0;
1990         TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1991         TCP_SKB_CB(skb)->sacked  = 0;
1992
1993         sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1994         if (!sk)
1995                 goto no_tcp_socket;
1996
1997 process:
1998         if (sk->sk_state == TCP_TIME_WAIT)
1999                 goto do_time_wait;
2000
2001         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
2002                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
2003                 goto discard_and_relse;
2004         }
2005
2006         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2007                 goto discard_and_relse;
2008         nf_reset(skb);
2009
2010         if (sk_filter(sk, skb))
2011                 goto discard_and_relse;
2012
2013         skb->dev = NULL;
2014
2015         bh_lock_sock_nested(sk);
2016         ret = 0;
2017         if (!sock_owned_by_user(sk)) {
2018 #ifdef CONFIG_NET_DMA
2019                 struct tcp_sock *tp = tcp_sk(sk);
2020                 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2021                         tp->ucopy.dma_chan = net_dma_find_channel();
2022                 if (tp->ucopy.dma_chan)
2023                         ret = tcp_v4_do_rcv(sk, skb);
2024                 else
2025 #endif
2026                 {
2027                         if (!tcp_prequeue(sk, skb))
2028                                 ret = tcp_v4_do_rcv(sk, skb);
2029                 }
2030         } else if (unlikely(sk_add_backlog(sk, skb,
2031                                            sk->sk_rcvbuf + sk->sk_sndbuf))) {
2032                 bh_unlock_sock(sk);
2033                 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2034                 goto discard_and_relse;
2035         }
2036         bh_unlock_sock(sk);
2037
2038         sock_put(sk);
2039
2040         return ret;
2041
2042 no_tcp_socket:
2043         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2044                 goto discard_it;
2045
2046         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2047 bad_packet:
2048                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2049         } else {
2050                 tcp_v4_send_reset(NULL, skb);
2051         }
2052
2053 discard_it:
2054         /* Discard frame. */
2055         kfree_skb(skb);
2056         return 0;
2057
2058 discard_and_relse:
2059         sock_put(sk);
2060         goto discard_it;
2061
2062 do_time_wait:
2063         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2064                 inet_twsk_put(inet_twsk(sk));
2065                 goto discard_it;
2066         }
2067
2068         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2069                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2070                 inet_twsk_put(inet_twsk(sk));
2071                 goto discard_it;
2072         }
2073         switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2074         case TCP_TW_SYN: {
2075                 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2076                                                         &tcp_hashinfo,
2077                                                         iph->daddr, th->dest,
2078                                                         inet_iif(skb));
2079                 if (sk2) {
2080                         inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2081                         inet_twsk_put(inet_twsk(sk));
2082                         sk = sk2;
2083                         goto process;
2084                 }
2085                 /* Fall through to ACK */
2086         }
2087         case TCP_TW_ACK:
2088                 tcp_v4_timewait_ack(sk, skb);
2089                 break;
2090         case TCP_TW_RST:
2091                 goto no_tcp_socket;
2092         case TCP_TW_SUCCESS:;
2093         }
2094         goto discard_it;
2095 }
2096
2097 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2098         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
2099         .twsk_unique    = tcp_twsk_unique,
2100         .twsk_destructor= tcp_twsk_destructor,
2101 };
2102
2103 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2104 {
2105         struct dst_entry *dst = skb_dst(skb);
2106
2107         dst_hold(dst);
2108         sk->sk_rx_dst = dst;
2109         inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2110 }
2111 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2112
2113 const struct inet_connection_sock_af_ops ipv4_specific = {
2114         .queue_xmit        = ip_queue_xmit,
2115         .send_check        = tcp_v4_send_check,
2116         .rebuild_header    = inet_sk_rebuild_header,
2117         .sk_rx_dst_set     = inet_sk_rx_dst_set,
2118         .conn_request      = tcp_v4_conn_request,
2119         .syn_recv_sock     = tcp_v4_syn_recv_sock,
2120         .net_header_len    = sizeof(struct iphdr),
2121         .setsockopt        = ip_setsockopt,
2122         .getsockopt        = ip_getsockopt,
2123         .addr2sockaddr     = inet_csk_addr2sockaddr,
2124         .sockaddr_len      = sizeof(struct sockaddr_in),
2125         .bind_conflict     = inet_csk_bind_conflict,
2126 #ifdef CONFIG_COMPAT
2127         .compat_setsockopt = compat_ip_setsockopt,
2128         .compat_getsockopt = compat_ip_getsockopt,
2129 #endif
2130 };
2131 EXPORT_SYMBOL(ipv4_specific);
2132
2133 #ifdef CONFIG_TCP_MD5SIG
2134 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2135         .md5_lookup             = tcp_v4_md5_lookup,
2136         .calc_md5_hash          = tcp_v4_md5_hash_skb,
2137         .md5_parse              = tcp_v4_parse_md5_keys,
2138 };
2139 #endif
2140
2141 /* NOTE: A lot of things set to zero explicitly by call to
2142  *       sk_alloc() so need not be done here.
2143  */
2144 static int tcp_v4_init_sock(struct sock *sk)
2145 {
2146         struct inet_connection_sock *icsk = inet_csk(sk);
2147
2148         tcp_init_sock(sk);
2149
2150         icsk->icsk_af_ops = &ipv4_specific;
2151
2152 #ifdef CONFIG_TCP_MD5SIG
2153         tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2154 #endif
2155
2156         return 0;
2157 }
2158
2159 void tcp_v4_destroy_sock(struct sock *sk)
2160 {
2161         struct tcp_sock *tp = tcp_sk(sk);
2162
2163         tcp_clear_xmit_timers(sk);
2164
2165         tcp_cleanup_congestion_control(sk);
2166
2167         /* Cleanup up the write buffer. */
2168         tcp_write_queue_purge(sk);
2169
2170         /* Cleans up our, hopefully empty, out_of_order_queue. */
2171         __skb_queue_purge(&tp->out_of_order_queue);
2172
2173 #ifdef CONFIG_TCP_MD5SIG
2174         /* Clean up the MD5 key list, if any */
2175         if (tp->md5sig_info) {
2176                 tcp_clear_md5_list(sk);
2177                 kfree_rcu(tp->md5sig_info, rcu);
2178                 tp->md5sig_info = NULL;
2179         }
2180 #endif
2181
2182 #ifdef CONFIG_NET_DMA
2183         /* Cleans up our sk_async_wait_queue */
2184         __skb_queue_purge(&sk->sk_async_wait_queue);
2185 #endif
2186
2187         /* Clean prequeue, it must be empty really */
2188         __skb_queue_purge(&tp->ucopy.prequeue);
2189
2190         /* Clean up a referenced TCP bind bucket. */
2191         if (inet_csk(sk)->icsk_bind_hash)
2192                 inet_put_port(sk);
2193
2194         /* TCP Cookie Transactions */
2195         if (tp->cookie_values != NULL) {
2196                 kref_put(&tp->cookie_values->kref,
2197                          tcp_cookie_values_release);
2198                 tp->cookie_values = NULL;
2199         }
2200         BUG_ON(tp->fastopen_rsk != NULL);
2201
2202         /* If socket is aborted during connect operation */
2203         tcp_free_fastopen_req(tp);
2204
2205         sk_sockets_allocated_dec(sk);
2206         sock_release_memcg(sk);
2207 }
2208 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2209
2210 #ifdef CONFIG_PROC_FS
2211 /* Proc filesystem TCP sock list dumping. */
2212
2213 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
2214 {
2215         return hlist_nulls_empty(head) ? NULL :
2216                 list_entry(head->first, struct inet_timewait_sock, tw_node);
2217 }
2218
2219 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2220 {
2221         return !is_a_nulls(tw->tw_node.next) ?
2222                 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2223 }
2224
2225 /*
2226  * Get next listener socket follow cur.  If cur is NULL, get first socket
2227  * starting from bucket given in st->bucket; when st->bucket is zero the
2228  * very first socket in the hash table is returned.
2229  */
2230 static void *listening_get_next(struct seq_file *seq, void *cur)
2231 {
2232         struct inet_connection_sock *icsk;
2233         struct hlist_nulls_node *node;
2234         struct sock *sk = cur;
2235         struct inet_listen_hashbucket *ilb;
2236         struct tcp_iter_state *st = seq->private;
2237         struct net *net = seq_file_net(seq);
2238
2239         if (!sk) {
2240                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2241                 spin_lock_bh(&ilb->lock);
2242                 sk = sk_nulls_head(&ilb->head);
2243                 st->offset = 0;
2244                 goto get_sk;
2245         }
2246         ilb = &tcp_hashinfo.listening_hash[st->bucket];
2247         ++st->num;
2248         ++st->offset;
2249
2250         if (st->state == TCP_SEQ_STATE_OPENREQ) {
2251                 struct request_sock *req = cur;
2252
2253                 icsk = inet_csk(st->syn_wait_sk);
2254                 req = req->dl_next;
2255                 while (1) {
2256                         while (req) {
2257                                 if (req->rsk_ops->family == st->family) {
2258                                         cur = req;
2259                                         goto out;
2260                                 }
2261                                 req = req->dl_next;
2262                         }
2263                         if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2264                                 break;
2265 get_req:
2266                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2267                 }
2268                 sk        = sk_nulls_next(st->syn_wait_sk);
2269                 st->state = TCP_SEQ_STATE_LISTENING;
2270                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2271         } else {
2272                 icsk = inet_csk(sk);
2273                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2274                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2275                         goto start_req;
2276                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2277                 sk = sk_nulls_next(sk);
2278         }
2279 get_sk:
2280         sk_nulls_for_each_from(sk, node) {
2281                 if (!net_eq(sock_net(sk), net))
2282                         continue;
2283                 if (sk->sk_family == st->family) {
2284                         cur = sk;
2285                         goto out;
2286                 }
2287                 icsk = inet_csk(sk);
2288                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2289                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2290 start_req:
2291                         st->uid         = sock_i_uid(sk);
2292                         st->syn_wait_sk = sk;
2293                         st->state       = TCP_SEQ_STATE_OPENREQ;
2294                         st->sbucket     = 0;
2295                         goto get_req;
2296                 }
2297                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2298         }
2299         spin_unlock_bh(&ilb->lock);
2300         st->offset = 0;
2301         if (++st->bucket < INET_LHTABLE_SIZE) {
2302                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2303                 spin_lock_bh(&ilb->lock);
2304                 sk = sk_nulls_head(&ilb->head);
2305                 goto get_sk;
2306         }
2307         cur = NULL;
2308 out:
2309         return cur;
2310 }
2311
2312 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2313 {
2314         struct tcp_iter_state *st = seq->private;
2315         void *rc;
2316
2317         st->bucket = 0;
2318         st->offset = 0;
2319         rc = listening_get_next(seq, NULL);
2320
2321         while (rc && *pos) {
2322                 rc = listening_get_next(seq, rc);
2323                 --*pos;
2324         }
2325         return rc;
2326 }
2327
2328 static inline bool empty_bucket(struct tcp_iter_state *st)
2329 {
2330         return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2331                 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2332 }
2333
2334 /*
2335  * Get first established socket starting from bucket given in st->bucket.
2336  * If st->bucket is zero, the very first socket in the hash is returned.
2337  */
2338 static void *established_get_first(struct seq_file *seq)
2339 {
2340         struct tcp_iter_state *st = seq->private;
2341         struct net *net = seq_file_net(seq);
2342         void *rc = NULL;
2343
2344         st->offset = 0;
2345         for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2346                 struct sock *sk;
2347                 struct hlist_nulls_node *node;
2348                 struct inet_timewait_sock *tw;
2349                 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2350
2351                 /* Lockless fast path for the common case of empty buckets */
2352                 if (empty_bucket(st))
2353                         continue;
2354
2355                 spin_lock_bh(lock);
2356                 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2357                         if (sk->sk_family != st->family ||
2358                             !net_eq(sock_net(sk), net)) {
2359                                 continue;
2360                         }
2361                         rc = sk;
2362                         goto out;
2363                 }
2364                 st->state = TCP_SEQ_STATE_TIME_WAIT;
2365                 inet_twsk_for_each(tw, node,
2366                                    &tcp_hashinfo.ehash[st->bucket].twchain) {
2367                         if (tw->tw_family != st->family ||
2368                             !net_eq(twsk_net(tw), net)) {
2369                                 continue;
2370                         }
2371                         rc = tw;
2372                         goto out;
2373                 }
2374                 spin_unlock_bh(lock);
2375                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2376         }
2377 out:
2378         return rc;
2379 }
2380
2381 static void *established_get_next(struct seq_file *seq, void *cur)
2382 {
2383         struct sock *sk = cur;
2384         struct inet_timewait_sock *tw;
2385         struct hlist_nulls_node *node;
2386         struct tcp_iter_state *st = seq->private;
2387         struct net *net = seq_file_net(seq);
2388
2389         ++st->num;
2390         ++st->offset;
2391
2392         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2393                 tw = cur;
2394                 tw = tw_next(tw);
2395 get_tw:
2396                 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2397                         tw = tw_next(tw);
2398                 }
2399                 if (tw) {
2400                         cur = tw;
2401                         goto out;
2402                 }
2403                 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2404                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2405
2406                 /* Look for next non empty bucket */
2407                 st->offset = 0;
2408                 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2409                                 empty_bucket(st))
2410                         ;
2411                 if (st->bucket > tcp_hashinfo.ehash_mask)
2412                         return NULL;
2413
2414                 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2415                 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2416         } else
2417                 sk = sk_nulls_next(sk);
2418
2419         sk_nulls_for_each_from(sk, node) {
2420                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2421                         goto found;
2422         }
2423
2424         st->state = TCP_SEQ_STATE_TIME_WAIT;
2425         tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2426         goto get_tw;
2427 found:
2428         cur = sk;
2429 out:
2430         return cur;
2431 }
2432
2433 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2434 {
2435         struct tcp_iter_state *st = seq->private;
2436         void *rc;
2437
2438         st->bucket = 0;
2439         rc = established_get_first(seq);
2440
2441         while (rc && pos) {
2442                 rc = established_get_next(seq, rc);
2443                 --pos;
2444         }
2445         return rc;
2446 }
2447
2448 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2449 {
2450         void *rc;
2451         struct tcp_iter_state *st = seq->private;
2452
2453         st->state = TCP_SEQ_STATE_LISTENING;
2454         rc        = listening_get_idx(seq, &pos);
2455
2456         if (!rc) {
2457                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2458                 rc        = established_get_idx(seq, pos);
2459         }
2460
2461         return rc;
2462 }
2463
2464 static void *tcp_seek_last_pos(struct seq_file *seq)
2465 {
2466         struct tcp_iter_state *st = seq->private;
2467         int offset = st->offset;
2468         int orig_num = st->num;
2469         void *rc = NULL;
2470
2471         switch (st->state) {
2472         case TCP_SEQ_STATE_OPENREQ:
2473         case TCP_SEQ_STATE_LISTENING:
2474                 if (st->bucket >= INET_LHTABLE_SIZE)
2475                         break;
2476                 st->state = TCP_SEQ_STATE_LISTENING;
2477                 rc = listening_get_next(seq, NULL);
2478                 while (offset-- && rc)
2479                         rc = listening_get_next(seq, rc);
2480                 if (rc)
2481                         break;
2482                 st->bucket = 0;
2483                 /* Fallthrough */
2484         case TCP_SEQ_STATE_ESTABLISHED:
2485         case TCP_SEQ_STATE_TIME_WAIT:
2486                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2487                 if (st->bucket > tcp_hashinfo.ehash_mask)
2488                         break;
2489                 rc = established_get_first(seq);
2490                 while (offset-- && rc)
2491                         rc = established_get_next(seq, rc);
2492         }
2493
2494         st->num = orig_num;
2495
2496         return rc;
2497 }
2498
2499 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2500 {
2501         struct tcp_iter_state *st = seq->private;
2502         void *rc;
2503
2504         if (*pos && *pos == st->last_pos) {
2505                 rc = tcp_seek_last_pos(seq);
2506                 if (rc)
2507                         goto out;
2508         }
2509
2510         st->state = TCP_SEQ_STATE_LISTENING;
2511         st->num = 0;
2512         st->bucket = 0;
2513         st->offset = 0;
2514         rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2515
2516 out:
2517         st->last_pos = *pos;
2518         return rc;
2519 }
2520
2521 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2522 {
2523         struct tcp_iter_state *st = seq->private;
2524         void *rc = NULL;
2525
2526         if (v == SEQ_START_TOKEN) {
2527                 rc = tcp_get_idx(seq, 0);
2528                 goto out;
2529         }
2530
2531         switch (st->state) {
2532         case TCP_SEQ_STATE_OPENREQ:
2533         case TCP_SEQ_STATE_LISTENING:
2534                 rc = listening_get_next(seq, v);
2535                 if (!rc) {
2536                         st->state = TCP_SEQ_STATE_ESTABLISHED;
2537                         st->bucket = 0;
2538                         st->offset = 0;
2539                         rc        = established_get_first(seq);
2540                 }
2541                 break;
2542         case TCP_SEQ_STATE_ESTABLISHED:
2543         case TCP_SEQ_STATE_TIME_WAIT:
2544                 rc = established_get_next(seq, v);
2545                 break;
2546         }
2547 out:
2548         ++*pos;
2549         st->last_pos = *pos;
2550         return rc;
2551 }
2552
2553 static void tcp_seq_stop(struct seq_file *seq, void *v)
2554 {
2555         struct tcp_iter_state *st = seq->private;
2556
2557         switch (st->state) {
2558         case TCP_SEQ_STATE_OPENREQ:
2559                 if (v) {
2560                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2561                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2562                 }
2563         case TCP_SEQ_STATE_LISTENING:
2564                 if (v != SEQ_START_TOKEN)
2565                         spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2566                 break;
2567         case TCP_SEQ_STATE_TIME_WAIT:
2568         case TCP_SEQ_STATE_ESTABLISHED:
2569                 if (v)
2570                         spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2571                 break;
2572         }
2573 }
2574
2575 int tcp_seq_open(struct inode *inode, struct file *file)
2576 {
2577         struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2578         struct tcp_iter_state *s;
2579         int err;
2580
2581         err = seq_open_net(inode, file, &afinfo->seq_ops,
2582                           sizeof(struct tcp_iter_state));
2583         if (err < 0)
2584                 return err;
2585
2586         s = ((struct seq_file *)file->private_data)->private;
2587         s->family               = afinfo->family;
2588         s->last_pos             = 0;
2589         return 0;
2590 }
2591 EXPORT_SYMBOL(tcp_seq_open);
2592
2593 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2594 {
2595         int rc = 0;
2596         struct proc_dir_entry *p;
2597
2598         afinfo->seq_ops.start           = tcp_seq_start;
2599         afinfo->seq_ops.next            = tcp_seq_next;
2600         afinfo->seq_ops.stop            = tcp_seq_stop;
2601
2602         p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2603                              afinfo->seq_fops, afinfo);
2604         if (!p)
2605                 rc = -ENOMEM;
2606         return rc;
2607 }
2608 EXPORT_SYMBOL(tcp_proc_register);
2609
2610 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2611 {
2612         proc_net_remove(net, afinfo->name);
2613 }
2614 EXPORT_SYMBOL(tcp_proc_unregister);
2615
2616 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2617                          struct seq_file *f, int i, kuid_t uid, int *len)
2618 {
2619         const struct inet_request_sock *ireq = inet_rsk(req);
2620         long delta = req->expires - jiffies;
2621
2622         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2623                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2624                 i,
2625                 ireq->loc_addr,
2626                 ntohs(inet_sk(sk)->inet_sport),
2627                 ireq->rmt_addr,
2628                 ntohs(ireq->rmt_port),
2629                 TCP_SYN_RECV,
2630                 0, 0, /* could print option size, but that is af dependent. */
2631                 1,    /* timers active (only the expire timer) */
2632                 jiffies_delta_to_clock_t(delta),
2633                 req->num_timeout,
2634                 from_kuid_munged(seq_user_ns(f), uid),
2635                 0,  /* non standard timer */
2636                 0, /* open_requests have no inode */
2637                 atomic_read(&sk->sk_refcnt),
2638                 req,
2639                 len);
2640 }
2641
2642 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2643 {
2644         int timer_active;
2645         unsigned long timer_expires;
2646         const struct tcp_sock *tp = tcp_sk(sk);
2647         const struct inet_connection_sock *icsk = inet_csk(sk);
2648         const struct inet_sock *inet = inet_sk(sk);
2649         struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2650         __be32 dest = inet->inet_daddr;
2651         __be32 src = inet->inet_rcv_saddr;
2652         __u16 destp = ntohs(inet->inet_dport);
2653         __u16 srcp = ntohs(inet->inet_sport);
2654         int rx_queue;
2655
2656         if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2657                 timer_active    = 1;
2658                 timer_expires   = icsk->icsk_timeout;
2659         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2660                 timer_active    = 4;
2661                 timer_expires   = icsk->icsk_timeout;
2662         } else if (timer_pending(&sk->sk_timer)) {
2663                 timer_active    = 2;
2664                 timer_expires   = sk->sk_timer.expires;
2665         } else {
2666                 timer_active    = 0;
2667                 timer_expires = jiffies;
2668         }
2669
2670         if (sk->sk_state == TCP_LISTEN)
2671                 rx_queue = sk->sk_ack_backlog;
2672         else
2673                 /*
2674                  * because we dont lock socket, we might find a transient negative value
2675                  */
2676                 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2677
2678         seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2679                         "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2680                 i, src, srcp, dest, destp, sk->sk_state,
2681                 tp->write_seq - tp->snd_una,
2682                 rx_queue,
2683                 timer_active,
2684                 jiffies_delta_to_clock_t(timer_expires - jiffies),
2685                 icsk->icsk_retransmits,
2686                 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2687                 icsk->icsk_probes_out,
2688                 sock_i_ino(sk),
2689                 atomic_read(&sk->sk_refcnt), sk,
2690                 jiffies_to_clock_t(icsk->icsk_rto),
2691                 jiffies_to_clock_t(icsk->icsk_ack.ato),
2692                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2693                 tp->snd_cwnd,
2694                 sk->sk_state == TCP_LISTEN ?
2695                     (fastopenq ? fastopenq->max_qlen : 0) :
2696                     (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh),
2697                 len);
2698 }
2699
2700 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2701                                struct seq_file *f, int i, int *len)
2702 {
2703         __be32 dest, src;
2704         __u16 destp, srcp;
2705         long delta = tw->tw_ttd - jiffies;
2706
2707         dest  = tw->tw_daddr;
2708         src   = tw->tw_rcv_saddr;
2709         destp = ntohs(tw->tw_dport);
2710         srcp  = ntohs(tw->tw_sport);
2711
2712         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2713                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2714                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2715                 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2716                 atomic_read(&tw->tw_refcnt), tw, len);
2717 }
2718
2719 #define TMPSZ 150
2720
2721 static int tcp4_seq_show(struct seq_file *seq, void *v)
2722 {
2723         struct tcp_iter_state *st;
2724         int len;
2725
2726         if (v == SEQ_START_TOKEN) {
2727                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2728                            "  sl  local_address rem_address   st tx_queue "
2729                            "rx_queue tr tm->when retrnsmt   uid  timeout "
2730                            "inode");
2731                 goto out;
2732         }
2733         st = seq->private;
2734
2735         switch (st->state) {
2736         case TCP_SEQ_STATE_LISTENING:
2737         case TCP_SEQ_STATE_ESTABLISHED:
2738                 get_tcp4_sock(v, seq, st->num, &len);
2739                 break;
2740         case TCP_SEQ_STATE_OPENREQ:
2741                 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2742                 break;
2743         case TCP_SEQ_STATE_TIME_WAIT:
2744                 get_timewait4_sock(v, seq, st->num, &len);
2745                 break;
2746         }
2747         seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2748 out:
2749         return 0;
2750 }
2751
2752 static const struct file_operations tcp_afinfo_seq_fops = {
2753         .owner   = THIS_MODULE,
2754         .open    = tcp_seq_open,
2755         .read    = seq_read,
2756         .llseek  = seq_lseek,
2757         .release = seq_release_net
2758 };
2759
2760 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2761         .name           = "tcp",
2762         .family         = AF_INET,
2763         .seq_fops       = &tcp_afinfo_seq_fops,
2764         .seq_ops        = {
2765                 .show           = tcp4_seq_show,
2766         },
2767 };
2768
2769 static int __net_init tcp4_proc_init_net(struct net *net)
2770 {
2771         return tcp_proc_register(net, &tcp4_seq_afinfo);
2772 }
2773
2774 static void __net_exit tcp4_proc_exit_net(struct net *net)
2775 {
2776         tcp_proc_unregister(net, &tcp4_seq_afinfo);
2777 }
2778
2779 static struct pernet_operations tcp4_net_ops = {
2780         .init = tcp4_proc_init_net,
2781         .exit = tcp4_proc_exit_net,
2782 };
2783
2784 int __init tcp4_proc_init(void)
2785 {
2786         return register_pernet_subsys(&tcp4_net_ops);
2787 }
2788
2789 void tcp4_proc_exit(void)
2790 {
2791         unregister_pernet_subsys(&tcp4_net_ops);
2792 }
2793 #endif /* CONFIG_PROC_FS */
2794
2795 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2796 {
2797         const struct iphdr *iph = skb_gro_network_header(skb);
2798         __wsum wsum;
2799         __sum16 sum;
2800
2801         switch (skb->ip_summed) {
2802         case CHECKSUM_COMPLETE:
2803                 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2804                                   skb->csum)) {
2805                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2806                         break;
2807                 }
2808 flush:
2809                 NAPI_GRO_CB(skb)->flush = 1;
2810                 return NULL;
2811
2812         case CHECKSUM_NONE:
2813                 wsum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
2814                                           skb_gro_len(skb), IPPROTO_TCP, 0);
2815                 sum = csum_fold(skb_checksum(skb,
2816                                              skb_gro_offset(skb),
2817                                              skb_gro_len(skb),
2818                                              wsum));
2819                 if (sum)
2820                         goto flush;
2821
2822                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2823                 break;
2824         }
2825
2826         return tcp_gro_receive(head, skb);
2827 }
2828
2829 int tcp4_gro_complete(struct sk_buff *skb)
2830 {
2831         const struct iphdr *iph = ip_hdr(skb);
2832         struct tcphdr *th = tcp_hdr(skb);
2833
2834         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2835                                   iph->saddr, iph->daddr, 0);
2836         skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2837
2838         return tcp_gro_complete(skb);
2839 }
2840
2841 struct proto tcp_prot = {
2842         .name                   = "TCP",
2843         .owner                  = THIS_MODULE,
2844         .close                  = tcp_close,
2845         .connect                = tcp_v4_connect,
2846         .disconnect             = tcp_disconnect,
2847         .accept                 = inet_csk_accept,
2848         .ioctl                  = tcp_ioctl,
2849         .init                   = tcp_v4_init_sock,
2850         .destroy                = tcp_v4_destroy_sock,
2851         .shutdown               = tcp_shutdown,
2852         .setsockopt             = tcp_setsockopt,
2853         .getsockopt             = tcp_getsockopt,
2854         .recvmsg                = tcp_recvmsg,
2855         .sendmsg                = tcp_sendmsg,
2856         .sendpage               = tcp_sendpage,
2857         .backlog_rcv            = tcp_v4_do_rcv,
2858         .release_cb             = tcp_release_cb,
2859         .mtu_reduced            = tcp_v4_mtu_reduced,
2860         .hash                   = inet_hash,
2861         .unhash                 = inet_unhash,
2862         .get_port               = inet_csk_get_port,
2863         .enter_memory_pressure  = tcp_enter_memory_pressure,
2864         .sockets_allocated      = &tcp_sockets_allocated,
2865         .orphan_count           = &tcp_orphan_count,
2866         .memory_allocated       = &tcp_memory_allocated,
2867         .memory_pressure        = &tcp_memory_pressure,
2868         .sysctl_wmem            = sysctl_tcp_wmem,
2869         .sysctl_rmem            = sysctl_tcp_rmem,
2870         .max_header             = MAX_TCP_HEADER,
2871         .obj_size               = sizeof(struct tcp_sock),
2872         .slab_flags             = SLAB_DESTROY_BY_RCU,
2873         .twsk_prot              = &tcp_timewait_sock_ops,
2874         .rsk_prot               = &tcp_request_sock_ops,
2875         .h.hashinfo             = &tcp_hashinfo,
2876         .no_autobind            = true,
2877 #ifdef CONFIG_COMPAT
2878         .compat_setsockopt      = compat_tcp_setsockopt,
2879         .compat_getsockopt      = compat_tcp_getsockopt,
2880 #endif
2881 #ifdef CONFIG_MEMCG_KMEM
2882         .init_cgroup            = tcp_init_cgroup,
2883         .destroy_cgroup         = tcp_destroy_cgroup,
2884         .proto_cgroup           = tcp_proto_cgroup,
2885 #endif
2886 };
2887 EXPORT_SYMBOL(tcp_prot);
2888
2889 static int __net_init tcp_sk_init(struct net *net)
2890 {
2891         return 0;
2892 }
2893
2894 static void __net_exit tcp_sk_exit(struct net *net)
2895 {
2896 }
2897
2898 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2899 {
2900         inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2901 }
2902
2903 static struct pernet_operations __net_initdata tcp_sk_ops = {
2904        .init       = tcp_sk_init,
2905        .exit       = tcp_sk_exit,
2906        .exit_batch = tcp_sk_exit_batch,
2907 };
2908
2909 void __init tcp_v4_init(void)
2910 {
2911         inet_hashinfo_init(&tcp_hashinfo);
2912         if (register_pernet_subsys(&tcp_sk_ops))
2913                 panic("Failed to create the TCP control socket.\n");
2914 }