net: more accurate skb truesize
[pandora-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
95
96 int sysctl_tcp_thin_dupack __read_mostly;
97
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
100
101 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
102 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
103 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
105 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
106 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
107 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
108 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
109 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
115
116 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
121
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124
125 /* Adapt the MSS value used to make delayed ack decision to the
126  * real world.
127  */
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 {
130         struct inet_connection_sock *icsk = inet_csk(sk);
131         const unsigned int lss = icsk->icsk_ack.last_seg_size;
132         unsigned int len;
133
134         icsk->icsk_ack.last_seg_size = 0;
135
136         /* skb->len may jitter because of SACKs, even if peer
137          * sends good full-sized frames.
138          */
139         len = skb_shinfo(skb)->gso_size ? : skb->len;
140         if (len >= icsk->icsk_ack.rcv_mss) {
141                 icsk->icsk_ack.rcv_mss = len;
142         } else {
143                 /* Otherwise, we make more careful check taking into account,
144                  * that SACKs block is variable.
145                  *
146                  * "len" is invariant segment length, including TCP header.
147                  */
148                 len += skb->data - skb_transport_header(skb);
149                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150                     /* If PSH is not set, packet should be
151                      * full sized, provided peer TCP is not badly broken.
152                      * This observation (if it is correct 8)) allows
153                      * to handle super-low mtu links fairly.
154                      */
155                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157                         /* Subtract also invariant (if peer is RFC compliant),
158                          * tcp header plus fixed timestamp option length.
159                          * Resulting "len" is MSS free of SACK jitter.
160                          */
161                         len -= tcp_sk(sk)->tcp_header_len;
162                         icsk->icsk_ack.last_seg_size = len;
163                         if (len == lss) {
164                                 icsk->icsk_ack.rcv_mss = len;
165                                 return;
166                         }
167                 }
168                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
171         }
172 }
173
174 static void tcp_incr_quickack(struct sock *sk)
175 {
176         struct inet_connection_sock *icsk = inet_csk(sk);
177         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178
179         if (quickacks == 0)
180                 quickacks = 2;
181         if (quickacks > icsk->icsk_ack.quick)
182                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
183 }
184
185 static void tcp_enter_quickack_mode(struct sock *sk)
186 {
187         struct inet_connection_sock *icsk = inet_csk(sk);
188         tcp_incr_quickack(sk);
189         icsk->icsk_ack.pingpong = 0;
190         icsk->icsk_ack.ato = TCP_ATO_MIN;
191 }
192
193 /* Send ACKs quickly, if "quick" count is not exhausted
194  * and the session is not interactive.
195  */
196
197 static inline int tcp_in_quickack_mode(const struct sock *sk)
198 {
199         const struct inet_connection_sock *icsk = inet_csk(sk);
200         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205         if (tp->ecn_flags & TCP_ECN_OK)
206                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
210 {
211         if (tcp_hdr(skb)->cwr)
212                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
221 {
222         if (!(tp->ecn_flags & TCP_ECN_OK))
223                 return;
224
225         switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226         case INET_ECN_NOT_ECT:
227                 /* Funny extension: if ECT is not set on a segment,
228                  * and we already seen ECT on a previous segment,
229                  * it is probably a retransmit.
230                  */
231                 if (tp->ecn_flags & TCP_ECN_SEEN)
232                         tcp_enter_quickack_mode((struct sock *)tp);
233                 break;
234         case INET_ECN_CE:
235                 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
236                 /* fallinto */
237         default:
238                 tp->ecn_flags |= TCP_ECN_SEEN;
239         }
240 }
241
242 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
243 {
244         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
245                 tp->ecn_flags &= ~TCP_ECN_OK;
246 }
247
248 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
249 {
250         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
251                 tp->ecn_flags &= ~TCP_ECN_OK;
252 }
253
254 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
255 {
256         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
257                 return 1;
258         return 0;
259 }
260
261 /* Buffer size and advertised window tuning.
262  *
263  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
264  */
265
266 static void tcp_fixup_sndbuf(struct sock *sk)
267 {
268         int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
269
270         if (sk->sk_sndbuf < 3 * sndmem) {
271                 sk->sk_sndbuf = 3 * sndmem;
272                 if (sk->sk_sndbuf > sysctl_tcp_wmem[2])
273                         sk->sk_sndbuf = sysctl_tcp_wmem[2];
274         }
275 }
276
277 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
278  *
279  * All tcp_full_space() is split to two parts: "network" buffer, allocated
280  * forward and advertised in receiver window (tp->rcv_wnd) and
281  * "application buffer", required to isolate scheduling/application
282  * latencies from network.
283  * window_clamp is maximal advertised window. It can be less than
284  * tcp_full_space(), in this case tcp_full_space() - window_clamp
285  * is reserved for "application" buffer. The less window_clamp is
286  * the smoother our behaviour from viewpoint of network, but the lower
287  * throughput and the higher sensitivity of the connection to losses. 8)
288  *
289  * rcv_ssthresh is more strict window_clamp used at "slow start"
290  * phase to predict further behaviour of this connection.
291  * It is used for two goals:
292  * - to enforce header prediction at sender, even when application
293  *   requires some significant "application buffer". It is check #1.
294  * - to prevent pruning of receive queue because of misprediction
295  *   of receiver window. Check #2.
296  *
297  * The scheme does not work when sender sends good segments opening
298  * window and then starts to feed us spaghetti. But it should work
299  * in common situations. Otherwise, we have to rely on queue collapsing.
300  */
301
302 /* Slow part of check#2. */
303 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
304 {
305         struct tcp_sock *tp = tcp_sk(sk);
306         /* Optimize this! */
307         int truesize = tcp_win_from_space(skb->truesize) >> 1;
308         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
309
310         while (tp->rcv_ssthresh <= window) {
311                 if (truesize <= skb->len)
312                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
313
314                 truesize >>= 1;
315                 window >>= 1;
316         }
317         return 0;
318 }
319
320 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
321 {
322         struct tcp_sock *tp = tcp_sk(sk);
323
324         /* Check #1 */
325         if (tp->rcv_ssthresh < tp->window_clamp &&
326             (int)tp->rcv_ssthresh < tcp_space(sk) &&
327             !tcp_memory_pressure) {
328                 int incr;
329
330                 /* Check #2. Increase window, if skb with such overhead
331                  * will fit to rcvbuf in future.
332                  */
333                 if (tcp_win_from_space(skb->truesize) <= skb->len)
334                         incr = 2 * tp->advmss;
335                 else
336                         incr = __tcp_grow_window(sk, skb);
337
338                 if (incr) {
339                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
340                                                tp->window_clamp);
341                         inet_csk(sk)->icsk_ack.quick |= 1;
342                 }
343         }
344 }
345
346 /* 3. Tuning rcvbuf, when connection enters established state. */
347
348 static void tcp_fixup_rcvbuf(struct sock *sk)
349 {
350         struct tcp_sock *tp = tcp_sk(sk);
351         int rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
352
353         /* Try to select rcvbuf so that 4 mss-sized segments
354          * will fit to window and corresponding skbs will fit to our rcvbuf.
355          * (was 3; 4 is minimum to allow fast retransmit to work.)
356          */
357         while (tcp_win_from_space(rcvmem) < tp->advmss)
358                 rcvmem += 128;
359         if (sk->sk_rcvbuf < 4 * rcvmem)
360                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
361 }
362
363 /* 4. Try to fixup all. It is made immediately after connection enters
364  *    established state.
365  */
366 static void tcp_init_buffer_space(struct sock *sk)
367 {
368         struct tcp_sock *tp = tcp_sk(sk);
369         int maxwin;
370
371         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
372                 tcp_fixup_rcvbuf(sk);
373         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
374                 tcp_fixup_sndbuf(sk);
375
376         tp->rcvq_space.space = tp->rcv_wnd;
377
378         maxwin = tcp_full_space(sk);
379
380         if (tp->window_clamp >= maxwin) {
381                 tp->window_clamp = maxwin;
382
383                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
384                         tp->window_clamp = max(maxwin -
385                                                (maxwin >> sysctl_tcp_app_win),
386                                                4 * tp->advmss);
387         }
388
389         /* Force reservation of one segment. */
390         if (sysctl_tcp_app_win &&
391             tp->window_clamp > 2 * tp->advmss &&
392             tp->window_clamp + tp->advmss > maxwin)
393                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
394
395         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
396         tp->snd_cwnd_stamp = tcp_time_stamp;
397 }
398
399 /* 5. Recalculate window clamp after socket hit its memory bounds. */
400 static void tcp_clamp_window(struct sock *sk)
401 {
402         struct tcp_sock *tp = tcp_sk(sk);
403         struct inet_connection_sock *icsk = inet_csk(sk);
404
405         icsk->icsk_ack.quick = 0;
406
407         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
408             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
409             !tcp_memory_pressure &&
410             atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
411                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
412                                     sysctl_tcp_rmem[2]);
413         }
414         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
415                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
416 }
417
418 /* Initialize RCV_MSS value.
419  * RCV_MSS is an our guess about MSS used by the peer.
420  * We haven't any direct information about the MSS.
421  * It's better to underestimate the RCV_MSS rather than overestimate.
422  * Overestimations make us ACKing less frequently than needed.
423  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
424  */
425 void tcp_initialize_rcv_mss(struct sock *sk)
426 {
427         struct tcp_sock *tp = tcp_sk(sk);
428         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
429
430         hint = min(hint, tp->rcv_wnd / 2);
431         hint = min(hint, TCP_MSS_DEFAULT);
432         hint = max(hint, TCP_MIN_MSS);
433
434         inet_csk(sk)->icsk_ack.rcv_mss = hint;
435 }
436 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
437
438 /* Receiver "autotuning" code.
439  *
440  * The algorithm for RTT estimation w/o timestamps is based on
441  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
442  * <http://public.lanl.gov/radiant/pubs.html#DRS>
443  *
444  * More detail on this code can be found at
445  * <http://staff.psc.edu/jheffner/>,
446  * though this reference is out of date.  A new paper
447  * is pending.
448  */
449 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
450 {
451         u32 new_sample = tp->rcv_rtt_est.rtt;
452         long m = sample;
453
454         if (m == 0)
455                 m = 1;
456
457         if (new_sample != 0) {
458                 /* If we sample in larger samples in the non-timestamp
459                  * case, we could grossly overestimate the RTT especially
460                  * with chatty applications or bulk transfer apps which
461                  * are stalled on filesystem I/O.
462                  *
463                  * Also, since we are only going for a minimum in the
464                  * non-timestamp case, we do not smooth things out
465                  * else with timestamps disabled convergence takes too
466                  * long.
467                  */
468                 if (!win_dep) {
469                         m -= (new_sample >> 3);
470                         new_sample += m;
471                 } else if (m < new_sample)
472                         new_sample = m << 3;
473         } else {
474                 /* No previous measure. */
475                 new_sample = m << 3;
476         }
477
478         if (tp->rcv_rtt_est.rtt != new_sample)
479                 tp->rcv_rtt_est.rtt = new_sample;
480 }
481
482 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
483 {
484         if (tp->rcv_rtt_est.time == 0)
485                 goto new_measure;
486         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
487                 return;
488         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
489
490 new_measure:
491         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
492         tp->rcv_rtt_est.time = tcp_time_stamp;
493 }
494
495 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
496                                           const struct sk_buff *skb)
497 {
498         struct tcp_sock *tp = tcp_sk(sk);
499         if (tp->rx_opt.rcv_tsecr &&
500             (TCP_SKB_CB(skb)->end_seq -
501              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
502                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
503 }
504
505 /*
506  * This function should be called every time data is copied to user space.
507  * It calculates the appropriate TCP receive buffer space.
508  */
509 void tcp_rcv_space_adjust(struct sock *sk)
510 {
511         struct tcp_sock *tp = tcp_sk(sk);
512         int time;
513         int space;
514
515         if (tp->rcvq_space.time == 0)
516                 goto new_measure;
517
518         time = tcp_time_stamp - tp->rcvq_space.time;
519         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
520                 return;
521
522         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
523
524         space = max(tp->rcvq_space.space, space);
525
526         if (tp->rcvq_space.space != space) {
527                 int rcvmem;
528
529                 tp->rcvq_space.space = space;
530
531                 if (sysctl_tcp_moderate_rcvbuf &&
532                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
533                         int new_clamp = space;
534
535                         /* Receive space grows, normalize in order to
536                          * take into account packet headers and sk_buff
537                          * structure overhead.
538                          */
539                         space /= tp->advmss;
540                         if (!space)
541                                 space = 1;
542                         rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
543                         while (tcp_win_from_space(rcvmem) < tp->advmss)
544                                 rcvmem += 128;
545                         space *= rcvmem;
546                         space = min(space, sysctl_tcp_rmem[2]);
547                         if (space > sk->sk_rcvbuf) {
548                                 sk->sk_rcvbuf = space;
549
550                                 /* Make the window clamp follow along.  */
551                                 tp->window_clamp = new_clamp;
552                         }
553                 }
554         }
555
556 new_measure:
557         tp->rcvq_space.seq = tp->copied_seq;
558         tp->rcvq_space.time = tcp_time_stamp;
559 }
560
561 /* There is something which you must keep in mind when you analyze the
562  * behavior of the tp->ato delayed ack timeout interval.  When a
563  * connection starts up, we want to ack as quickly as possible.  The
564  * problem is that "good" TCP's do slow start at the beginning of data
565  * transmission.  The means that until we send the first few ACK's the
566  * sender will sit on his end and only queue most of his data, because
567  * he can only send snd_cwnd unacked packets at any given time.  For
568  * each ACK we send, he increments snd_cwnd and transmits more of his
569  * queue.  -DaveM
570  */
571 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
572 {
573         struct tcp_sock *tp = tcp_sk(sk);
574         struct inet_connection_sock *icsk = inet_csk(sk);
575         u32 now;
576
577         inet_csk_schedule_ack(sk);
578
579         tcp_measure_rcv_mss(sk, skb);
580
581         tcp_rcv_rtt_measure(tp);
582
583         now = tcp_time_stamp;
584
585         if (!icsk->icsk_ack.ato) {
586                 /* The _first_ data packet received, initialize
587                  * delayed ACK engine.
588                  */
589                 tcp_incr_quickack(sk);
590                 icsk->icsk_ack.ato = TCP_ATO_MIN;
591         } else {
592                 int m = now - icsk->icsk_ack.lrcvtime;
593
594                 if (m <= TCP_ATO_MIN / 2) {
595                         /* The fastest case is the first. */
596                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
597                 } else if (m < icsk->icsk_ack.ato) {
598                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
599                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
600                                 icsk->icsk_ack.ato = icsk->icsk_rto;
601                 } else if (m > icsk->icsk_rto) {
602                         /* Too long gap. Apparently sender failed to
603                          * restart window, so that we send ACKs quickly.
604                          */
605                         tcp_incr_quickack(sk);
606                         sk_mem_reclaim(sk);
607                 }
608         }
609         icsk->icsk_ack.lrcvtime = now;
610
611         TCP_ECN_check_ce(tp, skb);
612
613         if (skb->len >= 128)
614                 tcp_grow_window(sk, skb);
615 }
616
617 /* Called to compute a smoothed rtt estimate. The data fed to this
618  * routine either comes from timestamps, or from segments that were
619  * known _not_ to have been retransmitted [see Karn/Partridge
620  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
621  * piece by Van Jacobson.
622  * NOTE: the next three routines used to be one big routine.
623  * To save cycles in the RFC 1323 implementation it was better to break
624  * it up into three procedures. -- erics
625  */
626 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
627 {
628         struct tcp_sock *tp = tcp_sk(sk);
629         long m = mrtt; /* RTT */
630
631         /*      The following amusing code comes from Jacobson's
632          *      article in SIGCOMM '88.  Note that rtt and mdev
633          *      are scaled versions of rtt and mean deviation.
634          *      This is designed to be as fast as possible
635          *      m stands for "measurement".
636          *
637          *      On a 1990 paper the rto value is changed to:
638          *      RTO = rtt + 4 * mdev
639          *
640          * Funny. This algorithm seems to be very broken.
641          * These formulae increase RTO, when it should be decreased, increase
642          * too slowly, when it should be increased quickly, decrease too quickly
643          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
644          * does not matter how to _calculate_ it. Seems, it was trap
645          * that VJ failed to avoid. 8)
646          */
647         if (m == 0)
648                 m = 1;
649         if (tp->srtt != 0) {
650                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
651                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
652                 if (m < 0) {
653                         m = -m;         /* m is now abs(error) */
654                         m -= (tp->mdev >> 2);   /* similar update on mdev */
655                         /* This is similar to one of Eifel findings.
656                          * Eifel blocks mdev updates when rtt decreases.
657                          * This solution is a bit different: we use finer gain
658                          * for mdev in this case (alpha*beta).
659                          * Like Eifel it also prevents growth of rto,
660                          * but also it limits too fast rto decreases,
661                          * happening in pure Eifel.
662                          */
663                         if (m > 0)
664                                 m >>= 3;
665                 } else {
666                         m -= (tp->mdev >> 2);   /* similar update on mdev */
667                 }
668                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
669                 if (tp->mdev > tp->mdev_max) {
670                         tp->mdev_max = tp->mdev;
671                         if (tp->mdev_max > tp->rttvar)
672                                 tp->rttvar = tp->mdev_max;
673                 }
674                 if (after(tp->snd_una, tp->rtt_seq)) {
675                         if (tp->mdev_max < tp->rttvar)
676                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
677                         tp->rtt_seq = tp->snd_nxt;
678                         tp->mdev_max = tcp_rto_min(sk);
679                 }
680         } else {
681                 /* no previous measure. */
682                 tp->srtt = m << 3;      /* take the measured time to be rtt */
683                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
684                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
685                 tp->rtt_seq = tp->snd_nxt;
686         }
687 }
688
689 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
690  * routine referred to above.
691  */
692 static inline void tcp_set_rto(struct sock *sk)
693 {
694         const struct tcp_sock *tp = tcp_sk(sk);
695         /* Old crap is replaced with new one. 8)
696          *
697          * More seriously:
698          * 1. If rtt variance happened to be less 50msec, it is hallucination.
699          *    It cannot be less due to utterly erratic ACK generation made
700          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
701          *    to do with delayed acks, because at cwnd>2 true delack timeout
702          *    is invisible. Actually, Linux-2.4 also generates erratic
703          *    ACKs in some circumstances.
704          */
705         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
706
707         /* 2. Fixups made earlier cannot be right.
708          *    If we do not estimate RTO correctly without them,
709          *    all the algo is pure shit and should be replaced
710          *    with correct one. It is exactly, which we pretend to do.
711          */
712
713         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
714          * guarantees that rto is higher.
715          */
716         tcp_bound_rto(sk);
717 }
718
719 /* Save metrics learned by this TCP session.
720    This function is called only, when TCP finishes successfully
721    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
722  */
723 void tcp_update_metrics(struct sock *sk)
724 {
725         struct tcp_sock *tp = tcp_sk(sk);
726         struct dst_entry *dst = __sk_dst_get(sk);
727
728         if (sysctl_tcp_nometrics_save)
729                 return;
730
731         dst_confirm(dst);
732
733         if (dst && (dst->flags & DST_HOST)) {
734                 const struct inet_connection_sock *icsk = inet_csk(sk);
735                 int m;
736                 unsigned long rtt;
737
738                 if (icsk->icsk_backoff || !tp->srtt) {
739                         /* This session failed to estimate rtt. Why?
740                          * Probably, no packets returned in time.
741                          * Reset our results.
742                          */
743                         if (!(dst_metric_locked(dst, RTAX_RTT)))
744                                 dst_metric_set(dst, RTAX_RTT, 0);
745                         return;
746                 }
747
748                 rtt = dst_metric_rtt(dst, RTAX_RTT);
749                 m = rtt - tp->srtt;
750
751                 /* If newly calculated rtt larger than stored one,
752                  * store new one. Otherwise, use EWMA. Remember,
753                  * rtt overestimation is always better than underestimation.
754                  */
755                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756                         if (m <= 0)
757                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
758                         else
759                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
760                 }
761
762                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763                         unsigned long var;
764                         if (m < 0)
765                                 m = -m;
766
767                         /* Scale deviation to rttvar fixed point */
768                         m >>= 1;
769                         if (m < tp->mdev)
770                                 m = tp->mdev;
771
772                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
773                         if (m >= var)
774                                 var = m;
775                         else
776                                 var -= (var - m) >> 2;
777
778                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
779                 }
780
781                 if (tcp_in_initial_slowstart(tp)) {
782                         /* Slow start still did not finish. */
783                         if (dst_metric(dst, RTAX_SSTHRESH) &&
784                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
785                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
786                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
787                         if (!dst_metric_locked(dst, RTAX_CWND) &&
788                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
789                                 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
790                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
791                            icsk->icsk_ca_state == TCP_CA_Open) {
792                         /* Cong. avoidance phase, cwnd is reliable. */
793                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
794                                 dst_metric_set(dst, RTAX_SSTHRESH,
795                                                max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
796                         if (!dst_metric_locked(dst, RTAX_CWND))
797                                 dst_metric_set(dst, RTAX_CWND,
798                                                (dst_metric(dst, RTAX_CWND) +
799                                                 tp->snd_cwnd) >> 1);
800                 } else {
801                         /* Else slow start did not finish, cwnd is non-sense,
802                            ssthresh may be also invalid.
803                          */
804                         if (!dst_metric_locked(dst, RTAX_CWND))
805                                 dst_metric_set(dst, RTAX_CWND,
806                                                (dst_metric(dst, RTAX_CWND) +
807                                                 tp->snd_ssthresh) >> 1);
808                         if (dst_metric(dst, RTAX_SSTHRESH) &&
809                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
810                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
811                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
812                 }
813
814                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
815                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
816                             tp->reordering != sysctl_tcp_reordering)
817                                 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
818                 }
819         }
820 }
821
822 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
823 {
824         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
825
826         if (!cwnd)
827                 cwnd = TCP_INIT_CWND;
828         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
829 }
830
831 /* Set slow start threshold and cwnd not falling to slow start */
832 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
833 {
834         struct tcp_sock *tp = tcp_sk(sk);
835         const struct inet_connection_sock *icsk = inet_csk(sk);
836
837         tp->prior_ssthresh = 0;
838         tp->bytes_acked = 0;
839         if (icsk->icsk_ca_state < TCP_CA_CWR) {
840                 tp->undo_marker = 0;
841                 if (set_ssthresh)
842                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
843                 tp->snd_cwnd = min(tp->snd_cwnd,
844                                    tcp_packets_in_flight(tp) + 1U);
845                 tp->snd_cwnd_cnt = 0;
846                 tp->high_seq = tp->snd_nxt;
847                 tp->snd_cwnd_stamp = tcp_time_stamp;
848                 TCP_ECN_queue_cwr(tp);
849
850                 tcp_set_ca_state(sk, TCP_CA_CWR);
851         }
852 }
853
854 /*
855  * Packet counting of FACK is based on in-order assumptions, therefore TCP
856  * disables it when reordering is detected
857  */
858 static void tcp_disable_fack(struct tcp_sock *tp)
859 {
860         /* RFC3517 uses different metric in lost marker => reset on change */
861         if (tcp_is_fack(tp))
862                 tp->lost_skb_hint = NULL;
863         tp->rx_opt.sack_ok &= ~2;
864 }
865
866 /* Take a notice that peer is sending D-SACKs */
867 static void tcp_dsack_seen(struct tcp_sock *tp)
868 {
869         tp->rx_opt.sack_ok |= 4;
870 }
871
872 /* Initialize metrics on socket. */
873
874 static void tcp_init_metrics(struct sock *sk)
875 {
876         struct tcp_sock *tp = tcp_sk(sk);
877         struct dst_entry *dst = __sk_dst_get(sk);
878
879         if (dst == NULL)
880                 goto reset;
881
882         dst_confirm(dst);
883
884         if (dst_metric_locked(dst, RTAX_CWND))
885                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
886         if (dst_metric(dst, RTAX_SSTHRESH)) {
887                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
888                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
889                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
890         } else {
891                 /* ssthresh may have been reduced unnecessarily during.
892                  * 3WHS. Restore it back to its initial default.
893                  */
894                 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
895         }
896         if (dst_metric(dst, RTAX_REORDERING) &&
897             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
898                 tcp_disable_fack(tp);
899                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
900         }
901
902         if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
903                 goto reset;
904
905         /* Initial rtt is determined from SYN,SYN-ACK.
906          * The segment is small and rtt may appear much
907          * less than real one. Use per-dst memory
908          * to make it more realistic.
909          *
910          * A bit of theory. RTT is time passed after "normal" sized packet
911          * is sent until it is ACKed. In normal circumstances sending small
912          * packets force peer to delay ACKs and calculation is correct too.
913          * The algorithm is adaptive and, provided we follow specs, it
914          * NEVER underestimate RTT. BUT! If peer tries to make some clever
915          * tricks sort of "quick acks" for time long enough to decrease RTT
916          * to low value, and then abruptly stops to do it and starts to delay
917          * ACKs, wait for troubles.
918          */
919         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
920                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
921                 tp->rtt_seq = tp->snd_nxt;
922         }
923         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
924                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
925                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
926         }
927         tcp_set_rto(sk);
928 reset:
929         if (tp->srtt == 0) {
930                 /* RFC2988bis: We've failed to get a valid RTT sample from
931                  * 3WHS. This is most likely due to retransmission,
932                  * including spurious one. Reset the RTO back to 3secs
933                  * from the more aggressive 1sec to avoid more spurious
934                  * retransmission.
935                  */
936                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
937                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
938         }
939         /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
940          * retransmitted. In light of RFC2988bis' more aggressive 1sec
941          * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
942          * retransmission has occurred.
943          */
944         if (tp->total_retrans > 1)
945                 tp->snd_cwnd = 1;
946         else
947                 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
948         tp->snd_cwnd_stamp = tcp_time_stamp;
949 }
950
951 static void tcp_update_reordering(struct sock *sk, const int metric,
952                                   const int ts)
953 {
954         struct tcp_sock *tp = tcp_sk(sk);
955         if (metric > tp->reordering) {
956                 int mib_idx;
957
958                 tp->reordering = min(TCP_MAX_REORDERING, metric);
959
960                 /* This exciting event is worth to be remembered. 8) */
961                 if (ts)
962                         mib_idx = LINUX_MIB_TCPTSREORDER;
963                 else if (tcp_is_reno(tp))
964                         mib_idx = LINUX_MIB_TCPRENOREORDER;
965                 else if (tcp_is_fack(tp))
966                         mib_idx = LINUX_MIB_TCPFACKREORDER;
967                 else
968                         mib_idx = LINUX_MIB_TCPSACKREORDER;
969
970                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
971 #if FASTRETRANS_DEBUG > 1
972                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
973                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
974                        tp->reordering,
975                        tp->fackets_out,
976                        tp->sacked_out,
977                        tp->undo_marker ? tp->undo_retrans : 0);
978 #endif
979                 tcp_disable_fack(tp);
980         }
981 }
982
983 /* This must be called before lost_out is incremented */
984 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
985 {
986         if ((tp->retransmit_skb_hint == NULL) ||
987             before(TCP_SKB_CB(skb)->seq,
988                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
989                 tp->retransmit_skb_hint = skb;
990
991         if (!tp->lost_out ||
992             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
993                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
994 }
995
996 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
997 {
998         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
999                 tcp_verify_retransmit_hint(tp, skb);
1000
1001                 tp->lost_out += tcp_skb_pcount(skb);
1002                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1003         }
1004 }
1005
1006 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1007                                             struct sk_buff *skb)
1008 {
1009         tcp_verify_retransmit_hint(tp, skb);
1010
1011         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1012                 tp->lost_out += tcp_skb_pcount(skb);
1013                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1014         }
1015 }
1016
1017 /* This procedure tags the retransmission queue when SACKs arrive.
1018  *
1019  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1020  * Packets in queue with these bits set are counted in variables
1021  * sacked_out, retrans_out and lost_out, correspondingly.
1022  *
1023  * Valid combinations are:
1024  * Tag  InFlight        Description
1025  * 0    1               - orig segment is in flight.
1026  * S    0               - nothing flies, orig reached receiver.
1027  * L    0               - nothing flies, orig lost by net.
1028  * R    2               - both orig and retransmit are in flight.
1029  * L|R  1               - orig is lost, retransmit is in flight.
1030  * S|R  1               - orig reached receiver, retrans is still in flight.
1031  * (L|S|R is logically valid, it could occur when L|R is sacked,
1032  *  but it is equivalent to plain S and code short-curcuits it to S.
1033  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1034  *
1035  * These 6 states form finite state machine, controlled by the following events:
1036  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1037  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1038  * 3. Loss detection event of one of three flavors:
1039  *      A. Scoreboard estimator decided the packet is lost.
1040  *         A'. Reno "three dupacks" marks head of queue lost.
1041  *         A''. Its FACK modfication, head until snd.fack is lost.
1042  *      B. SACK arrives sacking data transmitted after never retransmitted
1043  *         hole was sent out.
1044  *      C. SACK arrives sacking SND.NXT at the moment, when the
1045  *         segment was retransmitted.
1046  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1047  *
1048  * It is pleasant to note, that state diagram turns out to be commutative,
1049  * so that we are allowed not to be bothered by order of our actions,
1050  * when multiple events arrive simultaneously. (see the function below).
1051  *
1052  * Reordering detection.
1053  * --------------------
1054  * Reordering metric is maximal distance, which a packet can be displaced
1055  * in packet stream. With SACKs we can estimate it:
1056  *
1057  * 1. SACK fills old hole and the corresponding segment was not
1058  *    ever retransmitted -> reordering. Alas, we cannot use it
1059  *    when segment was retransmitted.
1060  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1061  *    for retransmitted and already SACKed segment -> reordering..
1062  * Both of these heuristics are not used in Loss state, when we cannot
1063  * account for retransmits accurately.
1064  *
1065  * SACK block validation.
1066  * ----------------------
1067  *
1068  * SACK block range validation checks that the received SACK block fits to
1069  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1070  * Note that SND.UNA is not included to the range though being valid because
1071  * it means that the receiver is rather inconsistent with itself reporting
1072  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1073  * perfectly valid, however, in light of RFC2018 which explicitly states
1074  * that "SACK block MUST reflect the newest segment.  Even if the newest
1075  * segment is going to be discarded ...", not that it looks very clever
1076  * in case of head skb. Due to potentional receiver driven attacks, we
1077  * choose to avoid immediate execution of a walk in write queue due to
1078  * reneging and defer head skb's loss recovery to standard loss recovery
1079  * procedure that will eventually trigger (nothing forbids us doing this).
1080  *
1081  * Implements also blockage to start_seq wrap-around. Problem lies in the
1082  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1083  * there's no guarantee that it will be before snd_nxt (n). The problem
1084  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1085  * wrap (s_w):
1086  *
1087  *         <- outs wnd ->                          <- wrapzone ->
1088  *         u     e      n                         u_w   e_w  s n_w
1089  *         |     |      |                          |     |   |  |
1090  * |<------------+------+----- TCP seqno space --------------+---------->|
1091  * ...-- <2^31 ->|                                           |<--------...
1092  * ...---- >2^31 ------>|                                    |<--------...
1093  *
1094  * Current code wouldn't be vulnerable but it's better still to discard such
1095  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1096  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1097  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1098  * equal to the ideal case (infinite seqno space without wrap caused issues).
1099  *
1100  * With D-SACK the lower bound is extended to cover sequence space below
1101  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1102  * again, D-SACK block must not to go across snd_una (for the same reason as
1103  * for the normal SACK blocks, explained above). But there all simplicity
1104  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1105  * fully below undo_marker they do not affect behavior in anyway and can
1106  * therefore be safely ignored. In rare cases (which are more or less
1107  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1108  * fragmentation and packet reordering past skb's retransmission. To consider
1109  * them correctly, the acceptable range must be extended even more though
1110  * the exact amount is rather hard to quantify. However, tp->max_window can
1111  * be used as an exaggerated estimate.
1112  */
1113 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1114                                   u32 start_seq, u32 end_seq)
1115 {
1116         /* Too far in future, or reversed (interpretation is ambiguous) */
1117         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1118                 return 0;
1119
1120         /* Nasty start_seq wrap-around check (see comments above) */
1121         if (!before(start_seq, tp->snd_nxt))
1122                 return 0;
1123
1124         /* In outstanding window? ...This is valid exit for D-SACKs too.
1125          * start_seq == snd_una is non-sensical (see comments above)
1126          */
1127         if (after(start_seq, tp->snd_una))
1128                 return 1;
1129
1130         if (!is_dsack || !tp->undo_marker)
1131                 return 0;
1132
1133         /* ...Then it's D-SACK, and must reside below snd_una completely */
1134         if (after(end_seq, tp->snd_una))
1135                 return 0;
1136
1137         if (!before(start_seq, tp->undo_marker))
1138                 return 1;
1139
1140         /* Too old */
1141         if (!after(end_seq, tp->undo_marker))
1142                 return 0;
1143
1144         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1145          *   start_seq < undo_marker and end_seq >= undo_marker.
1146          */
1147         return !before(start_seq, end_seq - tp->max_window);
1148 }
1149
1150 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1151  * Event "C". Later note: FACK people cheated me again 8), we have to account
1152  * for reordering! Ugly, but should help.
1153  *
1154  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1155  * less than what is now known to be received by the other end (derived from
1156  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1157  * retransmitted skbs to avoid some costly processing per ACKs.
1158  */
1159 static void tcp_mark_lost_retrans(struct sock *sk)
1160 {
1161         const struct inet_connection_sock *icsk = inet_csk(sk);
1162         struct tcp_sock *tp = tcp_sk(sk);
1163         struct sk_buff *skb;
1164         int cnt = 0;
1165         u32 new_low_seq = tp->snd_nxt;
1166         u32 received_upto = tcp_highest_sack_seq(tp);
1167
1168         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1169             !after(received_upto, tp->lost_retrans_low) ||
1170             icsk->icsk_ca_state != TCP_CA_Recovery)
1171                 return;
1172
1173         tcp_for_write_queue(skb, sk) {
1174                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1175
1176                 if (skb == tcp_send_head(sk))
1177                         break;
1178                 if (cnt == tp->retrans_out)
1179                         break;
1180                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1181                         continue;
1182
1183                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1184                         continue;
1185
1186                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1187                  * constraint here (see above) but figuring out that at
1188                  * least tp->reordering SACK blocks reside between ack_seq
1189                  * and received_upto is not easy task to do cheaply with
1190                  * the available datastructures.
1191                  *
1192                  * Whether FACK should check here for tp->reordering segs
1193                  * in-between one could argue for either way (it would be
1194                  * rather simple to implement as we could count fack_count
1195                  * during the walk and do tp->fackets_out - fack_count).
1196                  */
1197                 if (after(received_upto, ack_seq)) {
1198                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1199                         tp->retrans_out -= tcp_skb_pcount(skb);
1200
1201                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1202                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1203                 } else {
1204                         if (before(ack_seq, new_low_seq))
1205                                 new_low_seq = ack_seq;
1206                         cnt += tcp_skb_pcount(skb);
1207                 }
1208         }
1209
1210         if (tp->retrans_out)
1211                 tp->lost_retrans_low = new_low_seq;
1212 }
1213
1214 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1215                            struct tcp_sack_block_wire *sp, int num_sacks,
1216                            u32 prior_snd_una)
1217 {
1218         struct tcp_sock *tp = tcp_sk(sk);
1219         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1220         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1221         int dup_sack = 0;
1222
1223         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1224                 dup_sack = 1;
1225                 tcp_dsack_seen(tp);
1226                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1227         } else if (num_sacks > 1) {
1228                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1229                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1230
1231                 if (!after(end_seq_0, end_seq_1) &&
1232                     !before(start_seq_0, start_seq_1)) {
1233                         dup_sack = 1;
1234                         tcp_dsack_seen(tp);
1235                         NET_INC_STATS_BH(sock_net(sk),
1236                                         LINUX_MIB_TCPDSACKOFORECV);
1237                 }
1238         }
1239
1240         /* D-SACK for already forgotten data... Do dumb counting. */
1241         if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1242             !after(end_seq_0, prior_snd_una) &&
1243             after(end_seq_0, tp->undo_marker))
1244                 tp->undo_retrans--;
1245
1246         return dup_sack;
1247 }
1248
1249 struct tcp_sacktag_state {
1250         int reord;
1251         int fack_count;
1252         int flag;
1253 };
1254
1255 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1256  * the incoming SACK may not exactly match but we can find smaller MSS
1257  * aligned portion of it that matches. Therefore we might need to fragment
1258  * which may fail and creates some hassle (caller must handle error case
1259  * returns).
1260  *
1261  * FIXME: this could be merged to shift decision code
1262  */
1263 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1264                                  u32 start_seq, u32 end_seq)
1265 {
1266         int in_sack, err;
1267         unsigned int pkt_len;
1268         unsigned int mss;
1269
1270         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1271                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1272
1273         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1274             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1275                 mss = tcp_skb_mss(skb);
1276                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1277
1278                 if (!in_sack) {
1279                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1280                         if (pkt_len < mss)
1281                                 pkt_len = mss;
1282                 } else {
1283                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1284                         if (pkt_len < mss)
1285                                 return -EINVAL;
1286                 }
1287
1288                 /* Round if necessary so that SACKs cover only full MSSes
1289                  * and/or the remaining small portion (if present)
1290                  */
1291                 if (pkt_len > mss) {
1292                         unsigned int new_len = (pkt_len / mss) * mss;
1293                         if (!in_sack && new_len < pkt_len) {
1294                                 new_len += mss;
1295                                 if (new_len > skb->len)
1296                                         return 0;
1297                         }
1298                         pkt_len = new_len;
1299                 }
1300                 err = tcp_fragment(sk, skb, pkt_len, mss);
1301                 if (err < 0)
1302                         return err;
1303         }
1304
1305         return in_sack;
1306 }
1307
1308 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1309                           struct tcp_sacktag_state *state,
1310                           int dup_sack, int pcount)
1311 {
1312         struct tcp_sock *tp = tcp_sk(sk);
1313         u8 sacked = TCP_SKB_CB(skb)->sacked;
1314         int fack_count = state->fack_count;
1315
1316         /* Account D-SACK for retransmitted packet. */
1317         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1318                 if (tp->undo_marker && tp->undo_retrans &&
1319                     after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1320                         tp->undo_retrans--;
1321                 if (sacked & TCPCB_SACKED_ACKED)
1322                         state->reord = min(fack_count, state->reord);
1323         }
1324
1325         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1326         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1327                 return sacked;
1328
1329         if (!(sacked & TCPCB_SACKED_ACKED)) {
1330                 if (sacked & TCPCB_SACKED_RETRANS) {
1331                         /* If the segment is not tagged as lost,
1332                          * we do not clear RETRANS, believing
1333                          * that retransmission is still in flight.
1334                          */
1335                         if (sacked & TCPCB_LOST) {
1336                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1337                                 tp->lost_out -= pcount;
1338                                 tp->retrans_out -= pcount;
1339                         }
1340                 } else {
1341                         if (!(sacked & TCPCB_RETRANS)) {
1342                                 /* New sack for not retransmitted frame,
1343                                  * which was in hole. It is reordering.
1344                                  */
1345                                 if (before(TCP_SKB_CB(skb)->seq,
1346                                            tcp_highest_sack_seq(tp)))
1347                                         state->reord = min(fack_count,
1348                                                            state->reord);
1349
1350                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1351                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1352                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1353                         }
1354
1355                         if (sacked & TCPCB_LOST) {
1356                                 sacked &= ~TCPCB_LOST;
1357                                 tp->lost_out -= pcount;
1358                         }
1359                 }
1360
1361                 sacked |= TCPCB_SACKED_ACKED;
1362                 state->flag |= FLAG_DATA_SACKED;
1363                 tp->sacked_out += pcount;
1364
1365                 fack_count += pcount;
1366
1367                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1368                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1369                     before(TCP_SKB_CB(skb)->seq,
1370                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1371                         tp->lost_cnt_hint += pcount;
1372
1373                 if (fack_count > tp->fackets_out)
1374                         tp->fackets_out = fack_count;
1375         }
1376
1377         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1378          * frames and clear it. undo_retrans is decreased above, L|R frames
1379          * are accounted above as well.
1380          */
1381         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1382                 sacked &= ~TCPCB_SACKED_RETRANS;
1383                 tp->retrans_out -= pcount;
1384         }
1385
1386         return sacked;
1387 }
1388
1389 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1390                            struct tcp_sacktag_state *state,
1391                            unsigned int pcount, int shifted, int mss,
1392                            int dup_sack)
1393 {
1394         struct tcp_sock *tp = tcp_sk(sk);
1395         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1396
1397         BUG_ON(!pcount);
1398
1399         if (skb == tp->lost_skb_hint)
1400                 tp->lost_cnt_hint += pcount;
1401
1402         TCP_SKB_CB(prev)->end_seq += shifted;
1403         TCP_SKB_CB(skb)->seq += shifted;
1404
1405         skb_shinfo(prev)->gso_segs += pcount;
1406         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1407         skb_shinfo(skb)->gso_segs -= pcount;
1408
1409         /* When we're adding to gso_segs == 1, gso_size will be zero,
1410          * in theory this shouldn't be necessary but as long as DSACK
1411          * code can come after this skb later on it's better to keep
1412          * setting gso_size to something.
1413          */
1414         if (!skb_shinfo(prev)->gso_size) {
1415                 skb_shinfo(prev)->gso_size = mss;
1416                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1417         }
1418
1419         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1420         if (skb_shinfo(skb)->gso_segs <= 1) {
1421                 skb_shinfo(skb)->gso_size = 0;
1422                 skb_shinfo(skb)->gso_type = 0;
1423         }
1424
1425         /* We discard results */
1426         tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1427
1428         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1429         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1430
1431         if (skb->len > 0) {
1432                 BUG_ON(!tcp_skb_pcount(skb));
1433                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1434                 return 0;
1435         }
1436
1437         /* Whole SKB was eaten :-) */
1438
1439         if (skb == tp->retransmit_skb_hint)
1440                 tp->retransmit_skb_hint = prev;
1441         if (skb == tp->scoreboard_skb_hint)
1442                 tp->scoreboard_skb_hint = prev;
1443         if (skb == tp->lost_skb_hint) {
1444                 tp->lost_skb_hint = prev;
1445                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1446         }
1447
1448         TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1449         if (skb == tcp_highest_sack(sk))
1450                 tcp_advance_highest_sack(sk, skb);
1451
1452         tcp_unlink_write_queue(skb, sk);
1453         sk_wmem_free_skb(sk, skb);
1454
1455         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1456
1457         return 1;
1458 }
1459
1460 /* I wish gso_size would have a bit more sane initialization than
1461  * something-or-zero which complicates things
1462  */
1463 static int tcp_skb_seglen(struct sk_buff *skb)
1464 {
1465         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1466 }
1467
1468 /* Shifting pages past head area doesn't work */
1469 static int skb_can_shift(struct sk_buff *skb)
1470 {
1471         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1472 }
1473
1474 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1475  * skb.
1476  */
1477 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1478                                           struct tcp_sacktag_state *state,
1479                                           u32 start_seq, u32 end_seq,
1480                                           int dup_sack)
1481 {
1482         struct tcp_sock *tp = tcp_sk(sk);
1483         struct sk_buff *prev;
1484         int mss;
1485         int pcount = 0;
1486         int len;
1487         int in_sack;
1488
1489         if (!sk_can_gso(sk))
1490                 goto fallback;
1491
1492         /* Normally R but no L won't result in plain S */
1493         if (!dup_sack &&
1494             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1495                 goto fallback;
1496         if (!skb_can_shift(skb))
1497                 goto fallback;
1498         /* This frame is about to be dropped (was ACKed). */
1499         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1500                 goto fallback;
1501
1502         /* Can only happen with delayed DSACK + discard craziness */
1503         if (unlikely(skb == tcp_write_queue_head(sk)))
1504                 goto fallback;
1505         prev = tcp_write_queue_prev(sk, skb);
1506
1507         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1508                 goto fallback;
1509
1510         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1511                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1512
1513         if (in_sack) {
1514                 len = skb->len;
1515                 pcount = tcp_skb_pcount(skb);
1516                 mss = tcp_skb_seglen(skb);
1517
1518                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1519                  * drop this restriction as unnecessary
1520                  */
1521                 if (mss != tcp_skb_seglen(prev))
1522                         goto fallback;
1523         } else {
1524                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1525                         goto noop;
1526                 /* CHECKME: This is non-MSS split case only?, this will
1527                  * cause skipped skbs due to advancing loop btw, original
1528                  * has that feature too
1529                  */
1530                 if (tcp_skb_pcount(skb) <= 1)
1531                         goto noop;
1532
1533                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1534                 if (!in_sack) {
1535                         /* TODO: head merge to next could be attempted here
1536                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1537                          * though it might not be worth of the additional hassle
1538                          *
1539                          * ...we can probably just fallback to what was done
1540                          * previously. We could try merging non-SACKed ones
1541                          * as well but it probably isn't going to buy off
1542                          * because later SACKs might again split them, and
1543                          * it would make skb timestamp tracking considerably
1544                          * harder problem.
1545                          */
1546                         goto fallback;
1547                 }
1548
1549                 len = end_seq - TCP_SKB_CB(skb)->seq;
1550                 BUG_ON(len < 0);
1551                 BUG_ON(len > skb->len);
1552
1553                 /* MSS boundaries should be honoured or else pcount will
1554                  * severely break even though it makes things bit trickier.
1555                  * Optimize common case to avoid most of the divides
1556                  */
1557                 mss = tcp_skb_mss(skb);
1558
1559                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1560                  * drop this restriction as unnecessary
1561                  */
1562                 if (mss != tcp_skb_seglen(prev))
1563                         goto fallback;
1564
1565                 if (len == mss) {
1566                         pcount = 1;
1567                 } else if (len < mss) {
1568                         goto noop;
1569                 } else {
1570                         pcount = len / mss;
1571                         len = pcount * mss;
1572                 }
1573         }
1574
1575         if (!skb_shift(prev, skb, len))
1576                 goto fallback;
1577         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1578                 goto out;
1579
1580         /* Hole filled allows collapsing with the next as well, this is very
1581          * useful when hole on every nth skb pattern happens
1582          */
1583         if (prev == tcp_write_queue_tail(sk))
1584                 goto out;
1585         skb = tcp_write_queue_next(sk, prev);
1586
1587         if (!skb_can_shift(skb) ||
1588             (skb == tcp_send_head(sk)) ||
1589             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1590             (mss != tcp_skb_seglen(skb)))
1591                 goto out;
1592
1593         len = skb->len;
1594         if (skb_shift(prev, skb, len)) {
1595                 pcount += tcp_skb_pcount(skb);
1596                 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1597         }
1598
1599 out:
1600         state->fack_count += pcount;
1601         return prev;
1602
1603 noop:
1604         return skb;
1605
1606 fallback:
1607         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1608         return NULL;
1609 }
1610
1611 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1612                                         struct tcp_sack_block *next_dup,
1613                                         struct tcp_sacktag_state *state,
1614                                         u32 start_seq, u32 end_seq,
1615                                         int dup_sack_in)
1616 {
1617         struct tcp_sock *tp = tcp_sk(sk);
1618         struct sk_buff *tmp;
1619
1620         tcp_for_write_queue_from(skb, sk) {
1621                 int in_sack = 0;
1622                 int dup_sack = dup_sack_in;
1623
1624                 if (skb == tcp_send_head(sk))
1625                         break;
1626
1627                 /* queue is in-order => we can short-circuit the walk early */
1628                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1629                         break;
1630
1631                 if ((next_dup != NULL) &&
1632                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1633                         in_sack = tcp_match_skb_to_sack(sk, skb,
1634                                                         next_dup->start_seq,
1635                                                         next_dup->end_seq);
1636                         if (in_sack > 0)
1637                                 dup_sack = 1;
1638                 }
1639
1640                 /* skb reference here is a bit tricky to get right, since
1641                  * shifting can eat and free both this skb and the next,
1642                  * so not even _safe variant of the loop is enough.
1643                  */
1644                 if (in_sack <= 0) {
1645                         tmp = tcp_shift_skb_data(sk, skb, state,
1646                                                  start_seq, end_seq, dup_sack);
1647                         if (tmp != NULL) {
1648                                 if (tmp != skb) {
1649                                         skb = tmp;
1650                                         continue;
1651                                 }
1652
1653                                 in_sack = 0;
1654                         } else {
1655                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1656                                                                 start_seq,
1657                                                                 end_seq);
1658                         }
1659                 }
1660
1661                 if (unlikely(in_sack < 0))
1662                         break;
1663
1664                 if (in_sack) {
1665                         TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1666                                                                   state,
1667                                                                   dup_sack,
1668                                                                   tcp_skb_pcount(skb));
1669
1670                         if (!before(TCP_SKB_CB(skb)->seq,
1671                                     tcp_highest_sack_seq(tp)))
1672                                 tcp_advance_highest_sack(sk, skb);
1673                 }
1674
1675                 state->fack_count += tcp_skb_pcount(skb);
1676         }
1677         return skb;
1678 }
1679
1680 /* Avoid all extra work that is being done by sacktag while walking in
1681  * a normal way
1682  */
1683 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1684                                         struct tcp_sacktag_state *state,
1685                                         u32 skip_to_seq)
1686 {
1687         tcp_for_write_queue_from(skb, sk) {
1688                 if (skb == tcp_send_head(sk))
1689                         break;
1690
1691                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1692                         break;
1693
1694                 state->fack_count += tcp_skb_pcount(skb);
1695         }
1696         return skb;
1697 }
1698
1699 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1700                                                 struct sock *sk,
1701                                                 struct tcp_sack_block *next_dup,
1702                                                 struct tcp_sacktag_state *state,
1703                                                 u32 skip_to_seq)
1704 {
1705         if (next_dup == NULL)
1706                 return skb;
1707
1708         if (before(next_dup->start_seq, skip_to_seq)) {
1709                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1710                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1711                                        next_dup->start_seq, next_dup->end_seq,
1712                                        1);
1713         }
1714
1715         return skb;
1716 }
1717
1718 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1719 {
1720         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1721 }
1722
1723 static int
1724 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1725                         u32 prior_snd_una)
1726 {
1727         const struct inet_connection_sock *icsk = inet_csk(sk);
1728         struct tcp_sock *tp = tcp_sk(sk);
1729         unsigned char *ptr = (skb_transport_header(ack_skb) +
1730                               TCP_SKB_CB(ack_skb)->sacked);
1731         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1732         struct tcp_sack_block sp[TCP_NUM_SACKS];
1733         struct tcp_sack_block *cache;
1734         struct tcp_sacktag_state state;
1735         struct sk_buff *skb;
1736         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1737         int used_sacks;
1738         int found_dup_sack = 0;
1739         int i, j;
1740         int first_sack_index;
1741
1742         state.flag = 0;
1743         state.reord = tp->packets_out;
1744
1745         if (!tp->sacked_out) {
1746                 if (WARN_ON(tp->fackets_out))
1747                         tp->fackets_out = 0;
1748                 tcp_highest_sack_reset(sk);
1749         }
1750
1751         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1752                                          num_sacks, prior_snd_una);
1753         if (found_dup_sack)
1754                 state.flag |= FLAG_DSACKING_ACK;
1755
1756         /* Eliminate too old ACKs, but take into
1757          * account more or less fresh ones, they can
1758          * contain valid SACK info.
1759          */
1760         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1761                 return 0;
1762
1763         if (!tp->packets_out)
1764                 goto out;
1765
1766         used_sacks = 0;
1767         first_sack_index = 0;
1768         for (i = 0; i < num_sacks; i++) {
1769                 int dup_sack = !i && found_dup_sack;
1770
1771                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1772                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1773
1774                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1775                                             sp[used_sacks].start_seq,
1776                                             sp[used_sacks].end_seq)) {
1777                         int mib_idx;
1778
1779                         if (dup_sack) {
1780                                 if (!tp->undo_marker)
1781                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1782                                 else
1783                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1784                         } else {
1785                                 /* Don't count olds caused by ACK reordering */
1786                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1787                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1788                                         continue;
1789                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1790                         }
1791
1792                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1793                         if (i == 0)
1794                                 first_sack_index = -1;
1795                         continue;
1796                 }
1797
1798                 /* Ignore very old stuff early */
1799                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1800                         continue;
1801
1802                 used_sacks++;
1803         }
1804
1805         /* order SACK blocks to allow in order walk of the retrans queue */
1806         for (i = used_sacks - 1; i > 0; i--) {
1807                 for (j = 0; j < i; j++) {
1808                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1809                                 swap(sp[j], sp[j + 1]);
1810
1811                                 /* Track where the first SACK block goes to */
1812                                 if (j == first_sack_index)
1813                                         first_sack_index = j + 1;
1814                         }
1815                 }
1816         }
1817
1818         skb = tcp_write_queue_head(sk);
1819         state.fack_count = 0;
1820         i = 0;
1821
1822         if (!tp->sacked_out) {
1823                 /* It's already past, so skip checking against it */
1824                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1825         } else {
1826                 cache = tp->recv_sack_cache;
1827                 /* Skip empty blocks in at head of the cache */
1828                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1829                        !cache->end_seq)
1830                         cache++;
1831         }
1832
1833         while (i < used_sacks) {
1834                 u32 start_seq = sp[i].start_seq;
1835                 u32 end_seq = sp[i].end_seq;
1836                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1837                 struct tcp_sack_block *next_dup = NULL;
1838
1839                 if (found_dup_sack && ((i + 1) == first_sack_index))
1840                         next_dup = &sp[i + 1];
1841
1842                 /* Event "B" in the comment above. */
1843                 if (after(end_seq, tp->high_seq))
1844                         state.flag |= FLAG_DATA_LOST;
1845
1846                 /* Skip too early cached blocks */
1847                 while (tcp_sack_cache_ok(tp, cache) &&
1848                        !before(start_seq, cache->end_seq))
1849                         cache++;
1850
1851                 /* Can skip some work by looking recv_sack_cache? */
1852                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1853                     after(end_seq, cache->start_seq)) {
1854
1855                         /* Head todo? */
1856                         if (before(start_seq, cache->start_seq)) {
1857                                 skb = tcp_sacktag_skip(skb, sk, &state,
1858                                                        start_seq);
1859                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1860                                                        &state,
1861                                                        start_seq,
1862                                                        cache->start_seq,
1863                                                        dup_sack);
1864                         }
1865
1866                         /* Rest of the block already fully processed? */
1867                         if (!after(end_seq, cache->end_seq))
1868                                 goto advance_sp;
1869
1870                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1871                                                        &state,
1872                                                        cache->end_seq);
1873
1874                         /* ...tail remains todo... */
1875                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1876                                 /* ...but better entrypoint exists! */
1877                                 skb = tcp_highest_sack(sk);
1878                                 if (skb == NULL)
1879                                         break;
1880                                 state.fack_count = tp->fackets_out;
1881                                 cache++;
1882                                 goto walk;
1883                         }
1884
1885                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1886                         /* Check overlap against next cached too (past this one already) */
1887                         cache++;
1888                         continue;
1889                 }
1890
1891                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1892                         skb = tcp_highest_sack(sk);
1893                         if (skb == NULL)
1894                                 break;
1895                         state.fack_count = tp->fackets_out;
1896                 }
1897                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1898
1899 walk:
1900                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1901                                        start_seq, end_seq, dup_sack);
1902
1903 advance_sp:
1904                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1905                  * due to in-order walk
1906                  */
1907                 if (after(end_seq, tp->frto_highmark))
1908                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1909
1910                 i++;
1911         }
1912
1913         /* Clear the head of the cache sack blocks so we can skip it next time */
1914         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1915                 tp->recv_sack_cache[i].start_seq = 0;
1916                 tp->recv_sack_cache[i].end_seq = 0;
1917         }
1918         for (j = 0; j < used_sacks; j++)
1919                 tp->recv_sack_cache[i++] = sp[j];
1920
1921         tcp_mark_lost_retrans(sk);
1922
1923         tcp_verify_left_out(tp);
1924
1925         if ((state.reord < tp->fackets_out) &&
1926             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1927             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1928                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1929
1930 out:
1931
1932 #if FASTRETRANS_DEBUG > 0
1933         WARN_ON((int)tp->sacked_out < 0);
1934         WARN_ON((int)tp->lost_out < 0);
1935         WARN_ON((int)tp->retrans_out < 0);
1936         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1937 #endif
1938         return state.flag;
1939 }
1940
1941 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1942  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1943  */
1944 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1945 {
1946         u32 holes;
1947
1948         holes = max(tp->lost_out, 1U);
1949         holes = min(holes, tp->packets_out);
1950
1951         if ((tp->sacked_out + holes) > tp->packets_out) {
1952                 tp->sacked_out = tp->packets_out - holes;
1953                 return 1;
1954         }
1955         return 0;
1956 }
1957
1958 /* If we receive more dupacks than we expected counting segments
1959  * in assumption of absent reordering, interpret this as reordering.
1960  * The only another reason could be bug in receiver TCP.
1961  */
1962 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1963 {
1964         struct tcp_sock *tp = tcp_sk(sk);
1965         if (tcp_limit_reno_sacked(tp))
1966                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1967 }
1968
1969 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1970
1971 static void tcp_add_reno_sack(struct sock *sk)
1972 {
1973         struct tcp_sock *tp = tcp_sk(sk);
1974         tp->sacked_out++;
1975         tcp_check_reno_reordering(sk, 0);
1976         tcp_verify_left_out(tp);
1977 }
1978
1979 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1980
1981 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1982 {
1983         struct tcp_sock *tp = tcp_sk(sk);
1984
1985         if (acked > 0) {
1986                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1987                 if (acked - 1 >= tp->sacked_out)
1988                         tp->sacked_out = 0;
1989                 else
1990                         tp->sacked_out -= acked - 1;
1991         }
1992         tcp_check_reno_reordering(sk, acked);
1993         tcp_verify_left_out(tp);
1994 }
1995
1996 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1997 {
1998         tp->sacked_out = 0;
1999 }
2000
2001 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2002 {
2003         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2004 }
2005
2006 /* F-RTO can only be used if TCP has never retransmitted anything other than
2007  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2008  */
2009 int tcp_use_frto(struct sock *sk)
2010 {
2011         const struct tcp_sock *tp = tcp_sk(sk);
2012         const struct inet_connection_sock *icsk = inet_csk(sk);
2013         struct sk_buff *skb;
2014
2015         if (!sysctl_tcp_frto)
2016                 return 0;
2017
2018         /* MTU probe and F-RTO won't really play nicely along currently */
2019         if (icsk->icsk_mtup.probe_size)
2020                 return 0;
2021
2022         if (tcp_is_sackfrto(tp))
2023                 return 1;
2024
2025         /* Avoid expensive walking of rexmit queue if possible */
2026         if (tp->retrans_out > 1)
2027                 return 0;
2028
2029         skb = tcp_write_queue_head(sk);
2030         if (tcp_skb_is_last(sk, skb))
2031                 return 1;
2032         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2033         tcp_for_write_queue_from(skb, sk) {
2034                 if (skb == tcp_send_head(sk))
2035                         break;
2036                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2037                         return 0;
2038                 /* Short-circuit when first non-SACKed skb has been checked */
2039                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2040                         break;
2041         }
2042         return 1;
2043 }
2044
2045 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2046  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2047  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2048  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2049  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2050  * bits are handled if the Loss state is really to be entered (in
2051  * tcp_enter_frto_loss).
2052  *
2053  * Do like tcp_enter_loss() would; when RTO expires the second time it
2054  * does:
2055  *  "Reduce ssthresh if it has not yet been made inside this window."
2056  */
2057 void tcp_enter_frto(struct sock *sk)
2058 {
2059         const struct inet_connection_sock *icsk = inet_csk(sk);
2060         struct tcp_sock *tp = tcp_sk(sk);
2061         struct sk_buff *skb;
2062
2063         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2064             tp->snd_una == tp->high_seq ||
2065             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2066              !icsk->icsk_retransmits)) {
2067                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2068                 /* Our state is too optimistic in ssthresh() call because cwnd
2069                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2070                  * recovery has not yet completed. Pattern would be this: RTO,
2071                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2072                  * up here twice).
2073                  * RFC4138 should be more specific on what to do, even though
2074                  * RTO is quite unlikely to occur after the first Cumulative ACK
2075                  * due to back-off and complexity of triggering events ...
2076                  */
2077                 if (tp->frto_counter) {
2078                         u32 stored_cwnd;
2079                         stored_cwnd = tp->snd_cwnd;
2080                         tp->snd_cwnd = 2;
2081                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2082                         tp->snd_cwnd = stored_cwnd;
2083                 } else {
2084                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2085                 }
2086                 /* ... in theory, cong.control module could do "any tricks" in
2087                  * ssthresh(), which means that ca_state, lost bits and lost_out
2088                  * counter would have to be faked before the call occurs. We
2089                  * consider that too expensive, unlikely and hacky, so modules
2090                  * using these in ssthresh() must deal these incompatibility
2091                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2092                  */
2093                 tcp_ca_event(sk, CA_EVENT_FRTO);
2094         }
2095
2096         tp->undo_marker = tp->snd_una;
2097         tp->undo_retrans = 0;
2098
2099         skb = tcp_write_queue_head(sk);
2100         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2101                 tp->undo_marker = 0;
2102         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2103                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2104                 tp->retrans_out -= tcp_skb_pcount(skb);
2105         }
2106         tcp_verify_left_out(tp);
2107
2108         /* Too bad if TCP was application limited */
2109         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2110
2111         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2112          * The last condition is necessary at least in tp->frto_counter case.
2113          */
2114         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2115             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2116             after(tp->high_seq, tp->snd_una)) {
2117                 tp->frto_highmark = tp->high_seq;
2118         } else {
2119                 tp->frto_highmark = tp->snd_nxt;
2120         }
2121         tcp_set_ca_state(sk, TCP_CA_Disorder);
2122         tp->high_seq = tp->snd_nxt;
2123         tp->frto_counter = 1;
2124 }
2125
2126 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2127  * which indicates that we should follow the traditional RTO recovery,
2128  * i.e. mark everything lost and do go-back-N retransmission.
2129  */
2130 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2131 {
2132         struct tcp_sock *tp = tcp_sk(sk);
2133         struct sk_buff *skb;
2134
2135         tp->lost_out = 0;
2136         tp->retrans_out = 0;
2137         if (tcp_is_reno(tp))
2138                 tcp_reset_reno_sack(tp);
2139
2140         tcp_for_write_queue(skb, sk) {
2141                 if (skb == tcp_send_head(sk))
2142                         break;
2143
2144                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2145                 /*
2146                  * Count the retransmission made on RTO correctly (only when
2147                  * waiting for the first ACK and did not get it)...
2148                  */
2149                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2150                         /* For some reason this R-bit might get cleared? */
2151                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2152                                 tp->retrans_out += tcp_skb_pcount(skb);
2153                         /* ...enter this if branch just for the first segment */
2154                         flag |= FLAG_DATA_ACKED;
2155                 } else {
2156                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2157                                 tp->undo_marker = 0;
2158                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2159                 }
2160
2161                 /* Marking forward transmissions that were made after RTO lost
2162                  * can cause unnecessary retransmissions in some scenarios,
2163                  * SACK blocks will mitigate that in some but not in all cases.
2164                  * We used to not mark them but it was causing break-ups with
2165                  * receivers that do only in-order receival.
2166                  *
2167                  * TODO: we could detect presence of such receiver and select
2168                  * different behavior per flow.
2169                  */
2170                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2171                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2172                         tp->lost_out += tcp_skb_pcount(skb);
2173                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2174                 }
2175         }
2176         tcp_verify_left_out(tp);
2177
2178         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2179         tp->snd_cwnd_cnt = 0;
2180         tp->snd_cwnd_stamp = tcp_time_stamp;
2181         tp->frto_counter = 0;
2182         tp->bytes_acked = 0;
2183
2184         tp->reordering = min_t(unsigned int, tp->reordering,
2185                                sysctl_tcp_reordering);
2186         tcp_set_ca_state(sk, TCP_CA_Loss);
2187         tp->high_seq = tp->snd_nxt;
2188         TCP_ECN_queue_cwr(tp);
2189
2190         tcp_clear_all_retrans_hints(tp);
2191 }
2192
2193 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2194 {
2195         tp->retrans_out = 0;
2196         tp->lost_out = 0;
2197
2198         tp->undo_marker = 0;
2199         tp->undo_retrans = 0;
2200 }
2201
2202 void tcp_clear_retrans(struct tcp_sock *tp)
2203 {
2204         tcp_clear_retrans_partial(tp);
2205
2206         tp->fackets_out = 0;
2207         tp->sacked_out = 0;
2208 }
2209
2210 /* Enter Loss state. If "how" is not zero, forget all SACK information
2211  * and reset tags completely, otherwise preserve SACKs. If receiver
2212  * dropped its ofo queue, we will know this due to reneging detection.
2213  */
2214 void tcp_enter_loss(struct sock *sk, int how)
2215 {
2216         const struct inet_connection_sock *icsk = inet_csk(sk);
2217         struct tcp_sock *tp = tcp_sk(sk);
2218         struct sk_buff *skb;
2219
2220         /* Reduce ssthresh if it has not yet been made inside this window. */
2221         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2222             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2223                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2224                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2225                 tcp_ca_event(sk, CA_EVENT_LOSS);
2226         }
2227         tp->snd_cwnd       = 1;
2228         tp->snd_cwnd_cnt   = 0;
2229         tp->snd_cwnd_stamp = tcp_time_stamp;
2230
2231         tp->bytes_acked = 0;
2232         tcp_clear_retrans_partial(tp);
2233
2234         if (tcp_is_reno(tp))
2235                 tcp_reset_reno_sack(tp);
2236
2237         if (!how) {
2238                 /* Push undo marker, if it was plain RTO and nothing
2239                  * was retransmitted. */
2240                 tp->undo_marker = tp->snd_una;
2241         } else {
2242                 tp->sacked_out = 0;
2243                 tp->fackets_out = 0;
2244         }
2245         tcp_clear_all_retrans_hints(tp);
2246
2247         tcp_for_write_queue(skb, sk) {
2248                 if (skb == tcp_send_head(sk))
2249                         break;
2250
2251                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2252                         tp->undo_marker = 0;
2253                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2254                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2255                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2256                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2257                         tp->lost_out += tcp_skb_pcount(skb);
2258                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2259                 }
2260         }
2261         tcp_verify_left_out(tp);
2262
2263         tp->reordering = min_t(unsigned int, tp->reordering,
2264                                sysctl_tcp_reordering);
2265         tcp_set_ca_state(sk, TCP_CA_Loss);
2266         tp->high_seq = tp->snd_nxt;
2267         TCP_ECN_queue_cwr(tp);
2268         /* Abort F-RTO algorithm if one is in progress */
2269         tp->frto_counter = 0;
2270 }
2271
2272 /* If ACK arrived pointing to a remembered SACK, it means that our
2273  * remembered SACKs do not reflect real state of receiver i.e.
2274  * receiver _host_ is heavily congested (or buggy).
2275  *
2276  * Do processing similar to RTO timeout.
2277  */
2278 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2279 {
2280         if (flag & FLAG_SACK_RENEGING) {
2281                 struct inet_connection_sock *icsk = inet_csk(sk);
2282                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2283
2284                 tcp_enter_loss(sk, 1);
2285                 icsk->icsk_retransmits++;
2286                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2287                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2288                                           icsk->icsk_rto, TCP_RTO_MAX);
2289                 return 1;
2290         }
2291         return 0;
2292 }
2293
2294 static inline int tcp_fackets_out(struct tcp_sock *tp)
2295 {
2296         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2297 }
2298
2299 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2300  * counter when SACK is enabled (without SACK, sacked_out is used for
2301  * that purpose).
2302  *
2303  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2304  * segments up to the highest received SACK block so far and holes in
2305  * between them.
2306  *
2307  * With reordering, holes may still be in flight, so RFC3517 recovery
2308  * uses pure sacked_out (total number of SACKed segments) even though
2309  * it violates the RFC that uses duplicate ACKs, often these are equal
2310  * but when e.g. out-of-window ACKs or packet duplication occurs,
2311  * they differ. Since neither occurs due to loss, TCP should really
2312  * ignore them.
2313  */
2314 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2315 {
2316         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2317 }
2318
2319 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2320 {
2321         return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2322 }
2323
2324 static inline int tcp_head_timedout(struct sock *sk)
2325 {
2326         struct tcp_sock *tp = tcp_sk(sk);
2327
2328         return tp->packets_out &&
2329                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2330 }
2331
2332 /* Linux NewReno/SACK/FACK/ECN state machine.
2333  * --------------------------------------
2334  *
2335  * "Open"       Normal state, no dubious events, fast path.
2336  * "Disorder"   In all the respects it is "Open",
2337  *              but requires a bit more attention. It is entered when
2338  *              we see some SACKs or dupacks. It is split of "Open"
2339  *              mainly to move some processing from fast path to slow one.
2340  * "CWR"        CWND was reduced due to some Congestion Notification event.
2341  *              It can be ECN, ICMP source quench, local device congestion.
2342  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2343  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2344  *
2345  * tcp_fastretrans_alert() is entered:
2346  * - each incoming ACK, if state is not "Open"
2347  * - when arrived ACK is unusual, namely:
2348  *      * SACK
2349  *      * Duplicate ACK.
2350  *      * ECN ECE.
2351  *
2352  * Counting packets in flight is pretty simple.
2353  *
2354  *      in_flight = packets_out - left_out + retrans_out
2355  *
2356  *      packets_out is SND.NXT-SND.UNA counted in packets.
2357  *
2358  *      retrans_out is number of retransmitted segments.
2359  *
2360  *      left_out is number of segments left network, but not ACKed yet.
2361  *
2362  *              left_out = sacked_out + lost_out
2363  *
2364  *     sacked_out: Packets, which arrived to receiver out of order
2365  *                 and hence not ACKed. With SACKs this number is simply
2366  *                 amount of SACKed data. Even without SACKs
2367  *                 it is easy to give pretty reliable estimate of this number,
2368  *                 counting duplicate ACKs.
2369  *
2370  *       lost_out: Packets lost by network. TCP has no explicit
2371  *                 "loss notification" feedback from network (for now).
2372  *                 It means that this number can be only _guessed_.
2373  *                 Actually, it is the heuristics to predict lossage that
2374  *                 distinguishes different algorithms.
2375  *
2376  *      F.e. after RTO, when all the queue is considered as lost,
2377  *      lost_out = packets_out and in_flight = retrans_out.
2378  *
2379  *              Essentially, we have now two algorithms counting
2380  *              lost packets.
2381  *
2382  *              FACK: It is the simplest heuristics. As soon as we decided
2383  *              that something is lost, we decide that _all_ not SACKed
2384  *              packets until the most forward SACK are lost. I.e.
2385  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2386  *              It is absolutely correct estimate, if network does not reorder
2387  *              packets. And it loses any connection to reality when reordering
2388  *              takes place. We use FACK by default until reordering
2389  *              is suspected on the path to this destination.
2390  *
2391  *              NewReno: when Recovery is entered, we assume that one segment
2392  *              is lost (classic Reno). While we are in Recovery and
2393  *              a partial ACK arrives, we assume that one more packet
2394  *              is lost (NewReno). This heuristics are the same in NewReno
2395  *              and SACK.
2396  *
2397  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2398  *  deflation etc. CWND is real congestion window, never inflated, changes
2399  *  only according to classic VJ rules.
2400  *
2401  * Really tricky (and requiring careful tuning) part of algorithm
2402  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2403  * The first determines the moment _when_ we should reduce CWND and,
2404  * hence, slow down forward transmission. In fact, it determines the moment
2405  * when we decide that hole is caused by loss, rather than by a reorder.
2406  *
2407  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2408  * holes, caused by lost packets.
2409  *
2410  * And the most logically complicated part of algorithm is undo
2411  * heuristics. We detect false retransmits due to both too early
2412  * fast retransmit (reordering) and underestimated RTO, analyzing
2413  * timestamps and D-SACKs. When we detect that some segments were
2414  * retransmitted by mistake and CWND reduction was wrong, we undo
2415  * window reduction and abort recovery phase. This logic is hidden
2416  * inside several functions named tcp_try_undo_<something>.
2417  */
2418
2419 /* This function decides, when we should leave Disordered state
2420  * and enter Recovery phase, reducing congestion window.
2421  *
2422  * Main question: may we further continue forward transmission
2423  * with the same cwnd?
2424  */
2425 static int tcp_time_to_recover(struct sock *sk)
2426 {
2427         struct tcp_sock *tp = tcp_sk(sk);
2428         __u32 packets_out;
2429
2430         /* Do not perform any recovery during F-RTO algorithm */
2431         if (tp->frto_counter)
2432                 return 0;
2433
2434         /* Trick#1: The loss is proven. */
2435         if (tp->lost_out)
2436                 return 1;
2437
2438         /* Not-A-Trick#2 : Classic rule... */
2439         if (tcp_dupack_heuristics(tp) > tp->reordering)
2440                 return 1;
2441
2442         /* Trick#3 : when we use RFC2988 timer restart, fast
2443          * retransmit can be triggered by timeout of queue head.
2444          */
2445         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2446                 return 1;
2447
2448         /* Trick#4: It is still not OK... But will it be useful to delay
2449          * recovery more?
2450          */
2451         packets_out = tp->packets_out;
2452         if (packets_out <= tp->reordering &&
2453             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2454             !tcp_may_send_now(sk)) {
2455                 /* We have nothing to send. This connection is limited
2456                  * either by receiver window or by application.
2457                  */
2458                 return 1;
2459         }
2460
2461         /* If a thin stream is detected, retransmit after first
2462          * received dupack. Employ only if SACK is supported in order
2463          * to avoid possible corner-case series of spurious retransmissions
2464          * Use only if there are no unsent data.
2465          */
2466         if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2467             tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2468             tcp_is_sack(tp) && !tcp_send_head(sk))
2469                 return 1;
2470
2471         return 0;
2472 }
2473
2474 /* New heuristics: it is possible only after we switched to restart timer
2475  * each time when something is ACKed. Hence, we can detect timed out packets
2476  * during fast retransmit without falling to slow start.
2477  *
2478  * Usefulness of this as is very questionable, since we should know which of
2479  * the segments is the next to timeout which is relatively expensive to find
2480  * in general case unless we add some data structure just for that. The
2481  * current approach certainly won't find the right one too often and when it
2482  * finally does find _something_ it usually marks large part of the window
2483  * right away (because a retransmission with a larger timestamp blocks the
2484  * loop from advancing). -ij
2485  */
2486 static void tcp_timeout_skbs(struct sock *sk)
2487 {
2488         struct tcp_sock *tp = tcp_sk(sk);
2489         struct sk_buff *skb;
2490
2491         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2492                 return;
2493
2494         skb = tp->scoreboard_skb_hint;
2495         if (tp->scoreboard_skb_hint == NULL)
2496                 skb = tcp_write_queue_head(sk);
2497
2498         tcp_for_write_queue_from(skb, sk) {
2499                 if (skb == tcp_send_head(sk))
2500                         break;
2501                 if (!tcp_skb_timedout(sk, skb))
2502                         break;
2503
2504                 tcp_skb_mark_lost(tp, skb);
2505         }
2506
2507         tp->scoreboard_skb_hint = skb;
2508
2509         tcp_verify_left_out(tp);
2510 }
2511
2512 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2513  * is against sacked "cnt", otherwise it's against facked "cnt"
2514  */
2515 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2516 {
2517         struct tcp_sock *tp = tcp_sk(sk);
2518         struct sk_buff *skb;
2519         int cnt, oldcnt;
2520         int err;
2521         unsigned int mss;
2522
2523         WARN_ON(packets > tp->packets_out);
2524         if (tp->lost_skb_hint) {
2525                 skb = tp->lost_skb_hint;
2526                 cnt = tp->lost_cnt_hint;
2527                 /* Head already handled? */
2528                 if (mark_head && skb != tcp_write_queue_head(sk))
2529                         return;
2530         } else {
2531                 skb = tcp_write_queue_head(sk);
2532                 cnt = 0;
2533         }
2534
2535         tcp_for_write_queue_from(skb, sk) {
2536                 if (skb == tcp_send_head(sk))
2537                         break;
2538                 /* TODO: do this better */
2539                 /* this is not the most efficient way to do this... */
2540                 tp->lost_skb_hint = skb;
2541                 tp->lost_cnt_hint = cnt;
2542
2543                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2544                         break;
2545
2546                 oldcnt = cnt;
2547                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2548                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2549                         cnt += tcp_skb_pcount(skb);
2550
2551                 if (cnt > packets) {
2552                         if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2553                             (oldcnt >= packets))
2554                                 break;
2555
2556                         mss = skb_shinfo(skb)->gso_size;
2557                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2558                         if (err < 0)
2559                                 break;
2560                         cnt = packets;
2561                 }
2562
2563                 tcp_skb_mark_lost(tp, skb);
2564
2565                 if (mark_head)
2566                         break;
2567         }
2568         tcp_verify_left_out(tp);
2569 }
2570
2571 /* Account newly detected lost packet(s) */
2572
2573 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2574 {
2575         struct tcp_sock *tp = tcp_sk(sk);
2576
2577         if (tcp_is_reno(tp)) {
2578                 tcp_mark_head_lost(sk, 1, 1);
2579         } else if (tcp_is_fack(tp)) {
2580                 int lost = tp->fackets_out - tp->reordering;
2581                 if (lost <= 0)
2582                         lost = 1;
2583                 tcp_mark_head_lost(sk, lost, 0);
2584         } else {
2585                 int sacked_upto = tp->sacked_out - tp->reordering;
2586                 if (sacked_upto >= 0)
2587                         tcp_mark_head_lost(sk, sacked_upto, 0);
2588                 else if (fast_rexmit)
2589                         tcp_mark_head_lost(sk, 1, 1);
2590         }
2591
2592         tcp_timeout_skbs(sk);
2593 }
2594
2595 /* CWND moderation, preventing bursts due to too big ACKs
2596  * in dubious situations.
2597  */
2598 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2599 {
2600         tp->snd_cwnd = min(tp->snd_cwnd,
2601                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2602         tp->snd_cwnd_stamp = tcp_time_stamp;
2603 }
2604
2605 /* Lower bound on congestion window is slow start threshold
2606  * unless congestion avoidance choice decides to overide it.
2607  */
2608 static inline u32 tcp_cwnd_min(const struct sock *sk)
2609 {
2610         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2611
2612         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2613 }
2614
2615 /* Decrease cwnd each second ack. */
2616 static void tcp_cwnd_down(struct sock *sk, int flag)
2617 {
2618         struct tcp_sock *tp = tcp_sk(sk);
2619         int decr = tp->snd_cwnd_cnt + 1;
2620
2621         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2622             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2623                 tp->snd_cwnd_cnt = decr & 1;
2624                 decr >>= 1;
2625
2626                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2627                         tp->snd_cwnd -= decr;
2628
2629                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2630                 tp->snd_cwnd_stamp = tcp_time_stamp;
2631         }
2632 }
2633
2634 /* Nothing was retransmitted or returned timestamp is less
2635  * than timestamp of the first retransmission.
2636  */
2637 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2638 {
2639         return !tp->retrans_stamp ||
2640                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2641                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2642 }
2643
2644 /* Undo procedures. */
2645
2646 #if FASTRETRANS_DEBUG > 1
2647 static void DBGUNDO(struct sock *sk, const char *msg)
2648 {
2649         struct tcp_sock *tp = tcp_sk(sk);
2650         struct inet_sock *inet = inet_sk(sk);
2651
2652         if (sk->sk_family == AF_INET) {
2653                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2654                        msg,
2655                        &inet->inet_daddr, ntohs(inet->inet_dport),
2656                        tp->snd_cwnd, tcp_left_out(tp),
2657                        tp->snd_ssthresh, tp->prior_ssthresh,
2658                        tp->packets_out);
2659         }
2660 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2661         else if (sk->sk_family == AF_INET6) {
2662                 struct ipv6_pinfo *np = inet6_sk(sk);
2663                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2664                        msg,
2665                        &np->daddr, ntohs(inet->inet_dport),
2666                        tp->snd_cwnd, tcp_left_out(tp),
2667                        tp->snd_ssthresh, tp->prior_ssthresh,
2668                        tp->packets_out);
2669         }
2670 #endif
2671 }
2672 #else
2673 #define DBGUNDO(x...) do { } while (0)
2674 #endif
2675
2676 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2677 {
2678         struct tcp_sock *tp = tcp_sk(sk);
2679
2680         if (tp->prior_ssthresh) {
2681                 const struct inet_connection_sock *icsk = inet_csk(sk);
2682
2683                 if (icsk->icsk_ca_ops->undo_cwnd)
2684                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2685                 else
2686                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2687
2688                 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2689                         tp->snd_ssthresh = tp->prior_ssthresh;
2690                         TCP_ECN_withdraw_cwr(tp);
2691                 }
2692         } else {
2693                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2694         }
2695         tp->snd_cwnd_stamp = tcp_time_stamp;
2696 }
2697
2698 static inline int tcp_may_undo(struct tcp_sock *tp)
2699 {
2700         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2701 }
2702
2703 /* People celebrate: "We love our President!" */
2704 static int tcp_try_undo_recovery(struct sock *sk)
2705 {
2706         struct tcp_sock *tp = tcp_sk(sk);
2707
2708         if (tcp_may_undo(tp)) {
2709                 int mib_idx;
2710
2711                 /* Happy end! We did not retransmit anything
2712                  * or our original transmission succeeded.
2713                  */
2714                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2715                 tcp_undo_cwr(sk, true);
2716                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2717                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2718                 else
2719                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2720
2721                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2722                 tp->undo_marker = 0;
2723         }
2724         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2725                 /* Hold old state until something *above* high_seq
2726                  * is ACKed. For Reno it is MUST to prevent false
2727                  * fast retransmits (RFC2582). SACK TCP is safe. */
2728                 tcp_moderate_cwnd(tp);
2729                 return 1;
2730         }
2731         tcp_set_ca_state(sk, TCP_CA_Open);
2732         return 0;
2733 }
2734
2735 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2736 static void tcp_try_undo_dsack(struct sock *sk)
2737 {
2738         struct tcp_sock *tp = tcp_sk(sk);
2739
2740         if (tp->undo_marker && !tp->undo_retrans) {
2741                 DBGUNDO(sk, "D-SACK");
2742                 tcp_undo_cwr(sk, true);
2743                 tp->undo_marker = 0;
2744                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2745         }
2746 }
2747
2748 /* We can clear retrans_stamp when there are no retransmissions in the
2749  * window. It would seem that it is trivially available for us in
2750  * tp->retrans_out, however, that kind of assumptions doesn't consider
2751  * what will happen if errors occur when sending retransmission for the
2752  * second time. ...It could the that such segment has only
2753  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2754  * the head skb is enough except for some reneging corner cases that
2755  * are not worth the effort.
2756  *
2757  * Main reason for all this complexity is the fact that connection dying
2758  * time now depends on the validity of the retrans_stamp, in particular,
2759  * that successive retransmissions of a segment must not advance
2760  * retrans_stamp under any conditions.
2761  */
2762 static int tcp_any_retrans_done(struct sock *sk)
2763 {
2764         struct tcp_sock *tp = tcp_sk(sk);
2765         struct sk_buff *skb;
2766
2767         if (tp->retrans_out)
2768                 return 1;
2769
2770         skb = tcp_write_queue_head(sk);
2771         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2772                 return 1;
2773
2774         return 0;
2775 }
2776
2777 /* Undo during fast recovery after partial ACK. */
2778
2779 static int tcp_try_undo_partial(struct sock *sk, int acked)
2780 {
2781         struct tcp_sock *tp = tcp_sk(sk);
2782         /* Partial ACK arrived. Force Hoe's retransmit. */
2783         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2784
2785         if (tcp_may_undo(tp)) {
2786                 /* Plain luck! Hole if filled with delayed
2787                  * packet, rather than with a retransmit.
2788                  */
2789                 if (!tcp_any_retrans_done(sk))
2790                         tp->retrans_stamp = 0;
2791
2792                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2793
2794                 DBGUNDO(sk, "Hoe");
2795                 tcp_undo_cwr(sk, false);
2796                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2797
2798                 /* So... Do not make Hoe's retransmit yet.
2799                  * If the first packet was delayed, the rest
2800                  * ones are most probably delayed as well.
2801                  */
2802                 failed = 0;
2803         }
2804         return failed;
2805 }
2806
2807 /* Undo during loss recovery after partial ACK. */
2808 static int tcp_try_undo_loss(struct sock *sk)
2809 {
2810         struct tcp_sock *tp = tcp_sk(sk);
2811
2812         if (tcp_may_undo(tp)) {
2813                 struct sk_buff *skb;
2814                 tcp_for_write_queue(skb, sk) {
2815                         if (skb == tcp_send_head(sk))
2816                                 break;
2817                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2818                 }
2819
2820                 tcp_clear_all_retrans_hints(tp);
2821
2822                 DBGUNDO(sk, "partial loss");
2823                 tp->lost_out = 0;
2824                 tcp_undo_cwr(sk, true);
2825                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2826                 inet_csk(sk)->icsk_retransmits = 0;
2827                 tp->undo_marker = 0;
2828                 if (tcp_is_sack(tp))
2829                         tcp_set_ca_state(sk, TCP_CA_Open);
2830                 return 1;
2831         }
2832         return 0;
2833 }
2834
2835 static inline void tcp_complete_cwr(struct sock *sk)
2836 {
2837         struct tcp_sock *tp = tcp_sk(sk);
2838
2839         /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2840         if (tp->undo_marker) {
2841                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2842                         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2843                 else /* PRR */
2844                         tp->snd_cwnd = tp->snd_ssthresh;
2845                 tp->snd_cwnd_stamp = tcp_time_stamp;
2846         }
2847         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2848 }
2849
2850 static void tcp_try_keep_open(struct sock *sk)
2851 {
2852         struct tcp_sock *tp = tcp_sk(sk);
2853         int state = TCP_CA_Open;
2854
2855         if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2856                 state = TCP_CA_Disorder;
2857
2858         if (inet_csk(sk)->icsk_ca_state != state) {
2859                 tcp_set_ca_state(sk, state);
2860                 tp->high_seq = tp->snd_nxt;
2861         }
2862 }
2863
2864 static void tcp_try_to_open(struct sock *sk, int flag)
2865 {
2866         struct tcp_sock *tp = tcp_sk(sk);
2867
2868         tcp_verify_left_out(tp);
2869
2870         if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2871                 tp->retrans_stamp = 0;
2872
2873         if (flag & FLAG_ECE)
2874                 tcp_enter_cwr(sk, 1);
2875
2876         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2877                 tcp_try_keep_open(sk);
2878                 tcp_moderate_cwnd(tp);
2879         } else {
2880                 tcp_cwnd_down(sk, flag);
2881         }
2882 }
2883
2884 static void tcp_mtup_probe_failed(struct sock *sk)
2885 {
2886         struct inet_connection_sock *icsk = inet_csk(sk);
2887
2888         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2889         icsk->icsk_mtup.probe_size = 0;
2890 }
2891
2892 static void tcp_mtup_probe_success(struct sock *sk)
2893 {
2894         struct tcp_sock *tp = tcp_sk(sk);
2895         struct inet_connection_sock *icsk = inet_csk(sk);
2896
2897         /* FIXME: breaks with very large cwnd */
2898         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2899         tp->snd_cwnd = tp->snd_cwnd *
2900                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2901                        icsk->icsk_mtup.probe_size;
2902         tp->snd_cwnd_cnt = 0;
2903         tp->snd_cwnd_stamp = tcp_time_stamp;
2904         tp->snd_ssthresh = tcp_current_ssthresh(sk);
2905
2906         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2907         icsk->icsk_mtup.probe_size = 0;
2908         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2909 }
2910
2911 /* Do a simple retransmit without using the backoff mechanisms in
2912  * tcp_timer. This is used for path mtu discovery.
2913  * The socket is already locked here.
2914  */
2915 void tcp_simple_retransmit(struct sock *sk)
2916 {
2917         const struct inet_connection_sock *icsk = inet_csk(sk);
2918         struct tcp_sock *tp = tcp_sk(sk);
2919         struct sk_buff *skb;
2920         unsigned int mss = tcp_current_mss(sk);
2921         u32 prior_lost = tp->lost_out;
2922
2923         tcp_for_write_queue(skb, sk) {
2924                 if (skb == tcp_send_head(sk))
2925                         break;
2926                 if (tcp_skb_seglen(skb) > mss &&
2927                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2928                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2929                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2930                                 tp->retrans_out -= tcp_skb_pcount(skb);
2931                         }
2932                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2933                 }
2934         }
2935
2936         tcp_clear_retrans_hints_partial(tp);
2937
2938         if (prior_lost == tp->lost_out)
2939                 return;
2940
2941         if (tcp_is_reno(tp))
2942                 tcp_limit_reno_sacked(tp);
2943
2944         tcp_verify_left_out(tp);
2945
2946         /* Don't muck with the congestion window here.
2947          * Reason is that we do not increase amount of _data_
2948          * in network, but units changed and effective
2949          * cwnd/ssthresh really reduced now.
2950          */
2951         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2952                 tp->high_seq = tp->snd_nxt;
2953                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2954                 tp->prior_ssthresh = 0;
2955                 tp->undo_marker = 0;
2956                 tcp_set_ca_state(sk, TCP_CA_Loss);
2957         }
2958         tcp_xmit_retransmit_queue(sk);
2959 }
2960 EXPORT_SYMBOL(tcp_simple_retransmit);
2961
2962 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2963  * (proportional rate reduction with slow start reduction bound) as described in
2964  * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2965  * It computes the number of packets to send (sndcnt) based on packets newly
2966  * delivered:
2967  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2968  *      cwnd reductions across a full RTT.
2969  *   2) If packets in flight is lower than ssthresh (such as due to excess
2970  *      losses and/or application stalls), do not perform any further cwnd
2971  *      reductions, but instead slow start up to ssthresh.
2972  */
2973 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
2974                                         int fast_rexmit, int flag)
2975 {
2976         struct tcp_sock *tp = tcp_sk(sk);
2977         int sndcnt = 0;
2978         int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2979
2980         if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2981                 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2982                                tp->prior_cwnd - 1;
2983                 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2984         } else {
2985                 sndcnt = min_t(int, delta,
2986                                max_t(int, tp->prr_delivered - tp->prr_out,
2987                                      newly_acked_sacked) + 1);
2988         }
2989
2990         sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2991         tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2992 }
2993
2994 /* Process an event, which can update packets-in-flight not trivially.
2995  * Main goal of this function is to calculate new estimate for left_out,
2996  * taking into account both packets sitting in receiver's buffer and
2997  * packets lost by network.
2998  *
2999  * Besides that it does CWND reduction, when packet loss is detected
3000  * and changes state of machine.
3001  *
3002  * It does _not_ decide what to send, it is made in function
3003  * tcp_xmit_retransmit_queue().
3004  */
3005 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3006                                   int newly_acked_sacked, int flag)
3007 {
3008         struct inet_connection_sock *icsk = inet_csk(sk);
3009         struct tcp_sock *tp = tcp_sk(sk);
3010         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3011         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3012                                     (tcp_fackets_out(tp) > tp->reordering));
3013         int fast_rexmit = 0, mib_idx;
3014
3015         if (WARN_ON(!tp->packets_out && tp->sacked_out))
3016                 tp->sacked_out = 0;
3017         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3018                 tp->fackets_out = 0;
3019
3020         /* Now state machine starts.
3021          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3022         if (flag & FLAG_ECE)
3023                 tp->prior_ssthresh = 0;
3024
3025         /* B. In all the states check for reneging SACKs. */
3026         if (tcp_check_sack_reneging(sk, flag))
3027                 return;
3028
3029         /* C. Process data loss notification, provided it is valid. */
3030         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
3031             before(tp->snd_una, tp->high_seq) &&
3032             icsk->icsk_ca_state != TCP_CA_Open &&
3033             tp->fackets_out > tp->reordering) {
3034                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
3035                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
3036         }
3037
3038         /* D. Check consistency of the current state. */
3039         tcp_verify_left_out(tp);
3040
3041         /* E. Check state exit conditions. State can be terminated
3042          *    when high_seq is ACKed. */
3043         if (icsk->icsk_ca_state == TCP_CA_Open) {
3044                 WARN_ON(tp->retrans_out != 0);
3045                 tp->retrans_stamp = 0;
3046         } else if (!before(tp->snd_una, tp->high_seq)) {
3047                 switch (icsk->icsk_ca_state) {
3048                 case TCP_CA_Loss:
3049                         icsk->icsk_retransmits = 0;
3050                         if (tcp_try_undo_recovery(sk))
3051                                 return;
3052                         break;
3053
3054                 case TCP_CA_CWR:
3055                         /* CWR is to be held something *above* high_seq
3056                          * is ACKed for CWR bit to reach receiver. */
3057                         if (tp->snd_una != tp->high_seq) {
3058                                 tcp_complete_cwr(sk);
3059                                 tcp_set_ca_state(sk, TCP_CA_Open);
3060                         }
3061                         break;
3062
3063                 case TCP_CA_Disorder:
3064                         tcp_try_undo_dsack(sk);
3065                         if (!tp->undo_marker ||
3066                             /* For SACK case do not Open to allow to undo
3067                              * catching for all duplicate ACKs. */
3068                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3069                                 tp->undo_marker = 0;
3070                                 tcp_set_ca_state(sk, TCP_CA_Open);
3071                         }
3072                         break;
3073
3074                 case TCP_CA_Recovery:
3075                         if (tcp_is_reno(tp))
3076                                 tcp_reset_reno_sack(tp);
3077                         if (tcp_try_undo_recovery(sk))
3078                                 return;
3079                         tcp_complete_cwr(sk);
3080                         break;
3081                 }
3082         }
3083
3084         /* F. Process state. */
3085         switch (icsk->icsk_ca_state) {
3086         case TCP_CA_Recovery:
3087                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3088                         if (tcp_is_reno(tp) && is_dupack)
3089                                 tcp_add_reno_sack(sk);
3090                 } else
3091                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
3092                 break;
3093         case TCP_CA_Loss:
3094                 if (flag & FLAG_DATA_ACKED)
3095                         icsk->icsk_retransmits = 0;
3096                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3097                         tcp_reset_reno_sack(tp);
3098                 if (!tcp_try_undo_loss(sk)) {
3099                         tcp_moderate_cwnd(tp);
3100                         tcp_xmit_retransmit_queue(sk);
3101                         return;
3102                 }
3103                 if (icsk->icsk_ca_state != TCP_CA_Open)
3104                         return;
3105                 /* Loss is undone; fall through to processing in Open state. */
3106         default:
3107                 if (tcp_is_reno(tp)) {
3108                         if (flag & FLAG_SND_UNA_ADVANCED)
3109                                 tcp_reset_reno_sack(tp);
3110                         if (is_dupack)
3111                                 tcp_add_reno_sack(sk);
3112                 }
3113
3114                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3115                         tcp_try_undo_dsack(sk);
3116
3117                 if (!tcp_time_to_recover(sk)) {
3118                         tcp_try_to_open(sk, flag);
3119                         return;
3120                 }
3121
3122                 /* MTU probe failure: don't reduce cwnd */
3123                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3124                     icsk->icsk_mtup.probe_size &&
3125                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3126                         tcp_mtup_probe_failed(sk);
3127                         /* Restores the reduction we did in tcp_mtup_probe() */
3128                         tp->snd_cwnd++;
3129                         tcp_simple_retransmit(sk);
3130                         return;
3131                 }
3132
3133                 /* Otherwise enter Recovery state */
3134
3135                 if (tcp_is_reno(tp))
3136                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3137                 else
3138                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3139
3140                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3141
3142                 tp->high_seq = tp->snd_nxt;
3143                 tp->prior_ssthresh = 0;
3144                 tp->undo_marker = tp->snd_una;
3145                 tp->undo_retrans = tp->retrans_out;
3146
3147                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3148                         if (!(flag & FLAG_ECE))
3149                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3150                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3151                         TCP_ECN_queue_cwr(tp);
3152                 }
3153
3154                 tp->bytes_acked = 0;
3155                 tp->snd_cwnd_cnt = 0;
3156                 tp->prior_cwnd = tp->snd_cwnd;
3157                 tp->prr_delivered = 0;
3158                 tp->prr_out = 0;
3159                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3160                 fast_rexmit = 1;
3161         }
3162
3163         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3164                 tcp_update_scoreboard(sk, fast_rexmit);
3165         tp->prr_delivered += newly_acked_sacked;
3166         tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3167         tcp_xmit_retransmit_queue(sk);
3168 }
3169
3170 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3171 {
3172         tcp_rtt_estimator(sk, seq_rtt);
3173         tcp_set_rto(sk);
3174         inet_csk(sk)->icsk_backoff = 0;
3175 }
3176 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3177
3178 /* Read draft-ietf-tcplw-high-performance before mucking
3179  * with this code. (Supersedes RFC1323)
3180  */
3181 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3182 {
3183         /* RTTM Rule: A TSecr value received in a segment is used to
3184          * update the averaged RTT measurement only if the segment
3185          * acknowledges some new data, i.e., only if it advances the
3186          * left edge of the send window.
3187          *
3188          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3189          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3190          *
3191          * Changed: reset backoff as soon as we see the first valid sample.
3192          * If we do not, we get strongly overestimated rto. With timestamps
3193          * samples are accepted even from very old segments: f.e., when rtt=1
3194          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3195          * answer arrives rto becomes 120 seconds! If at least one of segments
3196          * in window is lost... Voila.                          --ANK (010210)
3197          */
3198         struct tcp_sock *tp = tcp_sk(sk);
3199
3200         tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3201 }
3202
3203 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3204 {
3205         /* We don't have a timestamp. Can only use
3206          * packets that are not retransmitted to determine
3207          * rtt estimates. Also, we must not reset the
3208          * backoff for rto until we get a non-retransmitted
3209          * packet. This allows us to deal with a situation
3210          * where the network delay has increased suddenly.
3211          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3212          */
3213
3214         if (flag & FLAG_RETRANS_DATA_ACKED)
3215                 return;
3216
3217         tcp_valid_rtt_meas(sk, seq_rtt);
3218 }
3219
3220 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3221                                       const s32 seq_rtt)
3222 {
3223         const struct tcp_sock *tp = tcp_sk(sk);
3224         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3225         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3226                 tcp_ack_saw_tstamp(sk, flag);
3227         else if (seq_rtt >= 0)
3228                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3229 }
3230
3231 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3232 {
3233         const struct inet_connection_sock *icsk = inet_csk(sk);
3234         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3235         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3236 }
3237
3238 /* Restart timer after forward progress on connection.
3239  * RFC2988 recommends to restart timer to now+rto.
3240  */
3241 static void tcp_rearm_rto(struct sock *sk)
3242 {
3243         struct tcp_sock *tp = tcp_sk(sk);
3244
3245         if (!tp->packets_out) {
3246                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3247         } else {
3248                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3249                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3250         }
3251 }
3252
3253 /* If we get here, the whole TSO packet has not been acked. */
3254 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3255 {
3256         struct tcp_sock *tp = tcp_sk(sk);
3257         u32 packets_acked;
3258
3259         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3260
3261         packets_acked = tcp_skb_pcount(skb);
3262         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3263                 return 0;
3264         packets_acked -= tcp_skb_pcount(skb);
3265
3266         if (packets_acked) {
3267                 BUG_ON(tcp_skb_pcount(skb) == 0);
3268                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3269         }
3270
3271         return packets_acked;
3272 }
3273
3274 /* Remove acknowledged frames from the retransmission queue. If our packet
3275  * is before the ack sequence we can discard it as it's confirmed to have
3276  * arrived at the other end.
3277  */
3278 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3279                                u32 prior_snd_una)
3280 {
3281         struct tcp_sock *tp = tcp_sk(sk);
3282         const struct inet_connection_sock *icsk = inet_csk(sk);
3283         struct sk_buff *skb;
3284         u32 now = tcp_time_stamp;
3285         int fully_acked = 1;
3286         int flag = 0;
3287         u32 pkts_acked = 0;
3288         u32 reord = tp->packets_out;
3289         u32 prior_sacked = tp->sacked_out;
3290         s32 seq_rtt = -1;
3291         s32 ca_seq_rtt = -1;
3292         ktime_t last_ackt = net_invalid_timestamp();
3293
3294         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3295                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3296                 u32 acked_pcount;
3297                 u8 sacked = scb->sacked;
3298
3299                 /* Determine how many packets and what bytes were acked, tso and else */
3300                 if (after(scb->end_seq, tp->snd_una)) {
3301                         if (tcp_skb_pcount(skb) == 1 ||
3302                             !after(tp->snd_una, scb->seq))
3303                                 break;
3304
3305                         acked_pcount = tcp_tso_acked(sk, skb);
3306                         if (!acked_pcount)
3307                                 break;
3308
3309                         fully_acked = 0;
3310                 } else {
3311                         acked_pcount = tcp_skb_pcount(skb);
3312                 }
3313
3314                 if (sacked & TCPCB_RETRANS) {
3315                         if (sacked & TCPCB_SACKED_RETRANS)
3316                                 tp->retrans_out -= acked_pcount;
3317                         flag |= FLAG_RETRANS_DATA_ACKED;
3318                         ca_seq_rtt = -1;
3319                         seq_rtt = -1;
3320                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3321                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3322                 } else {
3323                         ca_seq_rtt = now - scb->when;
3324                         last_ackt = skb->tstamp;
3325                         if (seq_rtt < 0) {
3326                                 seq_rtt = ca_seq_rtt;
3327                         }
3328                         if (!(sacked & TCPCB_SACKED_ACKED))
3329                                 reord = min(pkts_acked, reord);
3330                 }
3331
3332                 if (sacked & TCPCB_SACKED_ACKED)
3333                         tp->sacked_out -= acked_pcount;
3334                 if (sacked & TCPCB_LOST)
3335                         tp->lost_out -= acked_pcount;
3336
3337                 tp->packets_out -= acked_pcount;
3338                 pkts_acked += acked_pcount;
3339
3340                 /* Initial outgoing SYN's get put onto the write_queue
3341                  * just like anything else we transmit.  It is not
3342                  * true data, and if we misinform our callers that
3343                  * this ACK acks real data, we will erroneously exit
3344                  * connection startup slow start one packet too
3345                  * quickly.  This is severely frowned upon behavior.
3346                  */
3347                 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3348                         flag |= FLAG_DATA_ACKED;
3349                 } else {
3350                         flag |= FLAG_SYN_ACKED;
3351                         tp->retrans_stamp = 0;
3352                 }
3353
3354                 if (!fully_acked)
3355                         break;
3356
3357                 tcp_unlink_write_queue(skb, sk);
3358                 sk_wmem_free_skb(sk, skb);
3359                 tp->scoreboard_skb_hint = NULL;
3360                 if (skb == tp->retransmit_skb_hint)
3361                         tp->retransmit_skb_hint = NULL;
3362                 if (skb == tp->lost_skb_hint)
3363                         tp->lost_skb_hint = NULL;
3364         }
3365
3366         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3367                 tp->snd_up = tp->snd_una;
3368
3369         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3370                 flag |= FLAG_SACK_RENEGING;
3371
3372         if (flag & FLAG_ACKED) {
3373                 const struct tcp_congestion_ops *ca_ops
3374                         = inet_csk(sk)->icsk_ca_ops;
3375
3376                 if (unlikely(icsk->icsk_mtup.probe_size &&
3377                              !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3378                         tcp_mtup_probe_success(sk);
3379                 }
3380
3381                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3382                 tcp_rearm_rto(sk);
3383
3384                 if (tcp_is_reno(tp)) {
3385                         tcp_remove_reno_sacks(sk, pkts_acked);
3386                 } else {
3387                         int delta;
3388
3389                         /* Non-retransmitted hole got filled? That's reordering */
3390                         if (reord < prior_fackets)
3391                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3392
3393                         delta = tcp_is_fack(tp) ? pkts_acked :
3394                                                   prior_sacked - tp->sacked_out;
3395                         tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3396                 }
3397
3398                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3399
3400                 if (ca_ops->pkts_acked) {
3401                         s32 rtt_us = -1;
3402
3403                         /* Is the ACK triggering packet unambiguous? */
3404                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3405                                 /* High resolution needed and available? */
3406                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3407                                     !ktime_equal(last_ackt,
3408                                                  net_invalid_timestamp()))
3409                                         rtt_us = ktime_us_delta(ktime_get_real(),
3410                                                                 last_ackt);
3411                                 else if (ca_seq_rtt >= 0)
3412                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3413                         }
3414
3415                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3416                 }
3417         }
3418
3419 #if FASTRETRANS_DEBUG > 0
3420         WARN_ON((int)tp->sacked_out < 0);
3421         WARN_ON((int)tp->lost_out < 0);
3422         WARN_ON((int)tp->retrans_out < 0);
3423         if (!tp->packets_out && tcp_is_sack(tp)) {
3424                 icsk = inet_csk(sk);
3425                 if (tp->lost_out) {
3426                         printk(KERN_DEBUG "Leak l=%u %d\n",
3427                                tp->lost_out, icsk->icsk_ca_state);
3428                         tp->lost_out = 0;
3429                 }
3430                 if (tp->sacked_out) {
3431                         printk(KERN_DEBUG "Leak s=%u %d\n",
3432                                tp->sacked_out, icsk->icsk_ca_state);
3433                         tp->sacked_out = 0;
3434                 }
3435                 if (tp->retrans_out) {
3436                         printk(KERN_DEBUG "Leak r=%u %d\n",
3437                                tp->retrans_out, icsk->icsk_ca_state);
3438                         tp->retrans_out = 0;
3439                 }
3440         }
3441 #endif
3442         return flag;
3443 }
3444
3445 static void tcp_ack_probe(struct sock *sk)
3446 {
3447         const struct tcp_sock *tp = tcp_sk(sk);
3448         struct inet_connection_sock *icsk = inet_csk(sk);
3449
3450         /* Was it a usable window open? */
3451
3452         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3453                 icsk->icsk_backoff = 0;
3454                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3455                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3456                  * This function is not for random using!
3457                  */
3458         } else {
3459                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3460                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3461                                           TCP_RTO_MAX);
3462         }
3463 }
3464
3465 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3466 {
3467         return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3468                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3469 }
3470
3471 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3472 {
3473         const struct tcp_sock *tp = tcp_sk(sk);
3474         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3475                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3476 }
3477
3478 /* Check that window update is acceptable.
3479  * The function assumes that snd_una<=ack<=snd_next.
3480  */
3481 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3482                                         const u32 ack, const u32 ack_seq,
3483                                         const u32 nwin)
3484 {
3485         return  after(ack, tp->snd_una) ||
3486                 after(ack_seq, tp->snd_wl1) ||
3487                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3488 }
3489
3490 /* Update our send window.
3491  *
3492  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3493  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3494  */
3495 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3496                                  u32 ack_seq)
3497 {
3498         struct tcp_sock *tp = tcp_sk(sk);
3499         int flag = 0;
3500         u32 nwin = ntohs(tcp_hdr(skb)->window);
3501
3502         if (likely(!tcp_hdr(skb)->syn))
3503                 nwin <<= tp->rx_opt.snd_wscale;
3504
3505         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3506                 flag |= FLAG_WIN_UPDATE;
3507                 tcp_update_wl(tp, ack_seq);
3508
3509                 if (tp->snd_wnd != nwin) {
3510                         tp->snd_wnd = nwin;
3511
3512                         /* Note, it is the only place, where
3513                          * fast path is recovered for sending TCP.
3514                          */
3515                         tp->pred_flags = 0;
3516                         tcp_fast_path_check(sk);
3517
3518                         if (nwin > tp->max_window) {
3519                                 tp->max_window = nwin;
3520                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3521                         }
3522                 }
3523         }
3524
3525         tp->snd_una = ack;
3526
3527         return flag;
3528 }
3529
3530 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3531  * continue in congestion avoidance.
3532  */
3533 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3534 {
3535         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3536         tp->snd_cwnd_cnt = 0;
3537         tp->bytes_acked = 0;
3538         TCP_ECN_queue_cwr(tp);
3539         tcp_moderate_cwnd(tp);
3540 }
3541
3542 /* A conservative spurious RTO response algorithm: reduce cwnd using
3543  * rate halving and continue in congestion avoidance.
3544  */
3545 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3546 {
3547         tcp_enter_cwr(sk, 0);
3548 }
3549
3550 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3551 {
3552         if (flag & FLAG_ECE)
3553                 tcp_ratehalving_spur_to_response(sk);
3554         else
3555                 tcp_undo_cwr(sk, true);
3556 }
3557
3558 /* F-RTO spurious RTO detection algorithm (RFC4138)
3559  *
3560  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3561  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3562  * window (but not to or beyond highest sequence sent before RTO):
3563  *   On First ACK,  send two new segments out.
3564  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3565  *                  algorithm is not part of the F-RTO detection algorithm
3566  *                  given in RFC4138 but can be selected separately).
3567  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3568  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3569  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3570  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3571  *
3572  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3573  * original window even after we transmit two new data segments.
3574  *
3575  * SACK version:
3576  *   on first step, wait until first cumulative ACK arrives, then move to
3577  *   the second step. In second step, the next ACK decides.
3578  *
3579  * F-RTO is implemented (mainly) in four functions:
3580  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3581  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3582  *     called when tcp_use_frto() showed green light
3583  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3584  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3585  *     to prove that the RTO is indeed spurious. It transfers the control
3586  *     from F-RTO to the conventional RTO recovery
3587  */
3588 static int tcp_process_frto(struct sock *sk, int flag)
3589 {
3590         struct tcp_sock *tp = tcp_sk(sk);
3591
3592         tcp_verify_left_out(tp);
3593
3594         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3595         if (flag & FLAG_DATA_ACKED)
3596                 inet_csk(sk)->icsk_retransmits = 0;
3597
3598         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3599             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3600                 tp->undo_marker = 0;
3601
3602         if (!before(tp->snd_una, tp->frto_highmark)) {
3603                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3604                 return 1;
3605         }
3606
3607         if (!tcp_is_sackfrto(tp)) {
3608                 /* RFC4138 shortcoming in step 2; should also have case c):
3609                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3610                  * data, winupdate
3611                  */
3612                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3613                         return 1;
3614
3615                 if (!(flag & FLAG_DATA_ACKED)) {
3616                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3617                                             flag);
3618                         return 1;
3619                 }
3620         } else {
3621                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3622                         /* Prevent sending of new data. */
3623                         tp->snd_cwnd = min(tp->snd_cwnd,
3624                                            tcp_packets_in_flight(tp));
3625                         return 1;
3626                 }
3627
3628                 if ((tp->frto_counter >= 2) &&
3629                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3630                      ((flag & FLAG_DATA_SACKED) &&
3631                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3632                         /* RFC4138 shortcoming (see comment above) */
3633                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3634                             (flag & FLAG_NOT_DUP))
3635                                 return 1;
3636
3637                         tcp_enter_frto_loss(sk, 3, flag);
3638                         return 1;
3639                 }
3640         }
3641
3642         if (tp->frto_counter == 1) {
3643                 /* tcp_may_send_now needs to see updated state */
3644                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3645                 tp->frto_counter = 2;
3646
3647                 if (!tcp_may_send_now(sk))
3648                         tcp_enter_frto_loss(sk, 2, flag);
3649
3650                 return 1;
3651         } else {
3652                 switch (sysctl_tcp_frto_response) {
3653                 case 2:
3654                         tcp_undo_spur_to_response(sk, flag);
3655                         break;
3656                 case 1:
3657                         tcp_conservative_spur_to_response(tp);
3658                         break;
3659                 default:
3660                         tcp_ratehalving_spur_to_response(sk);
3661                         break;
3662                 }
3663                 tp->frto_counter = 0;
3664                 tp->undo_marker = 0;
3665                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3666         }
3667         return 0;
3668 }
3669
3670 /* This routine deals with incoming acks, but not outgoing ones. */
3671 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3672 {
3673         struct inet_connection_sock *icsk = inet_csk(sk);
3674         struct tcp_sock *tp = tcp_sk(sk);
3675         u32 prior_snd_una = tp->snd_una;
3676         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3677         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3678         u32 prior_in_flight;
3679         u32 prior_fackets;
3680         int prior_packets;
3681         int prior_sacked = tp->sacked_out;
3682         int newly_acked_sacked = 0;
3683         int frto_cwnd = 0;
3684
3685         /* If the ack is older than previous acks
3686          * then we can probably ignore it.
3687          */
3688         if (before(ack, prior_snd_una))
3689                 goto old_ack;
3690
3691         /* If the ack includes data we haven't sent yet, discard
3692          * this segment (RFC793 Section 3.9).
3693          */
3694         if (after(ack, tp->snd_nxt))
3695                 goto invalid_ack;
3696
3697         if (after(ack, prior_snd_una))
3698                 flag |= FLAG_SND_UNA_ADVANCED;
3699
3700         if (sysctl_tcp_abc) {
3701                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3702                         tp->bytes_acked += ack - prior_snd_una;
3703                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3704                         /* we assume just one segment left network */
3705                         tp->bytes_acked += min(ack - prior_snd_una,
3706                                                tp->mss_cache);
3707         }
3708
3709         prior_fackets = tp->fackets_out;
3710         prior_in_flight = tcp_packets_in_flight(tp);
3711
3712         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3713                 /* Window is constant, pure forward advance.
3714                  * No more checks are required.
3715                  * Note, we use the fact that SND.UNA>=SND.WL2.
3716                  */
3717                 tcp_update_wl(tp, ack_seq);
3718                 tp->snd_una = ack;
3719                 flag |= FLAG_WIN_UPDATE;
3720
3721                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3722
3723                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3724         } else {
3725                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3726                         flag |= FLAG_DATA;
3727                 else
3728                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3729
3730                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3731
3732                 if (TCP_SKB_CB(skb)->sacked)
3733                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3734
3735                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3736                         flag |= FLAG_ECE;
3737
3738                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3739         }
3740
3741         /* We passed data and got it acked, remove any soft error
3742          * log. Something worked...
3743          */
3744         sk->sk_err_soft = 0;
3745         icsk->icsk_probes_out = 0;
3746         tp->rcv_tstamp = tcp_time_stamp;
3747         prior_packets = tp->packets_out;
3748         if (!prior_packets)
3749                 goto no_queue;
3750
3751         /* See if we can take anything off of the retransmit queue. */
3752         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3753
3754         newly_acked_sacked = (prior_packets - prior_sacked) -
3755                              (tp->packets_out - tp->sacked_out);
3756
3757         if (tp->frto_counter)
3758                 frto_cwnd = tcp_process_frto(sk, flag);
3759         /* Guarantee sacktag reordering detection against wrap-arounds */
3760         if (before(tp->frto_highmark, tp->snd_una))
3761                 tp->frto_highmark = 0;
3762
3763         if (tcp_ack_is_dubious(sk, flag)) {
3764                 /* Advance CWND, if state allows this. */
3765                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3766                     tcp_may_raise_cwnd(sk, flag))
3767                         tcp_cong_avoid(sk, ack, prior_in_flight);
3768                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3769                                       newly_acked_sacked, flag);
3770         } else {
3771                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3772                         tcp_cong_avoid(sk, ack, prior_in_flight);
3773         }
3774
3775         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3776                 dst_confirm(__sk_dst_get(sk));
3777
3778         return 1;
3779
3780 no_queue:
3781         /* If this ack opens up a zero window, clear backoff.  It was
3782          * being used to time the probes, and is probably far higher than
3783          * it needs to be for normal retransmission.
3784          */
3785         if (tcp_send_head(sk))
3786                 tcp_ack_probe(sk);
3787         return 1;
3788
3789 invalid_ack:
3790         SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3791         return -1;
3792
3793 old_ack:
3794         if (TCP_SKB_CB(skb)->sacked) {
3795                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3796                 if (icsk->icsk_ca_state == TCP_CA_Open)
3797                         tcp_try_keep_open(sk);
3798         }
3799
3800         SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3801         return 0;
3802 }
3803
3804 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3805  * But, this can also be called on packets in the established flow when
3806  * the fast version below fails.
3807  */
3808 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3809                        u8 **hvpp, int estab)
3810 {
3811         unsigned char *ptr;
3812         struct tcphdr *th = tcp_hdr(skb);
3813         int length = (th->doff * 4) - sizeof(struct tcphdr);
3814
3815         ptr = (unsigned char *)(th + 1);
3816         opt_rx->saw_tstamp = 0;
3817
3818         while (length > 0) {
3819                 int opcode = *ptr++;
3820                 int opsize;
3821
3822                 switch (opcode) {
3823                 case TCPOPT_EOL:
3824                         return;
3825                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3826                         length--;
3827                         continue;
3828                 default:
3829                         opsize = *ptr++;
3830                         if (opsize < 2) /* "silly options" */
3831                                 return;
3832                         if (opsize > length)
3833                                 return; /* don't parse partial options */
3834                         switch (opcode) {
3835                         case TCPOPT_MSS:
3836                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3837                                         u16 in_mss = get_unaligned_be16(ptr);
3838                                         if (in_mss) {
3839                                                 if (opt_rx->user_mss &&
3840                                                     opt_rx->user_mss < in_mss)
3841                                                         in_mss = opt_rx->user_mss;
3842                                                 opt_rx->mss_clamp = in_mss;
3843                                         }
3844                                 }
3845                                 break;
3846                         case TCPOPT_WINDOW:
3847                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3848                                     !estab && sysctl_tcp_window_scaling) {
3849                                         __u8 snd_wscale = *(__u8 *)ptr;
3850                                         opt_rx->wscale_ok = 1;
3851                                         if (snd_wscale > 14) {
3852                                                 if (net_ratelimit())
3853                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3854                                                                "scaling value %d >14 received.\n",
3855                                                                snd_wscale);
3856                                                 snd_wscale = 14;
3857                                         }
3858                                         opt_rx->snd_wscale = snd_wscale;
3859                                 }
3860                                 break;
3861                         case TCPOPT_TIMESTAMP:
3862                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3863                                     ((estab && opt_rx->tstamp_ok) ||
3864                                      (!estab && sysctl_tcp_timestamps))) {
3865                                         opt_rx->saw_tstamp = 1;
3866                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3867                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3868                                 }
3869                                 break;
3870                         case TCPOPT_SACK_PERM:
3871                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3872                                     !estab && sysctl_tcp_sack) {
3873                                         opt_rx->sack_ok = 1;
3874                                         tcp_sack_reset(opt_rx);
3875                                 }
3876                                 break;
3877
3878                         case TCPOPT_SACK:
3879                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3880                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3881                                    opt_rx->sack_ok) {
3882                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3883                                 }
3884                                 break;
3885 #ifdef CONFIG_TCP_MD5SIG
3886                         case TCPOPT_MD5SIG:
3887                                 /*
3888                                  * The MD5 Hash has already been
3889                                  * checked (see tcp_v{4,6}_do_rcv()).
3890                                  */
3891                                 break;
3892 #endif
3893                         case TCPOPT_COOKIE:
3894                                 /* This option is variable length.
3895                                  */
3896                                 switch (opsize) {
3897                                 case TCPOLEN_COOKIE_BASE:
3898                                         /* not yet implemented */
3899                                         break;
3900                                 case TCPOLEN_COOKIE_PAIR:
3901                                         /* not yet implemented */
3902                                         break;
3903                                 case TCPOLEN_COOKIE_MIN+0:
3904                                 case TCPOLEN_COOKIE_MIN+2:
3905                                 case TCPOLEN_COOKIE_MIN+4:
3906                                 case TCPOLEN_COOKIE_MIN+6:
3907                                 case TCPOLEN_COOKIE_MAX:
3908                                         /* 16-bit multiple */
3909                                         opt_rx->cookie_plus = opsize;
3910                                         *hvpp = ptr;
3911                                         break;
3912                                 default:
3913                                         /* ignore option */
3914                                         break;
3915                                 }
3916                                 break;
3917                         }
3918
3919                         ptr += opsize-2;
3920                         length -= opsize;
3921                 }
3922         }
3923 }
3924 EXPORT_SYMBOL(tcp_parse_options);
3925
3926 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3927 {
3928         __be32 *ptr = (__be32 *)(th + 1);
3929
3930         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3931                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3932                 tp->rx_opt.saw_tstamp = 1;
3933                 ++ptr;
3934                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3935                 ++ptr;
3936                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3937                 return 1;
3938         }
3939         return 0;
3940 }
3941
3942 /* Fast parse options. This hopes to only see timestamps.
3943  * If it is wrong it falls back on tcp_parse_options().
3944  */
3945 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3946                                   struct tcp_sock *tp, u8 **hvpp)
3947 {
3948         /* In the spirit of fast parsing, compare doff directly to constant
3949          * values.  Because equality is used, short doff can be ignored here.
3950          */
3951         if (th->doff == (sizeof(*th) / 4)) {
3952                 tp->rx_opt.saw_tstamp = 0;
3953                 return 0;
3954         } else if (tp->rx_opt.tstamp_ok &&
3955                    th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3956                 if (tcp_parse_aligned_timestamp(tp, th))
3957                         return 1;
3958         }
3959         tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3960         return 1;
3961 }
3962
3963 #ifdef CONFIG_TCP_MD5SIG
3964 /*
3965  * Parse MD5 Signature option
3966  */
3967 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3968 {
3969         int length = (th->doff << 2) - sizeof (*th);
3970         u8 *ptr = (u8*)(th + 1);
3971
3972         /* If the TCP option is too short, we can short cut */
3973         if (length < TCPOLEN_MD5SIG)
3974                 return NULL;
3975
3976         while (length > 0) {
3977                 int opcode = *ptr++;
3978                 int opsize;
3979
3980                 switch(opcode) {
3981                 case TCPOPT_EOL:
3982                         return NULL;
3983                 case TCPOPT_NOP:
3984                         length--;
3985                         continue;
3986                 default:
3987                         opsize = *ptr++;
3988                         if (opsize < 2 || opsize > length)
3989                                 return NULL;
3990                         if (opcode == TCPOPT_MD5SIG)
3991                                 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3992                 }
3993                 ptr += opsize - 2;
3994                 length -= opsize;
3995         }
3996         return NULL;
3997 }
3998 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3999 #endif
4000
4001 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4002 {
4003         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4004         tp->rx_opt.ts_recent_stamp = get_seconds();
4005 }
4006
4007 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4008 {
4009         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4010                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4011                  * extra check below makes sure this can only happen
4012                  * for pure ACK frames.  -DaveM
4013                  *
4014                  * Not only, also it occurs for expired timestamps.
4015                  */
4016
4017                 if (tcp_paws_check(&tp->rx_opt, 0))
4018                         tcp_store_ts_recent(tp);
4019         }
4020 }
4021
4022 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4023  *
4024  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4025  * it can pass through stack. So, the following predicate verifies that
4026  * this segment is not used for anything but congestion avoidance or
4027  * fast retransmit. Moreover, we even are able to eliminate most of such
4028  * second order effects, if we apply some small "replay" window (~RTO)
4029  * to timestamp space.
4030  *
4031  * All these measures still do not guarantee that we reject wrapped ACKs
4032  * on networks with high bandwidth, when sequence space is recycled fastly,
4033  * but it guarantees that such events will be very rare and do not affect
4034  * connection seriously. This doesn't look nice, but alas, PAWS is really
4035  * buggy extension.
4036  *
4037  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4038  * states that events when retransmit arrives after original data are rare.
4039  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4040  * the biggest problem on large power networks even with minor reordering.
4041  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4042  * up to bandwidth of 18Gigabit/sec. 8) ]
4043  */
4044
4045 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4046 {
4047         struct tcp_sock *tp = tcp_sk(sk);
4048         struct tcphdr *th = tcp_hdr(skb);
4049         u32 seq = TCP_SKB_CB(skb)->seq;
4050         u32 ack = TCP_SKB_CB(skb)->ack_seq;
4051
4052         return (/* 1. Pure ACK with correct sequence number. */
4053                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4054
4055                 /* 2. ... and duplicate ACK. */
4056                 ack == tp->snd_una &&
4057
4058                 /* 3. ... and does not update window. */
4059                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4060
4061                 /* 4. ... and sits in replay window. */
4062                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4063 }
4064
4065 static inline int tcp_paws_discard(const struct sock *sk,
4066                                    const struct sk_buff *skb)
4067 {
4068         const struct tcp_sock *tp = tcp_sk(sk);
4069
4070         return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4071                !tcp_disordered_ack(sk, skb);
4072 }
4073
4074 /* Check segment sequence number for validity.
4075  *
4076  * Segment controls are considered valid, if the segment
4077  * fits to the window after truncation to the window. Acceptability
4078  * of data (and SYN, FIN, of course) is checked separately.
4079  * See tcp_data_queue(), for example.
4080  *
4081  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4082  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4083  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4084  * (borrowed from freebsd)
4085  */
4086
4087 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4088 {
4089         return  !before(end_seq, tp->rcv_wup) &&
4090                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4091 }
4092
4093 /* When we get a reset we do this. */
4094 static void tcp_reset(struct sock *sk)
4095 {
4096         /* We want the right error as BSD sees it (and indeed as we do). */
4097         switch (sk->sk_state) {
4098         case TCP_SYN_SENT:
4099                 sk->sk_err = ECONNREFUSED;
4100                 break;
4101         case TCP_CLOSE_WAIT:
4102                 sk->sk_err = EPIPE;
4103                 break;
4104         case TCP_CLOSE:
4105                 return;
4106         default:
4107                 sk->sk_err = ECONNRESET;
4108         }
4109         /* This barrier is coupled with smp_rmb() in tcp_poll() */
4110         smp_wmb();
4111
4112         if (!sock_flag(sk, SOCK_DEAD))
4113                 sk->sk_error_report(sk);
4114
4115         tcp_done(sk);
4116 }
4117
4118 /*
4119  *      Process the FIN bit. This now behaves as it is supposed to work
4120  *      and the FIN takes effect when it is validly part of sequence
4121  *      space. Not before when we get holes.
4122  *
4123  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4124  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4125  *      TIME-WAIT)
4126  *
4127  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4128  *      close and we go into CLOSING (and later onto TIME-WAIT)
4129  *
4130  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4131  */
4132 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4133 {
4134         struct tcp_sock *tp = tcp_sk(sk);
4135
4136         inet_csk_schedule_ack(sk);
4137
4138         sk->sk_shutdown |= RCV_SHUTDOWN;
4139         sock_set_flag(sk, SOCK_DONE);
4140
4141         switch (sk->sk_state) {
4142         case TCP_SYN_RECV:
4143         case TCP_ESTABLISHED:
4144                 /* Move to CLOSE_WAIT */
4145                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4146                 inet_csk(sk)->icsk_ack.pingpong = 1;
4147                 break;
4148
4149         case TCP_CLOSE_WAIT:
4150         case TCP_CLOSING:
4151                 /* Received a retransmission of the FIN, do
4152                  * nothing.
4153                  */
4154                 break;
4155         case TCP_LAST_ACK:
4156                 /* RFC793: Remain in the LAST-ACK state. */
4157                 break;
4158
4159         case TCP_FIN_WAIT1:
4160                 /* This case occurs when a simultaneous close
4161                  * happens, we must ack the received FIN and
4162                  * enter the CLOSING state.
4163                  */
4164                 tcp_send_ack(sk);
4165                 tcp_set_state(sk, TCP_CLOSING);
4166                 break;
4167         case TCP_FIN_WAIT2:
4168                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4169                 tcp_send_ack(sk);
4170                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4171                 break;
4172         default:
4173                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4174                  * cases we should never reach this piece of code.
4175                  */
4176                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4177                        __func__, sk->sk_state);
4178                 break;
4179         }
4180
4181         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4182          * Probably, we should reset in this case. For now drop them.
4183          */
4184         __skb_queue_purge(&tp->out_of_order_queue);
4185         if (tcp_is_sack(tp))
4186                 tcp_sack_reset(&tp->rx_opt);
4187         sk_mem_reclaim(sk);
4188
4189         if (!sock_flag(sk, SOCK_DEAD)) {
4190                 sk->sk_state_change(sk);
4191
4192                 /* Do not send POLL_HUP for half duplex close. */
4193                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4194                     sk->sk_state == TCP_CLOSE)
4195                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4196                 else
4197                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4198         }
4199 }
4200
4201 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4202                                   u32 end_seq)
4203 {
4204         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4205                 if (before(seq, sp->start_seq))
4206                         sp->start_seq = seq;
4207                 if (after(end_seq, sp->end_seq))
4208                         sp->end_seq = end_seq;
4209                 return 1;
4210         }
4211         return 0;
4212 }
4213
4214 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4215 {
4216         struct tcp_sock *tp = tcp_sk(sk);
4217
4218         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4219                 int mib_idx;
4220
4221                 if (before(seq, tp->rcv_nxt))
4222                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4223                 else
4224                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4225
4226                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4227
4228                 tp->rx_opt.dsack = 1;
4229                 tp->duplicate_sack[0].start_seq = seq;
4230                 tp->duplicate_sack[0].end_seq = end_seq;
4231         }
4232 }
4233
4234 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4235 {
4236         struct tcp_sock *tp = tcp_sk(sk);
4237
4238         if (!tp->rx_opt.dsack)
4239                 tcp_dsack_set(sk, seq, end_seq);
4240         else
4241                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4242 }
4243
4244 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4245 {
4246         struct tcp_sock *tp = tcp_sk(sk);
4247
4248         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4249             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4250                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4251                 tcp_enter_quickack_mode(sk);
4252
4253                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4254                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4255
4256                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4257                                 end_seq = tp->rcv_nxt;
4258                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4259                 }
4260         }
4261
4262         tcp_send_ack(sk);
4263 }
4264
4265 /* These routines update the SACK block as out-of-order packets arrive or
4266  * in-order packets close up the sequence space.
4267  */
4268 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4269 {
4270         int this_sack;
4271         struct tcp_sack_block *sp = &tp->selective_acks[0];
4272         struct tcp_sack_block *swalk = sp + 1;
4273
4274         /* See if the recent change to the first SACK eats into
4275          * or hits the sequence space of other SACK blocks, if so coalesce.
4276          */
4277         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4278                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4279                         int i;
4280
4281                         /* Zap SWALK, by moving every further SACK up by one slot.
4282                          * Decrease num_sacks.
4283                          */
4284                         tp->rx_opt.num_sacks--;
4285                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4286                                 sp[i] = sp[i + 1];
4287                         continue;
4288                 }
4289                 this_sack++, swalk++;
4290         }
4291 }
4292
4293 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4294 {
4295         struct tcp_sock *tp = tcp_sk(sk);
4296         struct tcp_sack_block *sp = &tp->selective_acks[0];
4297         int cur_sacks = tp->rx_opt.num_sacks;
4298         int this_sack;
4299
4300         if (!cur_sacks)
4301                 goto new_sack;
4302
4303         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4304                 if (tcp_sack_extend(sp, seq, end_seq)) {
4305                         /* Rotate this_sack to the first one. */
4306                         for (; this_sack > 0; this_sack--, sp--)
4307                                 swap(*sp, *(sp - 1));
4308                         if (cur_sacks > 1)
4309                                 tcp_sack_maybe_coalesce(tp);
4310                         return;
4311                 }
4312         }
4313
4314         /* Could not find an adjacent existing SACK, build a new one,
4315          * put it at the front, and shift everyone else down.  We
4316          * always know there is at least one SACK present already here.
4317          *
4318          * If the sack array is full, forget about the last one.
4319          */
4320         if (this_sack >= TCP_NUM_SACKS) {
4321                 this_sack--;
4322                 tp->rx_opt.num_sacks--;
4323                 sp--;
4324         }
4325         for (; this_sack > 0; this_sack--, sp--)
4326                 *sp = *(sp - 1);
4327
4328 new_sack:
4329         /* Build the new head SACK, and we're done. */
4330         sp->start_seq = seq;
4331         sp->end_seq = end_seq;
4332         tp->rx_opt.num_sacks++;
4333 }
4334
4335 /* RCV.NXT advances, some SACKs should be eaten. */
4336
4337 static void tcp_sack_remove(struct tcp_sock *tp)
4338 {
4339         struct tcp_sack_block *sp = &tp->selective_acks[0];
4340         int num_sacks = tp->rx_opt.num_sacks;
4341         int this_sack;
4342
4343         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4344         if (skb_queue_empty(&tp->out_of_order_queue)) {
4345                 tp->rx_opt.num_sacks = 0;
4346                 return;
4347         }
4348
4349         for (this_sack = 0; this_sack < num_sacks;) {
4350                 /* Check if the start of the sack is covered by RCV.NXT. */
4351                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4352                         int i;
4353
4354                         /* RCV.NXT must cover all the block! */
4355                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4356
4357                         /* Zap this SACK, by moving forward any other SACKS. */
4358                         for (i=this_sack+1; i < num_sacks; i++)
4359                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4360                         num_sacks--;
4361                         continue;
4362                 }
4363                 this_sack++;
4364                 sp++;
4365         }
4366         tp->rx_opt.num_sacks = num_sacks;
4367 }
4368
4369 /* This one checks to see if we can put data from the
4370  * out_of_order queue into the receive_queue.
4371  */
4372 static void tcp_ofo_queue(struct sock *sk)
4373 {
4374         struct tcp_sock *tp = tcp_sk(sk);
4375         __u32 dsack_high = tp->rcv_nxt;
4376         struct sk_buff *skb;
4377
4378         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4379                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4380                         break;
4381
4382                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4383                         __u32 dsack = dsack_high;
4384                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4385                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4386                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4387                 }
4388
4389                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4390                         SOCK_DEBUG(sk, "ofo packet was already received\n");
4391                         __skb_unlink(skb, &tp->out_of_order_queue);
4392                         __kfree_skb(skb);
4393                         continue;
4394                 }
4395                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4396                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4397                            TCP_SKB_CB(skb)->end_seq);
4398
4399                 __skb_unlink(skb, &tp->out_of_order_queue);
4400                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4401                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4402                 if (tcp_hdr(skb)->fin)
4403                         tcp_fin(skb, sk, tcp_hdr(skb));
4404         }
4405 }
4406
4407 static int tcp_prune_ofo_queue(struct sock *sk);
4408 static int tcp_prune_queue(struct sock *sk);
4409
4410 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4411 {
4412         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4413             !sk_rmem_schedule(sk, size)) {
4414
4415                 if (tcp_prune_queue(sk) < 0)
4416                         return -1;
4417
4418                 if (!sk_rmem_schedule(sk, size)) {
4419                         if (!tcp_prune_ofo_queue(sk))
4420                                 return -1;
4421
4422                         if (!sk_rmem_schedule(sk, size))
4423                                 return -1;
4424                 }
4425         }
4426         return 0;
4427 }
4428
4429 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4430 {
4431         struct tcphdr *th = tcp_hdr(skb);
4432         struct tcp_sock *tp = tcp_sk(sk);
4433         int eaten = -1;
4434
4435         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4436                 goto drop;
4437
4438         skb_dst_drop(skb);
4439         __skb_pull(skb, th->doff * 4);
4440
4441         TCP_ECN_accept_cwr(tp, skb);
4442
4443         tp->rx_opt.dsack = 0;
4444
4445         /*  Queue data for delivery to the user.
4446          *  Packets in sequence go to the receive queue.
4447          *  Out of sequence packets to the out_of_order_queue.
4448          */
4449         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4450                 if (tcp_receive_window(tp) == 0)
4451                         goto out_of_window;
4452
4453                 /* Ok. In sequence. In window. */
4454                 if (tp->ucopy.task == current &&
4455                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4456                     sock_owned_by_user(sk) && !tp->urg_data) {
4457                         int chunk = min_t(unsigned int, skb->len,
4458                                           tp->ucopy.len);
4459
4460                         __set_current_state(TASK_RUNNING);
4461
4462                         local_bh_enable();
4463                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4464                                 tp->ucopy.len -= chunk;
4465                                 tp->copied_seq += chunk;
4466                                 eaten = (chunk == skb->len);
4467                                 tcp_rcv_space_adjust(sk);
4468                         }
4469                         local_bh_disable();
4470                 }
4471
4472                 if (eaten <= 0) {
4473 queue_and_out:
4474                         if (eaten < 0 &&
4475                             tcp_try_rmem_schedule(sk, skb->truesize))
4476                                 goto drop;
4477
4478                         skb_set_owner_r(skb, sk);
4479                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4480                 }
4481                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4482                 if (skb->len)
4483                         tcp_event_data_recv(sk, skb);
4484                 if (th->fin)
4485                         tcp_fin(skb, sk, th);
4486
4487                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4488                         tcp_ofo_queue(sk);
4489
4490                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4491                          * gap in queue is filled.
4492                          */
4493                         if (skb_queue_empty(&tp->out_of_order_queue))
4494                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4495                 }
4496
4497                 if (tp->rx_opt.num_sacks)
4498                         tcp_sack_remove(tp);
4499
4500                 tcp_fast_path_check(sk);
4501
4502                 if (eaten > 0)
4503                         __kfree_skb(skb);
4504                 else if (!sock_flag(sk, SOCK_DEAD))
4505                         sk->sk_data_ready(sk, 0);
4506                 return;
4507         }
4508
4509         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4510                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4511                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4512                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4513
4514 out_of_window:
4515                 tcp_enter_quickack_mode(sk);
4516                 inet_csk_schedule_ack(sk);
4517 drop:
4518                 __kfree_skb(skb);
4519                 return;
4520         }
4521
4522         /* Out of window. F.e. zero window probe. */
4523         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4524                 goto out_of_window;
4525
4526         tcp_enter_quickack_mode(sk);
4527
4528         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4529                 /* Partial packet, seq < rcv_next < end_seq */
4530                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4531                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4532                            TCP_SKB_CB(skb)->end_seq);
4533
4534                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4535
4536                 /* If window is closed, drop tail of packet. But after
4537                  * remembering D-SACK for its head made in previous line.
4538                  */
4539                 if (!tcp_receive_window(tp))
4540                         goto out_of_window;
4541                 goto queue_and_out;
4542         }
4543
4544         TCP_ECN_check_ce(tp, skb);
4545
4546         if (tcp_try_rmem_schedule(sk, skb->truesize))
4547                 goto drop;
4548
4549         /* Disable header prediction. */
4550         tp->pred_flags = 0;
4551         inet_csk_schedule_ack(sk);
4552
4553         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4554                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4555
4556         skb_set_owner_r(skb, sk);
4557
4558         if (!skb_peek(&tp->out_of_order_queue)) {
4559                 /* Initial out of order segment, build 1 SACK. */
4560                 if (tcp_is_sack(tp)) {
4561                         tp->rx_opt.num_sacks = 1;
4562                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4563                         tp->selective_acks[0].end_seq =
4564                                                 TCP_SKB_CB(skb)->end_seq;
4565                 }
4566                 __skb_queue_head(&tp->out_of_order_queue, skb);
4567         } else {
4568                 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4569                 u32 seq = TCP_SKB_CB(skb)->seq;
4570                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4571
4572                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4573                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4574
4575                         if (!tp->rx_opt.num_sacks ||
4576                             tp->selective_acks[0].end_seq != seq)
4577                                 goto add_sack;
4578
4579                         /* Common case: data arrive in order after hole. */
4580                         tp->selective_acks[0].end_seq = end_seq;
4581                         return;
4582                 }
4583
4584                 /* Find place to insert this segment. */
4585                 while (1) {
4586                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4587                                 break;
4588                         if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4589                                 skb1 = NULL;
4590                                 break;
4591                         }
4592                         skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4593                 }
4594
4595                 /* Do skb overlap to previous one? */
4596                 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4597                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4598                                 /* All the bits are present. Drop. */
4599                                 __kfree_skb(skb);
4600                                 tcp_dsack_set(sk, seq, end_seq);
4601                                 goto add_sack;
4602                         }
4603                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4604                                 /* Partial overlap. */
4605                                 tcp_dsack_set(sk, seq,
4606                                               TCP_SKB_CB(skb1)->end_seq);
4607                         } else {
4608                                 if (skb_queue_is_first(&tp->out_of_order_queue,
4609                                                        skb1))
4610                                         skb1 = NULL;
4611                                 else
4612                                         skb1 = skb_queue_prev(
4613                                                 &tp->out_of_order_queue,
4614                                                 skb1);
4615                         }
4616                 }
4617                 if (!skb1)
4618                         __skb_queue_head(&tp->out_of_order_queue, skb);
4619                 else
4620                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4621
4622                 /* And clean segments covered by new one as whole. */
4623                 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4624                         skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4625
4626                         if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4627                                 break;
4628                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4629                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4630                                                  end_seq);
4631                                 break;
4632                         }
4633                         __skb_unlink(skb1, &tp->out_of_order_queue);
4634                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4635                                          TCP_SKB_CB(skb1)->end_seq);
4636                         __kfree_skb(skb1);
4637                 }
4638
4639 add_sack:
4640                 if (tcp_is_sack(tp))
4641                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4642         }
4643 }
4644
4645 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4646                                         struct sk_buff_head *list)
4647 {
4648         struct sk_buff *next = NULL;
4649
4650         if (!skb_queue_is_last(list, skb))
4651                 next = skb_queue_next(list, skb);
4652
4653         __skb_unlink(skb, list);
4654         __kfree_skb(skb);
4655         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4656
4657         return next;
4658 }
4659
4660 /* Collapse contiguous sequence of skbs head..tail with
4661  * sequence numbers start..end.
4662  *
4663  * If tail is NULL, this means until the end of the list.
4664  *
4665  * Segments with FIN/SYN are not collapsed (only because this
4666  * simplifies code)
4667  */
4668 static void
4669 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4670              struct sk_buff *head, struct sk_buff *tail,
4671              u32 start, u32 end)
4672 {
4673         struct sk_buff *skb, *n;
4674         bool end_of_skbs;
4675
4676         /* First, check that queue is collapsible and find
4677          * the point where collapsing can be useful. */
4678         skb = head;
4679 restart:
4680         end_of_skbs = true;
4681         skb_queue_walk_from_safe(list, skb, n) {
4682                 if (skb == tail)
4683                         break;
4684                 /* No new bits? It is possible on ofo queue. */
4685                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4686                         skb = tcp_collapse_one(sk, skb, list);
4687                         if (!skb)
4688                                 break;
4689                         goto restart;
4690                 }
4691
4692                 /* The first skb to collapse is:
4693                  * - not SYN/FIN and
4694                  * - bloated or contains data before "start" or
4695                  *   overlaps to the next one.
4696                  */
4697                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4698                     (tcp_win_from_space(skb->truesize) > skb->len ||
4699                      before(TCP_SKB_CB(skb)->seq, start))) {
4700                         end_of_skbs = false;
4701                         break;
4702                 }
4703
4704                 if (!skb_queue_is_last(list, skb)) {
4705                         struct sk_buff *next = skb_queue_next(list, skb);
4706                         if (next != tail &&
4707                             TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4708                                 end_of_skbs = false;
4709                                 break;
4710                         }
4711                 }
4712
4713                 /* Decided to skip this, advance start seq. */
4714                 start = TCP_SKB_CB(skb)->end_seq;
4715         }
4716         if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4717                 return;
4718
4719         while (before(start, end)) {
4720                 struct sk_buff *nskb;
4721                 unsigned int header = skb_headroom(skb);
4722                 int copy = SKB_MAX_ORDER(header, 0);
4723
4724                 /* Too big header? This can happen with IPv6. */
4725                 if (copy < 0)
4726                         return;
4727                 if (end - start < copy)
4728                         copy = end - start;
4729                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4730                 if (!nskb)
4731                         return;
4732
4733                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4734                 skb_set_network_header(nskb, (skb_network_header(skb) -
4735                                               skb->head));
4736                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4737                                                 skb->head));
4738                 skb_reserve(nskb, header);
4739                 memcpy(nskb->head, skb->head, header);
4740                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4741                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4742                 __skb_queue_before(list, skb, nskb);
4743                 skb_set_owner_r(nskb, sk);
4744
4745                 /* Copy data, releasing collapsed skbs. */
4746                 while (copy > 0) {
4747                         int offset = start - TCP_SKB_CB(skb)->seq;
4748                         int size = TCP_SKB_CB(skb)->end_seq - start;
4749
4750                         BUG_ON(offset < 0);
4751                         if (size > 0) {
4752                                 size = min(copy, size);
4753                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4754                                         BUG();
4755                                 TCP_SKB_CB(nskb)->end_seq += size;
4756                                 copy -= size;
4757                                 start += size;
4758                         }
4759                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4760                                 skb = tcp_collapse_one(sk, skb, list);
4761                                 if (!skb ||
4762                                     skb == tail ||
4763                                     tcp_hdr(skb)->syn ||
4764                                     tcp_hdr(skb)->fin)
4765                                         return;
4766                         }
4767                 }
4768         }
4769 }
4770
4771 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4772  * and tcp_collapse() them until all the queue is collapsed.
4773  */
4774 static void tcp_collapse_ofo_queue(struct sock *sk)
4775 {
4776         struct tcp_sock *tp = tcp_sk(sk);
4777         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4778         struct sk_buff *head;
4779         u32 start, end;
4780
4781         if (skb == NULL)
4782                 return;
4783
4784         start = TCP_SKB_CB(skb)->seq;
4785         end = TCP_SKB_CB(skb)->end_seq;
4786         head = skb;
4787
4788         for (;;) {
4789                 struct sk_buff *next = NULL;
4790
4791                 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4792                         next = skb_queue_next(&tp->out_of_order_queue, skb);
4793                 skb = next;
4794
4795                 /* Segment is terminated when we see gap or when
4796                  * we are at the end of all the queue. */
4797                 if (!skb ||
4798                     after(TCP_SKB_CB(skb)->seq, end) ||
4799                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4800                         tcp_collapse(sk, &tp->out_of_order_queue,
4801                                      head, skb, start, end);
4802                         head = skb;
4803                         if (!skb)
4804                                 break;
4805                         /* Start new segment */
4806                         start = TCP_SKB_CB(skb)->seq;
4807                         end = TCP_SKB_CB(skb)->end_seq;
4808                 } else {
4809                         if (before(TCP_SKB_CB(skb)->seq, start))
4810                                 start = TCP_SKB_CB(skb)->seq;
4811                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4812                                 end = TCP_SKB_CB(skb)->end_seq;
4813                 }
4814         }
4815 }
4816
4817 /*
4818  * Purge the out-of-order queue.
4819  * Return true if queue was pruned.
4820  */
4821 static int tcp_prune_ofo_queue(struct sock *sk)
4822 {
4823         struct tcp_sock *tp = tcp_sk(sk);
4824         int res = 0;
4825
4826         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4827                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4828                 __skb_queue_purge(&tp->out_of_order_queue);
4829
4830                 /* Reset SACK state.  A conforming SACK implementation will
4831                  * do the same at a timeout based retransmit.  When a connection
4832                  * is in a sad state like this, we care only about integrity
4833                  * of the connection not performance.
4834                  */
4835                 if (tp->rx_opt.sack_ok)
4836                         tcp_sack_reset(&tp->rx_opt);
4837                 sk_mem_reclaim(sk);
4838                 res = 1;
4839         }
4840         return res;
4841 }
4842
4843 /* Reduce allocated memory if we can, trying to get
4844  * the socket within its memory limits again.
4845  *
4846  * Return less than zero if we should start dropping frames
4847  * until the socket owning process reads some of the data
4848  * to stabilize the situation.
4849  */
4850 static int tcp_prune_queue(struct sock *sk)
4851 {
4852         struct tcp_sock *tp = tcp_sk(sk);
4853
4854         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4855
4856         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4857
4858         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4859                 tcp_clamp_window(sk);
4860         else if (tcp_memory_pressure)
4861                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4862
4863         tcp_collapse_ofo_queue(sk);
4864         if (!skb_queue_empty(&sk->sk_receive_queue))
4865                 tcp_collapse(sk, &sk->sk_receive_queue,
4866                              skb_peek(&sk->sk_receive_queue),
4867                              NULL,
4868                              tp->copied_seq, tp->rcv_nxt);
4869         sk_mem_reclaim(sk);
4870
4871         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4872                 return 0;
4873
4874         /* Collapsing did not help, destructive actions follow.
4875          * This must not ever occur. */
4876
4877         tcp_prune_ofo_queue(sk);
4878
4879         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4880                 return 0;
4881
4882         /* If we are really being abused, tell the caller to silently
4883          * drop receive data on the floor.  It will get retransmitted
4884          * and hopefully then we'll have sufficient space.
4885          */
4886         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4887
4888         /* Massive buffer overcommit. */
4889         tp->pred_flags = 0;
4890         return -1;
4891 }
4892
4893 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4894  * As additional protections, we do not touch cwnd in retransmission phases,
4895  * and if application hit its sndbuf limit recently.
4896  */
4897 void tcp_cwnd_application_limited(struct sock *sk)
4898 {
4899         struct tcp_sock *tp = tcp_sk(sk);
4900
4901         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4902             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4903                 /* Limited by application or receiver window. */
4904                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4905                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4906                 if (win_used < tp->snd_cwnd) {
4907                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4908                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4909                 }
4910                 tp->snd_cwnd_used = 0;
4911         }
4912         tp->snd_cwnd_stamp = tcp_time_stamp;
4913 }
4914
4915 static int tcp_should_expand_sndbuf(struct sock *sk)
4916 {
4917         struct tcp_sock *tp = tcp_sk(sk);
4918
4919         /* If the user specified a specific send buffer setting, do
4920          * not modify it.
4921          */
4922         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4923                 return 0;
4924
4925         /* If we are under global TCP memory pressure, do not expand.  */
4926         if (tcp_memory_pressure)
4927                 return 0;
4928
4929         /* If we are under soft global TCP memory pressure, do not expand.  */
4930         if (atomic_long_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4931                 return 0;
4932
4933         /* If we filled the congestion window, do not expand.  */
4934         if (tp->packets_out >= tp->snd_cwnd)
4935                 return 0;
4936
4937         return 1;
4938 }
4939
4940 /* When incoming ACK allowed to free some skb from write_queue,
4941  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4942  * on the exit from tcp input handler.
4943  *
4944  * PROBLEM: sndbuf expansion does not work well with largesend.
4945  */
4946 static void tcp_new_space(struct sock *sk)
4947 {
4948         struct tcp_sock *tp = tcp_sk(sk);
4949
4950         if (tcp_should_expand_sndbuf(sk)) {
4951                 int sndmem = SKB_TRUESIZE(max_t(u32,
4952                                                 tp->rx_opt.mss_clamp,
4953                                                 tp->mss_cache) +
4954                                           MAX_TCP_HEADER);
4955                 int demanded = max_t(unsigned int, tp->snd_cwnd,
4956                                      tp->reordering + 1);
4957                 sndmem *= 2 * demanded;
4958                 if (sndmem > sk->sk_sndbuf)
4959                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4960                 tp->snd_cwnd_stamp = tcp_time_stamp;
4961         }
4962
4963         sk->sk_write_space(sk);
4964 }
4965
4966 static void tcp_check_space(struct sock *sk)
4967 {
4968         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4969                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4970                 if (sk->sk_socket &&
4971                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4972                         tcp_new_space(sk);
4973         }
4974 }
4975
4976 static inline void tcp_data_snd_check(struct sock *sk)
4977 {
4978         tcp_push_pending_frames(sk);
4979         tcp_check_space(sk);
4980 }
4981
4982 /*
4983  * Check if sending an ack is needed.
4984  */
4985 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4986 {
4987         struct tcp_sock *tp = tcp_sk(sk);
4988
4989             /* More than one full frame received... */
4990         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4991              /* ... and right edge of window advances far enough.
4992               * (tcp_recvmsg() will send ACK otherwise). Or...
4993               */
4994              __tcp_select_window(sk) >= tp->rcv_wnd) ||
4995             /* We ACK each frame or... */
4996             tcp_in_quickack_mode(sk) ||
4997             /* We have out of order data. */
4998             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4999                 /* Then ack it now */
5000                 tcp_send_ack(sk);
5001         } else {
5002                 /* Else, send delayed ack. */
5003                 tcp_send_delayed_ack(sk);
5004         }
5005 }
5006
5007 static inline void tcp_ack_snd_check(struct sock *sk)
5008 {
5009         if (!inet_csk_ack_scheduled(sk)) {
5010                 /* We sent a data segment already. */
5011                 return;
5012         }
5013         __tcp_ack_snd_check(sk, 1);
5014 }
5015
5016 /*
5017  *      This routine is only called when we have urgent data
5018  *      signaled. Its the 'slow' part of tcp_urg. It could be
5019  *      moved inline now as tcp_urg is only called from one
5020  *      place. We handle URGent data wrong. We have to - as
5021  *      BSD still doesn't use the correction from RFC961.
5022  *      For 1003.1g we should support a new option TCP_STDURG to permit
5023  *      either form (or just set the sysctl tcp_stdurg).
5024  */
5025
5026 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
5027 {
5028         struct tcp_sock *tp = tcp_sk(sk);
5029         u32 ptr = ntohs(th->urg_ptr);
5030
5031         if (ptr && !sysctl_tcp_stdurg)
5032                 ptr--;
5033         ptr += ntohl(th->seq);
5034
5035         /* Ignore urgent data that we've already seen and read. */
5036         if (after(tp->copied_seq, ptr))
5037                 return;
5038
5039         /* Do not replay urg ptr.
5040          *
5041          * NOTE: interesting situation not covered by specs.
5042          * Misbehaving sender may send urg ptr, pointing to segment,
5043          * which we already have in ofo queue. We are not able to fetch
5044          * such data and will stay in TCP_URG_NOTYET until will be eaten
5045          * by recvmsg(). Seems, we are not obliged to handle such wicked
5046          * situations. But it is worth to think about possibility of some
5047          * DoSes using some hypothetical application level deadlock.
5048          */
5049         if (before(ptr, tp->rcv_nxt))
5050                 return;
5051
5052         /* Do we already have a newer (or duplicate) urgent pointer? */
5053         if (tp->urg_data && !after(ptr, tp->urg_seq))
5054                 return;
5055
5056         /* Tell the world about our new urgent pointer. */
5057         sk_send_sigurg(sk);
5058
5059         /* We may be adding urgent data when the last byte read was
5060          * urgent. To do this requires some care. We cannot just ignore
5061          * tp->copied_seq since we would read the last urgent byte again
5062          * as data, nor can we alter copied_seq until this data arrives
5063          * or we break the semantics of SIOCATMARK (and thus sockatmark())
5064          *
5065          * NOTE. Double Dutch. Rendering to plain English: author of comment
5066          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
5067          * and expect that both A and B disappear from stream. This is _wrong_.
5068          * Though this happens in BSD with high probability, this is occasional.
5069          * Any application relying on this is buggy. Note also, that fix "works"
5070          * only in this artificial test. Insert some normal data between A and B and we will
5071          * decline of BSD again. Verdict: it is better to remove to trap
5072          * buggy users.
5073          */
5074         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5075             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5076                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5077                 tp->copied_seq++;
5078                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5079                         __skb_unlink(skb, &sk->sk_receive_queue);
5080                         __kfree_skb(skb);
5081                 }
5082         }
5083
5084         tp->urg_data = TCP_URG_NOTYET;
5085         tp->urg_seq = ptr;
5086
5087         /* Disable header prediction. */
5088         tp->pred_flags = 0;
5089 }
5090
5091 /* This is the 'fast' part of urgent handling. */
5092 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5093 {
5094         struct tcp_sock *tp = tcp_sk(sk);
5095
5096         /* Check if we get a new urgent pointer - normally not. */
5097         if (th->urg)
5098                 tcp_check_urg(sk, th);
5099
5100         /* Do we wait for any urgent data? - normally not... */
5101         if (tp->urg_data == TCP_URG_NOTYET) {
5102                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5103                           th->syn;
5104
5105                 /* Is the urgent pointer pointing into this packet? */
5106                 if (ptr < skb->len) {
5107                         u8 tmp;
5108                         if (skb_copy_bits(skb, ptr, &tmp, 1))
5109                                 BUG();
5110                         tp->urg_data = TCP_URG_VALID | tmp;
5111                         if (!sock_flag(sk, SOCK_DEAD))
5112                                 sk->sk_data_ready(sk, 0);
5113                 }
5114         }
5115 }
5116
5117 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5118 {
5119         struct tcp_sock *tp = tcp_sk(sk);
5120         int chunk = skb->len - hlen;
5121         int err;
5122
5123         local_bh_enable();
5124         if (skb_csum_unnecessary(skb))
5125                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5126         else
5127                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5128                                                        tp->ucopy.iov);
5129
5130         if (!err) {
5131                 tp->ucopy.len -= chunk;
5132                 tp->copied_seq += chunk;
5133                 tcp_rcv_space_adjust(sk);
5134         }
5135
5136         local_bh_disable();
5137         return err;
5138 }
5139
5140 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5141                                             struct sk_buff *skb)
5142 {
5143         __sum16 result;
5144
5145         if (sock_owned_by_user(sk)) {
5146                 local_bh_enable();
5147                 result = __tcp_checksum_complete(skb);
5148                 local_bh_disable();
5149         } else {
5150                 result = __tcp_checksum_complete(skb);
5151         }
5152         return result;
5153 }
5154
5155 static inline int tcp_checksum_complete_user(struct sock *sk,
5156                                              struct sk_buff *skb)
5157 {
5158         return !skb_csum_unnecessary(skb) &&
5159                __tcp_checksum_complete_user(sk, skb);
5160 }
5161
5162 #ifdef CONFIG_NET_DMA
5163 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5164                                   int hlen)
5165 {
5166         struct tcp_sock *tp = tcp_sk(sk);
5167         int chunk = skb->len - hlen;
5168         int dma_cookie;
5169         int copied_early = 0;
5170
5171         if (tp->ucopy.wakeup)
5172                 return 0;
5173
5174         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5175                 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5176
5177         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5178
5179                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5180                                                          skb, hlen,
5181                                                          tp->ucopy.iov, chunk,
5182                                                          tp->ucopy.pinned_list);
5183
5184                 if (dma_cookie < 0)
5185                         goto out;
5186
5187                 tp->ucopy.dma_cookie = dma_cookie;
5188                 copied_early = 1;
5189
5190                 tp->ucopy.len -= chunk;
5191                 tp->copied_seq += chunk;
5192                 tcp_rcv_space_adjust(sk);
5193
5194                 if ((tp->ucopy.len == 0) ||
5195                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5196                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5197                         tp->ucopy.wakeup = 1;
5198                         sk->sk_data_ready(sk, 0);
5199                 }
5200         } else if (chunk > 0) {
5201                 tp->ucopy.wakeup = 1;
5202                 sk->sk_data_ready(sk, 0);
5203         }
5204 out:
5205         return copied_early;
5206 }
5207 #endif /* CONFIG_NET_DMA */
5208
5209 /* Does PAWS and seqno based validation of an incoming segment, flags will
5210  * play significant role here.
5211  */
5212 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5213                               struct tcphdr *th, int syn_inerr)
5214 {
5215         u8 *hash_location;
5216         struct tcp_sock *tp = tcp_sk(sk);
5217
5218         /* RFC1323: H1. Apply PAWS check first. */
5219         if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5220             tp->rx_opt.saw_tstamp &&
5221             tcp_paws_discard(sk, skb)) {
5222                 if (!th->rst) {
5223                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5224                         tcp_send_dupack(sk, skb);
5225                         goto discard;
5226                 }
5227                 /* Reset is accepted even if it did not pass PAWS. */
5228         }
5229
5230         /* Step 1: check sequence number */
5231         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5232                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5233                  * (RST) segments are validated by checking their SEQ-fields."
5234                  * And page 69: "If an incoming segment is not acceptable,
5235                  * an acknowledgment should be sent in reply (unless the RST
5236                  * bit is set, if so drop the segment and return)".
5237                  */
5238                 if (!th->rst)
5239                         tcp_send_dupack(sk, skb);
5240                 goto discard;
5241         }
5242
5243         /* Step 2: check RST bit */
5244         if (th->rst) {
5245                 tcp_reset(sk);
5246                 goto discard;
5247         }
5248
5249         /* ts_recent update must be made after we are sure that the packet
5250          * is in window.
5251          */
5252         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5253
5254         /* step 3: check security and precedence [ignored] */
5255
5256         /* step 4: Check for a SYN in window. */
5257         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5258                 if (syn_inerr)
5259                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5260                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5261                 tcp_reset(sk);
5262                 return -1;
5263         }
5264
5265         return 1;
5266
5267 discard:
5268         __kfree_skb(skb);
5269         return 0;
5270 }
5271
5272 /*
5273  *      TCP receive function for the ESTABLISHED state.
5274  *
5275  *      It is split into a fast path and a slow path. The fast path is
5276  *      disabled when:
5277  *      - A zero window was announced from us - zero window probing
5278  *        is only handled properly in the slow path.
5279  *      - Out of order segments arrived.
5280  *      - Urgent data is expected.
5281  *      - There is no buffer space left
5282  *      - Unexpected TCP flags/window values/header lengths are received
5283  *        (detected by checking the TCP header against pred_flags)
5284  *      - Data is sent in both directions. Fast path only supports pure senders
5285  *        or pure receivers (this means either the sequence number or the ack
5286  *        value must stay constant)
5287  *      - Unexpected TCP option.
5288  *
5289  *      When these conditions are not satisfied it drops into a standard
5290  *      receive procedure patterned after RFC793 to handle all cases.
5291  *      The first three cases are guaranteed by proper pred_flags setting,
5292  *      the rest is checked inline. Fast processing is turned on in
5293  *      tcp_data_queue when everything is OK.
5294  */
5295 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5296                         struct tcphdr *th, unsigned len)
5297 {
5298         struct tcp_sock *tp = tcp_sk(sk);
5299         int res;
5300
5301         /*
5302          *      Header prediction.
5303          *      The code loosely follows the one in the famous
5304          *      "30 instruction TCP receive" Van Jacobson mail.
5305          *
5306          *      Van's trick is to deposit buffers into socket queue
5307          *      on a device interrupt, to call tcp_recv function
5308          *      on the receive process context and checksum and copy
5309          *      the buffer to user space. smart...
5310          *
5311          *      Our current scheme is not silly either but we take the
5312          *      extra cost of the net_bh soft interrupt processing...
5313          *      We do checksum and copy also but from device to kernel.
5314          */
5315
5316         tp->rx_opt.saw_tstamp = 0;
5317
5318         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5319          *      if header_prediction is to be made
5320          *      'S' will always be tp->tcp_header_len >> 2
5321          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5322          *  turn it off (when there are holes in the receive
5323          *       space for instance)
5324          *      PSH flag is ignored.
5325          */
5326
5327         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5328             TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5329             !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5330                 int tcp_header_len = tp->tcp_header_len;
5331
5332                 /* Timestamp header prediction: tcp_header_len
5333                  * is automatically equal to th->doff*4 due to pred_flags
5334                  * match.
5335                  */
5336
5337                 /* Check timestamp */
5338                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5339                         /* No? Slow path! */
5340                         if (!tcp_parse_aligned_timestamp(tp, th))
5341                                 goto slow_path;
5342
5343                         /* If PAWS failed, check it more carefully in slow path */
5344                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5345                                 goto slow_path;
5346
5347                         /* DO NOT update ts_recent here, if checksum fails
5348                          * and timestamp was corrupted part, it will result
5349                          * in a hung connection since we will drop all
5350                          * future packets due to the PAWS test.
5351                          */
5352                 }
5353
5354                 if (len <= tcp_header_len) {
5355                         /* Bulk data transfer: sender */
5356                         if (len == tcp_header_len) {
5357                                 /* Predicted packet is in window by definition.
5358                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5359                                  * Hence, check seq<=rcv_wup reduces to:
5360                                  */
5361                                 if (tcp_header_len ==
5362                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5363                                     tp->rcv_nxt == tp->rcv_wup)
5364                                         tcp_store_ts_recent(tp);
5365
5366                                 /* We know that such packets are checksummed
5367                                  * on entry.
5368                                  */
5369                                 tcp_ack(sk, skb, 0);
5370                                 __kfree_skb(skb);
5371                                 tcp_data_snd_check(sk);
5372                                 return 0;
5373                         } else { /* Header too small */
5374                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5375                                 goto discard;
5376                         }
5377                 } else {
5378                         int eaten = 0;
5379                         int copied_early = 0;
5380
5381                         if (tp->copied_seq == tp->rcv_nxt &&
5382                             len - tcp_header_len <= tp->ucopy.len) {
5383 #ifdef CONFIG_NET_DMA
5384                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5385                                         copied_early = 1;
5386                                         eaten = 1;
5387                                 }
5388 #endif
5389                                 if (tp->ucopy.task == current &&
5390                                     sock_owned_by_user(sk) && !copied_early) {
5391                                         __set_current_state(TASK_RUNNING);
5392
5393                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5394                                                 eaten = 1;
5395                                 }
5396                                 if (eaten) {
5397                                         /* Predicted packet is in window by definition.
5398                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5399                                          * Hence, check seq<=rcv_wup reduces to:
5400                                          */
5401                                         if (tcp_header_len ==
5402                                             (sizeof(struct tcphdr) +
5403                                              TCPOLEN_TSTAMP_ALIGNED) &&
5404                                             tp->rcv_nxt == tp->rcv_wup)
5405                                                 tcp_store_ts_recent(tp);
5406
5407                                         tcp_rcv_rtt_measure_ts(sk, skb);
5408
5409                                         __skb_pull(skb, tcp_header_len);
5410                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5411                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5412                                 }
5413                                 if (copied_early)
5414                                         tcp_cleanup_rbuf(sk, skb->len);
5415                         }
5416                         if (!eaten) {
5417                                 if (tcp_checksum_complete_user(sk, skb))
5418                                         goto csum_error;
5419
5420                                 /* Predicted packet is in window by definition.
5421                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5422                                  * Hence, check seq<=rcv_wup reduces to:
5423                                  */
5424                                 if (tcp_header_len ==
5425                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5426                                     tp->rcv_nxt == tp->rcv_wup)
5427                                         tcp_store_ts_recent(tp);
5428
5429                                 tcp_rcv_rtt_measure_ts(sk, skb);
5430
5431                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5432                                         goto step5;
5433
5434                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5435
5436                                 /* Bulk data transfer: receiver */
5437                                 __skb_pull(skb, tcp_header_len);
5438                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5439                                 skb_set_owner_r(skb, sk);
5440                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5441                         }
5442
5443                         tcp_event_data_recv(sk, skb);
5444
5445                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5446                                 /* Well, only one small jumplet in fast path... */
5447                                 tcp_ack(sk, skb, FLAG_DATA);
5448                                 tcp_data_snd_check(sk);
5449                                 if (!inet_csk_ack_scheduled(sk))
5450                                         goto no_ack;
5451                         }
5452
5453                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5454                                 __tcp_ack_snd_check(sk, 0);
5455 no_ack:
5456 #ifdef CONFIG_NET_DMA
5457                         if (copied_early)
5458                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5459                         else
5460 #endif
5461                         if (eaten)
5462                                 __kfree_skb(skb);
5463                         else
5464                                 sk->sk_data_ready(sk, 0);
5465                         return 0;
5466                 }
5467         }
5468
5469 slow_path:
5470         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5471                 goto csum_error;
5472
5473         /*
5474          *      Standard slow path.
5475          */
5476
5477         res = tcp_validate_incoming(sk, skb, th, 1);
5478         if (res <= 0)
5479                 return -res;
5480
5481 step5:
5482         if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5483                 goto discard;
5484
5485         tcp_rcv_rtt_measure_ts(sk, skb);
5486
5487         /* Process urgent data. */
5488         tcp_urg(sk, skb, th);
5489
5490         /* step 7: process the segment text */
5491         tcp_data_queue(sk, skb);
5492
5493         tcp_data_snd_check(sk);
5494         tcp_ack_snd_check(sk);
5495         return 0;
5496
5497 csum_error:
5498         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5499
5500 discard:
5501         __kfree_skb(skb);
5502         return 0;
5503 }
5504 EXPORT_SYMBOL(tcp_rcv_established);
5505
5506 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5507                                          struct tcphdr *th, unsigned len)
5508 {
5509         u8 *hash_location;
5510         struct inet_connection_sock *icsk = inet_csk(sk);
5511         struct tcp_sock *tp = tcp_sk(sk);
5512         struct tcp_cookie_values *cvp = tp->cookie_values;
5513         int saved_clamp = tp->rx_opt.mss_clamp;
5514
5515         tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5516
5517         if (th->ack) {
5518                 /* rfc793:
5519                  * "If the state is SYN-SENT then
5520                  *    first check the ACK bit
5521                  *      If the ACK bit is set
5522                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5523                  *        a reset (unless the RST bit is set, if so drop
5524                  *        the segment and return)"
5525                  *
5526                  *  We do not send data with SYN, so that RFC-correct
5527                  *  test reduces to:
5528                  */
5529                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5530                         goto reset_and_undo;
5531
5532                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5533                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5534                              tcp_time_stamp)) {
5535                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5536                         goto reset_and_undo;
5537                 }
5538
5539                 /* Now ACK is acceptable.
5540                  *
5541                  * "If the RST bit is set
5542                  *    If the ACK was acceptable then signal the user "error:
5543                  *    connection reset", drop the segment, enter CLOSED state,
5544                  *    delete TCB, and return."
5545                  */
5546
5547                 if (th->rst) {
5548                         tcp_reset(sk);
5549                         goto discard;
5550                 }
5551
5552                 /* rfc793:
5553                  *   "fifth, if neither of the SYN or RST bits is set then
5554                  *    drop the segment and return."
5555                  *
5556                  *    See note below!
5557                  *                                        --ANK(990513)
5558                  */
5559                 if (!th->syn)
5560                         goto discard_and_undo;
5561
5562                 /* rfc793:
5563                  *   "If the SYN bit is on ...
5564                  *    are acceptable then ...
5565                  *    (our SYN has been ACKed), change the connection
5566                  *    state to ESTABLISHED..."
5567                  */
5568
5569                 TCP_ECN_rcv_synack(tp, th);
5570
5571                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5572                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5573
5574                 /* Ok.. it's good. Set up sequence numbers and
5575                  * move to established.
5576                  */
5577                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5578                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5579
5580                 /* RFC1323: The window in SYN & SYN/ACK segments is
5581                  * never scaled.
5582                  */
5583                 tp->snd_wnd = ntohs(th->window);
5584                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5585
5586                 if (!tp->rx_opt.wscale_ok) {
5587                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5588                         tp->window_clamp = min(tp->window_clamp, 65535U);
5589                 }
5590
5591                 if (tp->rx_opt.saw_tstamp) {
5592                         tp->rx_opt.tstamp_ok       = 1;
5593                         tp->tcp_header_len =
5594                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5595                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5596                         tcp_store_ts_recent(tp);
5597                 } else {
5598                         tp->tcp_header_len = sizeof(struct tcphdr);
5599                 }
5600
5601                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5602                         tcp_enable_fack(tp);
5603
5604                 tcp_mtup_init(sk);
5605                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5606                 tcp_initialize_rcv_mss(sk);
5607
5608                 /* Remember, tcp_poll() does not lock socket!
5609                  * Change state from SYN-SENT only after copied_seq
5610                  * is initialized. */
5611                 tp->copied_seq = tp->rcv_nxt;
5612
5613                 if (cvp != NULL &&
5614                     cvp->cookie_pair_size > 0 &&
5615                     tp->rx_opt.cookie_plus > 0) {
5616                         int cookie_size = tp->rx_opt.cookie_plus
5617                                         - TCPOLEN_COOKIE_BASE;
5618                         int cookie_pair_size = cookie_size
5619                                              + cvp->cookie_desired;
5620
5621                         /* A cookie extension option was sent and returned.
5622                          * Note that each incoming SYNACK replaces the
5623                          * Responder cookie.  The initial exchange is most
5624                          * fragile, as protection against spoofing relies
5625                          * entirely upon the sequence and timestamp (above).
5626                          * This replacement strategy allows the correct pair to
5627                          * pass through, while any others will be filtered via
5628                          * Responder verification later.
5629                          */
5630                         if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5631                                 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5632                                        hash_location, cookie_size);
5633                                 cvp->cookie_pair_size = cookie_pair_size;
5634                         }
5635                 }
5636
5637                 smp_mb();
5638                 tcp_set_state(sk, TCP_ESTABLISHED);
5639
5640                 security_inet_conn_established(sk, skb);
5641
5642                 /* Make sure socket is routed, for correct metrics.  */
5643                 icsk->icsk_af_ops->rebuild_header(sk);
5644
5645                 tcp_init_metrics(sk);
5646
5647                 tcp_init_congestion_control(sk);
5648
5649                 /* Prevent spurious tcp_cwnd_restart() on first data
5650                  * packet.
5651                  */
5652                 tp->lsndtime = tcp_time_stamp;
5653
5654                 tcp_init_buffer_space(sk);
5655
5656                 if (sock_flag(sk, SOCK_KEEPOPEN))
5657                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5658
5659                 if (!tp->rx_opt.snd_wscale)
5660                         __tcp_fast_path_on(tp, tp->snd_wnd);
5661                 else
5662                         tp->pred_flags = 0;
5663
5664                 if (!sock_flag(sk, SOCK_DEAD)) {
5665                         sk->sk_state_change(sk);
5666                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5667                 }
5668
5669                 if (sk->sk_write_pending ||
5670                     icsk->icsk_accept_queue.rskq_defer_accept ||
5671                     icsk->icsk_ack.pingpong) {
5672                         /* Save one ACK. Data will be ready after
5673                          * several ticks, if write_pending is set.
5674                          *
5675                          * It may be deleted, but with this feature tcpdumps
5676                          * look so _wonderfully_ clever, that I was not able
5677                          * to stand against the temptation 8)     --ANK
5678                          */
5679                         inet_csk_schedule_ack(sk);
5680                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5681                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5682                         tcp_incr_quickack(sk);
5683                         tcp_enter_quickack_mode(sk);
5684                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5685                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5686
5687 discard:
5688                         __kfree_skb(skb);
5689                         return 0;
5690                 } else {
5691                         tcp_send_ack(sk);
5692                 }
5693                 return -1;
5694         }
5695
5696         /* No ACK in the segment */
5697
5698         if (th->rst) {
5699                 /* rfc793:
5700                  * "If the RST bit is set
5701                  *
5702                  *      Otherwise (no ACK) drop the segment and return."
5703                  */
5704
5705                 goto discard_and_undo;
5706         }
5707
5708         /* PAWS check. */
5709         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5710             tcp_paws_reject(&tp->rx_opt, 0))
5711                 goto discard_and_undo;
5712
5713         if (th->syn) {
5714                 /* We see SYN without ACK. It is attempt of
5715                  * simultaneous connect with crossed SYNs.
5716                  * Particularly, it can be connect to self.
5717                  */
5718                 tcp_set_state(sk, TCP_SYN_RECV);
5719
5720                 if (tp->rx_opt.saw_tstamp) {
5721                         tp->rx_opt.tstamp_ok = 1;
5722                         tcp_store_ts_recent(tp);
5723                         tp->tcp_header_len =
5724                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5725                 } else {
5726                         tp->tcp_header_len = sizeof(struct tcphdr);
5727                 }
5728
5729                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5730                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5731
5732                 /* RFC1323: The window in SYN & SYN/ACK segments is
5733                  * never scaled.
5734                  */
5735                 tp->snd_wnd    = ntohs(th->window);
5736                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5737                 tp->max_window = tp->snd_wnd;
5738
5739                 TCP_ECN_rcv_syn(tp, th);
5740
5741                 tcp_mtup_init(sk);
5742                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5743                 tcp_initialize_rcv_mss(sk);
5744
5745                 tcp_send_synack(sk);
5746 #if 0
5747                 /* Note, we could accept data and URG from this segment.
5748                  * There are no obstacles to make this.
5749                  *
5750                  * However, if we ignore data in ACKless segments sometimes,
5751                  * we have no reasons to accept it sometimes.
5752                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5753                  * is not flawless. So, discard packet for sanity.
5754                  * Uncomment this return to process the data.
5755                  */
5756                 return -1;
5757 #else
5758                 goto discard;
5759 #endif
5760         }
5761         /* "fifth, if neither of the SYN or RST bits is set then
5762          * drop the segment and return."
5763          */
5764
5765 discard_and_undo:
5766         tcp_clear_options(&tp->rx_opt);
5767         tp->rx_opt.mss_clamp = saved_clamp;
5768         goto discard;
5769
5770 reset_and_undo:
5771         tcp_clear_options(&tp->rx_opt);
5772         tp->rx_opt.mss_clamp = saved_clamp;
5773         return 1;
5774 }
5775
5776 /*
5777  *      This function implements the receiving procedure of RFC 793 for
5778  *      all states except ESTABLISHED and TIME_WAIT.
5779  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5780  *      address independent.
5781  */
5782
5783 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5784                           struct tcphdr *th, unsigned len)
5785 {
5786         struct tcp_sock *tp = tcp_sk(sk);
5787         struct inet_connection_sock *icsk = inet_csk(sk);
5788         int queued = 0;
5789         int res;
5790
5791         tp->rx_opt.saw_tstamp = 0;
5792
5793         switch (sk->sk_state) {
5794         case TCP_CLOSE:
5795                 goto discard;
5796
5797         case TCP_LISTEN:
5798                 if (th->ack)
5799                         return 1;
5800
5801                 if (th->rst)
5802                         goto discard;
5803
5804                 if (th->syn) {
5805                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5806                                 return 1;
5807
5808                         /* Now we have several options: In theory there is
5809                          * nothing else in the frame. KA9Q has an option to
5810                          * send data with the syn, BSD accepts data with the
5811                          * syn up to the [to be] advertised window and
5812                          * Solaris 2.1 gives you a protocol error. For now
5813                          * we just ignore it, that fits the spec precisely
5814                          * and avoids incompatibilities. It would be nice in
5815                          * future to drop through and process the data.
5816                          *
5817                          * Now that TTCP is starting to be used we ought to
5818                          * queue this data.
5819                          * But, this leaves one open to an easy denial of
5820                          * service attack, and SYN cookies can't defend
5821                          * against this problem. So, we drop the data
5822                          * in the interest of security over speed unless
5823                          * it's still in use.
5824                          */
5825                         kfree_skb(skb);
5826                         return 0;
5827                 }
5828                 goto discard;
5829
5830         case TCP_SYN_SENT:
5831                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5832                 if (queued >= 0)
5833                         return queued;
5834
5835                 /* Do step6 onward by hand. */
5836                 tcp_urg(sk, skb, th);
5837                 __kfree_skb(skb);
5838                 tcp_data_snd_check(sk);
5839                 return 0;
5840         }
5841
5842         res = tcp_validate_incoming(sk, skb, th, 0);
5843         if (res <= 0)
5844                 return -res;
5845
5846         /* step 5: check the ACK field */
5847         if (th->ack) {
5848                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5849
5850                 switch (sk->sk_state) {
5851                 case TCP_SYN_RECV:
5852                         if (acceptable) {
5853                                 tp->copied_seq = tp->rcv_nxt;
5854                                 smp_mb();
5855                                 tcp_set_state(sk, TCP_ESTABLISHED);
5856                                 sk->sk_state_change(sk);
5857
5858                                 /* Note, that this wakeup is only for marginal
5859                                  * crossed SYN case. Passively open sockets
5860                                  * are not waked up, because sk->sk_sleep ==
5861                                  * NULL and sk->sk_socket == NULL.
5862                                  */
5863                                 if (sk->sk_socket)
5864                                         sk_wake_async(sk,
5865                                                       SOCK_WAKE_IO, POLL_OUT);
5866
5867                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5868                                 tp->snd_wnd = ntohs(th->window) <<
5869                                               tp->rx_opt.snd_wscale;
5870                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5871
5872                                 if (tp->rx_opt.tstamp_ok)
5873                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5874
5875                                 /* Make sure socket is routed, for
5876                                  * correct metrics.
5877                                  */
5878                                 icsk->icsk_af_ops->rebuild_header(sk);
5879
5880                                 tcp_init_metrics(sk);
5881
5882                                 tcp_init_congestion_control(sk);
5883
5884                                 /* Prevent spurious tcp_cwnd_restart() on
5885                                  * first data packet.
5886                                  */
5887                                 tp->lsndtime = tcp_time_stamp;
5888
5889                                 tcp_mtup_init(sk);
5890                                 tcp_initialize_rcv_mss(sk);
5891                                 tcp_init_buffer_space(sk);
5892                                 tcp_fast_path_on(tp);
5893                         } else {
5894                                 return 1;
5895                         }
5896                         break;
5897
5898                 case TCP_FIN_WAIT1:
5899                         if (tp->snd_una == tp->write_seq) {
5900                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5901                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5902                                 dst_confirm(__sk_dst_get(sk));
5903
5904                                 if (!sock_flag(sk, SOCK_DEAD))
5905                                         /* Wake up lingering close() */
5906                                         sk->sk_state_change(sk);
5907                                 else {
5908                                         int tmo;
5909
5910                                         if (tp->linger2 < 0 ||
5911                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5912                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5913                                                 tcp_done(sk);
5914                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5915                                                 return 1;
5916                                         }
5917
5918                                         tmo = tcp_fin_time(sk);
5919                                         if (tmo > TCP_TIMEWAIT_LEN) {
5920                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5921                                         } else if (th->fin || sock_owned_by_user(sk)) {
5922                                                 /* Bad case. We could lose such FIN otherwise.
5923                                                  * It is not a big problem, but it looks confusing
5924                                                  * and not so rare event. We still can lose it now,
5925                                                  * if it spins in bh_lock_sock(), but it is really
5926                                                  * marginal case.
5927                                                  */
5928                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5929                                         } else {
5930                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5931                                                 goto discard;
5932                                         }
5933                                 }
5934                         }
5935                         break;
5936
5937                 case TCP_CLOSING:
5938                         if (tp->snd_una == tp->write_seq) {
5939                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5940                                 goto discard;
5941                         }
5942                         break;
5943
5944                 case TCP_LAST_ACK:
5945                         if (tp->snd_una == tp->write_seq) {
5946                                 tcp_update_metrics(sk);
5947                                 tcp_done(sk);
5948                                 goto discard;
5949                         }
5950                         break;
5951                 }
5952         } else
5953                 goto discard;
5954
5955         /* step 6: check the URG bit */
5956         tcp_urg(sk, skb, th);
5957
5958         /* step 7: process the segment text */
5959         switch (sk->sk_state) {
5960         case TCP_CLOSE_WAIT:
5961         case TCP_CLOSING:
5962         case TCP_LAST_ACK:
5963                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5964                         break;
5965         case TCP_FIN_WAIT1:
5966         case TCP_FIN_WAIT2:
5967                 /* RFC 793 says to queue data in these states,
5968                  * RFC 1122 says we MUST send a reset.
5969                  * BSD 4.4 also does reset.
5970                  */
5971                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5972                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5973                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5974                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5975                                 tcp_reset(sk);
5976                                 return 1;
5977                         }
5978                 }
5979                 /* Fall through */
5980         case TCP_ESTABLISHED:
5981                 tcp_data_queue(sk, skb);
5982                 queued = 1;
5983                 break;
5984         }
5985
5986         /* tcp_data could move socket to TIME-WAIT */
5987         if (sk->sk_state != TCP_CLOSE) {
5988                 tcp_data_snd_check(sk);
5989                 tcp_ack_snd_check(sk);
5990         }
5991
5992         if (!queued) {
5993 discard:
5994                 __kfree_skb(skb);
5995         }
5996         return 0;
5997 }
5998 EXPORT_SYMBOL(tcp_rcv_state_process);