libceph: ceph-msgr workqueue needs a resque worker
[pandora-kernel.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24  * Ceph uses the messenger to exchange ceph_msg messages with other
25  * hosts in the system.  The messenger provides ordered and reliable
26  * delivery.  We tolerate TCP disconnects by reconnecting (with
27  * exponential backoff) in the case of a fault (disconnection, bad
28  * crc, protocol error).  Acks allow sent messages to be discarded by
29  * the sender.
30  */
31
32 /* static tag bytes (protocol control messages) */
33 static char tag_msg = CEPH_MSGR_TAG_MSG;
34 static char tag_ack = CEPH_MSGR_TAG_ACK;
35 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
36
37 #ifdef CONFIG_LOCKDEP
38 static struct lock_class_key socket_class;
39 #endif
40
41
42 static void queue_con(struct ceph_connection *con);
43 static void con_work(struct work_struct *);
44 static void ceph_fault(struct ceph_connection *con);
45
46 /*
47  * nicely render a sockaddr as a string.
48  */
49 #define MAX_ADDR_STR 20
50 #define MAX_ADDR_STR_LEN 60
51 static char addr_str[MAX_ADDR_STR][MAX_ADDR_STR_LEN];
52 static DEFINE_SPINLOCK(addr_str_lock);
53 static int last_addr_str;
54
55 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
56 {
57         int i;
58         char *s;
59         struct sockaddr_in *in4 = (void *)ss;
60         struct sockaddr_in6 *in6 = (void *)ss;
61
62         spin_lock(&addr_str_lock);
63         i = last_addr_str++;
64         if (last_addr_str == MAX_ADDR_STR)
65                 last_addr_str = 0;
66         spin_unlock(&addr_str_lock);
67         s = addr_str[i];
68
69         switch (ss->ss_family) {
70         case AF_INET:
71                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%u", &in4->sin_addr,
72                          (unsigned int)ntohs(in4->sin_port));
73                 break;
74
75         case AF_INET6:
76                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%u", &in6->sin6_addr,
77                          (unsigned int)ntohs(in6->sin6_port));
78                 break;
79
80         default:
81                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %d)",
82                          (int)ss->ss_family);
83         }
84
85         return s;
86 }
87 EXPORT_SYMBOL(ceph_pr_addr);
88
89 static void encode_my_addr(struct ceph_messenger *msgr)
90 {
91         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
92         ceph_encode_addr(&msgr->my_enc_addr);
93 }
94
95 /*
96  * work queue for all reading and writing to/from the socket.
97  */
98 struct workqueue_struct *ceph_msgr_wq;
99
100 int ceph_msgr_init(void)
101 {
102         /*
103          * The number of active work items is limited by the number of
104          * connections, so leave @max_active at default.
105          */
106         ceph_msgr_wq = alloc_workqueue("ceph-msgr",
107                                        WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
108         if (!ceph_msgr_wq) {
109                 pr_err("msgr_init failed to create workqueue\n");
110                 return -ENOMEM;
111         }
112         return 0;
113 }
114 EXPORT_SYMBOL(ceph_msgr_init);
115
116 void ceph_msgr_exit(void)
117 {
118         destroy_workqueue(ceph_msgr_wq);
119 }
120 EXPORT_SYMBOL(ceph_msgr_exit);
121
122 void ceph_msgr_flush(void)
123 {
124         flush_workqueue(ceph_msgr_wq);
125 }
126 EXPORT_SYMBOL(ceph_msgr_flush);
127
128
129 /*
130  * socket callback functions
131  */
132
133 /* data available on socket, or listen socket received a connect */
134 static void ceph_data_ready(struct sock *sk, int count_unused)
135 {
136         struct ceph_connection *con =
137                 (struct ceph_connection *)sk->sk_user_data;
138         if (sk->sk_state != TCP_CLOSE_WAIT) {
139                 dout("ceph_data_ready on %p state = %lu, queueing work\n",
140                      con, con->state);
141                 queue_con(con);
142         }
143 }
144
145 /* socket has buffer space for writing */
146 static void ceph_write_space(struct sock *sk)
147 {
148         struct ceph_connection *con =
149                 (struct ceph_connection *)sk->sk_user_data;
150
151         /* only queue to workqueue if there is data we want to write. */
152         if (test_bit(WRITE_PENDING, &con->state)) {
153                 dout("ceph_write_space %p queueing write work\n", con);
154                 queue_con(con);
155         } else {
156                 dout("ceph_write_space %p nothing to write\n", con);
157         }
158
159         /* since we have our own write_space, clear the SOCK_NOSPACE flag */
160         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
161 }
162
163 /* socket's state has changed */
164 static void ceph_state_change(struct sock *sk)
165 {
166         struct ceph_connection *con =
167                 (struct ceph_connection *)sk->sk_user_data;
168
169         dout("ceph_state_change %p state = %lu sk_state = %u\n",
170              con, con->state, sk->sk_state);
171
172         if (test_bit(CLOSED, &con->state))
173                 return;
174
175         switch (sk->sk_state) {
176         case TCP_CLOSE:
177                 dout("ceph_state_change TCP_CLOSE\n");
178         case TCP_CLOSE_WAIT:
179                 dout("ceph_state_change TCP_CLOSE_WAIT\n");
180                 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
181                         if (test_bit(CONNECTING, &con->state))
182                                 con->error_msg = "connection failed";
183                         else
184                                 con->error_msg = "socket closed";
185                         queue_con(con);
186                 }
187                 break;
188         case TCP_ESTABLISHED:
189                 dout("ceph_state_change TCP_ESTABLISHED\n");
190                 queue_con(con);
191                 break;
192         }
193 }
194
195 /*
196  * set up socket callbacks
197  */
198 static void set_sock_callbacks(struct socket *sock,
199                                struct ceph_connection *con)
200 {
201         struct sock *sk = sock->sk;
202         sk->sk_user_data = (void *)con;
203         sk->sk_data_ready = ceph_data_ready;
204         sk->sk_write_space = ceph_write_space;
205         sk->sk_state_change = ceph_state_change;
206 }
207
208
209 /*
210  * socket helpers
211  */
212
213 /*
214  * initiate connection to a remote socket.
215  */
216 static struct socket *ceph_tcp_connect(struct ceph_connection *con)
217 {
218         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
219         struct socket *sock;
220         int ret;
221
222         BUG_ON(con->sock);
223         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
224                                IPPROTO_TCP, &sock);
225         if (ret)
226                 return ERR_PTR(ret);
227         con->sock = sock;
228         sock->sk->sk_allocation = GFP_NOFS;
229
230 #ifdef CONFIG_LOCKDEP
231         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
232 #endif
233
234         set_sock_callbacks(sock, con);
235
236         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
237
238         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
239                                  O_NONBLOCK);
240         if (ret == -EINPROGRESS) {
241                 dout("connect %s EINPROGRESS sk_state = %u\n",
242                      ceph_pr_addr(&con->peer_addr.in_addr),
243                      sock->sk->sk_state);
244                 ret = 0;
245         }
246         if (ret < 0) {
247                 pr_err("connect %s error %d\n",
248                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
249                 sock_release(sock);
250                 con->sock = NULL;
251                 con->error_msg = "connect error";
252         }
253
254         if (ret < 0)
255                 return ERR_PTR(ret);
256         return sock;
257 }
258
259 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
260 {
261         struct kvec iov = {buf, len};
262         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
263         int r;
264
265         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
266         if (r == -EAGAIN)
267                 r = 0;
268         return r;
269 }
270
271 /*
272  * write something.  @more is true if caller will be sending more data
273  * shortly.
274  */
275 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
276                      size_t kvlen, size_t len, int more)
277 {
278         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
279         int r;
280
281         if (more)
282                 msg.msg_flags |= MSG_MORE;
283         else
284                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
285
286         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
287         if (r == -EAGAIN)
288                 r = 0;
289         return r;
290 }
291
292 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
293                      int offset, size_t size, bool more)
294 {
295         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
296         int ret;
297
298         ret = kernel_sendpage(sock, page, offset, size, flags);
299         if (ret == -EAGAIN)
300                 ret = 0;
301
302         return ret;
303 }
304
305 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
306                      int offset, size_t size, bool more)
307 {
308         int ret;
309         struct kvec iov;
310
311         /* sendpage cannot properly handle pages with page_count == 0,
312          * we need to fallback to sendmsg if that's the case */
313         if (page_count(page) >= 1)
314                 return __ceph_tcp_sendpage(sock, page, offset, size, more);
315
316         iov.iov_base = kmap(page) + offset;
317         iov.iov_len = size;
318         ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
319         kunmap(page);
320
321         return ret;
322 }
323
324 /*
325  * Shutdown/close the socket for the given connection.
326  */
327 static int con_close_socket(struct ceph_connection *con)
328 {
329         int rc;
330
331         dout("con_close_socket on %p sock %p\n", con, con->sock);
332         if (!con->sock)
333                 return 0;
334         set_bit(SOCK_CLOSED, &con->state);
335         rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
336         sock_release(con->sock);
337         con->sock = NULL;
338         clear_bit(SOCK_CLOSED, &con->state);
339         return rc;
340 }
341
342 /*
343  * Reset a connection.  Discard all incoming and outgoing messages
344  * and clear *_seq state.
345  */
346 static void ceph_msg_remove(struct ceph_msg *msg)
347 {
348         list_del_init(&msg->list_head);
349         ceph_msg_put(msg);
350 }
351 static void ceph_msg_remove_list(struct list_head *head)
352 {
353         while (!list_empty(head)) {
354                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
355                                                         list_head);
356                 ceph_msg_remove(msg);
357         }
358 }
359
360 static void reset_connection(struct ceph_connection *con)
361 {
362         /* reset connection, out_queue, msg_ and connect_seq */
363         /* discard existing out_queue and msg_seq */
364         ceph_msg_remove_list(&con->out_queue);
365         ceph_msg_remove_list(&con->out_sent);
366
367         if (con->in_msg) {
368                 ceph_msg_put(con->in_msg);
369                 con->in_msg = NULL;
370         }
371
372         con->connect_seq = 0;
373         con->out_seq = 0;
374         if (con->out_msg) {
375                 ceph_msg_put(con->out_msg);
376                 con->out_msg = NULL;
377         }
378         con->in_seq = 0;
379         con->in_seq_acked = 0;
380 }
381
382 /*
383  * mark a peer down.  drop any open connections.
384  */
385 void ceph_con_close(struct ceph_connection *con)
386 {
387         dout("con_close %p peer %s\n", con,
388              ceph_pr_addr(&con->peer_addr.in_addr));
389         set_bit(CLOSED, &con->state);  /* in case there's queued work */
390         clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
391         clear_bit(LOSSYTX, &con->state);  /* so we retry next connect */
392         clear_bit(KEEPALIVE_PENDING, &con->state);
393         clear_bit(WRITE_PENDING, &con->state);
394         mutex_lock(&con->mutex);
395         reset_connection(con);
396         con->peer_global_seq = 0;
397         cancel_delayed_work(&con->work);
398         mutex_unlock(&con->mutex);
399         queue_con(con);
400 }
401 EXPORT_SYMBOL(ceph_con_close);
402
403 /*
404  * Reopen a closed connection, with a new peer address.
405  */
406 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
407 {
408         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
409         set_bit(OPENING, &con->state);
410         clear_bit(CLOSED, &con->state);
411         memcpy(&con->peer_addr, addr, sizeof(*addr));
412         con->delay = 0;      /* reset backoff memory */
413         queue_con(con);
414 }
415 EXPORT_SYMBOL(ceph_con_open);
416
417 /*
418  * return true if this connection ever successfully opened
419  */
420 bool ceph_con_opened(struct ceph_connection *con)
421 {
422         return con->connect_seq > 0;
423 }
424
425 /*
426  * generic get/put
427  */
428 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
429 {
430         dout("con_get %p nref = %d -> %d\n", con,
431              atomic_read(&con->nref), atomic_read(&con->nref) + 1);
432         if (atomic_inc_not_zero(&con->nref))
433                 return con;
434         return NULL;
435 }
436
437 void ceph_con_put(struct ceph_connection *con)
438 {
439         dout("con_put %p nref = %d -> %d\n", con,
440              atomic_read(&con->nref), atomic_read(&con->nref) - 1);
441         BUG_ON(atomic_read(&con->nref) == 0);
442         if (atomic_dec_and_test(&con->nref)) {
443                 BUG_ON(con->sock);
444                 kfree(con);
445         }
446 }
447
448 /*
449  * initialize a new connection.
450  */
451 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
452 {
453         dout("con_init %p\n", con);
454         memset(con, 0, sizeof(*con));
455         atomic_set(&con->nref, 1);
456         con->msgr = msgr;
457         mutex_init(&con->mutex);
458         INIT_LIST_HEAD(&con->out_queue);
459         INIT_LIST_HEAD(&con->out_sent);
460         INIT_DELAYED_WORK(&con->work, con_work);
461 }
462 EXPORT_SYMBOL(ceph_con_init);
463
464
465 /*
466  * We maintain a global counter to order connection attempts.  Get
467  * a unique seq greater than @gt.
468  */
469 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
470 {
471         u32 ret;
472
473         spin_lock(&msgr->global_seq_lock);
474         if (msgr->global_seq < gt)
475                 msgr->global_seq = gt;
476         ret = ++msgr->global_seq;
477         spin_unlock(&msgr->global_seq_lock);
478         return ret;
479 }
480
481
482 /*
483  * Prepare footer for currently outgoing message, and finish things
484  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
485  */
486 static void prepare_write_message_footer(struct ceph_connection *con, int v)
487 {
488         struct ceph_msg *m = con->out_msg;
489
490         dout("prepare_write_message_footer %p\n", con);
491         con->out_kvec_is_msg = true;
492         con->out_kvec[v].iov_base = &m->footer;
493         con->out_kvec[v].iov_len = sizeof(m->footer);
494         con->out_kvec_bytes += sizeof(m->footer);
495         con->out_kvec_left++;
496         con->out_more = m->more_to_follow;
497         con->out_msg_done = true;
498 }
499
500 /*
501  * Prepare headers for the next outgoing message.
502  */
503 static void prepare_write_message(struct ceph_connection *con)
504 {
505         struct ceph_msg *m;
506         int v = 0;
507
508         con->out_kvec_bytes = 0;
509         con->out_kvec_is_msg = true;
510         con->out_msg_done = false;
511
512         /* Sneak an ack in there first?  If we can get it into the same
513          * TCP packet that's a good thing. */
514         if (con->in_seq > con->in_seq_acked) {
515                 con->in_seq_acked = con->in_seq;
516                 con->out_kvec[v].iov_base = &tag_ack;
517                 con->out_kvec[v++].iov_len = 1;
518                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
519                 con->out_kvec[v].iov_base = &con->out_temp_ack;
520                 con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
521                 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
522         }
523
524         m = list_first_entry(&con->out_queue,
525                        struct ceph_msg, list_head);
526         con->out_msg = m;
527
528         /* put message on sent list */
529         ceph_msg_get(m);
530         list_move_tail(&m->list_head, &con->out_sent);
531
532         /*
533          * only assign outgoing seq # if we haven't sent this message
534          * yet.  if it is requeued, resend with it's original seq.
535          */
536         if (m->needs_out_seq) {
537                 m->hdr.seq = cpu_to_le64(++con->out_seq);
538                 m->needs_out_seq = false;
539         }
540
541         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
542              m, con->out_seq, le16_to_cpu(m->hdr.type),
543              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
544              le32_to_cpu(m->hdr.data_len),
545              m->nr_pages);
546         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
547
548         /* tag + hdr + front + middle */
549         con->out_kvec[v].iov_base = &tag_msg;
550         con->out_kvec[v++].iov_len = 1;
551         con->out_kvec[v].iov_base = &m->hdr;
552         con->out_kvec[v++].iov_len = sizeof(m->hdr);
553         con->out_kvec[v++] = m->front;
554         if (m->middle)
555                 con->out_kvec[v++] = m->middle->vec;
556         con->out_kvec_left = v;
557         con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
558                 (m->middle ? m->middle->vec.iov_len : 0);
559         con->out_kvec_cur = con->out_kvec;
560
561         /* fill in crc (except data pages), footer */
562         con->out_msg->hdr.crc =
563                 cpu_to_le32(crc32c(0, (void *)&m->hdr,
564                                       sizeof(m->hdr) - sizeof(m->hdr.crc)));
565         con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
566         con->out_msg->footer.front_crc =
567                 cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
568         if (m->middle)
569                 con->out_msg->footer.middle_crc =
570                         cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
571                                            m->middle->vec.iov_len));
572         else
573                 con->out_msg->footer.middle_crc = 0;
574         con->out_msg->footer.data_crc = 0;
575         dout("prepare_write_message front_crc %u data_crc %u\n",
576              le32_to_cpu(con->out_msg->footer.front_crc),
577              le32_to_cpu(con->out_msg->footer.middle_crc));
578
579         /* is there a data payload? */
580         if (le32_to_cpu(m->hdr.data_len) > 0) {
581                 /* initialize page iterator */
582                 con->out_msg_pos.page = 0;
583                 if (m->pages)
584                         con->out_msg_pos.page_pos = m->page_alignment;
585                 else
586                         con->out_msg_pos.page_pos = 0;
587                 con->out_msg_pos.data_pos = 0;
588                 con->out_msg_pos.did_page_crc = 0;
589                 con->out_more = 1;  /* data + footer will follow */
590         } else {
591                 /* no, queue up footer too and be done */
592                 prepare_write_message_footer(con, v);
593         }
594
595         set_bit(WRITE_PENDING, &con->state);
596 }
597
598 /*
599  * Prepare an ack.
600  */
601 static void prepare_write_ack(struct ceph_connection *con)
602 {
603         dout("prepare_write_ack %p %llu -> %llu\n", con,
604              con->in_seq_acked, con->in_seq);
605         con->in_seq_acked = con->in_seq;
606
607         con->out_kvec[0].iov_base = &tag_ack;
608         con->out_kvec[0].iov_len = 1;
609         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
610         con->out_kvec[1].iov_base = &con->out_temp_ack;
611         con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
612         con->out_kvec_left = 2;
613         con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
614         con->out_kvec_cur = con->out_kvec;
615         con->out_more = 1;  /* more will follow.. eventually.. */
616         set_bit(WRITE_PENDING, &con->state);
617 }
618
619 /*
620  * Prepare to write keepalive byte.
621  */
622 static void prepare_write_keepalive(struct ceph_connection *con)
623 {
624         dout("prepare_write_keepalive %p\n", con);
625         con->out_kvec[0].iov_base = &tag_keepalive;
626         con->out_kvec[0].iov_len = 1;
627         con->out_kvec_left = 1;
628         con->out_kvec_bytes = 1;
629         con->out_kvec_cur = con->out_kvec;
630         set_bit(WRITE_PENDING, &con->state);
631 }
632
633 /*
634  * Connection negotiation.
635  */
636
637 static int prepare_connect_authorizer(struct ceph_connection *con)
638 {
639         void *auth_buf;
640         int auth_len = 0;
641         int auth_protocol = 0;
642
643         mutex_unlock(&con->mutex);
644         if (con->ops->get_authorizer)
645                 con->ops->get_authorizer(con, &auth_buf, &auth_len,
646                                          &auth_protocol, &con->auth_reply_buf,
647                                          &con->auth_reply_buf_len,
648                                          con->auth_retry);
649         mutex_lock(&con->mutex);
650
651         if (test_bit(CLOSED, &con->state) ||
652             test_bit(OPENING, &con->state))
653                 return -EAGAIN;
654
655         con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
656         con->out_connect.authorizer_len = cpu_to_le32(auth_len);
657
658         if (auth_len) {
659                 con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
660                 con->out_kvec[con->out_kvec_left].iov_len = auth_len;
661                 con->out_kvec_left++;
662                 con->out_kvec_bytes += auth_len;
663         }
664         return 0;
665 }
666
667 /*
668  * We connected to a peer and are saying hello.
669  */
670 static void prepare_write_banner(struct ceph_messenger *msgr,
671                                  struct ceph_connection *con)
672 {
673         int len = strlen(CEPH_BANNER);
674
675         con->out_kvec[0].iov_base = CEPH_BANNER;
676         con->out_kvec[0].iov_len = len;
677         con->out_kvec[1].iov_base = &msgr->my_enc_addr;
678         con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
679         con->out_kvec_left = 2;
680         con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
681         con->out_kvec_cur = con->out_kvec;
682         con->out_more = 0;
683         set_bit(WRITE_PENDING, &con->state);
684 }
685
686 static int prepare_write_connect(struct ceph_messenger *msgr,
687                                  struct ceph_connection *con,
688                                  int after_banner)
689 {
690         unsigned global_seq = get_global_seq(con->msgr, 0);
691         int proto;
692
693         switch (con->peer_name.type) {
694         case CEPH_ENTITY_TYPE_MON:
695                 proto = CEPH_MONC_PROTOCOL;
696                 break;
697         case CEPH_ENTITY_TYPE_OSD:
698                 proto = CEPH_OSDC_PROTOCOL;
699                 break;
700         case CEPH_ENTITY_TYPE_MDS:
701                 proto = CEPH_MDSC_PROTOCOL;
702                 break;
703         default:
704                 BUG();
705         }
706
707         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
708              con->connect_seq, global_seq, proto);
709
710         con->out_connect.features = cpu_to_le64(msgr->supported_features);
711         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
712         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
713         con->out_connect.global_seq = cpu_to_le32(global_seq);
714         con->out_connect.protocol_version = cpu_to_le32(proto);
715         con->out_connect.flags = 0;
716
717         if (!after_banner) {
718                 con->out_kvec_left = 0;
719                 con->out_kvec_bytes = 0;
720         }
721         con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
722         con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
723         con->out_kvec_left++;
724         con->out_kvec_bytes += sizeof(con->out_connect);
725         con->out_kvec_cur = con->out_kvec;
726         con->out_more = 0;
727         set_bit(WRITE_PENDING, &con->state);
728
729         return prepare_connect_authorizer(con);
730 }
731
732
733 /*
734  * write as much of pending kvecs to the socket as we can.
735  *  1 -> done
736  *  0 -> socket full, but more to do
737  * <0 -> error
738  */
739 static int write_partial_kvec(struct ceph_connection *con)
740 {
741         int ret;
742
743         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
744         while (con->out_kvec_bytes > 0) {
745                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
746                                        con->out_kvec_left, con->out_kvec_bytes,
747                                        con->out_more);
748                 if (ret <= 0)
749                         goto out;
750                 con->out_kvec_bytes -= ret;
751                 if (con->out_kvec_bytes == 0)
752                         break;            /* done */
753                 while (ret > 0) {
754                         if (ret >= con->out_kvec_cur->iov_len) {
755                                 ret -= con->out_kvec_cur->iov_len;
756                                 con->out_kvec_cur++;
757                                 con->out_kvec_left--;
758                         } else {
759                                 con->out_kvec_cur->iov_len -= ret;
760                                 con->out_kvec_cur->iov_base += ret;
761                                 ret = 0;
762                                 break;
763                         }
764                 }
765         }
766         con->out_kvec_left = 0;
767         con->out_kvec_is_msg = false;
768         ret = 1;
769 out:
770         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
771              con->out_kvec_bytes, con->out_kvec_left, ret);
772         return ret;  /* done! */
773 }
774
775 #ifdef CONFIG_BLOCK
776 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
777 {
778         if (!bio) {
779                 *iter = NULL;
780                 *seg = 0;
781                 return;
782         }
783         *iter = bio;
784         *seg = bio->bi_idx;
785 }
786
787 static void iter_bio_next(struct bio **bio_iter, int *seg)
788 {
789         if (*bio_iter == NULL)
790                 return;
791
792         BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
793
794         (*seg)++;
795         if (*seg == (*bio_iter)->bi_vcnt)
796                 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
797 }
798 #endif
799
800 /*
801  * Write as much message data payload as we can.  If we finish, queue
802  * up the footer.
803  *  1 -> done, footer is now queued in out_kvec[].
804  *  0 -> socket full, but more to do
805  * <0 -> error
806  */
807 static int write_partial_msg_pages(struct ceph_connection *con)
808 {
809         struct ceph_msg *msg = con->out_msg;
810         unsigned data_len = le32_to_cpu(msg->hdr.data_len);
811         size_t len;
812         int crc = con->msgr->nocrc;
813         int ret;
814         int total_max_write;
815         int in_trail = 0;
816         size_t trail_len = (msg->trail ? msg->trail->length : 0);
817
818         dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
819              con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
820              con->out_msg_pos.page_pos);
821
822 #ifdef CONFIG_BLOCK
823         if (msg->bio && !msg->bio_iter)
824                 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
825 #endif
826
827         while (data_len > con->out_msg_pos.data_pos) {
828                 struct page *page = NULL;
829                 void *kaddr = NULL;
830                 int max_write = PAGE_SIZE;
831                 int page_shift = 0;
832
833                 total_max_write = data_len - trail_len -
834                         con->out_msg_pos.data_pos;
835
836                 /*
837                  * if we are calculating the data crc (the default), we need
838                  * to map the page.  if our pages[] has been revoked, use the
839                  * zero page.
840                  */
841
842                 /* have we reached the trail part of the data? */
843                 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
844                         in_trail = 1;
845
846                         total_max_write = data_len - con->out_msg_pos.data_pos;
847
848                         page = list_first_entry(&msg->trail->head,
849                                                 struct page, lru);
850                         if (crc)
851                                 kaddr = kmap(page);
852                         max_write = PAGE_SIZE;
853                 } else if (msg->pages) {
854                         page = msg->pages[con->out_msg_pos.page];
855                         if (crc)
856                                 kaddr = kmap(page);
857                 } else if (msg->pagelist) {
858                         page = list_first_entry(&msg->pagelist->head,
859                                                 struct page, lru);
860                         if (crc)
861                                 kaddr = kmap(page);
862 #ifdef CONFIG_BLOCK
863                 } else if (msg->bio) {
864                         struct bio_vec *bv;
865
866                         bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
867                         page = bv->bv_page;
868                         page_shift = bv->bv_offset;
869                         if (crc)
870                                 kaddr = kmap(page) + page_shift;
871                         max_write = bv->bv_len;
872 #endif
873                 } else {
874                         page = con->msgr->zero_page;
875                         if (crc)
876                                 kaddr = page_address(con->msgr->zero_page);
877                 }
878                 len = min_t(int, max_write - con->out_msg_pos.page_pos,
879                             total_max_write);
880
881                 if (crc && !con->out_msg_pos.did_page_crc) {
882                         void *base = kaddr + con->out_msg_pos.page_pos;
883                         u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
884
885                         BUG_ON(kaddr == NULL);
886                         con->out_msg->footer.data_crc =
887                                 cpu_to_le32(crc32c(tmpcrc, base, len));
888                         con->out_msg_pos.did_page_crc = 1;
889                 }
890                 ret = ceph_tcp_sendpage(con->sock, page,
891                                       con->out_msg_pos.page_pos + page_shift,
892                                       len, 1);
893
894                 if (crc &&
895                     (msg->pages || msg->pagelist || msg->bio || in_trail))
896                         kunmap(page);
897
898                 if (ret <= 0)
899                         goto out;
900
901                 con->out_msg_pos.data_pos += ret;
902                 con->out_msg_pos.page_pos += ret;
903                 if (ret == len) {
904                         con->out_msg_pos.page_pos = 0;
905                         con->out_msg_pos.page++;
906                         con->out_msg_pos.did_page_crc = 0;
907                         if (in_trail)
908                                 list_move_tail(&page->lru,
909                                                &msg->trail->head);
910                         else if (msg->pagelist)
911                                 list_move_tail(&page->lru,
912                                                &msg->pagelist->head);
913 #ifdef CONFIG_BLOCK
914                         else if (msg->bio)
915                                 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
916 #endif
917                 }
918         }
919
920         dout("write_partial_msg_pages %p msg %p done\n", con, msg);
921
922         /* prepare and queue up footer, too */
923         if (!crc)
924                 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
925         con->out_kvec_bytes = 0;
926         con->out_kvec_left = 0;
927         con->out_kvec_cur = con->out_kvec;
928         prepare_write_message_footer(con, 0);
929         ret = 1;
930 out:
931         return ret;
932 }
933
934 /*
935  * write some zeros
936  */
937 static int write_partial_skip(struct ceph_connection *con)
938 {
939         int ret;
940
941         while (con->out_skip > 0) {
942                 struct kvec iov = {
943                         .iov_base = page_address(con->msgr->zero_page),
944                         .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
945                 };
946
947                 ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
948                 if (ret <= 0)
949                         goto out;
950                 con->out_skip -= ret;
951         }
952         ret = 1;
953 out:
954         return ret;
955 }
956
957 /*
958  * Prepare to read connection handshake, or an ack.
959  */
960 static void prepare_read_banner(struct ceph_connection *con)
961 {
962         dout("prepare_read_banner %p\n", con);
963         con->in_base_pos = 0;
964 }
965
966 static void prepare_read_connect(struct ceph_connection *con)
967 {
968         dout("prepare_read_connect %p\n", con);
969         con->in_base_pos = 0;
970 }
971
972 static void prepare_read_ack(struct ceph_connection *con)
973 {
974         dout("prepare_read_ack %p\n", con);
975         con->in_base_pos = 0;
976 }
977
978 static void prepare_read_tag(struct ceph_connection *con)
979 {
980         dout("prepare_read_tag %p\n", con);
981         con->in_base_pos = 0;
982         con->in_tag = CEPH_MSGR_TAG_READY;
983 }
984
985 /*
986  * Prepare to read a message.
987  */
988 static int prepare_read_message(struct ceph_connection *con)
989 {
990         dout("prepare_read_message %p\n", con);
991         BUG_ON(con->in_msg != NULL);
992         con->in_base_pos = 0;
993         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
994         return 0;
995 }
996
997
998 static int read_partial(struct ceph_connection *con,
999                         int *to, int size, void *object)
1000 {
1001         *to += size;
1002         while (con->in_base_pos < *to) {
1003                 int left = *to - con->in_base_pos;
1004                 int have = size - left;
1005                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1006                 if (ret <= 0)
1007                         return ret;
1008                 con->in_base_pos += ret;
1009         }
1010         return 1;
1011 }
1012
1013
1014 /*
1015  * Read all or part of the connect-side handshake on a new connection
1016  */
1017 static int read_partial_banner(struct ceph_connection *con)
1018 {
1019         int ret, to = 0;
1020
1021         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1022
1023         /* peer's banner */
1024         ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
1025         if (ret <= 0)
1026                 goto out;
1027         ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
1028                            &con->actual_peer_addr);
1029         if (ret <= 0)
1030                 goto out;
1031         ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
1032                            &con->peer_addr_for_me);
1033         if (ret <= 0)
1034                 goto out;
1035 out:
1036         return ret;
1037 }
1038
1039 static int read_partial_connect(struct ceph_connection *con)
1040 {
1041         int ret, to = 0;
1042
1043         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1044
1045         ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
1046         if (ret <= 0)
1047                 goto out;
1048         ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
1049                            con->auth_reply_buf);
1050         if (ret <= 0)
1051                 goto out;
1052
1053         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1054              con, (int)con->in_reply.tag,
1055              le32_to_cpu(con->in_reply.connect_seq),
1056              le32_to_cpu(con->in_reply.global_seq));
1057 out:
1058         return ret;
1059
1060 }
1061
1062 /*
1063  * Verify the hello banner looks okay.
1064  */
1065 static int verify_hello(struct ceph_connection *con)
1066 {
1067         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1068                 pr_err("connect to %s got bad banner\n",
1069                        ceph_pr_addr(&con->peer_addr.in_addr));
1070                 con->error_msg = "protocol error, bad banner";
1071                 return -1;
1072         }
1073         return 0;
1074 }
1075
1076 static bool addr_is_blank(struct sockaddr_storage *ss)
1077 {
1078         switch (ss->ss_family) {
1079         case AF_INET:
1080                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1081         case AF_INET6:
1082                 return
1083                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1084                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1085                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1086                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1087         }
1088         return false;
1089 }
1090
1091 static int addr_port(struct sockaddr_storage *ss)
1092 {
1093         switch (ss->ss_family) {
1094         case AF_INET:
1095                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1096         case AF_INET6:
1097                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1098         }
1099         return 0;
1100 }
1101
1102 static void addr_set_port(struct sockaddr_storage *ss, int p)
1103 {
1104         switch (ss->ss_family) {
1105         case AF_INET:
1106                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1107                 break;
1108         case AF_INET6:
1109                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1110                 break;
1111         }
1112 }
1113
1114 /*
1115  * Unlike other *_pton function semantics, zero indicates success.
1116  */
1117 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1118                 char delim, const char **ipend)
1119 {
1120         struct sockaddr_in *in4 = (void *)ss;
1121         struct sockaddr_in6 *in6 = (void *)ss;
1122
1123         memset(ss, 0, sizeof(*ss));
1124
1125         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1126                 ss->ss_family = AF_INET;
1127                 return 0;
1128         }
1129
1130         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1131                 ss->ss_family = AF_INET6;
1132                 return 0;
1133         }
1134
1135         return -EINVAL;
1136 }
1137
1138 /*
1139  * Extract hostname string and resolve using kernel DNS facility.
1140  */
1141 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1142 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1143                 struct sockaddr_storage *ss, char delim, const char **ipend)
1144 {
1145         const char *end, *delim_p;
1146         char *colon_p, *ip_addr = NULL;
1147         int ip_len, ret;
1148
1149         /*
1150          * The end of the hostname occurs immediately preceding the delimiter or
1151          * the port marker (':') where the delimiter takes precedence.
1152          */
1153         delim_p = memchr(name, delim, namelen);
1154         colon_p = memchr(name, ':', namelen);
1155
1156         if (delim_p && colon_p)
1157                 end = delim_p < colon_p ? delim_p : colon_p;
1158         else if (!delim_p && colon_p)
1159                 end = colon_p;
1160         else {
1161                 end = delim_p;
1162                 if (!end) /* case: hostname:/ */
1163                         end = name + namelen;
1164         }
1165
1166         if (end <= name)
1167                 return -EINVAL;
1168
1169         /* do dns_resolve upcall */
1170         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1171         if (ip_len > 0)
1172                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1173         else
1174                 ret = -ESRCH;
1175
1176         kfree(ip_addr);
1177
1178         *ipend = end;
1179
1180         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1181                         ret, ret ? "failed" : ceph_pr_addr(ss));
1182
1183         return ret;
1184 }
1185 #else
1186 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1187                 struct sockaddr_storage *ss, char delim, const char **ipend)
1188 {
1189         return -EINVAL;
1190 }
1191 #endif
1192
1193 /*
1194  * Parse a server name (IP or hostname). If a valid IP address is not found
1195  * then try to extract a hostname to resolve using userspace DNS upcall.
1196  */
1197 static int ceph_parse_server_name(const char *name, size_t namelen,
1198                         struct sockaddr_storage *ss, char delim, const char **ipend)
1199 {
1200         int ret;
1201
1202         ret = ceph_pton(name, namelen, ss, delim, ipend);
1203         if (ret)
1204                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1205
1206         return ret;
1207 }
1208
1209 /*
1210  * Parse an ip[:port] list into an addr array.  Use the default
1211  * monitor port if a port isn't specified.
1212  */
1213 int ceph_parse_ips(const char *c, const char *end,
1214                    struct ceph_entity_addr *addr,
1215                    int max_count, int *count)
1216 {
1217         int i, ret = -EINVAL;
1218         const char *p = c;
1219
1220         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1221         for (i = 0; i < max_count; i++) {
1222                 const char *ipend;
1223                 struct sockaddr_storage *ss = &addr[i].in_addr;
1224                 int port;
1225                 char delim = ',';
1226
1227                 if (*p == '[') {
1228                         delim = ']';
1229                         p++;
1230                 }
1231
1232                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1233                 if (ret)
1234                         goto bad;
1235                 ret = -EINVAL;
1236
1237                 p = ipend;
1238
1239                 if (delim == ']') {
1240                         if (*p != ']') {
1241                                 dout("missing matching ']'\n");
1242                                 goto bad;
1243                         }
1244                         p++;
1245                 }
1246
1247                 /* port? */
1248                 if (p < end && *p == ':') {
1249                         port = 0;
1250                         p++;
1251                         while (p < end && *p >= '0' && *p <= '9') {
1252                                 port = (port * 10) + (*p - '0');
1253                                 p++;
1254                         }
1255                         if (port > 65535 || port == 0)
1256                                 goto bad;
1257                 } else {
1258                         port = CEPH_MON_PORT;
1259                 }
1260
1261                 addr_set_port(ss, port);
1262
1263                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1264
1265                 if (p == end)
1266                         break;
1267                 if (*p != ',')
1268                         goto bad;
1269                 p++;
1270         }
1271
1272         if (p != end)
1273                 goto bad;
1274
1275         if (count)
1276                 *count = i + 1;
1277         return 0;
1278
1279 bad:
1280         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1281         return ret;
1282 }
1283 EXPORT_SYMBOL(ceph_parse_ips);
1284
1285 static int process_banner(struct ceph_connection *con)
1286 {
1287         dout("process_banner on %p\n", con);
1288
1289         if (verify_hello(con) < 0)
1290                 return -1;
1291
1292         ceph_decode_addr(&con->actual_peer_addr);
1293         ceph_decode_addr(&con->peer_addr_for_me);
1294
1295         /*
1296          * Make sure the other end is who we wanted.  note that the other
1297          * end may not yet know their ip address, so if it's 0.0.0.0, give
1298          * them the benefit of the doubt.
1299          */
1300         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1301                    sizeof(con->peer_addr)) != 0 &&
1302             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1303               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1304                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1305                            ceph_pr_addr(&con->peer_addr.in_addr),
1306                            (int)le32_to_cpu(con->peer_addr.nonce),
1307                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1308                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1309                 con->error_msg = "wrong peer at address";
1310                 return -1;
1311         }
1312
1313         /*
1314          * did we learn our address?
1315          */
1316         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1317                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1318
1319                 memcpy(&con->msgr->inst.addr.in_addr,
1320                        &con->peer_addr_for_me.in_addr,
1321                        sizeof(con->peer_addr_for_me.in_addr));
1322                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1323                 encode_my_addr(con->msgr);
1324                 dout("process_banner learned my addr is %s\n",
1325                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1326         }
1327
1328         set_bit(NEGOTIATING, &con->state);
1329         prepare_read_connect(con);
1330         return 0;
1331 }
1332
1333 static void fail_protocol(struct ceph_connection *con)
1334 {
1335         reset_connection(con);
1336         set_bit(CLOSED, &con->state);  /* in case there's queued work */
1337
1338         mutex_unlock(&con->mutex);
1339         if (con->ops->bad_proto)
1340                 con->ops->bad_proto(con);
1341         mutex_lock(&con->mutex);
1342 }
1343
1344 static int process_connect(struct ceph_connection *con)
1345 {
1346         u64 sup_feat = con->msgr->supported_features;
1347         u64 req_feat = con->msgr->required_features;
1348         u64 server_feat = le64_to_cpu(con->in_reply.features);
1349         int ret;
1350
1351         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1352
1353         switch (con->in_reply.tag) {
1354         case CEPH_MSGR_TAG_FEATURES:
1355                 pr_err("%s%lld %s feature set mismatch,"
1356                        " my %llx < server's %llx, missing %llx\n",
1357                        ENTITY_NAME(con->peer_name),
1358                        ceph_pr_addr(&con->peer_addr.in_addr),
1359                        sup_feat, server_feat, server_feat & ~sup_feat);
1360                 con->error_msg = "missing required protocol features";
1361                 fail_protocol(con);
1362                 return -1;
1363
1364         case CEPH_MSGR_TAG_BADPROTOVER:
1365                 pr_err("%s%lld %s protocol version mismatch,"
1366                        " my %d != server's %d\n",
1367                        ENTITY_NAME(con->peer_name),
1368                        ceph_pr_addr(&con->peer_addr.in_addr),
1369                        le32_to_cpu(con->out_connect.protocol_version),
1370                        le32_to_cpu(con->in_reply.protocol_version));
1371                 con->error_msg = "protocol version mismatch";
1372                 fail_protocol(con);
1373                 return -1;
1374
1375         case CEPH_MSGR_TAG_BADAUTHORIZER:
1376                 con->auth_retry++;
1377                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1378                      con->auth_retry);
1379                 if (con->auth_retry == 2) {
1380                         con->error_msg = "connect authorization failure";
1381                         return -1;
1382                 }
1383                 con->auth_retry = 1;
1384                 ret = prepare_write_connect(con->msgr, con, 0);
1385                 if (ret < 0)
1386                         return ret;
1387                 prepare_read_connect(con);
1388                 break;
1389
1390         case CEPH_MSGR_TAG_RESETSESSION:
1391                 /*
1392                  * If we connected with a large connect_seq but the peer
1393                  * has no record of a session with us (no connection, or
1394                  * connect_seq == 0), they will send RESETSESION to indicate
1395                  * that they must have reset their session, and may have
1396                  * dropped messages.
1397                  */
1398                 dout("process_connect got RESET peer seq %u\n",
1399                      le32_to_cpu(con->in_connect.connect_seq));
1400                 pr_err("%s%lld %s connection reset\n",
1401                        ENTITY_NAME(con->peer_name),
1402                        ceph_pr_addr(&con->peer_addr.in_addr));
1403                 reset_connection(con);
1404                 prepare_write_connect(con->msgr, con, 0);
1405                 prepare_read_connect(con);
1406
1407                 /* Tell ceph about it. */
1408                 mutex_unlock(&con->mutex);
1409                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1410                 if (con->ops->peer_reset)
1411                         con->ops->peer_reset(con);
1412                 mutex_lock(&con->mutex);
1413                 if (test_bit(CLOSED, &con->state) ||
1414                     test_bit(OPENING, &con->state))
1415                         return -EAGAIN;
1416                 break;
1417
1418         case CEPH_MSGR_TAG_RETRY_SESSION:
1419                 /*
1420                  * If we sent a smaller connect_seq than the peer has, try
1421                  * again with a larger value.
1422                  */
1423                 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1424                      le32_to_cpu(con->out_connect.connect_seq),
1425                      le32_to_cpu(con->in_connect.connect_seq));
1426                 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1427                 prepare_write_connect(con->msgr, con, 0);
1428                 prepare_read_connect(con);
1429                 break;
1430
1431         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1432                 /*
1433                  * If we sent a smaller global_seq than the peer has, try
1434                  * again with a larger value.
1435                  */
1436                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1437                      con->peer_global_seq,
1438                      le32_to_cpu(con->in_connect.global_seq));
1439                 get_global_seq(con->msgr,
1440                                le32_to_cpu(con->in_connect.global_seq));
1441                 prepare_write_connect(con->msgr, con, 0);
1442                 prepare_read_connect(con);
1443                 break;
1444
1445         case CEPH_MSGR_TAG_READY:
1446                 if (req_feat & ~server_feat) {
1447                         pr_err("%s%lld %s protocol feature mismatch,"
1448                                " my required %llx > server's %llx, need %llx\n",
1449                                ENTITY_NAME(con->peer_name),
1450                                ceph_pr_addr(&con->peer_addr.in_addr),
1451                                req_feat, server_feat, req_feat & ~server_feat);
1452                         con->error_msg = "missing required protocol features";
1453                         fail_protocol(con);
1454                         return -1;
1455                 }
1456                 clear_bit(CONNECTING, &con->state);
1457                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1458                 con->connect_seq++;
1459                 con->peer_features = server_feat;
1460                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1461                      con->peer_global_seq,
1462                      le32_to_cpu(con->in_reply.connect_seq),
1463                      con->connect_seq);
1464                 WARN_ON(con->connect_seq !=
1465                         le32_to_cpu(con->in_reply.connect_seq));
1466
1467                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1468                         set_bit(LOSSYTX, &con->state);
1469
1470                 prepare_read_tag(con);
1471                 break;
1472
1473         case CEPH_MSGR_TAG_WAIT:
1474                 /*
1475                  * If there is a connection race (we are opening
1476                  * connections to each other), one of us may just have
1477                  * to WAIT.  This shouldn't happen if we are the
1478                  * client.
1479                  */
1480                 pr_err("process_connect got WAIT as client\n");
1481                 con->error_msg = "protocol error, got WAIT as client";
1482                 return -1;
1483
1484         default:
1485                 pr_err("connect protocol error, will retry\n");
1486                 con->error_msg = "protocol error, garbage tag during connect";
1487                 return -1;
1488         }
1489         return 0;
1490 }
1491
1492
1493 /*
1494  * read (part of) an ack
1495  */
1496 static int read_partial_ack(struct ceph_connection *con)
1497 {
1498         int to = 0;
1499
1500         return read_partial(con, &to, sizeof(con->in_temp_ack),
1501                             &con->in_temp_ack);
1502 }
1503
1504
1505 /*
1506  * We can finally discard anything that's been acked.
1507  */
1508 static void process_ack(struct ceph_connection *con)
1509 {
1510         struct ceph_msg *m;
1511         u64 ack = le64_to_cpu(con->in_temp_ack);
1512         u64 seq;
1513
1514         while (!list_empty(&con->out_sent)) {
1515                 m = list_first_entry(&con->out_sent, struct ceph_msg,
1516                                      list_head);
1517                 seq = le64_to_cpu(m->hdr.seq);
1518                 if (seq > ack)
1519                         break;
1520                 dout("got ack for seq %llu type %d at %p\n", seq,
1521                      le16_to_cpu(m->hdr.type), m);
1522                 m->ack_stamp = jiffies;
1523                 ceph_msg_remove(m);
1524         }
1525         prepare_read_tag(con);
1526 }
1527
1528
1529
1530
1531 static int read_partial_message_section(struct ceph_connection *con,
1532                                         struct kvec *section,
1533                                         unsigned int sec_len, u32 *crc)
1534 {
1535         int ret, left;
1536
1537         BUG_ON(!section);
1538
1539         while (section->iov_len < sec_len) {
1540                 BUG_ON(section->iov_base == NULL);
1541                 left = sec_len - section->iov_len;
1542                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1543                                        section->iov_len, left);
1544                 if (ret <= 0)
1545                         return ret;
1546                 section->iov_len += ret;
1547                 if (section->iov_len == sec_len)
1548                         *crc = crc32c(0, section->iov_base,
1549                                       section->iov_len);
1550         }
1551
1552         return 1;
1553 }
1554
1555 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1556                                 struct ceph_msg_header *hdr,
1557                                 int *skip);
1558
1559
1560 static int read_partial_message_pages(struct ceph_connection *con,
1561                                       struct page **pages,
1562                                       unsigned data_len, int datacrc)
1563 {
1564         void *p;
1565         int ret;
1566         int left;
1567
1568         left = min((int)(data_len - con->in_msg_pos.data_pos),
1569                    (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1570         /* (page) data */
1571         BUG_ON(pages == NULL);
1572         p = kmap(pages[con->in_msg_pos.page]);
1573         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1574                                left);
1575         if (ret > 0 && datacrc)
1576                 con->in_data_crc =
1577                         crc32c(con->in_data_crc,
1578                                   p + con->in_msg_pos.page_pos, ret);
1579         kunmap(pages[con->in_msg_pos.page]);
1580         if (ret <= 0)
1581                 return ret;
1582         con->in_msg_pos.data_pos += ret;
1583         con->in_msg_pos.page_pos += ret;
1584         if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1585                 con->in_msg_pos.page_pos = 0;
1586                 con->in_msg_pos.page++;
1587         }
1588
1589         return ret;
1590 }
1591
1592 #ifdef CONFIG_BLOCK
1593 static int read_partial_message_bio(struct ceph_connection *con,
1594                                     struct bio **bio_iter, int *bio_seg,
1595                                     unsigned data_len, int datacrc)
1596 {
1597         struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1598         void *p;
1599         int ret, left;
1600
1601         if (IS_ERR(bv))
1602                 return PTR_ERR(bv);
1603
1604         left = min((int)(data_len - con->in_msg_pos.data_pos),
1605                    (int)(bv->bv_len - con->in_msg_pos.page_pos));
1606
1607         p = kmap(bv->bv_page) + bv->bv_offset;
1608
1609         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1610                                left);
1611         if (ret > 0 && datacrc)
1612                 con->in_data_crc =
1613                         crc32c(con->in_data_crc,
1614                                   p + con->in_msg_pos.page_pos, ret);
1615         kunmap(bv->bv_page);
1616         if (ret <= 0)
1617                 return ret;
1618         con->in_msg_pos.data_pos += ret;
1619         con->in_msg_pos.page_pos += ret;
1620         if (con->in_msg_pos.page_pos == bv->bv_len) {
1621                 con->in_msg_pos.page_pos = 0;
1622                 iter_bio_next(bio_iter, bio_seg);
1623         }
1624
1625         return ret;
1626 }
1627 #endif
1628
1629 /*
1630  * read (part of) a message.
1631  */
1632 static int read_partial_message(struct ceph_connection *con)
1633 {
1634         struct ceph_msg *m = con->in_msg;
1635         int ret;
1636         int to, left;
1637         unsigned front_len, middle_len, data_len;
1638         int datacrc = con->msgr->nocrc;
1639         int skip;
1640         u64 seq;
1641
1642         dout("read_partial_message con %p msg %p\n", con, m);
1643
1644         /* header */
1645         while (con->in_base_pos < sizeof(con->in_hdr)) {
1646                 left = sizeof(con->in_hdr) - con->in_base_pos;
1647                 ret = ceph_tcp_recvmsg(con->sock,
1648                                        (char *)&con->in_hdr + con->in_base_pos,
1649                                        left);
1650                 if (ret <= 0)
1651                         return ret;
1652                 con->in_base_pos += ret;
1653                 if (con->in_base_pos == sizeof(con->in_hdr)) {
1654                         u32 crc = crc32c(0, (void *)&con->in_hdr,
1655                                  sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1656                         if (crc != le32_to_cpu(con->in_hdr.crc)) {
1657                                 pr_err("read_partial_message bad hdr "
1658                                        " crc %u != expected %u\n",
1659                                        crc, con->in_hdr.crc);
1660                                 return -EBADMSG;
1661                         }
1662                 }
1663         }
1664         front_len = le32_to_cpu(con->in_hdr.front_len);
1665         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1666                 return -EIO;
1667         middle_len = le32_to_cpu(con->in_hdr.middle_len);
1668         if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1669                 return -EIO;
1670         data_len = le32_to_cpu(con->in_hdr.data_len);
1671         if (data_len > CEPH_MSG_MAX_DATA_LEN)
1672                 return -EIO;
1673
1674         /* verify seq# */
1675         seq = le64_to_cpu(con->in_hdr.seq);
1676         if ((s64)seq - (s64)con->in_seq < 1) {
1677                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1678                         ENTITY_NAME(con->peer_name),
1679                         ceph_pr_addr(&con->peer_addr.in_addr),
1680                         seq, con->in_seq + 1);
1681                 con->in_base_pos = -front_len - middle_len - data_len -
1682                         sizeof(m->footer);
1683                 con->in_tag = CEPH_MSGR_TAG_READY;
1684                 return 0;
1685         } else if ((s64)seq - (s64)con->in_seq > 1) {
1686                 pr_err("read_partial_message bad seq %lld expected %lld\n",
1687                        seq, con->in_seq + 1);
1688                 con->error_msg = "bad message sequence # for incoming message";
1689                 return -EBADMSG;
1690         }
1691
1692         /* allocate message? */
1693         if (!con->in_msg) {
1694                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1695                      con->in_hdr.front_len, con->in_hdr.data_len);
1696                 skip = 0;
1697                 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1698                 if (skip) {
1699                         /* skip this message */
1700                         dout("alloc_msg said skip message\n");
1701                         BUG_ON(con->in_msg);
1702                         con->in_base_pos = -front_len - middle_len - data_len -
1703                                 sizeof(m->footer);
1704                         con->in_tag = CEPH_MSGR_TAG_READY;
1705                         con->in_seq++;
1706                         return 0;
1707                 }
1708                 if (!con->in_msg) {
1709                         con->error_msg =
1710                                 "error allocating memory for incoming message";
1711                         return -ENOMEM;
1712                 }
1713                 m = con->in_msg;
1714                 m->front.iov_len = 0;    /* haven't read it yet */
1715                 if (m->middle)
1716                         m->middle->vec.iov_len = 0;
1717
1718                 con->in_msg_pos.page = 0;
1719                 if (m->pages)
1720                         con->in_msg_pos.page_pos = m->page_alignment;
1721                 else
1722                         con->in_msg_pos.page_pos = 0;
1723                 con->in_msg_pos.data_pos = 0;
1724         }
1725
1726         /* front */
1727         ret = read_partial_message_section(con, &m->front, front_len,
1728                                            &con->in_front_crc);
1729         if (ret <= 0)
1730                 return ret;
1731
1732         /* middle */
1733         if (m->middle) {
1734                 ret = read_partial_message_section(con, &m->middle->vec,
1735                                                    middle_len,
1736                                                    &con->in_middle_crc);
1737                 if (ret <= 0)
1738                         return ret;
1739         }
1740 #ifdef CONFIG_BLOCK
1741         if (m->bio && !m->bio_iter)
1742                 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1743 #endif
1744
1745         /* (page) data */
1746         while (con->in_msg_pos.data_pos < data_len) {
1747                 if (m->pages) {
1748                         ret = read_partial_message_pages(con, m->pages,
1749                                                  data_len, datacrc);
1750                         if (ret <= 0)
1751                                 return ret;
1752 #ifdef CONFIG_BLOCK
1753                 } else if (m->bio) {
1754
1755                         ret = read_partial_message_bio(con,
1756                                                  &m->bio_iter, &m->bio_seg,
1757                                                  data_len, datacrc);
1758                         if (ret <= 0)
1759                                 return ret;
1760 #endif
1761                 } else {
1762                         BUG_ON(1);
1763                 }
1764         }
1765
1766         /* footer */
1767         to = sizeof(m->hdr) + sizeof(m->footer);
1768         while (con->in_base_pos < to) {
1769                 left = to - con->in_base_pos;
1770                 ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1771                                        (con->in_base_pos - sizeof(m->hdr)),
1772                                        left);
1773                 if (ret <= 0)
1774                         return ret;
1775                 con->in_base_pos += ret;
1776         }
1777         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1778              m, front_len, m->footer.front_crc, middle_len,
1779              m->footer.middle_crc, data_len, m->footer.data_crc);
1780
1781         /* crc ok? */
1782         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1783                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1784                        m, con->in_front_crc, m->footer.front_crc);
1785                 return -EBADMSG;
1786         }
1787         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1788                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1789                        m, con->in_middle_crc, m->footer.middle_crc);
1790                 return -EBADMSG;
1791         }
1792         if (datacrc &&
1793             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1794             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1795                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1796                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1797                 return -EBADMSG;
1798         }
1799
1800         return 1; /* done! */
1801 }
1802
1803 /*
1804  * Process message.  This happens in the worker thread.  The callback should
1805  * be careful not to do anything that waits on other incoming messages or it
1806  * may deadlock.
1807  */
1808 static void process_message(struct ceph_connection *con)
1809 {
1810         struct ceph_msg *msg;
1811
1812         msg = con->in_msg;
1813         con->in_msg = NULL;
1814
1815         /* if first message, set peer_name */
1816         if (con->peer_name.type == 0)
1817                 con->peer_name = msg->hdr.src;
1818
1819         con->in_seq++;
1820         mutex_unlock(&con->mutex);
1821
1822         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1823              msg, le64_to_cpu(msg->hdr.seq),
1824              ENTITY_NAME(msg->hdr.src),
1825              le16_to_cpu(msg->hdr.type),
1826              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1827              le32_to_cpu(msg->hdr.front_len),
1828              le32_to_cpu(msg->hdr.data_len),
1829              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1830         con->ops->dispatch(con, msg);
1831
1832         mutex_lock(&con->mutex);
1833         prepare_read_tag(con);
1834 }
1835
1836
1837 /*
1838  * Write something to the socket.  Called in a worker thread when the
1839  * socket appears to be writeable and we have something ready to send.
1840  */
1841 static int try_write(struct ceph_connection *con)
1842 {
1843         struct ceph_messenger *msgr = con->msgr;
1844         int ret = 1;
1845
1846         dout("try_write start %p state %lu nref %d\n", con, con->state,
1847              atomic_read(&con->nref));
1848
1849 more:
1850         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1851
1852         /* open the socket first? */
1853         if (con->sock == NULL) {
1854                 prepare_write_banner(msgr, con);
1855                 prepare_write_connect(msgr, con, 1);
1856                 prepare_read_banner(con);
1857                 set_bit(CONNECTING, &con->state);
1858                 clear_bit(NEGOTIATING, &con->state);
1859
1860                 BUG_ON(con->in_msg);
1861                 con->in_tag = CEPH_MSGR_TAG_READY;
1862                 dout("try_write initiating connect on %p new state %lu\n",
1863                      con, con->state);
1864                 con->sock = ceph_tcp_connect(con);
1865                 if (IS_ERR(con->sock)) {
1866                         con->sock = NULL;
1867                         con->error_msg = "connect error";
1868                         ret = -1;
1869                         goto out;
1870                 }
1871         }
1872
1873 more_kvec:
1874         /* kvec data queued? */
1875         if (con->out_skip) {
1876                 ret = write_partial_skip(con);
1877                 if (ret <= 0)
1878                         goto out;
1879         }
1880         if (con->out_kvec_left) {
1881                 ret = write_partial_kvec(con);
1882                 if (ret <= 0)
1883                         goto out;
1884         }
1885
1886         /* msg pages? */
1887         if (con->out_msg) {
1888                 if (con->out_msg_done) {
1889                         ceph_msg_put(con->out_msg);
1890                         con->out_msg = NULL;   /* we're done with this one */
1891                         goto do_next;
1892                 }
1893
1894                 ret = write_partial_msg_pages(con);
1895                 if (ret == 1)
1896                         goto more_kvec;  /* we need to send the footer, too! */
1897                 if (ret == 0)
1898                         goto out;
1899                 if (ret < 0) {
1900                         dout("try_write write_partial_msg_pages err %d\n",
1901                              ret);
1902                         goto out;
1903                 }
1904         }
1905
1906 do_next:
1907         if (!test_bit(CONNECTING, &con->state)) {
1908                 /* is anything else pending? */
1909                 if (!list_empty(&con->out_queue)) {
1910                         prepare_write_message(con);
1911                         goto more;
1912                 }
1913                 if (con->in_seq > con->in_seq_acked) {
1914                         prepare_write_ack(con);
1915                         goto more;
1916                 }
1917                 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1918                         prepare_write_keepalive(con);
1919                         goto more;
1920                 }
1921         }
1922
1923         /* Nothing to do! */
1924         clear_bit(WRITE_PENDING, &con->state);
1925         dout("try_write nothing else to write.\n");
1926         ret = 0;
1927 out:
1928         dout("try_write done on %p ret %d\n", con, ret);
1929         return ret;
1930 }
1931
1932
1933
1934 /*
1935  * Read what we can from the socket.
1936  */
1937 static int try_read(struct ceph_connection *con)
1938 {
1939         int ret = -1;
1940
1941         if (!con->sock)
1942                 return 0;
1943
1944         if (test_bit(STANDBY, &con->state))
1945                 return 0;
1946
1947         dout("try_read start on %p\n", con);
1948
1949 more:
1950         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1951              con->in_base_pos);
1952
1953         /*
1954          * process_connect and process_message drop and re-take
1955          * con->mutex.  make sure we handle a racing close or reopen.
1956          */
1957         if (test_bit(CLOSED, &con->state) ||
1958             test_bit(OPENING, &con->state)) {
1959                 ret = -EAGAIN;
1960                 goto out;
1961         }
1962
1963         if (test_bit(CONNECTING, &con->state)) {
1964                 if (!test_bit(NEGOTIATING, &con->state)) {
1965                         dout("try_read connecting\n");
1966                         ret = read_partial_banner(con);
1967                         if (ret <= 0)
1968                                 goto out;
1969                         ret = process_banner(con);
1970                         if (ret < 0)
1971                                 goto out;
1972                 }
1973                 ret = read_partial_connect(con);
1974                 if (ret <= 0)
1975                         goto out;
1976                 ret = process_connect(con);
1977                 if (ret < 0)
1978                         goto out;
1979                 goto more;
1980         }
1981
1982         if (con->in_base_pos < 0) {
1983                 /*
1984                  * skipping + discarding content.
1985                  *
1986                  * FIXME: there must be a better way to do this!
1987                  */
1988                 static char buf[1024];
1989                 int skip = min(1024, -con->in_base_pos);
1990                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1991                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1992                 if (ret <= 0)
1993                         goto out;
1994                 con->in_base_pos += ret;
1995                 if (con->in_base_pos)
1996                         goto more;
1997         }
1998         if (con->in_tag == CEPH_MSGR_TAG_READY) {
1999                 /*
2000                  * what's next?
2001                  */
2002                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2003                 if (ret <= 0)
2004                         goto out;
2005                 dout("try_read got tag %d\n", (int)con->in_tag);
2006                 switch (con->in_tag) {
2007                 case CEPH_MSGR_TAG_MSG:
2008                         prepare_read_message(con);
2009                         break;
2010                 case CEPH_MSGR_TAG_ACK:
2011                         prepare_read_ack(con);
2012                         break;
2013                 case CEPH_MSGR_TAG_CLOSE:
2014                         set_bit(CLOSED, &con->state);   /* fixme */
2015                         goto out;
2016                 default:
2017                         goto bad_tag;
2018                 }
2019         }
2020         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2021                 ret = read_partial_message(con);
2022                 if (ret <= 0) {
2023                         switch (ret) {
2024                         case -EBADMSG:
2025                                 con->error_msg = "bad crc";
2026                                 ret = -EIO;
2027                                 break;
2028                         case -EIO:
2029                                 con->error_msg = "io error";
2030                                 break;
2031                         }
2032                         goto out;
2033                 }
2034                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2035                         goto more;
2036                 process_message(con);
2037                 goto more;
2038         }
2039         if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2040                 ret = read_partial_ack(con);
2041                 if (ret <= 0)
2042                         goto out;
2043                 process_ack(con);
2044                 goto more;
2045         }
2046
2047 out:
2048         dout("try_read done on %p ret %d\n", con, ret);
2049         return ret;
2050
2051 bad_tag:
2052         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2053         con->error_msg = "protocol error, garbage tag";
2054         ret = -1;
2055         goto out;
2056 }
2057
2058
2059 /*
2060  * Atomically queue work on a connection.  Bump @con reference to
2061  * avoid races with connection teardown.
2062  */
2063 static void queue_con(struct ceph_connection *con)
2064 {
2065         if (test_bit(DEAD, &con->state)) {
2066                 dout("queue_con %p ignoring: DEAD\n",
2067                      con);
2068                 return;
2069         }
2070
2071         if (!con->ops->get(con)) {
2072                 dout("queue_con %p ref count 0\n", con);
2073                 return;
2074         }
2075
2076         if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2077                 dout("queue_con %p - already queued\n", con);
2078                 con->ops->put(con);
2079         } else {
2080                 dout("queue_con %p\n", con);
2081         }
2082 }
2083
2084 /*
2085  * Do some work on a connection.  Drop a connection ref when we're done.
2086  */
2087 static void con_work(struct work_struct *work)
2088 {
2089         struct ceph_connection *con = container_of(work, struct ceph_connection,
2090                                                    work.work);
2091         int ret;
2092
2093         mutex_lock(&con->mutex);
2094 restart:
2095         if (test_and_clear_bit(BACKOFF, &con->state)) {
2096                 dout("con_work %p backing off\n", con);
2097                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2098                                        round_jiffies_relative(con->delay))) {
2099                         dout("con_work %p backoff %lu\n", con, con->delay);
2100                         mutex_unlock(&con->mutex);
2101                         return;
2102                 } else {
2103                         con->ops->put(con);
2104                         dout("con_work %p FAILED to back off %lu\n", con,
2105                              con->delay);
2106                 }
2107         }
2108
2109         if (test_bit(STANDBY, &con->state)) {
2110                 dout("con_work %p STANDBY\n", con);
2111                 goto done;
2112         }
2113         if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2114                 dout("con_work CLOSED\n");
2115                 con_close_socket(con);
2116                 goto done;
2117         }
2118         if (test_and_clear_bit(OPENING, &con->state)) {
2119                 /* reopen w/ new peer */
2120                 dout("con_work OPENING\n");
2121                 con_close_socket(con);
2122         }
2123
2124         if (test_and_clear_bit(SOCK_CLOSED, &con->state))
2125                 goto fault;
2126
2127         ret = try_read(con);
2128         if (ret == -EAGAIN)
2129                 goto restart;
2130         if (ret < 0)
2131                 goto fault;
2132
2133         ret = try_write(con);
2134         if (ret == -EAGAIN)
2135                 goto restart;
2136         if (ret < 0)
2137                 goto fault;
2138
2139 done:
2140         mutex_unlock(&con->mutex);
2141 done_unlocked:
2142         con->ops->put(con);
2143         return;
2144
2145 fault:
2146         mutex_unlock(&con->mutex);
2147         ceph_fault(con);     /* error/fault path */
2148         goto done_unlocked;
2149 }
2150
2151
2152 /*
2153  * Generic error/fault handler.  A retry mechanism is used with
2154  * exponential backoff
2155  */
2156 static void ceph_fault(struct ceph_connection *con)
2157 {
2158         pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2159                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2160         dout("fault %p state %lu to peer %s\n",
2161              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2162
2163         if (test_bit(LOSSYTX, &con->state)) {
2164                 dout("fault on LOSSYTX channel\n");
2165                 goto out;
2166         }
2167
2168         mutex_lock(&con->mutex);
2169         if (test_bit(CLOSED, &con->state))
2170                 goto out_unlock;
2171
2172         con_close_socket(con);
2173
2174         if (con->in_msg) {
2175                 ceph_msg_put(con->in_msg);
2176                 con->in_msg = NULL;
2177         }
2178
2179         /* Requeue anything that hasn't been acked */
2180         list_splice_init(&con->out_sent, &con->out_queue);
2181
2182         /* If there are no messages queued or keepalive pending, place
2183          * the connection in a STANDBY state */
2184         if (list_empty(&con->out_queue) &&
2185             !test_bit(KEEPALIVE_PENDING, &con->state)) {
2186                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2187                 clear_bit(WRITE_PENDING, &con->state);
2188                 set_bit(STANDBY, &con->state);
2189         } else {
2190                 /* retry after a delay. */
2191                 if (con->delay == 0)
2192                         con->delay = BASE_DELAY_INTERVAL;
2193                 else if (con->delay < MAX_DELAY_INTERVAL)
2194                         con->delay *= 2;
2195                 con->ops->get(con);
2196                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2197                                        round_jiffies_relative(con->delay))) {
2198                         dout("fault queued %p delay %lu\n", con, con->delay);
2199                 } else {
2200                         con->ops->put(con);
2201                         dout("fault failed to queue %p delay %lu, backoff\n",
2202                              con, con->delay);
2203                         /*
2204                          * In many cases we see a socket state change
2205                          * while con_work is running and end up
2206                          * queuing (non-delayed) work, such that we
2207                          * can't backoff with a delay.  Set a flag so
2208                          * that when con_work restarts we schedule the
2209                          * delay then.
2210                          */
2211                         set_bit(BACKOFF, &con->state);
2212                 }
2213         }
2214
2215 out_unlock:
2216         mutex_unlock(&con->mutex);
2217 out:
2218         /*
2219          * in case we faulted due to authentication, invalidate our
2220          * current tickets so that we can get new ones.
2221          */
2222         if (con->auth_retry && con->ops->invalidate_authorizer) {
2223                 dout("calling invalidate_authorizer()\n");
2224                 con->ops->invalidate_authorizer(con);
2225         }
2226
2227         if (con->ops->fault)
2228                 con->ops->fault(con);
2229 }
2230
2231
2232
2233 /*
2234  * create a new messenger instance
2235  */
2236 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2237                                              u32 supported_features,
2238                                              u32 required_features)
2239 {
2240         struct ceph_messenger *msgr;
2241
2242         msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2243         if (msgr == NULL)
2244                 return ERR_PTR(-ENOMEM);
2245
2246         msgr->supported_features = supported_features;
2247         msgr->required_features = required_features;
2248
2249         spin_lock_init(&msgr->global_seq_lock);
2250
2251         /* the zero page is needed if a request is "canceled" while the message
2252          * is being written over the socket */
2253         msgr->zero_page = __page_cache_alloc(GFP_KERNEL | __GFP_ZERO);
2254         if (!msgr->zero_page) {
2255                 kfree(msgr);
2256                 return ERR_PTR(-ENOMEM);
2257         }
2258         kmap(msgr->zero_page);
2259
2260         if (myaddr)
2261                 msgr->inst.addr = *myaddr;
2262
2263         /* select a random nonce */
2264         msgr->inst.addr.type = 0;
2265         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2266         encode_my_addr(msgr);
2267
2268         dout("messenger_create %p\n", msgr);
2269         return msgr;
2270 }
2271 EXPORT_SYMBOL(ceph_messenger_create);
2272
2273 void ceph_messenger_destroy(struct ceph_messenger *msgr)
2274 {
2275         dout("destroy %p\n", msgr);
2276         kunmap(msgr->zero_page);
2277         __free_page(msgr->zero_page);
2278         kfree(msgr);
2279         dout("destroyed messenger %p\n", msgr);
2280 }
2281 EXPORT_SYMBOL(ceph_messenger_destroy);
2282
2283 static void clear_standby(struct ceph_connection *con)
2284 {
2285         /* come back from STANDBY? */
2286         if (test_and_clear_bit(STANDBY, &con->state)) {
2287                 mutex_lock(&con->mutex);
2288                 dout("clear_standby %p and ++connect_seq\n", con);
2289                 con->connect_seq++;
2290                 WARN_ON(test_bit(WRITE_PENDING, &con->state));
2291                 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
2292                 mutex_unlock(&con->mutex);
2293         }
2294 }
2295
2296 /*
2297  * Queue up an outgoing message on the given connection.
2298  */
2299 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2300 {
2301         if (test_bit(CLOSED, &con->state)) {
2302                 dout("con_send %p closed, dropping %p\n", con, msg);
2303                 ceph_msg_put(msg);
2304                 return;
2305         }
2306
2307         /* set src+dst */
2308         msg->hdr.src = con->msgr->inst.name;
2309
2310         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2311
2312         msg->needs_out_seq = true;
2313
2314         /* queue */
2315         mutex_lock(&con->mutex);
2316         BUG_ON(!list_empty(&msg->list_head));
2317         list_add_tail(&msg->list_head, &con->out_queue);
2318         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2319              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2320              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2321              le32_to_cpu(msg->hdr.front_len),
2322              le32_to_cpu(msg->hdr.middle_len),
2323              le32_to_cpu(msg->hdr.data_len));
2324         mutex_unlock(&con->mutex);
2325
2326         /* if there wasn't anything waiting to send before, queue
2327          * new work */
2328         clear_standby(con);
2329         if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2330                 queue_con(con);
2331 }
2332 EXPORT_SYMBOL(ceph_con_send);
2333
2334 /*
2335  * Revoke a message that was previously queued for send
2336  */
2337 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2338 {
2339         mutex_lock(&con->mutex);
2340         if (!list_empty(&msg->list_head)) {
2341                 dout("con_revoke %p msg %p - was on queue\n", con, msg);
2342                 list_del_init(&msg->list_head);
2343                 ceph_msg_put(msg);
2344                 msg->hdr.seq = 0;
2345         }
2346         if (con->out_msg == msg) {
2347                 dout("con_revoke %p msg %p - was sending\n", con, msg);
2348                 con->out_msg = NULL;
2349                 if (con->out_kvec_is_msg) {
2350                         con->out_skip = con->out_kvec_bytes;
2351                         con->out_kvec_is_msg = false;
2352                 }
2353                 ceph_msg_put(msg);
2354                 msg->hdr.seq = 0;
2355         }
2356         mutex_unlock(&con->mutex);
2357 }
2358
2359 /*
2360  * Revoke a message that we may be reading data into
2361  */
2362 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2363 {
2364         mutex_lock(&con->mutex);
2365         if (con->in_msg && con->in_msg == msg) {
2366                 unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2367                 unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2368                 unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2369
2370                 /* skip rest of message */
2371                 dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2372                         con->in_base_pos = con->in_base_pos -
2373                                 sizeof(struct ceph_msg_header) -
2374                                 front_len -
2375                                 middle_len -
2376                                 data_len -
2377                                 sizeof(struct ceph_msg_footer);
2378                 ceph_msg_put(con->in_msg);
2379                 con->in_msg = NULL;
2380                 con->in_tag = CEPH_MSGR_TAG_READY;
2381                 con->in_seq++;
2382         } else {
2383                 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2384                      con, con->in_msg, msg);
2385         }
2386         mutex_unlock(&con->mutex);
2387 }
2388
2389 /*
2390  * Queue a keepalive byte to ensure the tcp connection is alive.
2391  */
2392 void ceph_con_keepalive(struct ceph_connection *con)
2393 {
2394         dout("con_keepalive %p\n", con);
2395         clear_standby(con);
2396         if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2397             test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2398                 queue_con(con);
2399 }
2400 EXPORT_SYMBOL(ceph_con_keepalive);
2401
2402
2403 /*
2404  * construct a new message with given type, size
2405  * the new msg has a ref count of 1.
2406  */
2407 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2408                               bool can_fail)
2409 {
2410         struct ceph_msg *m;
2411
2412         m = kmalloc(sizeof(*m), flags);
2413         if (m == NULL)
2414                 goto out;
2415         kref_init(&m->kref);
2416         INIT_LIST_HEAD(&m->list_head);
2417
2418         m->hdr.tid = 0;
2419         m->hdr.type = cpu_to_le16(type);
2420         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2421         m->hdr.version = 0;
2422         m->hdr.front_len = cpu_to_le32(front_len);
2423         m->hdr.middle_len = 0;
2424         m->hdr.data_len = 0;
2425         m->hdr.data_off = 0;
2426         m->hdr.reserved = 0;
2427         m->footer.front_crc = 0;
2428         m->footer.middle_crc = 0;
2429         m->footer.data_crc = 0;
2430         m->footer.flags = 0;
2431         m->front_alloc_len = front_len;
2432         m->front_is_vmalloc = false;
2433         m->more_to_follow = false;
2434         m->ack_stamp = 0;
2435         m->pool = NULL;
2436
2437         /* middle */
2438         m->middle = NULL;
2439
2440         /* data */
2441         m->nr_pages = 0;
2442         m->page_alignment = 0;
2443         m->pages = NULL;
2444         m->pagelist = NULL;
2445         m->bio = NULL;
2446         m->bio_iter = NULL;
2447         m->bio_seg = 0;
2448         m->trail = NULL;
2449
2450         /* front */
2451         if (front_len) {
2452                 if (front_len > PAGE_CACHE_SIZE) {
2453                         m->front.iov_base = __vmalloc(front_len, flags,
2454                                                       PAGE_KERNEL);
2455                         m->front_is_vmalloc = true;
2456                 } else {
2457                         m->front.iov_base = kmalloc(front_len, flags);
2458                 }
2459                 if (m->front.iov_base == NULL) {
2460                         dout("ceph_msg_new can't allocate %d bytes\n",
2461                              front_len);
2462                         goto out2;
2463                 }
2464         } else {
2465                 m->front.iov_base = NULL;
2466         }
2467         m->front.iov_len = front_len;
2468
2469         dout("ceph_msg_new %p front %d\n", m, front_len);
2470         return m;
2471
2472 out2:
2473         ceph_msg_put(m);
2474 out:
2475         if (!can_fail) {
2476                 pr_err("msg_new can't create type %d front %d\n", type,
2477                        front_len);
2478                 WARN_ON(1);
2479         } else {
2480                 dout("msg_new can't create type %d front %d\n", type,
2481                      front_len);
2482         }
2483         return NULL;
2484 }
2485 EXPORT_SYMBOL(ceph_msg_new);
2486
2487 /*
2488  * Allocate "middle" portion of a message, if it is needed and wasn't
2489  * allocated by alloc_msg.  This allows us to read a small fixed-size
2490  * per-type header in the front and then gracefully fail (i.e.,
2491  * propagate the error to the caller based on info in the front) when
2492  * the middle is too large.
2493  */
2494 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2495 {
2496         int type = le16_to_cpu(msg->hdr.type);
2497         int middle_len = le32_to_cpu(msg->hdr.middle_len);
2498
2499         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2500              ceph_msg_type_name(type), middle_len);
2501         BUG_ON(!middle_len);
2502         BUG_ON(msg->middle);
2503
2504         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2505         if (!msg->middle)
2506                 return -ENOMEM;
2507         return 0;
2508 }
2509
2510 /*
2511  * Generic message allocator, for incoming messages.
2512  */
2513 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2514                                 struct ceph_msg_header *hdr,
2515                                 int *skip)
2516 {
2517         int type = le16_to_cpu(hdr->type);
2518         int front_len = le32_to_cpu(hdr->front_len);
2519         int middle_len = le32_to_cpu(hdr->middle_len);
2520         struct ceph_msg *msg = NULL;
2521         int ret;
2522
2523         if (con->ops->alloc_msg) {
2524                 mutex_unlock(&con->mutex);
2525                 msg = con->ops->alloc_msg(con, hdr, skip);
2526                 mutex_lock(&con->mutex);
2527                 if (!msg || *skip)
2528                         return NULL;
2529         }
2530         if (!msg) {
2531                 *skip = 0;
2532                 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2533                 if (!msg) {
2534                         pr_err("unable to allocate msg type %d len %d\n",
2535                                type, front_len);
2536                         return NULL;
2537                 }
2538                 msg->page_alignment = le16_to_cpu(hdr->data_off);
2539         }
2540         memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2541
2542         if (middle_len && !msg->middle) {
2543                 ret = ceph_alloc_middle(con, msg);
2544                 if (ret < 0) {
2545                         ceph_msg_put(msg);
2546                         return NULL;
2547                 }
2548         }
2549
2550         return msg;
2551 }
2552
2553
2554 /*
2555  * Free a generically kmalloc'd message.
2556  */
2557 void ceph_msg_kfree(struct ceph_msg *m)
2558 {
2559         dout("msg_kfree %p\n", m);
2560         if (m->front_is_vmalloc)
2561                 vfree(m->front.iov_base);
2562         else
2563                 kfree(m->front.iov_base);
2564         kfree(m);
2565 }
2566
2567 /*
2568  * Drop a msg ref.  Destroy as needed.
2569  */
2570 void ceph_msg_last_put(struct kref *kref)
2571 {
2572         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2573
2574         dout("ceph_msg_put last one on %p\n", m);
2575         WARN_ON(!list_empty(&m->list_head));
2576
2577         /* drop middle, data, if any */
2578         if (m->middle) {
2579                 ceph_buffer_put(m->middle);
2580                 m->middle = NULL;
2581         }
2582         m->nr_pages = 0;
2583         m->pages = NULL;
2584
2585         if (m->pagelist) {
2586                 ceph_pagelist_release(m->pagelist);
2587                 kfree(m->pagelist);
2588                 m->pagelist = NULL;
2589         }
2590
2591         m->trail = NULL;
2592
2593         if (m->pool)
2594                 ceph_msgpool_put(m->pool, m);
2595         else
2596                 ceph_msg_kfree(m);
2597 }
2598 EXPORT_SYMBOL(ceph_msg_last_put);
2599
2600 void ceph_msg_dump(struct ceph_msg *msg)
2601 {
2602         pr_debug("msg_dump %p (front_alloc_len %d nr_pages %d)\n", msg,
2603                  msg->front_alloc_len, msg->nr_pages);
2604         print_hex_dump(KERN_DEBUG, "header: ",
2605                        DUMP_PREFIX_OFFSET, 16, 1,
2606                        &msg->hdr, sizeof(msg->hdr), true);
2607         print_hex_dump(KERN_DEBUG, " front: ",
2608                        DUMP_PREFIX_OFFSET, 16, 1,
2609                        msg->front.iov_base, msg->front.iov_len, true);
2610         if (msg->middle)
2611                 print_hex_dump(KERN_DEBUG, "middle: ",
2612                                DUMP_PREFIX_OFFSET, 16, 1,
2613                                msg->middle->vec.iov_base,
2614                                msg->middle->vec.iov_len, true);
2615         print_hex_dump(KERN_DEBUG, "footer: ",
2616                        DUMP_PREFIX_OFFSET, 16, 1,
2617                        &msg->footer, sizeof(msg->footer), true);
2618 }
2619 EXPORT_SYMBOL(ceph_msg_dump);