libceph: handle connection reopen race with callbacks
[pandora-kernel.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <net/tcp.h>
15
16 #include <linux/ceph/libceph.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
20
21 /*
22  * Ceph uses the messenger to exchange ceph_msg messages with other
23  * hosts in the system.  The messenger provides ordered and reliable
24  * delivery.  We tolerate TCP disconnects by reconnecting (with
25  * exponential backoff) in the case of a fault (disconnection, bad
26  * crc, protocol error).  Acks allow sent messages to be discarded by
27  * the sender.
28  */
29
30 /* static tag bytes (protocol control messages) */
31 static char tag_msg = CEPH_MSGR_TAG_MSG;
32 static char tag_ack = CEPH_MSGR_TAG_ACK;
33 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
34
35 #ifdef CONFIG_LOCKDEP
36 static struct lock_class_key socket_class;
37 #endif
38
39
40 static void queue_con(struct ceph_connection *con);
41 static void con_work(struct work_struct *);
42 static void ceph_fault(struct ceph_connection *con);
43
44 /*
45  * nicely render a sockaddr as a string.
46  */
47 #define MAX_ADDR_STR 20
48 #define MAX_ADDR_STR_LEN 60
49 static char addr_str[MAX_ADDR_STR][MAX_ADDR_STR_LEN];
50 static DEFINE_SPINLOCK(addr_str_lock);
51 static int last_addr_str;
52
53 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
54 {
55         int i;
56         char *s;
57         struct sockaddr_in *in4 = (void *)ss;
58         struct sockaddr_in6 *in6 = (void *)ss;
59
60         spin_lock(&addr_str_lock);
61         i = last_addr_str++;
62         if (last_addr_str == MAX_ADDR_STR)
63                 last_addr_str = 0;
64         spin_unlock(&addr_str_lock);
65         s = addr_str[i];
66
67         switch (ss->ss_family) {
68         case AF_INET:
69                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%u", &in4->sin_addr,
70                          (unsigned int)ntohs(in4->sin_port));
71                 break;
72
73         case AF_INET6:
74                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%u", &in6->sin6_addr,
75                          (unsigned int)ntohs(in6->sin6_port));
76                 break;
77
78         default:
79                 sprintf(s, "(unknown sockaddr family %d)", (int)ss->ss_family);
80         }
81
82         return s;
83 }
84 EXPORT_SYMBOL(ceph_pr_addr);
85
86 static void encode_my_addr(struct ceph_messenger *msgr)
87 {
88         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
89         ceph_encode_addr(&msgr->my_enc_addr);
90 }
91
92 /*
93  * work queue for all reading and writing to/from the socket.
94  */
95 struct workqueue_struct *ceph_msgr_wq;
96
97 int ceph_msgr_init(void)
98 {
99         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
100         if (!ceph_msgr_wq) {
101                 pr_err("msgr_init failed to create workqueue\n");
102                 return -ENOMEM;
103         }
104         return 0;
105 }
106 EXPORT_SYMBOL(ceph_msgr_init);
107
108 void ceph_msgr_exit(void)
109 {
110         destroy_workqueue(ceph_msgr_wq);
111 }
112 EXPORT_SYMBOL(ceph_msgr_exit);
113
114 void ceph_msgr_flush(void)
115 {
116         flush_workqueue(ceph_msgr_wq);
117 }
118 EXPORT_SYMBOL(ceph_msgr_flush);
119
120
121 /*
122  * socket callback functions
123  */
124
125 /* data available on socket, or listen socket received a connect */
126 static void ceph_data_ready(struct sock *sk, int count_unused)
127 {
128         struct ceph_connection *con =
129                 (struct ceph_connection *)sk->sk_user_data;
130         if (sk->sk_state != TCP_CLOSE_WAIT) {
131                 dout("ceph_data_ready on %p state = %lu, queueing work\n",
132                      con, con->state);
133                 queue_con(con);
134         }
135 }
136
137 /* socket has buffer space for writing */
138 static void ceph_write_space(struct sock *sk)
139 {
140         struct ceph_connection *con =
141                 (struct ceph_connection *)sk->sk_user_data;
142
143         /* only queue to workqueue if there is data we want to write. */
144         if (test_bit(WRITE_PENDING, &con->state)) {
145                 dout("ceph_write_space %p queueing write work\n", con);
146                 queue_con(con);
147         } else {
148                 dout("ceph_write_space %p nothing to write\n", con);
149         }
150
151         /* since we have our own write_space, clear the SOCK_NOSPACE flag */
152         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
153 }
154
155 /* socket's state has changed */
156 static void ceph_state_change(struct sock *sk)
157 {
158         struct ceph_connection *con =
159                 (struct ceph_connection *)sk->sk_user_data;
160
161         dout("ceph_state_change %p state = %lu sk_state = %u\n",
162              con, con->state, sk->sk_state);
163
164         if (test_bit(CLOSED, &con->state))
165                 return;
166
167         switch (sk->sk_state) {
168         case TCP_CLOSE:
169                 dout("ceph_state_change TCP_CLOSE\n");
170         case TCP_CLOSE_WAIT:
171                 dout("ceph_state_change TCP_CLOSE_WAIT\n");
172                 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
173                         if (test_bit(CONNECTING, &con->state))
174                                 con->error_msg = "connection failed";
175                         else
176                                 con->error_msg = "socket closed";
177                         queue_con(con);
178                 }
179                 break;
180         case TCP_ESTABLISHED:
181                 dout("ceph_state_change TCP_ESTABLISHED\n");
182                 queue_con(con);
183                 break;
184         }
185 }
186
187 /*
188  * set up socket callbacks
189  */
190 static void set_sock_callbacks(struct socket *sock,
191                                struct ceph_connection *con)
192 {
193         struct sock *sk = sock->sk;
194         sk->sk_user_data = (void *)con;
195         sk->sk_data_ready = ceph_data_ready;
196         sk->sk_write_space = ceph_write_space;
197         sk->sk_state_change = ceph_state_change;
198 }
199
200
201 /*
202  * socket helpers
203  */
204
205 /*
206  * initiate connection to a remote socket.
207  */
208 static struct socket *ceph_tcp_connect(struct ceph_connection *con)
209 {
210         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
211         struct socket *sock;
212         int ret;
213
214         BUG_ON(con->sock);
215         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
216                                IPPROTO_TCP, &sock);
217         if (ret)
218                 return ERR_PTR(ret);
219         con->sock = sock;
220         sock->sk->sk_allocation = GFP_NOFS;
221
222 #ifdef CONFIG_LOCKDEP
223         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
224 #endif
225
226         set_sock_callbacks(sock, con);
227
228         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
229
230         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
231                                  O_NONBLOCK);
232         if (ret == -EINPROGRESS) {
233                 dout("connect %s EINPROGRESS sk_state = %u\n",
234                      ceph_pr_addr(&con->peer_addr.in_addr),
235                      sock->sk->sk_state);
236                 ret = 0;
237         }
238         if (ret < 0) {
239                 pr_err("connect %s error %d\n",
240                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
241                 sock_release(sock);
242                 con->sock = NULL;
243                 con->error_msg = "connect error";
244         }
245
246         if (ret < 0)
247                 return ERR_PTR(ret);
248         return sock;
249 }
250
251 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
252 {
253         struct kvec iov = {buf, len};
254         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
255         int r;
256
257         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
258         if (r == -EAGAIN)
259                 r = 0;
260         return r;
261 }
262
263 /*
264  * write something.  @more is true if caller will be sending more data
265  * shortly.
266  */
267 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
268                      size_t kvlen, size_t len, int more)
269 {
270         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
271         int r;
272
273         if (more)
274                 msg.msg_flags |= MSG_MORE;
275         else
276                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
277
278         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
279         if (r == -EAGAIN)
280                 r = 0;
281         return r;
282 }
283
284
285 /*
286  * Shutdown/close the socket for the given connection.
287  */
288 static int con_close_socket(struct ceph_connection *con)
289 {
290         int rc;
291
292         dout("con_close_socket on %p sock %p\n", con, con->sock);
293         if (!con->sock)
294                 return 0;
295         set_bit(SOCK_CLOSED, &con->state);
296         rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
297         sock_release(con->sock);
298         con->sock = NULL;
299         clear_bit(SOCK_CLOSED, &con->state);
300         return rc;
301 }
302
303 /*
304  * Reset a connection.  Discard all incoming and outgoing messages
305  * and clear *_seq state.
306  */
307 static void ceph_msg_remove(struct ceph_msg *msg)
308 {
309         list_del_init(&msg->list_head);
310         ceph_msg_put(msg);
311 }
312 static void ceph_msg_remove_list(struct list_head *head)
313 {
314         while (!list_empty(head)) {
315                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
316                                                         list_head);
317                 ceph_msg_remove(msg);
318         }
319 }
320
321 static void reset_connection(struct ceph_connection *con)
322 {
323         /* reset connection, out_queue, msg_ and connect_seq */
324         /* discard existing out_queue and msg_seq */
325         ceph_msg_remove_list(&con->out_queue);
326         ceph_msg_remove_list(&con->out_sent);
327
328         if (con->in_msg) {
329                 ceph_msg_put(con->in_msg);
330                 con->in_msg = NULL;
331         }
332
333         con->connect_seq = 0;
334         con->out_seq = 0;
335         if (con->out_msg) {
336                 ceph_msg_put(con->out_msg);
337                 con->out_msg = NULL;
338         }
339         con->in_seq = 0;
340         con->in_seq_acked = 0;
341 }
342
343 /*
344  * mark a peer down.  drop any open connections.
345  */
346 void ceph_con_close(struct ceph_connection *con)
347 {
348         dout("con_close %p peer %s\n", con,
349              ceph_pr_addr(&con->peer_addr.in_addr));
350         set_bit(CLOSED, &con->state);  /* in case there's queued work */
351         clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
352         clear_bit(LOSSYTX, &con->state);  /* so we retry next connect */
353         clear_bit(KEEPALIVE_PENDING, &con->state);
354         clear_bit(WRITE_PENDING, &con->state);
355         mutex_lock(&con->mutex);
356         reset_connection(con);
357         con->peer_global_seq = 0;
358         cancel_delayed_work(&con->work);
359         mutex_unlock(&con->mutex);
360         queue_con(con);
361 }
362 EXPORT_SYMBOL(ceph_con_close);
363
364 /*
365  * Reopen a closed connection, with a new peer address.
366  */
367 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
368 {
369         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
370         set_bit(OPENING, &con->state);
371         clear_bit(CLOSED, &con->state);
372         memcpy(&con->peer_addr, addr, sizeof(*addr));
373         con->delay = 0;      /* reset backoff memory */
374         queue_con(con);
375 }
376 EXPORT_SYMBOL(ceph_con_open);
377
378 /*
379  * return true if this connection ever successfully opened
380  */
381 bool ceph_con_opened(struct ceph_connection *con)
382 {
383         return con->connect_seq > 0;
384 }
385
386 /*
387  * generic get/put
388  */
389 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
390 {
391         dout("con_get %p nref = %d -> %d\n", con,
392              atomic_read(&con->nref), atomic_read(&con->nref) + 1);
393         if (atomic_inc_not_zero(&con->nref))
394                 return con;
395         return NULL;
396 }
397
398 void ceph_con_put(struct ceph_connection *con)
399 {
400         dout("con_put %p nref = %d -> %d\n", con,
401              atomic_read(&con->nref), atomic_read(&con->nref) - 1);
402         BUG_ON(atomic_read(&con->nref) == 0);
403         if (atomic_dec_and_test(&con->nref)) {
404                 BUG_ON(con->sock);
405                 kfree(con);
406         }
407 }
408
409 /*
410  * initialize a new connection.
411  */
412 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
413 {
414         dout("con_init %p\n", con);
415         memset(con, 0, sizeof(*con));
416         atomic_set(&con->nref, 1);
417         con->msgr = msgr;
418         mutex_init(&con->mutex);
419         INIT_LIST_HEAD(&con->out_queue);
420         INIT_LIST_HEAD(&con->out_sent);
421         INIT_DELAYED_WORK(&con->work, con_work);
422 }
423 EXPORT_SYMBOL(ceph_con_init);
424
425
426 /*
427  * We maintain a global counter to order connection attempts.  Get
428  * a unique seq greater than @gt.
429  */
430 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
431 {
432         u32 ret;
433
434         spin_lock(&msgr->global_seq_lock);
435         if (msgr->global_seq < gt)
436                 msgr->global_seq = gt;
437         ret = ++msgr->global_seq;
438         spin_unlock(&msgr->global_seq_lock);
439         return ret;
440 }
441
442
443 /*
444  * Prepare footer for currently outgoing message, and finish things
445  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
446  */
447 static void prepare_write_message_footer(struct ceph_connection *con, int v)
448 {
449         struct ceph_msg *m = con->out_msg;
450
451         dout("prepare_write_message_footer %p\n", con);
452         con->out_kvec_is_msg = true;
453         con->out_kvec[v].iov_base = &m->footer;
454         con->out_kvec[v].iov_len = sizeof(m->footer);
455         con->out_kvec_bytes += sizeof(m->footer);
456         con->out_kvec_left++;
457         con->out_more = m->more_to_follow;
458         con->out_msg_done = true;
459 }
460
461 /*
462  * Prepare headers for the next outgoing message.
463  */
464 static void prepare_write_message(struct ceph_connection *con)
465 {
466         struct ceph_msg *m;
467         int v = 0;
468
469         con->out_kvec_bytes = 0;
470         con->out_kvec_is_msg = true;
471         con->out_msg_done = false;
472
473         /* Sneak an ack in there first?  If we can get it into the same
474          * TCP packet that's a good thing. */
475         if (con->in_seq > con->in_seq_acked) {
476                 con->in_seq_acked = con->in_seq;
477                 con->out_kvec[v].iov_base = &tag_ack;
478                 con->out_kvec[v++].iov_len = 1;
479                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
480                 con->out_kvec[v].iov_base = &con->out_temp_ack;
481                 con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
482                 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
483         }
484
485         m = list_first_entry(&con->out_queue,
486                        struct ceph_msg, list_head);
487         con->out_msg = m;
488         if (test_bit(LOSSYTX, &con->state)) {
489                 list_del_init(&m->list_head);
490         } else {
491                 /* put message on sent list */
492                 ceph_msg_get(m);
493                 list_move_tail(&m->list_head, &con->out_sent);
494         }
495
496         /*
497          * only assign outgoing seq # if we haven't sent this message
498          * yet.  if it is requeued, resend with it's original seq.
499          */
500         if (m->needs_out_seq) {
501                 m->hdr.seq = cpu_to_le64(++con->out_seq);
502                 m->needs_out_seq = false;
503         }
504
505         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
506              m, con->out_seq, le16_to_cpu(m->hdr.type),
507              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
508              le32_to_cpu(m->hdr.data_len),
509              m->nr_pages);
510         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
511
512         /* tag + hdr + front + middle */
513         con->out_kvec[v].iov_base = &tag_msg;
514         con->out_kvec[v++].iov_len = 1;
515         con->out_kvec[v].iov_base = &m->hdr;
516         con->out_kvec[v++].iov_len = sizeof(m->hdr);
517         con->out_kvec[v++] = m->front;
518         if (m->middle)
519                 con->out_kvec[v++] = m->middle->vec;
520         con->out_kvec_left = v;
521         con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
522                 (m->middle ? m->middle->vec.iov_len : 0);
523         con->out_kvec_cur = con->out_kvec;
524
525         /* fill in crc (except data pages), footer */
526         con->out_msg->hdr.crc =
527                 cpu_to_le32(crc32c(0, (void *)&m->hdr,
528                                       sizeof(m->hdr) - sizeof(m->hdr.crc)));
529         con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
530         con->out_msg->footer.front_crc =
531                 cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
532         if (m->middle)
533                 con->out_msg->footer.middle_crc =
534                         cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
535                                            m->middle->vec.iov_len));
536         else
537                 con->out_msg->footer.middle_crc = 0;
538         con->out_msg->footer.data_crc = 0;
539         dout("prepare_write_message front_crc %u data_crc %u\n",
540              le32_to_cpu(con->out_msg->footer.front_crc),
541              le32_to_cpu(con->out_msg->footer.middle_crc));
542
543         /* is there a data payload? */
544         if (le32_to_cpu(m->hdr.data_len) > 0) {
545                 /* initialize page iterator */
546                 con->out_msg_pos.page = 0;
547                 if (m->pages)
548                         con->out_msg_pos.page_pos = m->page_alignment;
549                 else
550                         con->out_msg_pos.page_pos = 0;
551                 con->out_msg_pos.data_pos = 0;
552                 con->out_msg_pos.did_page_crc = 0;
553                 con->out_more = 1;  /* data + footer will follow */
554         } else {
555                 /* no, queue up footer too and be done */
556                 prepare_write_message_footer(con, v);
557         }
558
559         set_bit(WRITE_PENDING, &con->state);
560 }
561
562 /*
563  * Prepare an ack.
564  */
565 static void prepare_write_ack(struct ceph_connection *con)
566 {
567         dout("prepare_write_ack %p %llu -> %llu\n", con,
568              con->in_seq_acked, con->in_seq);
569         con->in_seq_acked = con->in_seq;
570
571         con->out_kvec[0].iov_base = &tag_ack;
572         con->out_kvec[0].iov_len = 1;
573         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
574         con->out_kvec[1].iov_base = &con->out_temp_ack;
575         con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
576         con->out_kvec_left = 2;
577         con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
578         con->out_kvec_cur = con->out_kvec;
579         con->out_more = 1;  /* more will follow.. eventually.. */
580         set_bit(WRITE_PENDING, &con->state);
581 }
582
583 /*
584  * Prepare to write keepalive byte.
585  */
586 static void prepare_write_keepalive(struct ceph_connection *con)
587 {
588         dout("prepare_write_keepalive %p\n", con);
589         con->out_kvec[0].iov_base = &tag_keepalive;
590         con->out_kvec[0].iov_len = 1;
591         con->out_kvec_left = 1;
592         con->out_kvec_bytes = 1;
593         con->out_kvec_cur = con->out_kvec;
594         set_bit(WRITE_PENDING, &con->state);
595 }
596
597 /*
598  * Connection negotiation.
599  */
600
601 static int prepare_connect_authorizer(struct ceph_connection *con)
602 {
603         void *auth_buf;
604         int auth_len = 0;
605         int auth_protocol = 0;
606
607         mutex_unlock(&con->mutex);
608         if (con->ops->get_authorizer)
609                 con->ops->get_authorizer(con, &auth_buf, &auth_len,
610                                          &auth_protocol, &con->auth_reply_buf,
611                                          &con->auth_reply_buf_len,
612                                          con->auth_retry);
613         mutex_lock(&con->mutex);
614
615         if (test_bit(CLOSED, &con->state) ||
616             test_bit(OPENING, &con->state))
617                 return -EAGAIN;
618
619         con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
620         con->out_connect.authorizer_len = cpu_to_le32(auth_len);
621
622         con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
623         con->out_kvec[con->out_kvec_left].iov_len = auth_len;
624         con->out_kvec_left++;
625         con->out_kvec_bytes += auth_len;
626
627         return 0;
628 }
629
630 /*
631  * We connected to a peer and are saying hello.
632  */
633 static void prepare_write_banner(struct ceph_messenger *msgr,
634                                  struct ceph_connection *con)
635 {
636         int len = strlen(CEPH_BANNER);
637
638         con->out_kvec[0].iov_base = CEPH_BANNER;
639         con->out_kvec[0].iov_len = len;
640         con->out_kvec[1].iov_base = &msgr->my_enc_addr;
641         con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
642         con->out_kvec_left = 2;
643         con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
644         con->out_kvec_cur = con->out_kvec;
645         con->out_more = 0;
646         set_bit(WRITE_PENDING, &con->state);
647 }
648
649 static int prepare_write_connect(struct ceph_messenger *msgr,
650                                  struct ceph_connection *con,
651                                  int after_banner)
652 {
653         unsigned global_seq = get_global_seq(con->msgr, 0);
654         int proto;
655
656         switch (con->peer_name.type) {
657         case CEPH_ENTITY_TYPE_MON:
658                 proto = CEPH_MONC_PROTOCOL;
659                 break;
660         case CEPH_ENTITY_TYPE_OSD:
661                 proto = CEPH_OSDC_PROTOCOL;
662                 break;
663         case CEPH_ENTITY_TYPE_MDS:
664                 proto = CEPH_MDSC_PROTOCOL;
665                 break;
666         default:
667                 BUG();
668         }
669
670         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
671              con->connect_seq, global_seq, proto);
672
673         con->out_connect.features = cpu_to_le64(msgr->supported_features);
674         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
675         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
676         con->out_connect.global_seq = cpu_to_le32(global_seq);
677         con->out_connect.protocol_version = cpu_to_le32(proto);
678         con->out_connect.flags = 0;
679
680         if (!after_banner) {
681                 con->out_kvec_left = 0;
682                 con->out_kvec_bytes = 0;
683         }
684         con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
685         con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
686         con->out_kvec_left++;
687         con->out_kvec_bytes += sizeof(con->out_connect);
688         con->out_kvec_cur = con->out_kvec;
689         con->out_more = 0;
690         set_bit(WRITE_PENDING, &con->state);
691
692         return prepare_connect_authorizer(con);
693 }
694
695
696 /*
697  * write as much of pending kvecs to the socket as we can.
698  *  1 -> done
699  *  0 -> socket full, but more to do
700  * <0 -> error
701  */
702 static int write_partial_kvec(struct ceph_connection *con)
703 {
704         int ret;
705
706         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
707         while (con->out_kvec_bytes > 0) {
708                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
709                                        con->out_kvec_left, con->out_kvec_bytes,
710                                        con->out_more);
711                 if (ret <= 0)
712                         goto out;
713                 con->out_kvec_bytes -= ret;
714                 if (con->out_kvec_bytes == 0)
715                         break;            /* done */
716                 while (ret > 0) {
717                         if (ret >= con->out_kvec_cur->iov_len) {
718                                 ret -= con->out_kvec_cur->iov_len;
719                                 con->out_kvec_cur++;
720                                 con->out_kvec_left--;
721                         } else {
722                                 con->out_kvec_cur->iov_len -= ret;
723                                 con->out_kvec_cur->iov_base += ret;
724                                 ret = 0;
725                                 break;
726                         }
727                 }
728         }
729         con->out_kvec_left = 0;
730         con->out_kvec_is_msg = false;
731         ret = 1;
732 out:
733         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
734              con->out_kvec_bytes, con->out_kvec_left, ret);
735         return ret;  /* done! */
736 }
737
738 #ifdef CONFIG_BLOCK
739 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
740 {
741         if (!bio) {
742                 *iter = NULL;
743                 *seg = 0;
744                 return;
745         }
746         *iter = bio;
747         *seg = bio->bi_idx;
748 }
749
750 static void iter_bio_next(struct bio **bio_iter, int *seg)
751 {
752         if (*bio_iter == NULL)
753                 return;
754
755         BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
756
757         (*seg)++;
758         if (*seg == (*bio_iter)->bi_vcnt)
759                 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
760 }
761 #endif
762
763 /*
764  * Write as much message data payload as we can.  If we finish, queue
765  * up the footer.
766  *  1 -> done, footer is now queued in out_kvec[].
767  *  0 -> socket full, but more to do
768  * <0 -> error
769  */
770 static int write_partial_msg_pages(struct ceph_connection *con)
771 {
772         struct ceph_msg *msg = con->out_msg;
773         unsigned data_len = le32_to_cpu(msg->hdr.data_len);
774         size_t len;
775         int crc = con->msgr->nocrc;
776         int ret;
777         int total_max_write;
778         int in_trail = 0;
779         size_t trail_len = (msg->trail ? msg->trail->length : 0);
780
781         dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
782              con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
783              con->out_msg_pos.page_pos);
784
785 #ifdef CONFIG_BLOCK
786         if (msg->bio && !msg->bio_iter)
787                 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
788 #endif
789
790         while (data_len > con->out_msg_pos.data_pos) {
791                 struct page *page = NULL;
792                 void *kaddr = NULL;
793                 int max_write = PAGE_SIZE;
794                 int page_shift = 0;
795
796                 total_max_write = data_len - trail_len -
797                         con->out_msg_pos.data_pos;
798
799                 /*
800                  * if we are calculating the data crc (the default), we need
801                  * to map the page.  if our pages[] has been revoked, use the
802                  * zero page.
803                  */
804
805                 /* have we reached the trail part of the data? */
806                 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
807                         in_trail = 1;
808
809                         total_max_write = data_len - con->out_msg_pos.data_pos;
810
811                         page = list_first_entry(&msg->trail->head,
812                                                 struct page, lru);
813                         if (crc)
814                                 kaddr = kmap(page);
815                         max_write = PAGE_SIZE;
816                 } else if (msg->pages) {
817                         page = msg->pages[con->out_msg_pos.page];
818                         if (crc)
819                                 kaddr = kmap(page);
820                 } else if (msg->pagelist) {
821                         page = list_first_entry(&msg->pagelist->head,
822                                                 struct page, lru);
823                         if (crc)
824                                 kaddr = kmap(page);
825 #ifdef CONFIG_BLOCK
826                 } else if (msg->bio) {
827                         struct bio_vec *bv;
828
829                         bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
830                         page = bv->bv_page;
831                         page_shift = bv->bv_offset;
832                         if (crc)
833                                 kaddr = kmap(page) + page_shift;
834                         max_write = bv->bv_len;
835 #endif
836                 } else {
837                         page = con->msgr->zero_page;
838                         if (crc)
839                                 kaddr = page_address(con->msgr->zero_page);
840                 }
841                 len = min_t(int, max_write - con->out_msg_pos.page_pos,
842                             total_max_write);
843
844                 if (crc && !con->out_msg_pos.did_page_crc) {
845                         void *base = kaddr + con->out_msg_pos.page_pos;
846                         u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
847
848                         BUG_ON(kaddr == NULL);
849                         con->out_msg->footer.data_crc =
850                                 cpu_to_le32(crc32c(tmpcrc, base, len));
851                         con->out_msg_pos.did_page_crc = 1;
852                 }
853                 ret = kernel_sendpage(con->sock, page,
854                                       con->out_msg_pos.page_pos + page_shift,
855                                       len,
856                                       MSG_DONTWAIT | MSG_NOSIGNAL |
857                                       MSG_MORE);
858
859                 if (crc &&
860                     (msg->pages || msg->pagelist || msg->bio || in_trail))
861                         kunmap(page);
862
863                 if (ret == -EAGAIN)
864                         ret = 0;
865                 if (ret <= 0)
866                         goto out;
867
868                 con->out_msg_pos.data_pos += ret;
869                 con->out_msg_pos.page_pos += ret;
870                 if (ret == len) {
871                         con->out_msg_pos.page_pos = 0;
872                         con->out_msg_pos.page++;
873                         con->out_msg_pos.did_page_crc = 0;
874                         if (in_trail)
875                                 list_move_tail(&page->lru,
876                                                &msg->trail->head);
877                         else if (msg->pagelist)
878                                 list_move_tail(&page->lru,
879                                                &msg->pagelist->head);
880 #ifdef CONFIG_BLOCK
881                         else if (msg->bio)
882                                 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
883 #endif
884                 }
885         }
886
887         dout("write_partial_msg_pages %p msg %p done\n", con, msg);
888
889         /* prepare and queue up footer, too */
890         if (!crc)
891                 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
892         con->out_kvec_bytes = 0;
893         con->out_kvec_left = 0;
894         con->out_kvec_cur = con->out_kvec;
895         prepare_write_message_footer(con, 0);
896         ret = 1;
897 out:
898         return ret;
899 }
900
901 /*
902  * write some zeros
903  */
904 static int write_partial_skip(struct ceph_connection *con)
905 {
906         int ret;
907
908         while (con->out_skip > 0) {
909                 struct kvec iov = {
910                         .iov_base = page_address(con->msgr->zero_page),
911                         .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
912                 };
913
914                 ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
915                 if (ret <= 0)
916                         goto out;
917                 con->out_skip -= ret;
918         }
919         ret = 1;
920 out:
921         return ret;
922 }
923
924 /*
925  * Prepare to read connection handshake, or an ack.
926  */
927 static void prepare_read_banner(struct ceph_connection *con)
928 {
929         dout("prepare_read_banner %p\n", con);
930         con->in_base_pos = 0;
931 }
932
933 static void prepare_read_connect(struct ceph_connection *con)
934 {
935         dout("prepare_read_connect %p\n", con);
936         con->in_base_pos = 0;
937 }
938
939 static void prepare_read_ack(struct ceph_connection *con)
940 {
941         dout("prepare_read_ack %p\n", con);
942         con->in_base_pos = 0;
943 }
944
945 static void prepare_read_tag(struct ceph_connection *con)
946 {
947         dout("prepare_read_tag %p\n", con);
948         con->in_base_pos = 0;
949         con->in_tag = CEPH_MSGR_TAG_READY;
950 }
951
952 /*
953  * Prepare to read a message.
954  */
955 static int prepare_read_message(struct ceph_connection *con)
956 {
957         dout("prepare_read_message %p\n", con);
958         BUG_ON(con->in_msg != NULL);
959         con->in_base_pos = 0;
960         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
961         return 0;
962 }
963
964
965 static int read_partial(struct ceph_connection *con,
966                         int *to, int size, void *object)
967 {
968         *to += size;
969         while (con->in_base_pos < *to) {
970                 int left = *to - con->in_base_pos;
971                 int have = size - left;
972                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
973                 if (ret <= 0)
974                         return ret;
975                 con->in_base_pos += ret;
976         }
977         return 1;
978 }
979
980
981 /*
982  * Read all or part of the connect-side handshake on a new connection
983  */
984 static int read_partial_banner(struct ceph_connection *con)
985 {
986         int ret, to = 0;
987
988         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
989
990         /* peer's banner */
991         ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
992         if (ret <= 0)
993                 goto out;
994         ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
995                            &con->actual_peer_addr);
996         if (ret <= 0)
997                 goto out;
998         ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
999                            &con->peer_addr_for_me);
1000         if (ret <= 0)
1001                 goto out;
1002 out:
1003         return ret;
1004 }
1005
1006 static int read_partial_connect(struct ceph_connection *con)
1007 {
1008         int ret, to = 0;
1009
1010         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1011
1012         ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
1013         if (ret <= 0)
1014                 goto out;
1015         ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
1016                            con->auth_reply_buf);
1017         if (ret <= 0)
1018                 goto out;
1019
1020         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1021              con, (int)con->in_reply.tag,
1022              le32_to_cpu(con->in_reply.connect_seq),
1023              le32_to_cpu(con->in_reply.global_seq));
1024 out:
1025         return ret;
1026
1027 }
1028
1029 /*
1030  * Verify the hello banner looks okay.
1031  */
1032 static int verify_hello(struct ceph_connection *con)
1033 {
1034         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1035                 pr_err("connect to %s got bad banner\n",
1036                        ceph_pr_addr(&con->peer_addr.in_addr));
1037                 con->error_msg = "protocol error, bad banner";
1038                 return -1;
1039         }
1040         return 0;
1041 }
1042
1043 static bool addr_is_blank(struct sockaddr_storage *ss)
1044 {
1045         switch (ss->ss_family) {
1046         case AF_INET:
1047                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1048         case AF_INET6:
1049                 return
1050                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1051                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1052                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1053                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1054         }
1055         return false;
1056 }
1057
1058 static int addr_port(struct sockaddr_storage *ss)
1059 {
1060         switch (ss->ss_family) {
1061         case AF_INET:
1062                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1063         case AF_INET6:
1064                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1065         }
1066         return 0;
1067 }
1068
1069 static void addr_set_port(struct sockaddr_storage *ss, int p)
1070 {
1071         switch (ss->ss_family) {
1072         case AF_INET:
1073                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1074         case AF_INET6:
1075                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1076         }
1077 }
1078
1079 /*
1080  * Parse an ip[:port] list into an addr array.  Use the default
1081  * monitor port if a port isn't specified.
1082  */
1083 int ceph_parse_ips(const char *c, const char *end,
1084                    struct ceph_entity_addr *addr,
1085                    int max_count, int *count)
1086 {
1087         int i;
1088         const char *p = c;
1089
1090         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1091         for (i = 0; i < max_count; i++) {
1092                 const char *ipend;
1093                 struct sockaddr_storage *ss = &addr[i].in_addr;
1094                 struct sockaddr_in *in4 = (void *)ss;
1095                 struct sockaddr_in6 *in6 = (void *)ss;
1096                 int port;
1097                 char delim = ',';
1098
1099                 if (*p == '[') {
1100                         delim = ']';
1101                         p++;
1102                 }
1103
1104                 memset(ss, 0, sizeof(*ss));
1105                 if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
1106                              delim, &ipend))
1107                         ss->ss_family = AF_INET;
1108                 else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
1109                                   delim, &ipend))
1110                         ss->ss_family = AF_INET6;
1111                 else
1112                         goto bad;
1113                 p = ipend;
1114
1115                 if (delim == ']') {
1116                         if (*p != ']') {
1117                                 dout("missing matching ']'\n");
1118                                 goto bad;
1119                         }
1120                         p++;
1121                 }
1122
1123                 /* port? */
1124                 if (p < end && *p == ':') {
1125                         port = 0;
1126                         p++;
1127                         while (p < end && *p >= '0' && *p <= '9') {
1128                                 port = (port * 10) + (*p - '0');
1129                                 p++;
1130                         }
1131                         if (port > 65535 || port == 0)
1132                                 goto bad;
1133                 } else {
1134                         port = CEPH_MON_PORT;
1135                 }
1136
1137                 addr_set_port(ss, port);
1138
1139                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1140
1141                 if (p == end)
1142                         break;
1143                 if (*p != ',')
1144                         goto bad;
1145                 p++;
1146         }
1147
1148         if (p != end)
1149                 goto bad;
1150
1151         if (count)
1152                 *count = i + 1;
1153         return 0;
1154
1155 bad:
1156         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1157         return -EINVAL;
1158 }
1159 EXPORT_SYMBOL(ceph_parse_ips);
1160
1161 static int process_banner(struct ceph_connection *con)
1162 {
1163         dout("process_banner on %p\n", con);
1164
1165         if (verify_hello(con) < 0)
1166                 return -1;
1167
1168         ceph_decode_addr(&con->actual_peer_addr);
1169         ceph_decode_addr(&con->peer_addr_for_me);
1170
1171         /*
1172          * Make sure the other end is who we wanted.  note that the other
1173          * end may not yet know their ip address, so if it's 0.0.0.0, give
1174          * them the benefit of the doubt.
1175          */
1176         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1177                    sizeof(con->peer_addr)) != 0 &&
1178             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1179               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1180                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1181                            ceph_pr_addr(&con->peer_addr.in_addr),
1182                            (int)le32_to_cpu(con->peer_addr.nonce),
1183                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1184                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1185                 con->error_msg = "wrong peer at address";
1186                 return -1;
1187         }
1188
1189         /*
1190          * did we learn our address?
1191          */
1192         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1193                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1194
1195                 memcpy(&con->msgr->inst.addr.in_addr,
1196                        &con->peer_addr_for_me.in_addr,
1197                        sizeof(con->peer_addr_for_me.in_addr));
1198                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1199                 encode_my_addr(con->msgr);
1200                 dout("process_banner learned my addr is %s\n",
1201                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1202         }
1203
1204         set_bit(NEGOTIATING, &con->state);
1205         prepare_read_connect(con);
1206         return 0;
1207 }
1208
1209 static void fail_protocol(struct ceph_connection *con)
1210 {
1211         reset_connection(con);
1212         set_bit(CLOSED, &con->state);  /* in case there's queued work */
1213
1214         mutex_unlock(&con->mutex);
1215         if (con->ops->bad_proto)
1216                 con->ops->bad_proto(con);
1217         mutex_lock(&con->mutex);
1218 }
1219
1220 static int process_connect(struct ceph_connection *con)
1221 {
1222         u64 sup_feat = con->msgr->supported_features;
1223         u64 req_feat = con->msgr->required_features;
1224         u64 server_feat = le64_to_cpu(con->in_reply.features);
1225         int ret;
1226
1227         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1228
1229         switch (con->in_reply.tag) {
1230         case CEPH_MSGR_TAG_FEATURES:
1231                 pr_err("%s%lld %s feature set mismatch,"
1232                        " my %llx < server's %llx, missing %llx\n",
1233                        ENTITY_NAME(con->peer_name),
1234                        ceph_pr_addr(&con->peer_addr.in_addr),
1235                        sup_feat, server_feat, server_feat & ~sup_feat);
1236                 con->error_msg = "missing required protocol features";
1237                 fail_protocol(con);
1238                 return -1;
1239
1240         case CEPH_MSGR_TAG_BADPROTOVER:
1241                 pr_err("%s%lld %s protocol version mismatch,"
1242                        " my %d != server's %d\n",
1243                        ENTITY_NAME(con->peer_name),
1244                        ceph_pr_addr(&con->peer_addr.in_addr),
1245                        le32_to_cpu(con->out_connect.protocol_version),
1246                        le32_to_cpu(con->in_reply.protocol_version));
1247                 con->error_msg = "protocol version mismatch";
1248                 fail_protocol(con);
1249                 return -1;
1250
1251         case CEPH_MSGR_TAG_BADAUTHORIZER:
1252                 con->auth_retry++;
1253                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1254                      con->auth_retry);
1255                 if (con->auth_retry == 2) {
1256                         con->error_msg = "connect authorization failure";
1257                         return -1;
1258                 }
1259                 con->auth_retry = 1;
1260                 ret = prepare_write_connect(con->msgr, con, 0);
1261                 if (ret < 0)
1262                         return ret;
1263                 prepare_read_connect(con);
1264                 break;
1265
1266         case CEPH_MSGR_TAG_RESETSESSION:
1267                 /*
1268                  * If we connected with a large connect_seq but the peer
1269                  * has no record of a session with us (no connection, or
1270                  * connect_seq == 0), they will send RESETSESION to indicate
1271                  * that they must have reset their session, and may have
1272                  * dropped messages.
1273                  */
1274                 dout("process_connect got RESET peer seq %u\n",
1275                      le32_to_cpu(con->in_connect.connect_seq));
1276                 pr_err("%s%lld %s connection reset\n",
1277                        ENTITY_NAME(con->peer_name),
1278                        ceph_pr_addr(&con->peer_addr.in_addr));
1279                 reset_connection(con);
1280                 prepare_write_connect(con->msgr, con, 0);
1281                 prepare_read_connect(con);
1282
1283                 /* Tell ceph about it. */
1284                 mutex_unlock(&con->mutex);
1285                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1286                 if (con->ops->peer_reset)
1287                         con->ops->peer_reset(con);
1288                 mutex_lock(&con->mutex);
1289                 if (test_bit(CLOSED, &con->state) ||
1290                     test_bit(OPENING, &con->state))
1291                         return -EAGAIN;
1292                 break;
1293
1294         case CEPH_MSGR_TAG_RETRY_SESSION:
1295                 /*
1296                  * If we sent a smaller connect_seq than the peer has, try
1297                  * again with a larger value.
1298                  */
1299                 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1300                      le32_to_cpu(con->out_connect.connect_seq),
1301                      le32_to_cpu(con->in_connect.connect_seq));
1302                 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1303                 prepare_write_connect(con->msgr, con, 0);
1304                 prepare_read_connect(con);
1305                 break;
1306
1307         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1308                 /*
1309                  * If we sent a smaller global_seq than the peer has, try
1310                  * again with a larger value.
1311                  */
1312                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1313                      con->peer_global_seq,
1314                      le32_to_cpu(con->in_connect.global_seq));
1315                 get_global_seq(con->msgr,
1316                                le32_to_cpu(con->in_connect.global_seq));
1317                 prepare_write_connect(con->msgr, con, 0);
1318                 prepare_read_connect(con);
1319                 break;
1320
1321         case CEPH_MSGR_TAG_READY:
1322                 if (req_feat & ~server_feat) {
1323                         pr_err("%s%lld %s protocol feature mismatch,"
1324                                " my required %llx > server's %llx, need %llx\n",
1325                                ENTITY_NAME(con->peer_name),
1326                                ceph_pr_addr(&con->peer_addr.in_addr),
1327                                req_feat, server_feat, req_feat & ~server_feat);
1328                         con->error_msg = "missing required protocol features";
1329                         fail_protocol(con);
1330                         return -1;
1331                 }
1332                 clear_bit(CONNECTING, &con->state);
1333                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1334                 con->connect_seq++;
1335                 con->peer_features = server_feat;
1336                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1337                      con->peer_global_seq,
1338                      le32_to_cpu(con->in_reply.connect_seq),
1339                      con->connect_seq);
1340                 WARN_ON(con->connect_seq !=
1341                         le32_to_cpu(con->in_reply.connect_seq));
1342
1343                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1344                         set_bit(LOSSYTX, &con->state);
1345
1346                 prepare_read_tag(con);
1347                 break;
1348
1349         case CEPH_MSGR_TAG_WAIT:
1350                 /*
1351                  * If there is a connection race (we are opening
1352                  * connections to each other), one of us may just have
1353                  * to WAIT.  This shouldn't happen if we are the
1354                  * client.
1355                  */
1356                 pr_err("process_connect peer connecting WAIT\n");
1357
1358         default:
1359                 pr_err("connect protocol error, will retry\n");
1360                 con->error_msg = "protocol error, garbage tag during connect";
1361                 return -1;
1362         }
1363         return 0;
1364 }
1365
1366
1367 /*
1368  * read (part of) an ack
1369  */
1370 static int read_partial_ack(struct ceph_connection *con)
1371 {
1372         int to = 0;
1373
1374         return read_partial(con, &to, sizeof(con->in_temp_ack),
1375                             &con->in_temp_ack);
1376 }
1377
1378
1379 /*
1380  * We can finally discard anything that's been acked.
1381  */
1382 static void process_ack(struct ceph_connection *con)
1383 {
1384         struct ceph_msg *m;
1385         u64 ack = le64_to_cpu(con->in_temp_ack);
1386         u64 seq;
1387
1388         while (!list_empty(&con->out_sent)) {
1389                 m = list_first_entry(&con->out_sent, struct ceph_msg,
1390                                      list_head);
1391                 seq = le64_to_cpu(m->hdr.seq);
1392                 if (seq > ack)
1393                         break;
1394                 dout("got ack for seq %llu type %d at %p\n", seq,
1395                      le16_to_cpu(m->hdr.type), m);
1396                 ceph_msg_remove(m);
1397         }
1398         prepare_read_tag(con);
1399 }
1400
1401
1402
1403
1404 static int read_partial_message_section(struct ceph_connection *con,
1405                                         struct kvec *section,
1406                                         unsigned int sec_len, u32 *crc)
1407 {
1408         int ret, left;
1409
1410         BUG_ON(!section);
1411
1412         while (section->iov_len < sec_len) {
1413                 BUG_ON(section->iov_base == NULL);
1414                 left = sec_len - section->iov_len;
1415                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1416                                        section->iov_len, left);
1417                 if (ret <= 0)
1418                         return ret;
1419                 section->iov_len += ret;
1420                 if (section->iov_len == sec_len)
1421                         *crc = crc32c(0, section->iov_base,
1422                                       section->iov_len);
1423         }
1424
1425         return 1;
1426 }
1427
1428 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1429                                 struct ceph_msg_header *hdr,
1430                                 int *skip);
1431
1432
1433 static int read_partial_message_pages(struct ceph_connection *con,
1434                                       struct page **pages,
1435                                       unsigned data_len, int datacrc)
1436 {
1437         void *p;
1438         int ret;
1439         int left;
1440
1441         left = min((int)(data_len - con->in_msg_pos.data_pos),
1442                    (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1443         /* (page) data */
1444         BUG_ON(pages == NULL);
1445         p = kmap(pages[con->in_msg_pos.page]);
1446         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1447                                left);
1448         if (ret > 0 && datacrc)
1449                 con->in_data_crc =
1450                         crc32c(con->in_data_crc,
1451                                   p + con->in_msg_pos.page_pos, ret);
1452         kunmap(pages[con->in_msg_pos.page]);
1453         if (ret <= 0)
1454                 return ret;
1455         con->in_msg_pos.data_pos += ret;
1456         con->in_msg_pos.page_pos += ret;
1457         if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1458                 con->in_msg_pos.page_pos = 0;
1459                 con->in_msg_pos.page++;
1460         }
1461
1462         return ret;
1463 }
1464
1465 #ifdef CONFIG_BLOCK
1466 static int read_partial_message_bio(struct ceph_connection *con,
1467                                     struct bio **bio_iter, int *bio_seg,
1468                                     unsigned data_len, int datacrc)
1469 {
1470         struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1471         void *p;
1472         int ret, left;
1473
1474         if (IS_ERR(bv))
1475                 return PTR_ERR(bv);
1476
1477         left = min((int)(data_len - con->in_msg_pos.data_pos),
1478                    (int)(bv->bv_len - con->in_msg_pos.page_pos));
1479
1480         p = kmap(bv->bv_page) + bv->bv_offset;
1481
1482         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1483                                left);
1484         if (ret > 0 && datacrc)
1485                 con->in_data_crc =
1486                         crc32c(con->in_data_crc,
1487                                   p + con->in_msg_pos.page_pos, ret);
1488         kunmap(bv->bv_page);
1489         if (ret <= 0)
1490                 return ret;
1491         con->in_msg_pos.data_pos += ret;
1492         con->in_msg_pos.page_pos += ret;
1493         if (con->in_msg_pos.page_pos == bv->bv_len) {
1494                 con->in_msg_pos.page_pos = 0;
1495                 iter_bio_next(bio_iter, bio_seg);
1496         }
1497
1498         return ret;
1499 }
1500 #endif
1501
1502 /*
1503  * read (part of) a message.
1504  */
1505 static int read_partial_message(struct ceph_connection *con)
1506 {
1507         struct ceph_msg *m = con->in_msg;
1508         int ret;
1509         int to, left;
1510         unsigned front_len, middle_len, data_len;
1511         int datacrc = con->msgr->nocrc;
1512         int skip;
1513         u64 seq;
1514
1515         dout("read_partial_message con %p msg %p\n", con, m);
1516
1517         /* header */
1518         while (con->in_base_pos < sizeof(con->in_hdr)) {
1519                 left = sizeof(con->in_hdr) - con->in_base_pos;
1520                 ret = ceph_tcp_recvmsg(con->sock,
1521                                        (char *)&con->in_hdr + con->in_base_pos,
1522                                        left);
1523                 if (ret <= 0)
1524                         return ret;
1525                 con->in_base_pos += ret;
1526                 if (con->in_base_pos == sizeof(con->in_hdr)) {
1527                         u32 crc = crc32c(0, (void *)&con->in_hdr,
1528                                  sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1529                         if (crc != le32_to_cpu(con->in_hdr.crc)) {
1530                                 pr_err("read_partial_message bad hdr "
1531                                        " crc %u != expected %u\n",
1532                                        crc, con->in_hdr.crc);
1533                                 return -EBADMSG;
1534                         }
1535                 }
1536         }
1537         front_len = le32_to_cpu(con->in_hdr.front_len);
1538         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1539                 return -EIO;
1540         middle_len = le32_to_cpu(con->in_hdr.middle_len);
1541         if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1542                 return -EIO;
1543         data_len = le32_to_cpu(con->in_hdr.data_len);
1544         if (data_len > CEPH_MSG_MAX_DATA_LEN)
1545                 return -EIO;
1546
1547         /* verify seq# */
1548         seq = le64_to_cpu(con->in_hdr.seq);
1549         if ((s64)seq - (s64)con->in_seq < 1) {
1550                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1551                         ENTITY_NAME(con->peer_name),
1552                         ceph_pr_addr(&con->peer_addr.in_addr),
1553                         seq, con->in_seq + 1);
1554                 con->in_base_pos = -front_len - middle_len - data_len -
1555                         sizeof(m->footer);
1556                 con->in_tag = CEPH_MSGR_TAG_READY;
1557                 return 0;
1558         } else if ((s64)seq - (s64)con->in_seq > 1) {
1559                 pr_err("read_partial_message bad seq %lld expected %lld\n",
1560                        seq, con->in_seq + 1);
1561                 con->error_msg = "bad message sequence # for incoming message";
1562                 return -EBADMSG;
1563         }
1564
1565         /* allocate message? */
1566         if (!con->in_msg) {
1567                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1568                      con->in_hdr.front_len, con->in_hdr.data_len);
1569                 skip = 0;
1570                 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1571                 if (skip) {
1572                         /* skip this message */
1573                         dout("alloc_msg said skip message\n");
1574                         BUG_ON(con->in_msg);
1575                         con->in_base_pos = -front_len - middle_len - data_len -
1576                                 sizeof(m->footer);
1577                         con->in_tag = CEPH_MSGR_TAG_READY;
1578                         con->in_seq++;
1579                         return 0;
1580                 }
1581                 if (!con->in_msg) {
1582                         con->error_msg =
1583                                 "error allocating memory for incoming message";
1584                         return -ENOMEM;
1585                 }
1586                 m = con->in_msg;
1587                 m->front.iov_len = 0;    /* haven't read it yet */
1588                 if (m->middle)
1589                         m->middle->vec.iov_len = 0;
1590
1591                 con->in_msg_pos.page = 0;
1592                 if (m->pages)
1593                         con->in_msg_pos.page_pos = m->page_alignment;
1594                 else
1595                         con->in_msg_pos.page_pos = 0;
1596                 con->in_msg_pos.data_pos = 0;
1597         }
1598
1599         /* front */
1600         ret = read_partial_message_section(con, &m->front, front_len,
1601                                            &con->in_front_crc);
1602         if (ret <= 0)
1603                 return ret;
1604
1605         /* middle */
1606         if (m->middle) {
1607                 ret = read_partial_message_section(con, &m->middle->vec,
1608                                                    middle_len,
1609                                                    &con->in_middle_crc);
1610                 if (ret <= 0)
1611                         return ret;
1612         }
1613 #ifdef CONFIG_BLOCK
1614         if (m->bio && !m->bio_iter)
1615                 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1616 #endif
1617
1618         /* (page) data */
1619         while (con->in_msg_pos.data_pos < data_len) {
1620                 if (m->pages) {
1621                         ret = read_partial_message_pages(con, m->pages,
1622                                                  data_len, datacrc);
1623                         if (ret <= 0)
1624                                 return ret;
1625 #ifdef CONFIG_BLOCK
1626                 } else if (m->bio) {
1627
1628                         ret = read_partial_message_bio(con,
1629                                                  &m->bio_iter, &m->bio_seg,
1630                                                  data_len, datacrc);
1631                         if (ret <= 0)
1632                                 return ret;
1633 #endif
1634                 } else {
1635                         BUG_ON(1);
1636                 }
1637         }
1638
1639         /* footer */
1640         to = sizeof(m->hdr) + sizeof(m->footer);
1641         while (con->in_base_pos < to) {
1642                 left = to - con->in_base_pos;
1643                 ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1644                                        (con->in_base_pos - sizeof(m->hdr)),
1645                                        left);
1646                 if (ret <= 0)
1647                         return ret;
1648                 con->in_base_pos += ret;
1649         }
1650         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1651              m, front_len, m->footer.front_crc, middle_len,
1652              m->footer.middle_crc, data_len, m->footer.data_crc);
1653
1654         /* crc ok? */
1655         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1656                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1657                        m, con->in_front_crc, m->footer.front_crc);
1658                 return -EBADMSG;
1659         }
1660         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1661                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1662                        m, con->in_middle_crc, m->footer.middle_crc);
1663                 return -EBADMSG;
1664         }
1665         if (datacrc &&
1666             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1667             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1668                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1669                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1670                 return -EBADMSG;
1671         }
1672
1673         return 1; /* done! */
1674 }
1675
1676 /*
1677  * Process message.  This happens in the worker thread.  The callback should
1678  * be careful not to do anything that waits on other incoming messages or it
1679  * may deadlock.
1680  */
1681 static void process_message(struct ceph_connection *con)
1682 {
1683         struct ceph_msg *msg;
1684
1685         msg = con->in_msg;
1686         con->in_msg = NULL;
1687
1688         /* if first message, set peer_name */
1689         if (con->peer_name.type == 0)
1690                 con->peer_name = msg->hdr.src;
1691
1692         con->in_seq++;
1693         mutex_unlock(&con->mutex);
1694
1695         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1696              msg, le64_to_cpu(msg->hdr.seq),
1697              ENTITY_NAME(msg->hdr.src),
1698              le16_to_cpu(msg->hdr.type),
1699              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1700              le32_to_cpu(msg->hdr.front_len),
1701              le32_to_cpu(msg->hdr.data_len),
1702              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1703         con->ops->dispatch(con, msg);
1704
1705         mutex_lock(&con->mutex);
1706         prepare_read_tag(con);
1707 }
1708
1709
1710 /*
1711  * Write something to the socket.  Called in a worker thread when the
1712  * socket appears to be writeable and we have something ready to send.
1713  */
1714 static int try_write(struct ceph_connection *con)
1715 {
1716         struct ceph_messenger *msgr = con->msgr;
1717         int ret = 1;
1718
1719         dout("try_write start %p state %lu nref %d\n", con, con->state,
1720              atomic_read(&con->nref));
1721
1722 more:
1723         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1724
1725         /* open the socket first? */
1726         if (con->sock == NULL) {
1727                 prepare_write_banner(msgr, con);
1728                 prepare_write_connect(msgr, con, 1);
1729                 prepare_read_banner(con);
1730                 set_bit(CONNECTING, &con->state);
1731                 clear_bit(NEGOTIATING, &con->state);
1732
1733                 BUG_ON(con->in_msg);
1734                 con->in_tag = CEPH_MSGR_TAG_READY;
1735                 dout("try_write initiating connect on %p new state %lu\n",
1736                      con, con->state);
1737                 con->sock = ceph_tcp_connect(con);
1738                 if (IS_ERR(con->sock)) {
1739                         con->sock = NULL;
1740                         con->error_msg = "connect error";
1741                         ret = -1;
1742                         goto out;
1743                 }
1744         }
1745
1746 more_kvec:
1747         /* kvec data queued? */
1748         if (con->out_skip) {
1749                 ret = write_partial_skip(con);
1750                 if (ret <= 0)
1751                         goto out;
1752         }
1753         if (con->out_kvec_left) {
1754                 ret = write_partial_kvec(con);
1755                 if (ret <= 0)
1756                         goto out;
1757         }
1758
1759         /* msg pages? */
1760         if (con->out_msg) {
1761                 if (con->out_msg_done) {
1762                         ceph_msg_put(con->out_msg);
1763                         con->out_msg = NULL;   /* we're done with this one */
1764                         goto do_next;
1765                 }
1766
1767                 ret = write_partial_msg_pages(con);
1768                 if (ret == 1)
1769                         goto more_kvec;  /* we need to send the footer, too! */
1770                 if (ret == 0)
1771                         goto out;
1772                 if (ret < 0) {
1773                         dout("try_write write_partial_msg_pages err %d\n",
1774                              ret);
1775                         goto out;
1776                 }
1777         }
1778
1779 do_next:
1780         if (!test_bit(CONNECTING, &con->state)) {
1781                 /* is anything else pending? */
1782                 if (!list_empty(&con->out_queue)) {
1783                         prepare_write_message(con);
1784                         goto more;
1785                 }
1786                 if (con->in_seq > con->in_seq_acked) {
1787                         prepare_write_ack(con);
1788                         goto more;
1789                 }
1790                 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1791                         prepare_write_keepalive(con);
1792                         goto more;
1793                 }
1794         }
1795
1796         /* Nothing to do! */
1797         clear_bit(WRITE_PENDING, &con->state);
1798         dout("try_write nothing else to write.\n");
1799         ret = 0;
1800 out:
1801         dout("try_write done on %p ret %d\n", con, ret);
1802         return ret;
1803 }
1804
1805
1806
1807 /*
1808  * Read what we can from the socket.
1809  */
1810 static int try_read(struct ceph_connection *con)
1811 {
1812         int ret = -1;
1813
1814         if (!con->sock)
1815                 return 0;
1816
1817         if (test_bit(STANDBY, &con->state))
1818                 return 0;
1819
1820         dout("try_read start on %p\n", con);
1821
1822 more:
1823         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1824              con->in_base_pos);
1825
1826         /*
1827          * process_connect and process_message drop and re-take
1828          * con->mutex.  make sure we handle a racing close or reopen.
1829          */
1830         if (test_bit(CLOSED, &con->state) ||
1831             test_bit(OPENING, &con->state)) {
1832                 ret = -EAGAIN;
1833                 goto out;
1834         }
1835
1836         if (test_bit(CONNECTING, &con->state)) {
1837                 if (!test_bit(NEGOTIATING, &con->state)) {
1838                         dout("try_read connecting\n");
1839                         ret = read_partial_banner(con);
1840                         if (ret <= 0)
1841                                 goto out;
1842                         ret = process_banner(con);
1843                         if (ret < 0)
1844                                 goto out;
1845                 }
1846                 ret = read_partial_connect(con);
1847                 if (ret <= 0)
1848                         goto out;
1849                 ret = process_connect(con);
1850                 if (ret < 0)
1851                         goto out;
1852                 goto more;
1853         }
1854
1855         if (con->in_base_pos < 0) {
1856                 /*
1857                  * skipping + discarding content.
1858                  *
1859                  * FIXME: there must be a better way to do this!
1860                  */
1861                 static char buf[1024];
1862                 int skip = min(1024, -con->in_base_pos);
1863                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1864                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1865                 if (ret <= 0)
1866                         goto out;
1867                 con->in_base_pos += ret;
1868                 if (con->in_base_pos)
1869                         goto more;
1870         }
1871         if (con->in_tag == CEPH_MSGR_TAG_READY) {
1872                 /*
1873                  * what's next?
1874                  */
1875                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1876                 if (ret <= 0)
1877                         goto out;
1878                 dout("try_read got tag %d\n", (int)con->in_tag);
1879                 switch (con->in_tag) {
1880                 case CEPH_MSGR_TAG_MSG:
1881                         prepare_read_message(con);
1882                         break;
1883                 case CEPH_MSGR_TAG_ACK:
1884                         prepare_read_ack(con);
1885                         break;
1886                 case CEPH_MSGR_TAG_CLOSE:
1887                         set_bit(CLOSED, &con->state);   /* fixme */
1888                         goto out;
1889                 default:
1890                         goto bad_tag;
1891                 }
1892         }
1893         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
1894                 ret = read_partial_message(con);
1895                 if (ret <= 0) {
1896                         switch (ret) {
1897                         case -EBADMSG:
1898                                 con->error_msg = "bad crc";
1899                                 ret = -EIO;
1900                                 break;
1901                         case -EIO:
1902                                 con->error_msg = "io error";
1903                                 break;
1904                         }
1905                         goto out;
1906                 }
1907                 if (con->in_tag == CEPH_MSGR_TAG_READY)
1908                         goto more;
1909                 process_message(con);
1910                 goto more;
1911         }
1912         if (con->in_tag == CEPH_MSGR_TAG_ACK) {
1913                 ret = read_partial_ack(con);
1914                 if (ret <= 0)
1915                         goto out;
1916                 process_ack(con);
1917                 goto more;
1918         }
1919
1920 out:
1921         dout("try_read done on %p ret %d\n", con, ret);
1922         return ret;
1923
1924 bad_tag:
1925         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
1926         con->error_msg = "protocol error, garbage tag";
1927         ret = -1;
1928         goto out;
1929 }
1930
1931
1932 /*
1933  * Atomically queue work on a connection.  Bump @con reference to
1934  * avoid races with connection teardown.
1935  */
1936 static void queue_con(struct ceph_connection *con)
1937 {
1938         if (test_bit(DEAD, &con->state)) {
1939                 dout("queue_con %p ignoring: DEAD\n",
1940                      con);
1941                 return;
1942         }
1943
1944         if (!con->ops->get(con)) {
1945                 dout("queue_con %p ref count 0\n", con);
1946                 return;
1947         }
1948
1949         if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
1950                 dout("queue_con %p - already queued\n", con);
1951                 con->ops->put(con);
1952         } else {
1953                 dout("queue_con %p\n", con);
1954         }
1955 }
1956
1957 /*
1958  * Do some work on a connection.  Drop a connection ref when we're done.
1959  */
1960 static void con_work(struct work_struct *work)
1961 {
1962         struct ceph_connection *con = container_of(work, struct ceph_connection,
1963                                                    work.work);
1964         int ret;
1965
1966         mutex_lock(&con->mutex);
1967 restart:
1968         if (test_and_clear_bit(BACKOFF, &con->state)) {
1969                 dout("con_work %p backing off\n", con);
1970                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
1971                                        round_jiffies_relative(con->delay))) {
1972                         dout("con_work %p backoff %lu\n", con, con->delay);
1973                         mutex_unlock(&con->mutex);
1974                         return;
1975                 } else {
1976                         con->ops->put(con);
1977                         dout("con_work %p FAILED to back off %lu\n", con,
1978                              con->delay);
1979                 }
1980         }
1981
1982         if (test_bit(STANDBY, &con->state)) {
1983                 dout("con_work %p STANDBY\n", con);
1984                 goto done;
1985         }
1986         if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
1987                 dout("con_work CLOSED\n");
1988                 con_close_socket(con);
1989                 goto done;
1990         }
1991         if (test_and_clear_bit(OPENING, &con->state)) {
1992                 /* reopen w/ new peer */
1993                 dout("con_work OPENING\n");
1994                 con_close_socket(con);
1995         }
1996
1997         if (test_and_clear_bit(SOCK_CLOSED, &con->state))
1998                 goto fault;
1999
2000         ret = try_read(con);
2001         if (ret == -EAGAIN)
2002                 goto restart;
2003         if (ret < 0)
2004                 goto fault;
2005
2006         ret = try_write(con);
2007         if (ret == -EAGAIN)
2008                 goto restart;
2009         if (ret < 0)
2010                 goto fault;
2011
2012 done:
2013         mutex_unlock(&con->mutex);
2014 done_unlocked:
2015         con->ops->put(con);
2016         return;
2017
2018 fault:
2019         mutex_unlock(&con->mutex);
2020         ceph_fault(con);     /* error/fault path */
2021         goto done_unlocked;
2022 }
2023
2024
2025 /*
2026  * Generic error/fault handler.  A retry mechanism is used with
2027  * exponential backoff
2028  */
2029 static void ceph_fault(struct ceph_connection *con)
2030 {
2031         pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2032                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2033         dout("fault %p state %lu to peer %s\n",
2034              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2035
2036         if (test_bit(LOSSYTX, &con->state)) {
2037                 dout("fault on LOSSYTX channel\n");
2038                 goto out;
2039         }
2040
2041         mutex_lock(&con->mutex);
2042         if (test_bit(CLOSED, &con->state))
2043                 goto out_unlock;
2044
2045         con_close_socket(con);
2046
2047         if (con->in_msg) {
2048                 ceph_msg_put(con->in_msg);
2049                 con->in_msg = NULL;
2050         }
2051
2052         /* Requeue anything that hasn't been acked */
2053         list_splice_init(&con->out_sent, &con->out_queue);
2054
2055         /* If there are no messages queued or keepalive pending, place
2056          * the connection in a STANDBY state */
2057         if (list_empty(&con->out_queue) &&
2058             !test_bit(KEEPALIVE_PENDING, &con->state)) {
2059                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2060                 clear_bit(WRITE_PENDING, &con->state);
2061                 set_bit(STANDBY, &con->state);
2062         } else {
2063                 /* retry after a delay. */
2064                 if (con->delay == 0)
2065                         con->delay = BASE_DELAY_INTERVAL;
2066                 else if (con->delay < MAX_DELAY_INTERVAL)
2067                         con->delay *= 2;
2068                 con->ops->get(con);
2069                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2070                                        round_jiffies_relative(con->delay))) {
2071                         dout("fault queued %p delay %lu\n", con, con->delay);
2072                 } else {
2073                         con->ops->put(con);
2074                         dout("fault failed to queue %p delay %lu, backoff\n",
2075                              con, con->delay);
2076                         /*
2077                          * In many cases we see a socket state change
2078                          * while con_work is running and end up
2079                          * queuing (non-delayed) work, such that we
2080                          * can't backoff with a delay.  Set a flag so
2081                          * that when con_work restarts we schedule the
2082                          * delay then.
2083                          */
2084                         set_bit(BACKOFF, &con->state);
2085                 }
2086         }
2087
2088 out_unlock:
2089         mutex_unlock(&con->mutex);
2090 out:
2091         /*
2092          * in case we faulted due to authentication, invalidate our
2093          * current tickets so that we can get new ones.
2094          */
2095         if (con->auth_retry && con->ops->invalidate_authorizer) {
2096                 dout("calling invalidate_authorizer()\n");
2097                 con->ops->invalidate_authorizer(con);
2098         }
2099
2100         if (con->ops->fault)
2101                 con->ops->fault(con);
2102 }
2103
2104
2105
2106 /*
2107  * create a new messenger instance
2108  */
2109 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2110                                              u32 supported_features,
2111                                              u32 required_features)
2112 {
2113         struct ceph_messenger *msgr;
2114
2115         msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2116         if (msgr == NULL)
2117                 return ERR_PTR(-ENOMEM);
2118
2119         msgr->supported_features = supported_features;
2120         msgr->required_features = required_features;
2121
2122         spin_lock_init(&msgr->global_seq_lock);
2123
2124         /* the zero page is needed if a request is "canceled" while the message
2125          * is being written over the socket */
2126         msgr->zero_page = __page_cache_alloc(GFP_KERNEL | __GFP_ZERO);
2127         if (!msgr->zero_page) {
2128                 kfree(msgr);
2129                 return ERR_PTR(-ENOMEM);
2130         }
2131         kmap(msgr->zero_page);
2132
2133         if (myaddr)
2134                 msgr->inst.addr = *myaddr;
2135
2136         /* select a random nonce */
2137         msgr->inst.addr.type = 0;
2138         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2139         encode_my_addr(msgr);
2140
2141         dout("messenger_create %p\n", msgr);
2142         return msgr;
2143 }
2144 EXPORT_SYMBOL(ceph_messenger_create);
2145
2146 void ceph_messenger_destroy(struct ceph_messenger *msgr)
2147 {
2148         dout("destroy %p\n", msgr);
2149         kunmap(msgr->zero_page);
2150         __free_page(msgr->zero_page);
2151         kfree(msgr);
2152         dout("destroyed messenger %p\n", msgr);
2153 }
2154 EXPORT_SYMBOL(ceph_messenger_destroy);
2155
2156 static void clear_standby(struct ceph_connection *con)
2157 {
2158         /* come back from STANDBY? */
2159         if (test_and_clear_bit(STANDBY, &con->state)) {
2160                 mutex_lock(&con->mutex);
2161                 dout("clear_standby %p and ++connect_seq\n", con);
2162                 con->connect_seq++;
2163                 WARN_ON(test_bit(WRITE_PENDING, &con->state));
2164                 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
2165                 mutex_unlock(&con->mutex);
2166         }
2167 }
2168
2169 /*
2170  * Queue up an outgoing message on the given connection.
2171  */
2172 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2173 {
2174         if (test_bit(CLOSED, &con->state)) {
2175                 dout("con_send %p closed, dropping %p\n", con, msg);
2176                 ceph_msg_put(msg);
2177                 return;
2178         }
2179
2180         /* set src+dst */
2181         msg->hdr.src = con->msgr->inst.name;
2182
2183         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2184
2185         msg->needs_out_seq = true;
2186
2187         /* queue */
2188         mutex_lock(&con->mutex);
2189         BUG_ON(!list_empty(&msg->list_head));
2190         list_add_tail(&msg->list_head, &con->out_queue);
2191         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2192              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2193              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2194              le32_to_cpu(msg->hdr.front_len),
2195              le32_to_cpu(msg->hdr.middle_len),
2196              le32_to_cpu(msg->hdr.data_len));
2197         mutex_unlock(&con->mutex);
2198
2199         /* if there wasn't anything waiting to send before, queue
2200          * new work */
2201         clear_standby(con);
2202         if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2203                 queue_con(con);
2204 }
2205 EXPORT_SYMBOL(ceph_con_send);
2206
2207 /*
2208  * Revoke a message that was previously queued for send
2209  */
2210 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2211 {
2212         mutex_lock(&con->mutex);
2213         if (!list_empty(&msg->list_head)) {
2214                 dout("con_revoke %p msg %p - was on queue\n", con, msg);
2215                 list_del_init(&msg->list_head);
2216                 ceph_msg_put(msg);
2217                 msg->hdr.seq = 0;
2218         }
2219         if (con->out_msg == msg) {
2220                 dout("con_revoke %p msg %p - was sending\n", con, msg);
2221                 con->out_msg = NULL;
2222                 if (con->out_kvec_is_msg) {
2223                         con->out_skip = con->out_kvec_bytes;
2224                         con->out_kvec_is_msg = false;
2225                 }
2226                 ceph_msg_put(msg);
2227                 msg->hdr.seq = 0;
2228         }
2229         mutex_unlock(&con->mutex);
2230 }
2231
2232 /*
2233  * Revoke a message that we may be reading data into
2234  */
2235 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2236 {
2237         mutex_lock(&con->mutex);
2238         if (con->in_msg && con->in_msg == msg) {
2239                 unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2240                 unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2241                 unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2242
2243                 /* skip rest of message */
2244                 dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2245                         con->in_base_pos = con->in_base_pos -
2246                                 sizeof(struct ceph_msg_header) -
2247                                 front_len -
2248                                 middle_len -
2249                                 data_len -
2250                                 sizeof(struct ceph_msg_footer);
2251                 ceph_msg_put(con->in_msg);
2252                 con->in_msg = NULL;
2253                 con->in_tag = CEPH_MSGR_TAG_READY;
2254                 con->in_seq++;
2255         } else {
2256                 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2257                      con, con->in_msg, msg);
2258         }
2259         mutex_unlock(&con->mutex);
2260 }
2261
2262 /*
2263  * Queue a keepalive byte to ensure the tcp connection is alive.
2264  */
2265 void ceph_con_keepalive(struct ceph_connection *con)
2266 {
2267         dout("con_keepalive %p\n", con);
2268         clear_standby(con);
2269         if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2270             test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2271                 queue_con(con);
2272 }
2273 EXPORT_SYMBOL(ceph_con_keepalive);
2274
2275
2276 /*
2277  * construct a new message with given type, size
2278  * the new msg has a ref count of 1.
2279  */
2280 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags)
2281 {
2282         struct ceph_msg *m;
2283
2284         m = kmalloc(sizeof(*m), flags);
2285         if (m == NULL)
2286                 goto out;
2287         kref_init(&m->kref);
2288         INIT_LIST_HEAD(&m->list_head);
2289
2290         m->hdr.tid = 0;
2291         m->hdr.type = cpu_to_le16(type);
2292         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2293         m->hdr.version = 0;
2294         m->hdr.front_len = cpu_to_le32(front_len);
2295         m->hdr.middle_len = 0;
2296         m->hdr.data_len = 0;
2297         m->hdr.data_off = 0;
2298         m->hdr.reserved = 0;
2299         m->footer.front_crc = 0;
2300         m->footer.middle_crc = 0;
2301         m->footer.data_crc = 0;
2302         m->footer.flags = 0;
2303         m->front_max = front_len;
2304         m->front_is_vmalloc = false;
2305         m->more_to_follow = false;
2306         m->pool = NULL;
2307
2308         /* middle */
2309         m->middle = NULL;
2310
2311         /* data */
2312         m->nr_pages = 0;
2313         m->page_alignment = 0;
2314         m->pages = NULL;
2315         m->pagelist = NULL;
2316         m->bio = NULL;
2317         m->bio_iter = NULL;
2318         m->bio_seg = 0;
2319         m->trail = NULL;
2320
2321         /* front */
2322         if (front_len) {
2323                 if (front_len > PAGE_CACHE_SIZE) {
2324                         m->front.iov_base = __vmalloc(front_len, flags,
2325                                                       PAGE_KERNEL);
2326                         m->front_is_vmalloc = true;
2327                 } else {
2328                         m->front.iov_base = kmalloc(front_len, flags);
2329                 }
2330                 if (m->front.iov_base == NULL) {
2331                         pr_err("msg_new can't allocate %d bytes\n",
2332                              front_len);
2333                         goto out2;
2334                 }
2335         } else {
2336                 m->front.iov_base = NULL;
2337         }
2338         m->front.iov_len = front_len;
2339
2340         dout("ceph_msg_new %p front %d\n", m, front_len);
2341         return m;
2342
2343 out2:
2344         ceph_msg_put(m);
2345 out:
2346         pr_err("msg_new can't create type %d front %d\n", type, front_len);
2347         return NULL;
2348 }
2349 EXPORT_SYMBOL(ceph_msg_new);
2350
2351 /*
2352  * Allocate "middle" portion of a message, if it is needed and wasn't
2353  * allocated by alloc_msg.  This allows us to read a small fixed-size
2354  * per-type header in the front and then gracefully fail (i.e.,
2355  * propagate the error to the caller based on info in the front) when
2356  * the middle is too large.
2357  */
2358 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2359 {
2360         int type = le16_to_cpu(msg->hdr.type);
2361         int middle_len = le32_to_cpu(msg->hdr.middle_len);
2362
2363         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2364              ceph_msg_type_name(type), middle_len);
2365         BUG_ON(!middle_len);
2366         BUG_ON(msg->middle);
2367
2368         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2369         if (!msg->middle)
2370                 return -ENOMEM;
2371         return 0;
2372 }
2373
2374 /*
2375  * Generic message allocator, for incoming messages.
2376  */
2377 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2378                                 struct ceph_msg_header *hdr,
2379                                 int *skip)
2380 {
2381         int type = le16_to_cpu(hdr->type);
2382         int front_len = le32_to_cpu(hdr->front_len);
2383         int middle_len = le32_to_cpu(hdr->middle_len);
2384         struct ceph_msg *msg = NULL;
2385         int ret;
2386
2387         if (con->ops->alloc_msg) {
2388                 mutex_unlock(&con->mutex);
2389                 msg = con->ops->alloc_msg(con, hdr, skip);
2390                 mutex_lock(&con->mutex);
2391                 if (!msg || *skip)
2392                         return NULL;
2393         }
2394         if (!msg) {
2395                 *skip = 0;
2396                 msg = ceph_msg_new(type, front_len, GFP_NOFS);
2397                 if (!msg) {
2398                         pr_err("unable to allocate msg type %d len %d\n",
2399                                type, front_len);
2400                         return NULL;
2401                 }
2402                 msg->page_alignment = le16_to_cpu(hdr->data_off);
2403         }
2404         memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2405
2406         if (middle_len && !msg->middle) {
2407                 ret = ceph_alloc_middle(con, msg);
2408                 if (ret < 0) {
2409                         ceph_msg_put(msg);
2410                         return NULL;
2411                 }
2412         }
2413
2414         return msg;
2415 }
2416
2417
2418 /*
2419  * Free a generically kmalloc'd message.
2420  */
2421 void ceph_msg_kfree(struct ceph_msg *m)
2422 {
2423         dout("msg_kfree %p\n", m);
2424         if (m->front_is_vmalloc)
2425                 vfree(m->front.iov_base);
2426         else
2427                 kfree(m->front.iov_base);
2428         kfree(m);
2429 }
2430
2431 /*
2432  * Drop a msg ref.  Destroy as needed.
2433  */
2434 void ceph_msg_last_put(struct kref *kref)
2435 {
2436         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2437
2438         dout("ceph_msg_put last one on %p\n", m);
2439         WARN_ON(!list_empty(&m->list_head));
2440
2441         /* drop middle, data, if any */
2442         if (m->middle) {
2443                 ceph_buffer_put(m->middle);
2444                 m->middle = NULL;
2445         }
2446         m->nr_pages = 0;
2447         m->pages = NULL;
2448
2449         if (m->pagelist) {
2450                 ceph_pagelist_release(m->pagelist);
2451                 kfree(m->pagelist);
2452                 m->pagelist = NULL;
2453         }
2454
2455         m->trail = NULL;
2456
2457         if (m->pool)
2458                 ceph_msgpool_put(m->pool, m);
2459         else
2460                 ceph_msg_kfree(m);
2461 }
2462 EXPORT_SYMBOL(ceph_msg_last_put);
2463
2464 void ceph_msg_dump(struct ceph_msg *msg)
2465 {
2466         pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2467                  msg->front_max, msg->nr_pages);
2468         print_hex_dump(KERN_DEBUG, "header: ",
2469                        DUMP_PREFIX_OFFSET, 16, 1,
2470                        &msg->hdr, sizeof(msg->hdr), true);
2471         print_hex_dump(KERN_DEBUG, " front: ",
2472                        DUMP_PREFIX_OFFSET, 16, 1,
2473                        msg->front.iov_base, msg->front.iov_len, true);
2474         if (msg->middle)
2475                 print_hex_dump(KERN_DEBUG, "middle: ",
2476                                DUMP_PREFIX_OFFSET, 16, 1,
2477                                msg->middle->vec.iov_base,
2478                                msg->middle->vec.iov_len, true);
2479         print_hex_dump(KERN_DEBUG, "footer: ",
2480                        DUMP_PREFIX_OFFSET, 16, 1,
2481                        &msg->footer, sizeof(msg->footer), true);
2482 }
2483 EXPORT_SYMBOL(ceph_msg_dump);