Pull bsp-removal into release branch
[pandora-kernel.git] / net / 8021q / vlan_dev.c
1 /* -*- linux-c -*-
2  * INET         802.1Q VLAN
3  *              Ethernet-type device handling.
4  *
5  * Authors:     Ben Greear <greearb@candelatech.com>
6  *              Please send support related email to: vlan@scry.wanfear.com
7  *              VLAN Home Page: http://www.candelatech.com/~greear/vlan.html
8  * 
9  * Fixes:       Mar 22 2001: Martin Bokaemper <mbokaemper@unispherenetworks.com>
10  *                - reset skb->pkt_type on incoming packets when MAC was changed
11  *                - see that changed MAC is saddr for outgoing packets
12  *              Oct 20, 2001:  Ard van Breeman:
13  *                - Fix MC-list, finally.
14  *                - Flush MC-list on VLAN destroy.
15  *                
16  *
17  *              This program is free software; you can redistribute it and/or
18  *              modify it under the terms of the GNU General Public License
19  *              as published by the Free Software Foundation; either version
20  *              2 of the License, or (at your option) any later version.
21  */
22
23 #include <linux/module.h>
24 #include <linux/mm.h>
25 #include <linux/in.h>
26 #include <linux/init.h>
27 #include <asm/uaccess.h> /* for copy_from_user */
28 #include <linux/skbuff.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <net/datalink.h>
32 #include <net/p8022.h>
33 #include <net/arp.h>
34
35 #include "vlan.h"
36 #include "vlanproc.h"
37 #include <linux/if_vlan.h>
38 #include <net/ip.h>
39
40 /*
41  *      Rebuild the Ethernet MAC header. This is called after an ARP
42  *      (or in future other address resolution) has completed on this
43  *      sk_buff. We now let ARP fill in the other fields.
44  *
45  *      This routine CANNOT use cached dst->neigh!
46  *      Really, it is used only when dst->neigh is wrong.
47  *
48  * TODO:  This needs a checkup, I'm ignorant here. --BLG
49  */
50 int vlan_dev_rebuild_header(struct sk_buff *skb)
51 {
52         struct net_device *dev = skb->dev;
53         struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data);
54
55         switch (veth->h_vlan_encapsulated_proto) {
56 #ifdef CONFIG_INET
57         case __constant_htons(ETH_P_IP):
58
59                 /* TODO:  Confirm this will work with VLAN headers... */
60                 return arp_find(veth->h_dest, skb);
61 #endif  
62         default:
63                 printk(VLAN_DBG
64                        "%s: unable to resolve type %X addresses.\n", 
65                        dev->name, (int)veth->h_vlan_encapsulated_proto);
66          
67                 memcpy(veth->h_source, dev->dev_addr, ETH_ALEN);
68                 break;
69         };
70
71         return 0;
72 }
73
74 static inline struct sk_buff *vlan_check_reorder_header(struct sk_buff *skb)
75 {
76         if (VLAN_DEV_INFO(skb->dev)->flags & 1) {
77                 if (skb_shared(skb) || skb_cloned(skb)) {
78                         struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
79                         kfree_skb(skb);
80                         skb = nskb;
81                 }
82                 if (skb) {
83                         /* Lifted from Gleb's VLAN code... */
84                         memmove(skb->data - ETH_HLEN,
85                                 skb->data - VLAN_ETH_HLEN, 12);
86                         skb->mac.raw += VLAN_HLEN;
87                 }
88         }
89
90         return skb;
91 }
92
93 /*
94  *      Determine the packet's protocol ID. The rule here is that we 
95  *      assume 802.3 if the type field is short enough to be a length.
96  *      This is normal practice and works for any 'now in use' protocol.
97  *
98  *  Also, at this point we assume that we ARE dealing exclusively with
99  *  VLAN packets, or packets that should be made into VLAN packets based
100  *  on a default VLAN ID.
101  *
102  *  NOTE:  Should be similar to ethernet/eth.c.
103  *
104  *  SANITY NOTE:  This method is called when a packet is moving up the stack
105  *                towards userland.  To get here, it would have already passed
106  *                through the ethernet/eth.c eth_type_trans() method.
107  *  SANITY NOTE 2: We are referencing to the VLAN_HDR frields, which MAY be
108  *                 stored UNALIGNED in the memory.  RISC systems don't like
109  *                 such cases very much...
110  *  SANITY NOTE 2a:  According to Dave Miller & Alexey, it will always be aligned,
111  *                 so there doesn't need to be any of the unaligned stuff.  It has
112  *                 been commented out now...  --Ben
113  *
114  */
115 int vlan_skb_recv(struct sk_buff *skb, struct net_device *dev,
116                   struct packet_type* ptype, struct net_device *orig_dev)
117 {
118         unsigned char *rawp = NULL;
119         struct vlan_hdr *vhdr = (struct vlan_hdr *)(skb->data);
120         unsigned short vid;
121         struct net_device_stats *stats;
122         unsigned short vlan_TCI;
123         __be16 proto;
124
125         /* vlan_TCI = ntohs(get_unaligned(&vhdr->h_vlan_TCI)); */
126         vlan_TCI = ntohs(vhdr->h_vlan_TCI);
127
128         vid = (vlan_TCI & VLAN_VID_MASK);
129
130 #ifdef VLAN_DEBUG
131         printk(VLAN_DBG "%s: skb: %p vlan_id: %hx\n",
132                 __FUNCTION__, skb, vid);
133 #endif
134
135         /* Ok, we will find the correct VLAN device, strip the header,
136          * and then go on as usual.
137          */
138
139         /* We have 12 bits of vlan ID.
140          *
141          * We must not drop allow preempt until we hold a
142          * reference to the device (netif_rx does that) or we
143          * fail.
144          */
145
146         rcu_read_lock();
147         skb->dev = __find_vlan_dev(dev, vid);
148         if (!skb->dev) {
149                 rcu_read_unlock();
150
151 #ifdef VLAN_DEBUG
152                 printk(VLAN_DBG "%s: ERROR: No net_device for VID: %i on dev: %s [%i]\n",
153                         __FUNCTION__, (unsigned int)(vid), dev->name, dev->ifindex);
154 #endif
155                 kfree_skb(skb);
156                 return -1;
157         }
158
159         skb->dev->last_rx = jiffies;
160
161         /* Bump the rx counters for the VLAN device. */
162         stats = vlan_dev_get_stats(skb->dev);
163         stats->rx_packets++;
164         stats->rx_bytes += skb->len;
165
166         skb_pull(skb, VLAN_HLEN); /* take off the VLAN header (4 bytes currently) */
167
168         /* Need to correct hardware checksum */
169         skb_postpull_rcsum(skb, vhdr, VLAN_HLEN);
170
171         /* Ok, lets check to make sure the device (dev) we
172          * came in on is what this VLAN is attached to.
173          */
174
175         if (dev != VLAN_DEV_INFO(skb->dev)->real_dev) {
176                 rcu_read_unlock();
177
178 #ifdef VLAN_DEBUG
179                 printk(VLAN_DBG "%s: dropping skb: %p because came in on wrong device, dev: %s  real_dev: %s, skb_dev: %s\n",
180                         __FUNCTION__, skb, dev->name, 
181                         VLAN_DEV_INFO(skb->dev)->real_dev->name, 
182                         skb->dev->name);
183 #endif
184                 kfree_skb(skb);
185                 stats->rx_errors++;
186                 return -1;
187         }
188
189         /*
190          * Deal with ingress priority mapping.
191          */
192         skb->priority = vlan_get_ingress_priority(skb->dev, ntohs(vhdr->h_vlan_TCI));
193
194 #ifdef VLAN_DEBUG
195         printk(VLAN_DBG "%s: priority: %lu  for TCI: %hu (hbo)\n",
196                 __FUNCTION__, (unsigned long)(skb->priority), 
197                 ntohs(vhdr->h_vlan_TCI));
198 #endif
199
200         /* The ethernet driver already did the pkt_type calculations
201          * for us...
202          */
203         switch (skb->pkt_type) {
204         case PACKET_BROADCAST: /* Yeah, stats collect these together.. */
205                 // stats->broadcast ++; // no such counter :-(
206                 break;
207
208         case PACKET_MULTICAST:
209                 stats->multicast++;
210                 break;
211
212         case PACKET_OTHERHOST: 
213                 /* Our lower layer thinks this is not local, let's make sure.
214                  * This allows the VLAN to have a different MAC than the underlying
215                  * device, and still route correctly.
216                  */
217                 if (!compare_ether_addr(eth_hdr(skb)->h_dest, skb->dev->dev_addr)) {
218                         /* It is for our (changed) MAC-address! */
219                         skb->pkt_type = PACKET_HOST;
220                 }
221                 break;
222         default:
223                 break;
224         };
225
226         /*  Was a VLAN packet, grab the encapsulated protocol, which the layer
227          * three protocols care about.
228          */
229         /* proto = get_unaligned(&vhdr->h_vlan_encapsulated_proto); */
230         proto = vhdr->h_vlan_encapsulated_proto;
231
232         skb->protocol = proto;
233         if (ntohs(proto) >= 1536) {
234                 /* place it back on the queue to be handled by
235                  * true layer 3 protocols.
236                  */
237
238                 /* See if we are configured to re-write the VLAN header
239                  * to make it look like ethernet...
240                  */
241                 skb = vlan_check_reorder_header(skb);
242
243                 /* Can be null if skb-clone fails when re-ordering */
244                 if (skb) {
245                         netif_rx(skb);
246                 } else {
247                         /* TODO:  Add a more specific counter here. */
248                         stats->rx_errors++;
249                 }
250                 rcu_read_unlock();
251                 return 0;
252         }
253
254         rawp = skb->data;
255
256         /*
257          * This is a magic hack to spot IPX packets. Older Novell breaks
258          * the protocol design and runs IPX over 802.3 without an 802.2 LLC
259          * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
260          * won't work for fault tolerant netware but does for the rest.
261          */
262         if (*(unsigned short *)rawp == 0xFFFF) {
263                 skb->protocol = __constant_htons(ETH_P_802_3);
264                 /* place it back on the queue to be handled by true layer 3 protocols.
265                  */
266
267                 /* See if we are configured to re-write the VLAN header
268                  * to make it look like ethernet...
269                  */
270                 skb = vlan_check_reorder_header(skb);
271
272                 /* Can be null if skb-clone fails when re-ordering */
273                 if (skb) {
274                         netif_rx(skb);
275                 } else {
276                         /* TODO:  Add a more specific counter here. */
277                         stats->rx_errors++;
278                 }
279                 rcu_read_unlock();
280                 return 0;
281         }
282
283         /*
284          *      Real 802.2 LLC
285          */
286         skb->protocol = __constant_htons(ETH_P_802_2);
287         /* place it back on the queue to be handled by upper layer protocols.
288          */
289
290         /* See if we are configured to re-write the VLAN header
291          * to make it look like ethernet...
292          */
293         skb = vlan_check_reorder_header(skb);
294
295         /* Can be null if skb-clone fails when re-ordering */
296         if (skb) {
297                 netif_rx(skb);
298         } else {
299                 /* TODO:  Add a more specific counter here. */
300                 stats->rx_errors++;
301         }
302         rcu_read_unlock();
303         return 0;
304 }
305
306 static inline unsigned short vlan_dev_get_egress_qos_mask(struct net_device* dev,
307                                                           struct sk_buff* skb)
308 {
309         struct vlan_priority_tci_mapping *mp =
310                 VLAN_DEV_INFO(dev)->egress_priority_map[(skb->priority & 0xF)];
311
312         while (mp) {
313                 if (mp->priority == skb->priority) {
314                         return mp->vlan_qos; /* This should already be shifted to mask
315                                               * correctly with the VLAN's TCI
316                                               */
317                 }
318                 mp = mp->next;
319         }
320         return 0;
321 }
322
323 /*
324  *      Create the VLAN header for an arbitrary protocol layer 
325  *
326  *      saddr=NULL      means use device source address
327  *      daddr=NULL      means leave destination address (eg unresolved arp)
328  *
329  *  This is called when the SKB is moving down the stack towards the
330  *  physical devices.
331  */
332 int vlan_dev_hard_header(struct sk_buff *skb, struct net_device *dev,
333                          unsigned short type, void *daddr, void *saddr,
334                          unsigned len)
335 {
336         struct vlan_hdr *vhdr;
337         unsigned short veth_TCI = 0;
338         int rc = 0;
339         int build_vlan_header = 0;
340         struct net_device *vdev = dev; /* save this for the bottom of the method */
341
342 #ifdef VLAN_DEBUG
343         printk(VLAN_DBG "%s: skb: %p type: %hx len: %x vlan_id: %hx, daddr: %p\n",
344                 __FUNCTION__, skb, type, len, VLAN_DEV_INFO(dev)->vlan_id, daddr);
345 #endif
346
347         /* build vlan header only if re_order_header flag is NOT set.  This
348          * fixes some programs that get confused when they see a VLAN device
349          * sending a frame that is VLAN encoded (the consensus is that the VLAN
350          * device should look completely like an Ethernet device when the
351          * REORDER_HEADER flag is set)  The drawback to this is some extra 
352          * header shuffling in the hard_start_xmit.  Users can turn off this
353          * REORDER behaviour with the vconfig tool.
354          */
355         build_vlan_header = ((VLAN_DEV_INFO(dev)->flags & 1) == 0);
356
357         if (build_vlan_header) {
358                 vhdr = (struct vlan_hdr *) skb_push(skb, VLAN_HLEN);
359
360                 /* build the four bytes that make this a VLAN header. */
361
362                 /* Now, construct the second two bytes. This field looks something
363                  * like:
364                  * usr_priority: 3 bits  (high bits)
365                  * CFI           1 bit
366                  * VLAN ID       12 bits (low bits)
367                  *
368                  */
369                 veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
370                 veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
371
372                 vhdr->h_vlan_TCI = htons(veth_TCI);
373
374                 /*
375                  *  Set the protocol type.
376                  *  For a packet of type ETH_P_802_3 we put the length in here instead.
377                  *  It is up to the 802.2 layer to carry protocol information.
378                  */
379
380                 if (type != ETH_P_802_3) {
381                         vhdr->h_vlan_encapsulated_proto = htons(type);
382                 } else {
383                         vhdr->h_vlan_encapsulated_proto = htons(len);
384                 }
385         }
386
387         /* Before delegating work to the lower layer, enter our MAC-address */
388         if (saddr == NULL)
389                 saddr = dev->dev_addr;
390
391         dev = VLAN_DEV_INFO(dev)->real_dev;
392
393         /* MPLS can send us skbuffs w/out enough space.  This check will grow the
394          * skb if it doesn't have enough headroom.  Not a beautiful solution, so
395          * I'll tick a counter so that users can know it's happening...  If they
396          * care...
397          */
398
399         /* NOTE:  This may still break if the underlying device is not the final
400          * device (and thus there are more headers to add...)  It should work for
401          * good-ole-ethernet though.
402          */
403         if (skb_headroom(skb) < dev->hard_header_len) {
404                 struct sk_buff *sk_tmp = skb;
405                 skb = skb_realloc_headroom(sk_tmp, dev->hard_header_len);
406                 kfree_skb(sk_tmp);
407                 if (skb == NULL) {
408                         struct net_device_stats *stats = vlan_dev_get_stats(vdev);
409                         stats->tx_dropped++;
410                         return -ENOMEM;
411                 }
412                 VLAN_DEV_INFO(vdev)->cnt_inc_headroom_on_tx++;
413 #ifdef VLAN_DEBUG
414                 printk(VLAN_DBG "%s: %s: had to grow skb.\n", __FUNCTION__, vdev->name);
415 #endif
416         }
417
418         if (build_vlan_header) {
419                 /* Now make the underlying real hard header */
420                 rc = dev->hard_header(skb, dev, ETH_P_8021Q, daddr, saddr, len + VLAN_HLEN);
421
422                 if (rc > 0) {
423                         rc += VLAN_HLEN;
424                 } else if (rc < 0) {
425                         rc -= VLAN_HLEN;
426                 }
427         } else {
428                 /* If here, then we'll just make a normal looking ethernet frame,
429                  * but, the hard_start_xmit method will insert the tag (it has to
430                  * be able to do this for bridged and other skbs that don't come
431                  * down the protocol stack in an orderly manner.
432                  */
433                 rc = dev->hard_header(skb, dev, type, daddr, saddr, len);
434         }
435
436         return rc;
437 }
438
439 int vlan_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
440 {
441         struct net_device_stats *stats = vlan_dev_get_stats(dev);
442         struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data);
443
444         /* Handle non-VLAN frames if they are sent to us, for example by DHCP.
445          *
446          * NOTE: THIS ASSUMES DIX ETHERNET, SPECIFICALLY NOT SUPPORTING
447          * OTHER THINGS LIKE FDDI/TokenRing/802.3 SNAPs...
448          */
449
450         if (veth->h_vlan_proto != __constant_htons(ETH_P_8021Q)) {
451                 int orig_headroom = skb_headroom(skb);
452                 unsigned short veth_TCI;
453
454                 /* This is not a VLAN frame...but we can fix that! */
455                 VLAN_DEV_INFO(dev)->cnt_encap_on_xmit++;
456
457 #ifdef VLAN_DEBUG
458                 printk(VLAN_DBG "%s: proto to encap: 0x%hx (hbo)\n",
459                         __FUNCTION__, htons(veth->h_vlan_proto));
460 #endif
461                 /* Construct the second two bytes. This field looks something
462                  * like:
463                  * usr_priority: 3 bits  (high bits)
464                  * CFI           1 bit
465                  * VLAN ID       12 bits (low bits)
466                  */
467                 veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
468                 veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
469
470                 skb = __vlan_put_tag(skb, veth_TCI);
471                 if (!skb) {
472                         stats->tx_dropped++;
473                         return 0;
474                 }
475
476                 if (orig_headroom < VLAN_HLEN) {
477                         VLAN_DEV_INFO(dev)->cnt_inc_headroom_on_tx++;
478                 }
479         }
480
481 #ifdef VLAN_DEBUG
482         printk(VLAN_DBG "%s: about to send skb: %p to dev: %s\n",
483                 __FUNCTION__, skb, skb->dev->name);
484         printk(VLAN_DBG "  %2hx.%2hx.%2hx.%2xh.%2hx.%2hx %2hx.%2hx.%2hx.%2hx.%2hx.%2hx %4hx %4hx %4hx\n",
485                veth->h_dest[0], veth->h_dest[1], veth->h_dest[2], veth->h_dest[3], veth->h_dest[4], veth->h_dest[5],
486                veth->h_source[0], veth->h_source[1], veth->h_source[2], veth->h_source[3], veth->h_source[4], veth->h_source[5],
487                veth->h_vlan_proto, veth->h_vlan_TCI, veth->h_vlan_encapsulated_proto);
488 #endif
489
490         stats->tx_packets++; /* for statics only */
491         stats->tx_bytes += skb->len;
492
493         skb->dev = VLAN_DEV_INFO(dev)->real_dev;
494         dev_queue_xmit(skb);
495
496         return 0;
497 }
498
499 int vlan_dev_hwaccel_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
500 {
501         struct net_device_stats *stats = vlan_dev_get_stats(dev);
502         unsigned short veth_TCI;
503
504         /* Construct the second two bytes. This field looks something
505          * like:
506          * usr_priority: 3 bits  (high bits)
507          * CFI           1 bit
508          * VLAN ID       12 bits (low bits)
509          */
510         veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
511         veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
512         skb = __vlan_hwaccel_put_tag(skb, veth_TCI);
513
514         stats->tx_packets++;
515         stats->tx_bytes += skb->len;
516
517         skb->dev = VLAN_DEV_INFO(dev)->real_dev;
518         dev_queue_xmit(skb);
519
520         return 0;
521 }
522
523 int vlan_dev_change_mtu(struct net_device *dev, int new_mtu)
524 {
525         /* TODO: gotta make sure the underlying layer can handle it,
526          * maybe an IFF_VLAN_CAPABLE flag for devices?
527          */
528         if (VLAN_DEV_INFO(dev)->real_dev->mtu < new_mtu)
529                 return -ERANGE;
530
531         dev->mtu = new_mtu;
532
533         return 0;
534 }
535
536 int vlan_dev_set_ingress_priority(char *dev_name, __u32 skb_prio, short vlan_prio)
537 {
538         struct net_device *dev = dev_get_by_name(dev_name);
539
540         if (dev) {
541                 if (dev->priv_flags & IFF_802_1Q_VLAN) {
542                         /* see if a priority mapping exists.. */
543                         VLAN_DEV_INFO(dev)->ingress_priority_map[vlan_prio & 0x7] = skb_prio;
544                         dev_put(dev);
545                         return 0;
546                 }
547
548                 dev_put(dev);
549         }
550         return -EINVAL;
551 }
552
553 int vlan_dev_set_egress_priority(char *dev_name, __u32 skb_prio, short vlan_prio)
554 {
555         struct net_device *dev = dev_get_by_name(dev_name);
556         struct vlan_priority_tci_mapping *mp = NULL;
557         struct vlan_priority_tci_mapping *np;
558    
559         if (dev) {
560                 if (dev->priv_flags & IFF_802_1Q_VLAN) {
561                         /* See if a priority mapping exists.. */
562                         mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF];
563                         while (mp) {
564                                 if (mp->priority == skb_prio) {
565                                         mp->vlan_qos = ((vlan_prio << 13) & 0xE000);
566                                         dev_put(dev);
567                                         return 0;
568                                 }
569                                 mp = mp->next;
570                         }
571
572                         /* Create a new mapping then. */
573                         mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF];
574                         np = kmalloc(sizeof(struct vlan_priority_tci_mapping), GFP_KERNEL);
575                         if (np) {
576                                 np->next = mp;
577                                 np->priority = skb_prio;
578                                 np->vlan_qos = ((vlan_prio << 13) & 0xE000);
579                                 VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF] = np;
580                                 dev_put(dev);
581                                 return 0;
582                         } else {
583                                 dev_put(dev);
584                                 return -ENOBUFS;
585                         }
586                 }
587                 dev_put(dev);
588         }
589         return -EINVAL;
590 }
591
592 /* Flags are defined in the vlan_dev_info class in include/linux/if_vlan.h file. */
593 int vlan_dev_set_vlan_flag(char *dev_name, __u32 flag, short flag_val)
594 {
595         struct net_device *dev = dev_get_by_name(dev_name);
596
597         if (dev) {
598                 if (dev->priv_flags & IFF_802_1Q_VLAN) {
599                         /* verify flag is supported */
600                         if (flag == 1) {
601                                 if (flag_val) {
602                                         VLAN_DEV_INFO(dev)->flags |= 1;
603                                 } else {
604                                         VLAN_DEV_INFO(dev)->flags &= ~1;
605                                 }
606                                 dev_put(dev);
607                                 return 0;
608                         } else {
609                                 printk(KERN_ERR  "%s: flag %i is not valid.\n",
610                                         __FUNCTION__, (int)(flag));
611                                 dev_put(dev);
612                                 return -EINVAL;
613                         }
614                 } else {
615                         printk(KERN_ERR 
616                                "%s: %s is not a vlan device, priv_flags: %hX.\n",
617                                __FUNCTION__, dev->name, dev->priv_flags);
618                         dev_put(dev);
619                 }
620         } else {
621                 printk(KERN_ERR  "%s: Could not find device: %s\n", 
622                         __FUNCTION__, dev_name);
623         }
624
625         return -EINVAL;
626 }
627
628
629 int vlan_dev_get_realdev_name(const char *dev_name, char* result)
630 {
631         struct net_device *dev = dev_get_by_name(dev_name);
632         int rv = 0;
633         if (dev) {
634                 if (dev->priv_flags & IFF_802_1Q_VLAN) {
635                         strncpy(result, VLAN_DEV_INFO(dev)->real_dev->name, 23);
636                         rv = 0;
637                 } else {
638                         rv = -EINVAL;
639                 }
640                 dev_put(dev);
641         } else {
642                 rv = -ENODEV;
643         }
644         return rv;
645 }
646
647 int vlan_dev_get_vid(const char *dev_name, unsigned short* result)
648 {
649         struct net_device *dev = dev_get_by_name(dev_name);
650         int rv = 0;
651         if (dev) {
652                 if (dev->priv_flags & IFF_802_1Q_VLAN) {
653                         *result = VLAN_DEV_INFO(dev)->vlan_id;
654                         rv = 0;
655                 } else {
656                         rv = -EINVAL;
657                 }
658                 dev_put(dev);
659         } else {
660                 rv = -ENODEV;
661         }
662         return rv;
663 }
664
665
666 int vlan_dev_set_mac_address(struct net_device *dev, void *addr_struct_p)
667 {
668         struct sockaddr *addr = (struct sockaddr *)(addr_struct_p);
669         int i;
670
671         if (netif_running(dev))
672                 return -EBUSY;
673
674         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
675
676         printk("%s: Setting MAC address to ", dev->name);
677         for (i = 0; i < 6; i++)
678                 printk(" %2.2x", dev->dev_addr[i]);
679         printk(".\n");
680
681         if (memcmp(VLAN_DEV_INFO(dev)->real_dev->dev_addr,
682                    dev->dev_addr,
683                    dev->addr_len) != 0) {
684                 if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_PROMISC)) {
685                         int flgs = VLAN_DEV_INFO(dev)->real_dev->flags;
686
687                         /* Increment our in-use promiscuity counter */
688                         dev_set_promiscuity(VLAN_DEV_INFO(dev)->real_dev, 1);
689
690                         /* Make PROMISC visible to the user. */
691                         flgs |= IFF_PROMISC;
692                         printk("VLAN (%s):  Setting underlying device (%s) to promiscious mode.\n",
693                                dev->name, VLAN_DEV_INFO(dev)->real_dev->name);
694                         dev_change_flags(VLAN_DEV_INFO(dev)->real_dev, flgs);
695                 }
696         } else {
697                 printk("VLAN (%s):  Underlying device (%s) has same MAC, not checking promiscious mode.\n",
698                        dev->name, VLAN_DEV_INFO(dev)->real_dev->name);
699         }
700
701         return 0;
702 }
703
704 static inline int vlan_dmi_equals(struct dev_mc_list *dmi1,
705                                   struct dev_mc_list *dmi2)
706 {
707         return ((dmi1->dmi_addrlen == dmi2->dmi_addrlen) &&
708                 (memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0));
709 }
710
711 /** dmi is a single entry into a dev_mc_list, a single node.  mc_list is
712  *  an entire list, and we'll iterate through it.
713  */
714 static int vlan_should_add_mc(struct dev_mc_list *dmi, struct dev_mc_list *mc_list)
715 {
716         struct dev_mc_list *idmi;
717
718         for (idmi = mc_list; idmi != NULL; ) {
719                 if (vlan_dmi_equals(dmi, idmi)) {
720                         if (dmi->dmi_users > idmi->dmi_users)
721                                 return 1;
722                         else
723                                 return 0;
724                 } else {
725                         idmi = idmi->next;
726                 }
727         }
728
729         return 1;
730 }
731
732 static inline void vlan_destroy_mc_list(struct dev_mc_list *mc_list)
733 {
734         struct dev_mc_list *dmi = mc_list;
735         struct dev_mc_list *next;
736
737         while(dmi) {
738                 next = dmi->next;
739                 kfree(dmi);
740                 dmi = next;
741         }
742 }
743
744 static void vlan_copy_mc_list(struct dev_mc_list *mc_list, struct vlan_dev_info *vlan_info)
745 {
746         struct dev_mc_list *dmi, *new_dmi;
747
748         vlan_destroy_mc_list(vlan_info->old_mc_list);
749         vlan_info->old_mc_list = NULL;
750
751         for (dmi = mc_list; dmi != NULL; dmi = dmi->next) {
752                 new_dmi = kmalloc(sizeof(*new_dmi), GFP_ATOMIC);
753                 if (new_dmi == NULL) {
754                         printk(KERN_ERR "vlan: cannot allocate memory. "
755                                "Multicast may not work properly from now.\n");
756                         return;
757                 }
758
759                 /* Copy whole structure, then make new 'next' pointer */
760                 *new_dmi = *dmi;
761                 new_dmi->next = vlan_info->old_mc_list;
762                 vlan_info->old_mc_list = new_dmi;
763         }
764 }
765
766 static void vlan_flush_mc_list(struct net_device *dev)
767 {
768         struct dev_mc_list *dmi = dev->mc_list;
769
770         while (dmi) {
771                 printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from vlan interface\n",
772                        dev->name,
773                        dmi->dmi_addr[0],
774                        dmi->dmi_addr[1],
775                        dmi->dmi_addr[2],
776                        dmi->dmi_addr[3],
777                        dmi->dmi_addr[4],
778                        dmi->dmi_addr[5]);
779                 dev_mc_delete(dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
780                 dmi = dev->mc_list;
781         }
782
783         /* dev->mc_list is NULL by the time we get here. */
784         vlan_destroy_mc_list(VLAN_DEV_INFO(dev)->old_mc_list);
785         VLAN_DEV_INFO(dev)->old_mc_list = NULL;
786 }
787
788 int vlan_dev_open(struct net_device *dev)
789 {
790         if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_UP))
791                 return -ENETDOWN;
792
793         return 0;
794 }
795
796 int vlan_dev_stop(struct net_device *dev)
797 {
798         vlan_flush_mc_list(dev);
799         return 0;
800 }
801
802 int vlan_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
803 {
804         struct net_device *real_dev = VLAN_DEV_INFO(dev)->real_dev;
805         struct ifreq ifrr;
806         int err = -EOPNOTSUPP;
807
808         strncpy(ifrr.ifr_name, real_dev->name, IFNAMSIZ);
809         ifrr.ifr_ifru = ifr->ifr_ifru;
810
811         switch(cmd) {
812         case SIOCGMIIPHY:
813         case SIOCGMIIREG:
814         case SIOCSMIIREG:
815                 if (real_dev->do_ioctl && netif_device_present(real_dev)) 
816                         err = real_dev->do_ioctl(real_dev, &ifrr, cmd);
817                 break;
818
819         case SIOCETHTOOL:
820                 err = dev_ethtool(&ifrr);
821         }
822
823         if (!err) 
824                 ifr->ifr_ifru = ifrr.ifr_ifru;
825
826         return err;
827 }
828
829 /** Taken from Gleb + Lennert's VLAN code, and modified... */
830 void vlan_dev_set_multicast_list(struct net_device *vlan_dev)
831 {
832         struct dev_mc_list *dmi;
833         struct net_device *real_dev;
834         int inc;
835
836         if (vlan_dev && (vlan_dev->priv_flags & IFF_802_1Q_VLAN)) {
837                 /* Then it's a real vlan device, as far as we can tell.. */
838                 real_dev = VLAN_DEV_INFO(vlan_dev)->real_dev;
839
840                 /* compare the current promiscuity to the last promisc we had.. */
841                 inc = vlan_dev->promiscuity - VLAN_DEV_INFO(vlan_dev)->old_promiscuity;
842                 if (inc) {
843                         printk(KERN_INFO "%s: dev_set_promiscuity(master, %d)\n",
844                                vlan_dev->name, inc);
845                         dev_set_promiscuity(real_dev, inc); /* found in dev.c */
846                         VLAN_DEV_INFO(vlan_dev)->old_promiscuity = vlan_dev->promiscuity;
847                 }
848
849                 inc = vlan_dev->allmulti - VLAN_DEV_INFO(vlan_dev)->old_allmulti;
850                 if (inc) {
851                         printk(KERN_INFO "%s: dev_set_allmulti(master, %d)\n",
852                                vlan_dev->name, inc);
853                         dev_set_allmulti(real_dev, inc); /* dev.c */
854                         VLAN_DEV_INFO(vlan_dev)->old_allmulti = vlan_dev->allmulti;
855                 }
856
857                 /* looking for addresses to add to master's list */
858                 for (dmi = vlan_dev->mc_list; dmi != NULL; dmi = dmi->next) {
859                         if (vlan_should_add_mc(dmi, VLAN_DEV_INFO(vlan_dev)->old_mc_list)) {
860                                 dev_mc_add(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
861                                 printk(KERN_DEBUG "%s: add %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address to master interface\n",
862                                        vlan_dev->name,
863                                        dmi->dmi_addr[0],
864                                        dmi->dmi_addr[1],
865                                        dmi->dmi_addr[2],
866                                        dmi->dmi_addr[3],
867                                        dmi->dmi_addr[4],
868                                        dmi->dmi_addr[5]);
869                         }
870                 }
871
872                 /* looking for addresses to delete from master's list */
873                 for (dmi = VLAN_DEV_INFO(vlan_dev)->old_mc_list; dmi != NULL; dmi = dmi->next) {
874                         if (vlan_should_add_mc(dmi, vlan_dev->mc_list)) {
875                                 /* if we think we should add it to the new list, then we should really
876                                  * delete it from the real list on the underlying device.
877                                  */
878                                 dev_mc_delete(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
879                                 printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from master interface\n",
880                                        vlan_dev->name,
881                                        dmi->dmi_addr[0],
882                                        dmi->dmi_addr[1],
883                                        dmi->dmi_addr[2],
884                                        dmi->dmi_addr[3],
885                                        dmi->dmi_addr[4],
886                                        dmi->dmi_addr[5]);
887                         }
888                 }
889
890                 /* save multicast list */
891                 vlan_copy_mc_list(vlan_dev->mc_list, VLAN_DEV_INFO(vlan_dev));
892         }
893 }