Merge tag 'pwm/for-4.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/thierry...
[pandora-kernel.git] / mm / zswap.c
1 /*
2  * zswap.c - zswap driver file
3  *
4  * zswap is a backend for frontswap that takes pages that are in the process
5  * of being swapped out and attempts to compress and store them in a
6  * RAM-based memory pool.  This can result in a significant I/O reduction on
7  * the swap device and, in the case where decompressing from RAM is faster
8  * than reading from the swap device, can also improve workload performance.
9  *
10  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License
14  * as published by the Free Software Foundation; either version 2
15  * of the License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21 */
22
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/module.h>
26 #include <linux/cpu.h>
27 #include <linux/highmem.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/types.h>
31 #include <linux/atomic.h>
32 #include <linux/frontswap.h>
33 #include <linux/rbtree.h>
34 #include <linux/swap.h>
35 #include <linux/crypto.h>
36 #include <linux/mempool.h>
37 #include <linux/zpool.h>
38
39 #include <linux/mm_types.h>
40 #include <linux/page-flags.h>
41 #include <linux/swapops.h>
42 #include <linux/writeback.h>
43 #include <linux/pagemap.h>
44
45 /*********************************
46 * statistics
47 **********************************/
48 /* Total bytes used by the compressed storage */
49 static u64 zswap_pool_total_size;
50 /* The number of compressed pages currently stored in zswap */
51 static atomic_t zswap_stored_pages = ATOMIC_INIT(0);
52
53 /*
54  * The statistics below are not protected from concurrent access for
55  * performance reasons so they may not be a 100% accurate.  However,
56  * they do provide useful information on roughly how many times a
57  * certain event is occurring.
58 */
59
60 /* Pool limit was hit (see zswap_max_pool_percent) */
61 static u64 zswap_pool_limit_hit;
62 /* Pages written back when pool limit was reached */
63 static u64 zswap_written_back_pages;
64 /* Store failed due to a reclaim failure after pool limit was reached */
65 static u64 zswap_reject_reclaim_fail;
66 /* Compressed page was too big for the allocator to (optimally) store */
67 static u64 zswap_reject_compress_poor;
68 /* Store failed because underlying allocator could not get memory */
69 static u64 zswap_reject_alloc_fail;
70 /* Store failed because the entry metadata could not be allocated (rare) */
71 static u64 zswap_reject_kmemcache_fail;
72 /* Duplicate store was encountered (rare) */
73 static u64 zswap_duplicate_entry;
74
75 /*********************************
76 * tunables
77 **********************************/
78
79 /* Enable/disable zswap (disabled by default) */
80 static bool zswap_enabled;
81 module_param_named(enabled, zswap_enabled, bool, 0644);
82
83 /* Compressor to be used by zswap (fixed at boot for now) */
84 #define ZSWAP_COMPRESSOR_DEFAULT "lzo"
85 static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
86 module_param_named(compressor, zswap_compressor, charp, 0444);
87
88 /* The maximum percentage of memory that the compressed pool can occupy */
89 static unsigned int zswap_max_pool_percent = 20;
90 module_param_named(max_pool_percent,
91                         zswap_max_pool_percent, uint, 0644);
92
93 /* Compressed storage to use */
94 #define ZSWAP_ZPOOL_DEFAULT "zbud"
95 static char *zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
96 module_param_named(zpool, zswap_zpool_type, charp, 0444);
97
98 /* zpool is shared by all of zswap backend  */
99 static struct zpool *zswap_pool;
100
101 /*********************************
102 * compression functions
103 **********************************/
104 /* per-cpu compression transforms */
105 static struct crypto_comp * __percpu *zswap_comp_pcpu_tfms;
106
107 enum comp_op {
108         ZSWAP_COMPOP_COMPRESS,
109         ZSWAP_COMPOP_DECOMPRESS
110 };
111
112 static int zswap_comp_op(enum comp_op op, const u8 *src, unsigned int slen,
113                                 u8 *dst, unsigned int *dlen)
114 {
115         struct crypto_comp *tfm;
116         int ret;
117
118         tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, get_cpu());
119         switch (op) {
120         case ZSWAP_COMPOP_COMPRESS:
121                 ret = crypto_comp_compress(tfm, src, slen, dst, dlen);
122                 break;
123         case ZSWAP_COMPOP_DECOMPRESS:
124                 ret = crypto_comp_decompress(tfm, src, slen, dst, dlen);
125                 break;
126         default:
127                 ret = -EINVAL;
128         }
129
130         put_cpu();
131         return ret;
132 }
133
134 static int __init zswap_comp_init(void)
135 {
136         if (!crypto_has_comp(zswap_compressor, 0, 0)) {
137                 pr_info("%s compressor not available\n", zswap_compressor);
138                 /* fall back to default compressor */
139                 zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
140                 if (!crypto_has_comp(zswap_compressor, 0, 0))
141                         /* can't even load the default compressor */
142                         return -ENODEV;
143         }
144         pr_info("using %s compressor\n", zswap_compressor);
145
146         /* alloc percpu transforms */
147         zswap_comp_pcpu_tfms = alloc_percpu(struct crypto_comp *);
148         if (!zswap_comp_pcpu_tfms)
149                 return -ENOMEM;
150         return 0;
151 }
152
153 static void __init zswap_comp_exit(void)
154 {
155         /* free percpu transforms */
156         free_percpu(zswap_comp_pcpu_tfms);
157 }
158
159 /*********************************
160 * data structures
161 **********************************/
162 /*
163  * struct zswap_entry
164  *
165  * This structure contains the metadata for tracking a single compressed
166  * page within zswap.
167  *
168  * rbnode - links the entry into red-black tree for the appropriate swap type
169  * refcount - the number of outstanding reference to the entry. This is needed
170  *            to protect against premature freeing of the entry by code
171  *            concurrent calls to load, invalidate, and writeback.  The lock
172  *            for the zswap_tree structure that contains the entry must
173  *            be held while changing the refcount.  Since the lock must
174  *            be held, there is no reason to also make refcount atomic.
175  * offset - the swap offset for the entry.  Index into the red-black tree.
176  * handle - zpool allocation handle that stores the compressed page data
177  * length - the length in bytes of the compressed page data.  Needed during
178  *          decompression
179  */
180 struct zswap_entry {
181         struct rb_node rbnode;
182         pgoff_t offset;
183         int refcount;
184         unsigned int length;
185         unsigned long handle;
186 };
187
188 struct zswap_header {
189         swp_entry_t swpentry;
190 };
191
192 /*
193  * The tree lock in the zswap_tree struct protects a few things:
194  * - the rbtree
195  * - the refcount field of each entry in the tree
196  */
197 struct zswap_tree {
198         struct rb_root rbroot;
199         spinlock_t lock;
200 };
201
202 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
203
204 /*********************************
205 * zswap entry functions
206 **********************************/
207 static struct kmem_cache *zswap_entry_cache;
208
209 static int __init zswap_entry_cache_create(void)
210 {
211         zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
212         return zswap_entry_cache == NULL;
213 }
214
215 static void __init zswap_entry_cache_destroy(void)
216 {
217         kmem_cache_destroy(zswap_entry_cache);
218 }
219
220 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
221 {
222         struct zswap_entry *entry;
223         entry = kmem_cache_alloc(zswap_entry_cache, gfp);
224         if (!entry)
225                 return NULL;
226         entry->refcount = 1;
227         RB_CLEAR_NODE(&entry->rbnode);
228         return entry;
229 }
230
231 static void zswap_entry_cache_free(struct zswap_entry *entry)
232 {
233         kmem_cache_free(zswap_entry_cache, entry);
234 }
235
236 /*********************************
237 * rbtree functions
238 **********************************/
239 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
240 {
241         struct rb_node *node = root->rb_node;
242         struct zswap_entry *entry;
243
244         while (node) {
245                 entry = rb_entry(node, struct zswap_entry, rbnode);
246                 if (entry->offset > offset)
247                         node = node->rb_left;
248                 else if (entry->offset < offset)
249                         node = node->rb_right;
250                 else
251                         return entry;
252         }
253         return NULL;
254 }
255
256 /*
257  * In the case that a entry with the same offset is found, a pointer to
258  * the existing entry is stored in dupentry and the function returns -EEXIST
259  */
260 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
261                         struct zswap_entry **dupentry)
262 {
263         struct rb_node **link = &root->rb_node, *parent = NULL;
264         struct zswap_entry *myentry;
265
266         while (*link) {
267                 parent = *link;
268                 myentry = rb_entry(parent, struct zswap_entry, rbnode);
269                 if (myentry->offset > entry->offset)
270                         link = &(*link)->rb_left;
271                 else if (myentry->offset < entry->offset)
272                         link = &(*link)->rb_right;
273                 else {
274                         *dupentry = myentry;
275                         return -EEXIST;
276                 }
277         }
278         rb_link_node(&entry->rbnode, parent, link);
279         rb_insert_color(&entry->rbnode, root);
280         return 0;
281 }
282
283 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
284 {
285         if (!RB_EMPTY_NODE(&entry->rbnode)) {
286                 rb_erase(&entry->rbnode, root);
287                 RB_CLEAR_NODE(&entry->rbnode);
288         }
289 }
290
291 /*
292  * Carries out the common pattern of freeing and entry's zpool allocation,
293  * freeing the entry itself, and decrementing the number of stored pages.
294  */
295 static void zswap_free_entry(struct zswap_entry *entry)
296 {
297         zpool_free(zswap_pool, entry->handle);
298         zswap_entry_cache_free(entry);
299         atomic_dec(&zswap_stored_pages);
300         zswap_pool_total_size = zpool_get_total_size(zswap_pool);
301 }
302
303 /* caller must hold the tree lock */
304 static void zswap_entry_get(struct zswap_entry *entry)
305 {
306         entry->refcount++;
307 }
308
309 /* caller must hold the tree lock
310 * remove from the tree and free it, if nobody reference the entry
311 */
312 static void zswap_entry_put(struct zswap_tree *tree,
313                         struct zswap_entry *entry)
314 {
315         int refcount = --entry->refcount;
316
317         BUG_ON(refcount < 0);
318         if (refcount == 0) {
319                 zswap_rb_erase(&tree->rbroot, entry);
320                 zswap_free_entry(entry);
321         }
322 }
323
324 /* caller must hold the tree lock */
325 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
326                                 pgoff_t offset)
327 {
328         struct zswap_entry *entry = NULL;
329
330         entry = zswap_rb_search(root, offset);
331         if (entry)
332                 zswap_entry_get(entry);
333
334         return entry;
335 }
336
337 /*********************************
338 * per-cpu code
339 **********************************/
340 static DEFINE_PER_CPU(u8 *, zswap_dstmem);
341
342 static int __zswap_cpu_notifier(unsigned long action, unsigned long cpu)
343 {
344         struct crypto_comp *tfm;
345         u8 *dst;
346
347         switch (action) {
348         case CPU_UP_PREPARE:
349                 tfm = crypto_alloc_comp(zswap_compressor, 0, 0);
350                 if (IS_ERR(tfm)) {
351                         pr_err("can't allocate compressor transform\n");
352                         return NOTIFY_BAD;
353                 }
354                 *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = tfm;
355                 dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
356                 if (!dst) {
357                         pr_err("can't allocate compressor buffer\n");
358                         crypto_free_comp(tfm);
359                         *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL;
360                         return NOTIFY_BAD;
361                 }
362                 per_cpu(zswap_dstmem, cpu) = dst;
363                 break;
364         case CPU_DEAD:
365         case CPU_UP_CANCELED:
366                 tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu);
367                 if (tfm) {
368                         crypto_free_comp(tfm);
369                         *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL;
370                 }
371                 dst = per_cpu(zswap_dstmem, cpu);
372                 kfree(dst);
373                 per_cpu(zswap_dstmem, cpu) = NULL;
374                 break;
375         default:
376                 break;
377         }
378         return NOTIFY_OK;
379 }
380
381 static int zswap_cpu_notifier(struct notifier_block *nb,
382                                 unsigned long action, void *pcpu)
383 {
384         unsigned long cpu = (unsigned long)pcpu;
385         return __zswap_cpu_notifier(action, cpu);
386 }
387
388 static struct notifier_block zswap_cpu_notifier_block = {
389         .notifier_call = zswap_cpu_notifier
390 };
391
392 static int __init zswap_cpu_init(void)
393 {
394         unsigned long cpu;
395
396         cpu_notifier_register_begin();
397         for_each_online_cpu(cpu)
398                 if (__zswap_cpu_notifier(CPU_UP_PREPARE, cpu) != NOTIFY_OK)
399                         goto cleanup;
400         __register_cpu_notifier(&zswap_cpu_notifier_block);
401         cpu_notifier_register_done();
402         return 0;
403
404 cleanup:
405         for_each_online_cpu(cpu)
406                 __zswap_cpu_notifier(CPU_UP_CANCELED, cpu);
407         cpu_notifier_register_done();
408         return -ENOMEM;
409 }
410
411 /*********************************
412 * helpers
413 **********************************/
414 static bool zswap_is_full(void)
415 {
416         return totalram_pages * zswap_max_pool_percent / 100 <
417                 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
418 }
419
420 /*********************************
421 * writeback code
422 **********************************/
423 /* return enum for zswap_get_swap_cache_page */
424 enum zswap_get_swap_ret {
425         ZSWAP_SWAPCACHE_NEW,
426         ZSWAP_SWAPCACHE_EXIST,
427         ZSWAP_SWAPCACHE_FAIL,
428 };
429
430 /*
431  * zswap_get_swap_cache_page
432  *
433  * This is an adaption of read_swap_cache_async()
434  *
435  * This function tries to find a page with the given swap entry
436  * in the swapper_space address space (the swap cache).  If the page
437  * is found, it is returned in retpage.  Otherwise, a page is allocated,
438  * added to the swap cache, and returned in retpage.
439  *
440  * If success, the swap cache page is returned in retpage
441  * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
442  * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
443  *     the new page is added to swapcache and locked
444  * Returns ZSWAP_SWAPCACHE_FAIL on error
445  */
446 static int zswap_get_swap_cache_page(swp_entry_t entry,
447                                 struct page **retpage)
448 {
449         bool page_was_allocated;
450
451         *retpage = __read_swap_cache_async(entry, GFP_KERNEL,
452                         NULL, 0, &page_was_allocated);
453         if (page_was_allocated)
454                 return ZSWAP_SWAPCACHE_NEW;
455         if (!*retpage)
456                 return ZSWAP_SWAPCACHE_FAIL;
457         return ZSWAP_SWAPCACHE_EXIST;
458 }
459
460 /*
461  * Attempts to free an entry by adding a page to the swap cache,
462  * decompressing the entry data into the page, and issuing a
463  * bio write to write the page back to the swap device.
464  *
465  * This can be thought of as a "resumed writeback" of the page
466  * to the swap device.  We are basically resuming the same swap
467  * writeback path that was intercepted with the frontswap_store()
468  * in the first place.  After the page has been decompressed into
469  * the swap cache, the compressed version stored by zswap can be
470  * freed.
471  */
472 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle)
473 {
474         struct zswap_header *zhdr;
475         swp_entry_t swpentry;
476         struct zswap_tree *tree;
477         pgoff_t offset;
478         struct zswap_entry *entry;
479         struct page *page;
480         u8 *src, *dst;
481         unsigned int dlen;
482         int ret;
483         struct writeback_control wbc = {
484                 .sync_mode = WB_SYNC_NONE,
485         };
486
487         /* extract swpentry from data */
488         zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
489         swpentry = zhdr->swpentry; /* here */
490         zpool_unmap_handle(pool, handle);
491         tree = zswap_trees[swp_type(swpentry)];
492         offset = swp_offset(swpentry);
493
494         /* find and ref zswap entry */
495         spin_lock(&tree->lock);
496         entry = zswap_entry_find_get(&tree->rbroot, offset);
497         if (!entry) {
498                 /* entry was invalidated */
499                 spin_unlock(&tree->lock);
500                 return 0;
501         }
502         spin_unlock(&tree->lock);
503         BUG_ON(offset != entry->offset);
504
505         /* try to allocate swap cache page */
506         switch (zswap_get_swap_cache_page(swpentry, &page)) {
507         case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
508                 ret = -ENOMEM;
509                 goto fail;
510
511         case ZSWAP_SWAPCACHE_EXIST:
512                 /* page is already in the swap cache, ignore for now */
513                 page_cache_release(page);
514                 ret = -EEXIST;
515                 goto fail;
516
517         case ZSWAP_SWAPCACHE_NEW: /* page is locked */
518                 /* decompress */
519                 dlen = PAGE_SIZE;
520                 src = (u8 *)zpool_map_handle(zswap_pool, entry->handle,
521                                 ZPOOL_MM_RO) + sizeof(struct zswap_header);
522                 dst = kmap_atomic(page);
523                 ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src,
524                                 entry->length, dst, &dlen);
525                 kunmap_atomic(dst);
526                 zpool_unmap_handle(zswap_pool, entry->handle);
527                 BUG_ON(ret);
528                 BUG_ON(dlen != PAGE_SIZE);
529
530                 /* page is up to date */
531                 SetPageUptodate(page);
532         }
533
534         /* move it to the tail of the inactive list after end_writeback */
535         SetPageReclaim(page);
536
537         /* start writeback */
538         __swap_writepage(page, &wbc, end_swap_bio_write);
539         page_cache_release(page);
540         zswap_written_back_pages++;
541
542         spin_lock(&tree->lock);
543         /* drop local reference */
544         zswap_entry_put(tree, entry);
545
546         /*
547         * There are two possible situations for entry here:
548         * (1) refcount is 1(normal case),  entry is valid and on the tree
549         * (2) refcount is 0, entry is freed and not on the tree
550         *     because invalidate happened during writeback
551         *  search the tree and free the entry if find entry
552         */
553         if (entry == zswap_rb_search(&tree->rbroot, offset))
554                 zswap_entry_put(tree, entry);
555         spin_unlock(&tree->lock);
556
557         goto end;
558
559         /*
560         * if we get here due to ZSWAP_SWAPCACHE_EXIST
561         * a load may happening concurrently
562         * it is safe and okay to not free the entry
563         * if we free the entry in the following put
564         * it it either okay to return !0
565         */
566 fail:
567         spin_lock(&tree->lock);
568         zswap_entry_put(tree, entry);
569         spin_unlock(&tree->lock);
570
571 end:
572         return ret;
573 }
574
575 /*********************************
576 * frontswap hooks
577 **********************************/
578 /* attempts to compress and store an single page */
579 static int zswap_frontswap_store(unsigned type, pgoff_t offset,
580                                 struct page *page)
581 {
582         struct zswap_tree *tree = zswap_trees[type];
583         struct zswap_entry *entry, *dupentry;
584         int ret;
585         unsigned int dlen = PAGE_SIZE, len;
586         unsigned long handle;
587         char *buf;
588         u8 *src, *dst;
589         struct zswap_header *zhdr;
590
591         if (!zswap_enabled || !tree) {
592                 ret = -ENODEV;
593                 goto reject;
594         }
595
596         /* reclaim space if needed */
597         if (zswap_is_full()) {
598                 zswap_pool_limit_hit++;
599                 if (zpool_shrink(zswap_pool, 1, NULL)) {
600                         zswap_reject_reclaim_fail++;
601                         ret = -ENOMEM;
602                         goto reject;
603                 }
604         }
605
606         /* allocate entry */
607         entry = zswap_entry_cache_alloc(GFP_KERNEL);
608         if (!entry) {
609                 zswap_reject_kmemcache_fail++;
610                 ret = -ENOMEM;
611                 goto reject;
612         }
613
614         /* compress */
615         dst = get_cpu_var(zswap_dstmem);
616         src = kmap_atomic(page);
617         ret = zswap_comp_op(ZSWAP_COMPOP_COMPRESS, src, PAGE_SIZE, dst, &dlen);
618         kunmap_atomic(src);
619         if (ret) {
620                 ret = -EINVAL;
621                 goto freepage;
622         }
623
624         /* store */
625         len = dlen + sizeof(struct zswap_header);
626         ret = zpool_malloc(zswap_pool, len, __GFP_NORETRY | __GFP_NOWARN,
627                 &handle);
628         if (ret == -ENOSPC) {
629                 zswap_reject_compress_poor++;
630                 goto freepage;
631         }
632         if (ret) {
633                 zswap_reject_alloc_fail++;
634                 goto freepage;
635         }
636         zhdr = zpool_map_handle(zswap_pool, handle, ZPOOL_MM_RW);
637         zhdr->swpentry = swp_entry(type, offset);
638         buf = (u8 *)(zhdr + 1);
639         memcpy(buf, dst, dlen);
640         zpool_unmap_handle(zswap_pool, handle);
641         put_cpu_var(zswap_dstmem);
642
643         /* populate entry */
644         entry->offset = offset;
645         entry->handle = handle;
646         entry->length = dlen;
647
648         /* map */
649         spin_lock(&tree->lock);
650         do {
651                 ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
652                 if (ret == -EEXIST) {
653                         zswap_duplicate_entry++;
654                         /* remove from rbtree */
655                         zswap_rb_erase(&tree->rbroot, dupentry);
656                         zswap_entry_put(tree, dupentry);
657                 }
658         } while (ret == -EEXIST);
659         spin_unlock(&tree->lock);
660
661         /* update stats */
662         atomic_inc(&zswap_stored_pages);
663         zswap_pool_total_size = zpool_get_total_size(zswap_pool);
664
665         return 0;
666
667 freepage:
668         put_cpu_var(zswap_dstmem);
669         zswap_entry_cache_free(entry);
670 reject:
671         return ret;
672 }
673
674 /*
675  * returns 0 if the page was successfully decompressed
676  * return -1 on entry not found or error
677 */
678 static int zswap_frontswap_load(unsigned type, pgoff_t offset,
679                                 struct page *page)
680 {
681         struct zswap_tree *tree = zswap_trees[type];
682         struct zswap_entry *entry;
683         u8 *src, *dst;
684         unsigned int dlen;
685         int ret;
686
687         /* find */
688         spin_lock(&tree->lock);
689         entry = zswap_entry_find_get(&tree->rbroot, offset);
690         if (!entry) {
691                 /* entry was written back */
692                 spin_unlock(&tree->lock);
693                 return -1;
694         }
695         spin_unlock(&tree->lock);
696
697         /* decompress */
698         dlen = PAGE_SIZE;
699         src = (u8 *)zpool_map_handle(zswap_pool, entry->handle,
700                         ZPOOL_MM_RO) + sizeof(struct zswap_header);
701         dst = kmap_atomic(page);
702         ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src, entry->length,
703                 dst, &dlen);
704         kunmap_atomic(dst);
705         zpool_unmap_handle(zswap_pool, entry->handle);
706         BUG_ON(ret);
707
708         spin_lock(&tree->lock);
709         zswap_entry_put(tree, entry);
710         spin_unlock(&tree->lock);
711
712         return 0;
713 }
714
715 /* frees an entry in zswap */
716 static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
717 {
718         struct zswap_tree *tree = zswap_trees[type];
719         struct zswap_entry *entry;
720
721         /* find */
722         spin_lock(&tree->lock);
723         entry = zswap_rb_search(&tree->rbroot, offset);
724         if (!entry) {
725                 /* entry was written back */
726                 spin_unlock(&tree->lock);
727                 return;
728         }
729
730         /* remove from rbtree */
731         zswap_rb_erase(&tree->rbroot, entry);
732
733         /* drop the initial reference from entry creation */
734         zswap_entry_put(tree, entry);
735
736         spin_unlock(&tree->lock);
737 }
738
739 /* frees all zswap entries for the given swap type */
740 static void zswap_frontswap_invalidate_area(unsigned type)
741 {
742         struct zswap_tree *tree = zswap_trees[type];
743         struct zswap_entry *entry, *n;
744
745         if (!tree)
746                 return;
747
748         /* walk the tree and free everything */
749         spin_lock(&tree->lock);
750         rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
751                 zswap_free_entry(entry);
752         tree->rbroot = RB_ROOT;
753         spin_unlock(&tree->lock);
754         kfree(tree);
755         zswap_trees[type] = NULL;
756 }
757
758 static const struct zpool_ops zswap_zpool_ops = {
759         .evict = zswap_writeback_entry
760 };
761
762 static void zswap_frontswap_init(unsigned type)
763 {
764         struct zswap_tree *tree;
765
766         tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL);
767         if (!tree) {
768                 pr_err("alloc failed, zswap disabled for swap type %d\n", type);
769                 return;
770         }
771
772         tree->rbroot = RB_ROOT;
773         spin_lock_init(&tree->lock);
774         zswap_trees[type] = tree;
775 }
776
777 static struct frontswap_ops zswap_frontswap_ops = {
778         .store = zswap_frontswap_store,
779         .load = zswap_frontswap_load,
780         .invalidate_page = zswap_frontswap_invalidate_page,
781         .invalidate_area = zswap_frontswap_invalidate_area,
782         .init = zswap_frontswap_init
783 };
784
785 /*********************************
786 * debugfs functions
787 **********************************/
788 #ifdef CONFIG_DEBUG_FS
789 #include <linux/debugfs.h>
790
791 static struct dentry *zswap_debugfs_root;
792
793 static int __init zswap_debugfs_init(void)
794 {
795         if (!debugfs_initialized())
796                 return -ENODEV;
797
798         zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
799         if (!zswap_debugfs_root)
800                 return -ENOMEM;
801
802         debugfs_create_u64("pool_limit_hit", S_IRUGO,
803                         zswap_debugfs_root, &zswap_pool_limit_hit);
804         debugfs_create_u64("reject_reclaim_fail", S_IRUGO,
805                         zswap_debugfs_root, &zswap_reject_reclaim_fail);
806         debugfs_create_u64("reject_alloc_fail", S_IRUGO,
807                         zswap_debugfs_root, &zswap_reject_alloc_fail);
808         debugfs_create_u64("reject_kmemcache_fail", S_IRUGO,
809                         zswap_debugfs_root, &zswap_reject_kmemcache_fail);
810         debugfs_create_u64("reject_compress_poor", S_IRUGO,
811                         zswap_debugfs_root, &zswap_reject_compress_poor);
812         debugfs_create_u64("written_back_pages", S_IRUGO,
813                         zswap_debugfs_root, &zswap_written_back_pages);
814         debugfs_create_u64("duplicate_entry", S_IRUGO,
815                         zswap_debugfs_root, &zswap_duplicate_entry);
816         debugfs_create_u64("pool_total_size", S_IRUGO,
817                         zswap_debugfs_root, &zswap_pool_total_size);
818         debugfs_create_atomic_t("stored_pages", S_IRUGO,
819                         zswap_debugfs_root, &zswap_stored_pages);
820
821         return 0;
822 }
823
824 static void __exit zswap_debugfs_exit(void)
825 {
826         debugfs_remove_recursive(zswap_debugfs_root);
827 }
828 #else
829 static int __init zswap_debugfs_init(void)
830 {
831         return 0;
832 }
833
834 static void __exit zswap_debugfs_exit(void) { }
835 #endif
836
837 /*********************************
838 * module init and exit
839 **********************************/
840 static int __init init_zswap(void)
841 {
842         gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN;
843
844         pr_info("loading zswap\n");
845
846         zswap_pool = zpool_create_pool(zswap_zpool_type, "zswap", gfp,
847                                         &zswap_zpool_ops);
848         if (!zswap_pool && strcmp(zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT)) {
849                 pr_info("%s zpool not available\n", zswap_zpool_type);
850                 zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
851                 zswap_pool = zpool_create_pool(zswap_zpool_type, "zswap", gfp,
852                                         &zswap_zpool_ops);
853         }
854         if (!zswap_pool) {
855                 pr_err("%s zpool not available\n", zswap_zpool_type);
856                 pr_err("zpool creation failed\n");
857                 goto error;
858         }
859         pr_info("using %s pool\n", zswap_zpool_type);
860
861         if (zswap_entry_cache_create()) {
862                 pr_err("entry cache creation failed\n");
863                 goto cachefail;
864         }
865         if (zswap_comp_init()) {
866                 pr_err("compressor initialization failed\n");
867                 goto compfail;
868         }
869         if (zswap_cpu_init()) {
870                 pr_err("per-cpu initialization failed\n");
871                 goto pcpufail;
872         }
873
874         frontswap_register_ops(&zswap_frontswap_ops);
875         if (zswap_debugfs_init())
876                 pr_warn("debugfs initialization failed\n");
877         return 0;
878 pcpufail:
879         zswap_comp_exit();
880 compfail:
881         zswap_entry_cache_destroy();
882 cachefail:
883         zpool_destroy_pool(zswap_pool);
884 error:
885         return -ENOMEM;
886 }
887 /* must be late so crypto has time to come up */
888 late_initcall(init_zswap);
889
890 MODULE_LICENSE("GPL");
891 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
892 MODULE_DESCRIPTION("Compressed cache for swap pages");