[PATCH] vm: add per-zone writeout counter
[pandora-kernel.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39
40 #include <asm/tlbflush.h>
41 #include <asm/div64.h>
42
43 #include <linux/swapops.h>
44
45 #include "internal.h"
46
47 struct scan_control {
48         /* Incremented by the number of inactive pages that were scanned */
49         unsigned long nr_scanned;
50
51         /* This context's GFP mask */
52         gfp_t gfp_mask;
53
54         int may_writepage;
55
56         /* Can pages be swapped as part of reclaim? */
57         int may_swap;
58
59         /* This context's SWAP_CLUSTER_MAX. If freeing memory for
60          * suspend, we effectively ignore SWAP_CLUSTER_MAX.
61          * In this context, it doesn't matter that we scan the
62          * whole list at once. */
63         int swap_cluster_max;
64
65         int swappiness;
66
67         int all_unreclaimable;
68 };
69
70 /*
71  * The list of shrinker callbacks used by to apply pressure to
72  * ageable caches.
73  */
74 struct shrinker {
75         shrinker_t              shrinker;
76         struct list_head        list;
77         int                     seeks;  /* seeks to recreate an obj */
78         long                    nr;     /* objs pending delete */
79 };
80
81 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
82
83 #ifdef ARCH_HAS_PREFETCH
84 #define prefetch_prev_lru_page(_page, _base, _field)                    \
85         do {                                                            \
86                 if ((_page)->lru.prev != _base) {                       \
87                         struct page *prev;                              \
88                                                                         \
89                         prev = lru_to_page(&(_page->lru));              \
90                         prefetch(&prev->_field);                        \
91                 }                                                       \
92         } while (0)
93 #else
94 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
95 #endif
96
97 #ifdef ARCH_HAS_PREFETCHW
98 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
99         do {                                                            \
100                 if ((_page)->lru.prev != _base) {                       \
101                         struct page *prev;                              \
102                                                                         \
103                         prev = lru_to_page(&(_page->lru));              \
104                         prefetchw(&prev->_field);                       \
105                 }                                                       \
106         } while (0)
107 #else
108 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
109 #endif
110
111 /*
112  * From 0 .. 100.  Higher means more swappy.
113  */
114 int vm_swappiness = 60;
115 long vm_total_pages;    /* The total number of pages which the VM controls */
116
117 static LIST_HEAD(shrinker_list);
118 static DECLARE_RWSEM(shrinker_rwsem);
119
120 /*
121  * Add a shrinker callback to be called from the vm
122  */
123 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
124 {
125         struct shrinker *shrinker;
126
127         shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
128         if (shrinker) {
129                 shrinker->shrinker = theshrinker;
130                 shrinker->seeks = seeks;
131                 shrinker->nr = 0;
132                 down_write(&shrinker_rwsem);
133                 list_add_tail(&shrinker->list, &shrinker_list);
134                 up_write(&shrinker_rwsem);
135         }
136         return shrinker;
137 }
138 EXPORT_SYMBOL(set_shrinker);
139
140 /*
141  * Remove one
142  */
143 void remove_shrinker(struct shrinker *shrinker)
144 {
145         down_write(&shrinker_rwsem);
146         list_del(&shrinker->list);
147         up_write(&shrinker_rwsem);
148         kfree(shrinker);
149 }
150 EXPORT_SYMBOL(remove_shrinker);
151
152 #define SHRINK_BATCH 128
153 /*
154  * Call the shrink functions to age shrinkable caches
155  *
156  * Here we assume it costs one seek to replace a lru page and that it also
157  * takes a seek to recreate a cache object.  With this in mind we age equal
158  * percentages of the lru and ageable caches.  This should balance the seeks
159  * generated by these structures.
160  *
161  * If the vm encounted mapped pages on the LRU it increase the pressure on
162  * slab to avoid swapping.
163  *
164  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
165  *
166  * `lru_pages' represents the number of on-LRU pages in all the zones which
167  * are eligible for the caller's allocation attempt.  It is used for balancing
168  * slab reclaim versus page reclaim.
169  *
170  * Returns the number of slab objects which we shrunk.
171  */
172 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
173                         unsigned long lru_pages)
174 {
175         struct shrinker *shrinker;
176         unsigned long ret = 0;
177
178         if (scanned == 0)
179                 scanned = SWAP_CLUSTER_MAX;
180
181         if (!down_read_trylock(&shrinker_rwsem))
182                 return 1;       /* Assume we'll be able to shrink next time */
183
184         list_for_each_entry(shrinker, &shrinker_list, list) {
185                 unsigned long long delta;
186                 unsigned long total_scan;
187                 unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
188
189                 delta = (4 * scanned) / shrinker->seeks;
190                 delta *= max_pass;
191                 do_div(delta, lru_pages + 1);
192                 shrinker->nr += delta;
193                 if (shrinker->nr < 0) {
194                         printk(KERN_ERR "%s: nr=%ld\n",
195                                         __FUNCTION__, shrinker->nr);
196                         shrinker->nr = max_pass;
197                 }
198
199                 /*
200                  * Avoid risking looping forever due to too large nr value:
201                  * never try to free more than twice the estimate number of
202                  * freeable entries.
203                  */
204                 if (shrinker->nr > max_pass * 2)
205                         shrinker->nr = max_pass * 2;
206
207                 total_scan = shrinker->nr;
208                 shrinker->nr = 0;
209
210                 while (total_scan >= SHRINK_BATCH) {
211                         long this_scan = SHRINK_BATCH;
212                         int shrink_ret;
213                         int nr_before;
214
215                         nr_before = (*shrinker->shrinker)(0, gfp_mask);
216                         shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
217                         if (shrink_ret == -1)
218                                 break;
219                         if (shrink_ret < nr_before)
220                                 ret += nr_before - shrink_ret;
221                         count_vm_events(SLABS_SCANNED, this_scan);
222                         total_scan -= this_scan;
223
224                         cond_resched();
225                 }
226
227                 shrinker->nr += total_scan;
228         }
229         up_read(&shrinker_rwsem);
230         return ret;
231 }
232
233 /* Called without lock on whether page is mapped, so answer is unstable */
234 static inline int page_mapping_inuse(struct page *page)
235 {
236         struct address_space *mapping;
237
238         /* Page is in somebody's page tables. */
239         if (page_mapped(page))
240                 return 1;
241
242         /* Be more reluctant to reclaim swapcache than pagecache */
243         if (PageSwapCache(page))
244                 return 1;
245
246         mapping = page_mapping(page);
247         if (!mapping)
248                 return 0;
249
250         /* File is mmap'd by somebody? */
251         return mapping_mapped(mapping);
252 }
253
254 static inline int is_page_cache_freeable(struct page *page)
255 {
256         return page_count(page) - !!PagePrivate(page) == 2;
257 }
258
259 static int may_write_to_queue(struct backing_dev_info *bdi)
260 {
261         if (current->flags & PF_SWAPWRITE)
262                 return 1;
263         if (!bdi_write_congested(bdi))
264                 return 1;
265         if (bdi == current->backing_dev_info)
266                 return 1;
267         return 0;
268 }
269
270 /*
271  * We detected a synchronous write error writing a page out.  Probably
272  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
273  * fsync(), msync() or close().
274  *
275  * The tricky part is that after writepage we cannot touch the mapping: nothing
276  * prevents it from being freed up.  But we have a ref on the page and once
277  * that page is locked, the mapping is pinned.
278  *
279  * We're allowed to run sleeping lock_page() here because we know the caller has
280  * __GFP_FS.
281  */
282 static void handle_write_error(struct address_space *mapping,
283                                 struct page *page, int error)
284 {
285         lock_page(page);
286         if (page_mapping(page) == mapping) {
287                 if (error == -ENOSPC)
288                         set_bit(AS_ENOSPC, &mapping->flags);
289                 else
290                         set_bit(AS_EIO, &mapping->flags);
291         }
292         unlock_page(page);
293 }
294
295 /* possible outcome of pageout() */
296 typedef enum {
297         /* failed to write page out, page is locked */
298         PAGE_KEEP,
299         /* move page to the active list, page is locked */
300         PAGE_ACTIVATE,
301         /* page has been sent to the disk successfully, page is unlocked */
302         PAGE_SUCCESS,
303         /* page is clean and locked */
304         PAGE_CLEAN,
305 } pageout_t;
306
307 /*
308  * pageout is called by shrink_page_list() for each dirty page.
309  * Calls ->writepage().
310  */
311 static pageout_t pageout(struct page *page, struct address_space *mapping)
312 {
313         /*
314          * If the page is dirty, only perform writeback if that write
315          * will be non-blocking.  To prevent this allocation from being
316          * stalled by pagecache activity.  But note that there may be
317          * stalls if we need to run get_block().  We could test
318          * PagePrivate for that.
319          *
320          * If this process is currently in generic_file_write() against
321          * this page's queue, we can perform writeback even if that
322          * will block.
323          *
324          * If the page is swapcache, write it back even if that would
325          * block, for some throttling. This happens by accident, because
326          * swap_backing_dev_info is bust: it doesn't reflect the
327          * congestion state of the swapdevs.  Easy to fix, if needed.
328          * See swapfile.c:page_queue_congested().
329          */
330         if (!is_page_cache_freeable(page))
331                 return PAGE_KEEP;
332         if (!mapping) {
333                 /*
334                  * Some data journaling orphaned pages can have
335                  * page->mapping == NULL while being dirty with clean buffers.
336                  */
337                 if (PagePrivate(page)) {
338                         if (try_to_free_buffers(page)) {
339                                 ClearPageDirty(page);
340                                 printk("%s: orphaned page\n", __FUNCTION__);
341                                 return PAGE_CLEAN;
342                         }
343                 }
344                 return PAGE_KEEP;
345         }
346         if (mapping->a_ops->writepage == NULL)
347                 return PAGE_ACTIVATE;
348         if (!may_write_to_queue(mapping->backing_dev_info))
349                 return PAGE_KEEP;
350
351         if (clear_page_dirty_for_io(page)) {
352                 int res;
353                 struct writeback_control wbc = {
354                         .sync_mode = WB_SYNC_NONE,
355                         .nr_to_write = SWAP_CLUSTER_MAX,
356                         .range_start = 0,
357                         .range_end = LLONG_MAX,
358                         .nonblocking = 1,
359                         .for_reclaim = 1,
360                 };
361
362                 SetPageReclaim(page);
363                 res = mapping->a_ops->writepage(page, &wbc);
364                 if (res < 0)
365                         handle_write_error(mapping, page, res);
366                 if (res == AOP_WRITEPAGE_ACTIVATE) {
367                         ClearPageReclaim(page);
368                         return PAGE_ACTIVATE;
369                 }
370                 if (!PageWriteback(page)) {
371                         /* synchronous write or broken a_ops? */
372                         ClearPageReclaim(page);
373                 }
374                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
375                 return PAGE_SUCCESS;
376         }
377
378         return PAGE_CLEAN;
379 }
380
381 int remove_mapping(struct address_space *mapping, struct page *page)
382 {
383         BUG_ON(!PageLocked(page));
384         BUG_ON(mapping != page_mapping(page));
385
386         write_lock_irq(&mapping->tree_lock);
387
388         /*
389          * The non-racy check for busy page.  It is critical to check
390          * PageDirty _after_ making sure that the page is freeable and
391          * not in use by anybody.       (pagecache + us == 2)
392          */
393         if (unlikely(page_count(page) != 2))
394                 goto cannot_free;
395         smp_rmb();
396         if (unlikely(PageDirty(page)))
397                 goto cannot_free;
398
399         if (PageSwapCache(page)) {
400                 swp_entry_t swap = { .val = page_private(page) };
401                 __delete_from_swap_cache(page);
402                 write_unlock_irq(&mapping->tree_lock);
403                 swap_free(swap);
404                 __put_page(page);       /* The pagecache ref */
405                 return 1;
406         }
407
408         __remove_from_page_cache(page);
409         write_unlock_irq(&mapping->tree_lock);
410         __put_page(page);
411         return 1;
412
413 cannot_free:
414         write_unlock_irq(&mapping->tree_lock);
415         return 0;
416 }
417
418 /*
419  * shrink_page_list() returns the number of reclaimed pages
420  */
421 static unsigned long shrink_page_list(struct list_head *page_list,
422                                         struct scan_control *sc)
423 {
424         LIST_HEAD(ret_pages);
425         struct pagevec freed_pvec;
426         int pgactivate = 0;
427         unsigned long nr_reclaimed = 0;
428
429         cond_resched();
430
431         pagevec_init(&freed_pvec, 1);
432         while (!list_empty(page_list)) {
433                 struct address_space *mapping;
434                 struct page *page;
435                 int may_enter_fs;
436                 int referenced;
437
438                 cond_resched();
439
440                 page = lru_to_page(page_list);
441                 list_del(&page->lru);
442
443                 if (TestSetPageLocked(page))
444                         goto keep;
445
446                 VM_BUG_ON(PageActive(page));
447
448                 sc->nr_scanned++;
449
450                 if (!sc->may_swap && page_mapped(page))
451                         goto keep_locked;
452
453                 /* Double the slab pressure for mapped and swapcache pages */
454                 if (page_mapped(page) || PageSwapCache(page))
455                         sc->nr_scanned++;
456
457                 if (PageWriteback(page))
458                         goto keep_locked;
459
460                 referenced = page_referenced(page, 1);
461                 /* In active use or really unfreeable?  Activate it. */
462                 if (referenced && page_mapping_inuse(page))
463                         goto activate_locked;
464
465 #ifdef CONFIG_SWAP
466                 /*
467                  * Anonymous process memory has backing store?
468                  * Try to allocate it some swap space here.
469                  */
470                 if (PageAnon(page) && !PageSwapCache(page))
471                         if (!add_to_swap(page, GFP_ATOMIC))
472                                 goto activate_locked;
473 #endif /* CONFIG_SWAP */
474
475                 mapping = page_mapping(page);
476                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
477                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
478
479                 /*
480                  * The page is mapped into the page tables of one or more
481                  * processes. Try to unmap it here.
482                  */
483                 if (page_mapped(page) && mapping) {
484                         switch (try_to_unmap(page, 0)) {
485                         case SWAP_FAIL:
486                                 goto activate_locked;
487                         case SWAP_AGAIN:
488                                 goto keep_locked;
489                         case SWAP_SUCCESS:
490                                 ; /* try to free the page below */
491                         }
492                 }
493
494                 if (PageDirty(page)) {
495                         if (referenced)
496                                 goto keep_locked;
497                         if (!may_enter_fs)
498                                 goto keep_locked;
499                         if (!sc->may_writepage)
500                                 goto keep_locked;
501
502                         /* Page is dirty, try to write it out here */
503                         switch(pageout(page, mapping)) {
504                         case PAGE_KEEP:
505                                 goto keep_locked;
506                         case PAGE_ACTIVATE:
507                                 goto activate_locked;
508                         case PAGE_SUCCESS:
509                                 if (PageWriteback(page) || PageDirty(page))
510                                         goto keep;
511                                 /*
512                                  * A synchronous write - probably a ramdisk.  Go
513                                  * ahead and try to reclaim the page.
514                                  */
515                                 if (TestSetPageLocked(page))
516                                         goto keep;
517                                 if (PageDirty(page) || PageWriteback(page))
518                                         goto keep_locked;
519                                 mapping = page_mapping(page);
520                         case PAGE_CLEAN:
521                                 ; /* try to free the page below */
522                         }
523                 }
524
525                 /*
526                  * If the page has buffers, try to free the buffer mappings
527                  * associated with this page. If we succeed we try to free
528                  * the page as well.
529                  *
530                  * We do this even if the page is PageDirty().
531                  * try_to_release_page() does not perform I/O, but it is
532                  * possible for a page to have PageDirty set, but it is actually
533                  * clean (all its buffers are clean).  This happens if the
534                  * buffers were written out directly, with submit_bh(). ext3
535                  * will do this, as well as the blockdev mapping. 
536                  * try_to_release_page() will discover that cleanness and will
537                  * drop the buffers and mark the page clean - it can be freed.
538                  *
539                  * Rarely, pages can have buffers and no ->mapping.  These are
540                  * the pages which were not successfully invalidated in
541                  * truncate_complete_page().  We try to drop those buffers here
542                  * and if that worked, and the page is no longer mapped into
543                  * process address space (page_count == 1) it can be freed.
544                  * Otherwise, leave the page on the LRU so it is swappable.
545                  */
546                 if (PagePrivate(page)) {
547                         if (!try_to_release_page(page, sc->gfp_mask))
548                                 goto activate_locked;
549                         if (!mapping && page_count(page) == 1)
550                                 goto free_it;
551                 }
552
553                 if (!mapping || !remove_mapping(mapping, page))
554                         goto keep_locked;
555
556 free_it:
557                 unlock_page(page);
558                 nr_reclaimed++;
559                 if (!pagevec_add(&freed_pvec, page))
560                         __pagevec_release_nonlru(&freed_pvec);
561                 continue;
562
563 activate_locked:
564                 SetPageActive(page);
565                 pgactivate++;
566 keep_locked:
567                 unlock_page(page);
568 keep:
569                 list_add(&page->lru, &ret_pages);
570                 VM_BUG_ON(PageLRU(page));
571         }
572         list_splice(&ret_pages, page_list);
573         if (pagevec_count(&freed_pvec))
574                 __pagevec_release_nonlru(&freed_pvec);
575         count_vm_events(PGACTIVATE, pgactivate);
576         return nr_reclaimed;
577 }
578
579 /*
580  * zone->lru_lock is heavily contended.  Some of the functions that
581  * shrink the lists perform better by taking out a batch of pages
582  * and working on them outside the LRU lock.
583  *
584  * For pagecache intensive workloads, this function is the hottest
585  * spot in the kernel (apart from copy_*_user functions).
586  *
587  * Appropriate locks must be held before calling this function.
588  *
589  * @nr_to_scan: The number of pages to look through on the list.
590  * @src:        The LRU list to pull pages off.
591  * @dst:        The temp list to put pages on to.
592  * @scanned:    The number of pages that were scanned.
593  *
594  * returns how many pages were moved onto *@dst.
595  */
596 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
597                 struct list_head *src, struct list_head *dst,
598                 unsigned long *scanned)
599 {
600         unsigned long nr_taken = 0;
601         struct page *page;
602         unsigned long scan;
603
604         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
605                 struct list_head *target;
606                 page = lru_to_page(src);
607                 prefetchw_prev_lru_page(page, src, flags);
608
609                 VM_BUG_ON(!PageLRU(page));
610
611                 list_del(&page->lru);
612                 target = src;
613                 if (likely(get_page_unless_zero(page))) {
614                         /*
615                          * Be careful not to clear PageLRU until after we're
616                          * sure the page is not being freed elsewhere -- the
617                          * page release code relies on it.
618                          */
619                         ClearPageLRU(page);
620                         target = dst;
621                         nr_taken++;
622                 } /* else it is being freed elsewhere */
623
624                 list_add(&page->lru, target);
625         }
626
627         *scanned = scan;
628         return nr_taken;
629 }
630
631 /*
632  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
633  * of reclaimed pages
634  */
635 static unsigned long shrink_inactive_list(unsigned long max_scan,
636                                 struct zone *zone, struct scan_control *sc)
637 {
638         LIST_HEAD(page_list);
639         struct pagevec pvec;
640         unsigned long nr_scanned = 0;
641         unsigned long nr_reclaimed = 0;
642
643         pagevec_init(&pvec, 1);
644
645         lru_add_drain();
646         spin_lock_irq(&zone->lru_lock);
647         do {
648                 struct page *page;
649                 unsigned long nr_taken;
650                 unsigned long nr_scan;
651                 unsigned long nr_freed;
652
653                 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
654                                              &zone->inactive_list,
655                                              &page_list, &nr_scan);
656                 zone->nr_inactive -= nr_taken;
657                 zone->pages_scanned += nr_scan;
658                 spin_unlock_irq(&zone->lru_lock);
659
660                 nr_scanned += nr_scan;
661                 nr_freed = shrink_page_list(&page_list, sc);
662                 nr_reclaimed += nr_freed;
663                 local_irq_disable();
664                 if (current_is_kswapd()) {
665                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
666                         __count_vm_events(KSWAPD_STEAL, nr_freed);
667                 } else
668                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
669                 __count_vm_events(PGACTIVATE, nr_freed);
670
671                 if (nr_taken == 0)
672                         goto done;
673
674                 spin_lock(&zone->lru_lock);
675                 /*
676                  * Put back any unfreeable pages.
677                  */
678                 while (!list_empty(&page_list)) {
679                         page = lru_to_page(&page_list);
680                         VM_BUG_ON(PageLRU(page));
681                         SetPageLRU(page);
682                         list_del(&page->lru);
683                         if (PageActive(page))
684                                 add_page_to_active_list(zone, page);
685                         else
686                                 add_page_to_inactive_list(zone, page);
687                         if (!pagevec_add(&pvec, page)) {
688                                 spin_unlock_irq(&zone->lru_lock);
689                                 __pagevec_release(&pvec);
690                                 spin_lock_irq(&zone->lru_lock);
691                         }
692                 }
693         } while (nr_scanned < max_scan);
694         spin_unlock(&zone->lru_lock);
695 done:
696         local_irq_enable();
697         pagevec_release(&pvec);
698         return nr_reclaimed;
699 }
700
701 static inline int zone_is_near_oom(struct zone *zone)
702 {
703         return zone->pages_scanned >= (zone->nr_active + zone->nr_inactive)*3;
704 }
705
706 /*
707  * This moves pages from the active list to the inactive list.
708  *
709  * We move them the other way if the page is referenced by one or more
710  * processes, from rmap.
711  *
712  * If the pages are mostly unmapped, the processing is fast and it is
713  * appropriate to hold zone->lru_lock across the whole operation.  But if
714  * the pages are mapped, the processing is slow (page_referenced()) so we
715  * should drop zone->lru_lock around each page.  It's impossible to balance
716  * this, so instead we remove the pages from the LRU while processing them.
717  * It is safe to rely on PG_active against the non-LRU pages in here because
718  * nobody will play with that bit on a non-LRU page.
719  *
720  * The downside is that we have to touch page->_count against each page.
721  * But we had to alter page->flags anyway.
722  */
723 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
724                                 struct scan_control *sc)
725 {
726         unsigned long pgmoved;
727         int pgdeactivate = 0;
728         unsigned long pgscanned;
729         LIST_HEAD(l_hold);      /* The pages which were snipped off */
730         LIST_HEAD(l_inactive);  /* Pages to go onto the inactive_list */
731         LIST_HEAD(l_active);    /* Pages to go onto the active_list */
732         struct page *page;
733         struct pagevec pvec;
734         int reclaim_mapped = 0;
735
736         if (sc->may_swap) {
737                 long mapped_ratio;
738                 long distress;
739                 long swap_tendency;
740
741                 if (zone_is_near_oom(zone))
742                         goto force_reclaim_mapped;
743
744                 /*
745                  * `distress' is a measure of how much trouble we're having
746                  * reclaiming pages.  0 -> no problems.  100 -> great trouble.
747                  */
748                 distress = 100 >> zone->prev_priority;
749
750                 /*
751                  * The point of this algorithm is to decide when to start
752                  * reclaiming mapped memory instead of just pagecache.  Work out
753                  * how much memory
754                  * is mapped.
755                  */
756                 mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
757                                 global_page_state(NR_ANON_PAGES)) * 100) /
758                                         vm_total_pages;
759
760                 /*
761                  * Now decide how much we really want to unmap some pages.  The
762                  * mapped ratio is downgraded - just because there's a lot of
763                  * mapped memory doesn't necessarily mean that page reclaim
764                  * isn't succeeding.
765                  *
766                  * The distress ratio is important - we don't want to start
767                  * going oom.
768                  *
769                  * A 100% value of vm_swappiness overrides this algorithm
770                  * altogether.
771                  */
772                 swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
773
774                 /*
775                  * Now use this metric to decide whether to start moving mapped
776                  * memory onto the inactive list.
777                  */
778                 if (swap_tendency >= 100)
779 force_reclaim_mapped:
780                         reclaim_mapped = 1;
781         }
782
783         lru_add_drain();
784         spin_lock_irq(&zone->lru_lock);
785         pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
786                                     &l_hold, &pgscanned);
787         zone->pages_scanned += pgscanned;
788         zone->nr_active -= pgmoved;
789         spin_unlock_irq(&zone->lru_lock);
790
791         while (!list_empty(&l_hold)) {
792                 cond_resched();
793                 page = lru_to_page(&l_hold);
794                 list_del(&page->lru);
795                 if (page_mapped(page)) {
796                         if (!reclaim_mapped ||
797                             (total_swap_pages == 0 && PageAnon(page)) ||
798                             page_referenced(page, 0)) {
799                                 list_add(&page->lru, &l_active);
800                                 continue;
801                         }
802                 }
803                 list_add(&page->lru, &l_inactive);
804         }
805
806         pagevec_init(&pvec, 1);
807         pgmoved = 0;
808         spin_lock_irq(&zone->lru_lock);
809         while (!list_empty(&l_inactive)) {
810                 page = lru_to_page(&l_inactive);
811                 prefetchw_prev_lru_page(page, &l_inactive, flags);
812                 VM_BUG_ON(PageLRU(page));
813                 SetPageLRU(page);
814                 VM_BUG_ON(!PageActive(page));
815                 ClearPageActive(page);
816
817                 list_move(&page->lru, &zone->inactive_list);
818                 pgmoved++;
819                 if (!pagevec_add(&pvec, page)) {
820                         zone->nr_inactive += pgmoved;
821                         spin_unlock_irq(&zone->lru_lock);
822                         pgdeactivate += pgmoved;
823                         pgmoved = 0;
824                         if (buffer_heads_over_limit)
825                                 pagevec_strip(&pvec);
826                         __pagevec_release(&pvec);
827                         spin_lock_irq(&zone->lru_lock);
828                 }
829         }
830         zone->nr_inactive += pgmoved;
831         pgdeactivate += pgmoved;
832         if (buffer_heads_over_limit) {
833                 spin_unlock_irq(&zone->lru_lock);
834                 pagevec_strip(&pvec);
835                 spin_lock_irq(&zone->lru_lock);
836         }
837
838         pgmoved = 0;
839         while (!list_empty(&l_active)) {
840                 page = lru_to_page(&l_active);
841                 prefetchw_prev_lru_page(page, &l_active, flags);
842                 VM_BUG_ON(PageLRU(page));
843                 SetPageLRU(page);
844                 VM_BUG_ON(!PageActive(page));
845                 list_move(&page->lru, &zone->active_list);
846                 pgmoved++;
847                 if (!pagevec_add(&pvec, page)) {
848                         zone->nr_active += pgmoved;
849                         pgmoved = 0;
850                         spin_unlock_irq(&zone->lru_lock);
851                         __pagevec_release(&pvec);
852                         spin_lock_irq(&zone->lru_lock);
853                 }
854         }
855         zone->nr_active += pgmoved;
856
857         __count_zone_vm_events(PGREFILL, zone, pgscanned);
858         __count_vm_events(PGDEACTIVATE, pgdeactivate);
859         spin_unlock_irq(&zone->lru_lock);
860
861         pagevec_release(&pvec);
862 }
863
864 /*
865  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
866  */
867 static unsigned long shrink_zone(int priority, struct zone *zone,
868                                 struct scan_control *sc)
869 {
870         unsigned long nr_active;
871         unsigned long nr_inactive;
872         unsigned long nr_to_scan;
873         unsigned long nr_reclaimed = 0;
874
875         atomic_inc(&zone->reclaim_in_progress);
876
877         /*
878          * Add one to `nr_to_scan' just to make sure that the kernel will
879          * slowly sift through the active list.
880          */
881         zone->nr_scan_active += (zone->nr_active >> priority) + 1;
882         nr_active = zone->nr_scan_active;
883         if (nr_active >= sc->swap_cluster_max)
884                 zone->nr_scan_active = 0;
885         else
886                 nr_active = 0;
887
888         zone->nr_scan_inactive += (zone->nr_inactive >> priority) + 1;
889         nr_inactive = zone->nr_scan_inactive;
890         if (nr_inactive >= sc->swap_cluster_max)
891                 zone->nr_scan_inactive = 0;
892         else
893                 nr_inactive = 0;
894
895         while (nr_active || nr_inactive) {
896                 if (nr_active) {
897                         nr_to_scan = min(nr_active,
898                                         (unsigned long)sc->swap_cluster_max);
899                         nr_active -= nr_to_scan;
900                         shrink_active_list(nr_to_scan, zone, sc);
901                 }
902
903                 if (nr_inactive) {
904                         nr_to_scan = min(nr_inactive,
905                                         (unsigned long)sc->swap_cluster_max);
906                         nr_inactive -= nr_to_scan;
907                         nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
908                                                                 sc);
909                 }
910         }
911
912         throttle_vm_writeout();
913
914         atomic_dec(&zone->reclaim_in_progress);
915         return nr_reclaimed;
916 }
917
918 /*
919  * This is the direct reclaim path, for page-allocating processes.  We only
920  * try to reclaim pages from zones which will satisfy the caller's allocation
921  * request.
922  *
923  * We reclaim from a zone even if that zone is over pages_high.  Because:
924  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
925  *    allocation or
926  * b) The zones may be over pages_high but they must go *over* pages_high to
927  *    satisfy the `incremental min' zone defense algorithm.
928  *
929  * Returns the number of reclaimed pages.
930  *
931  * If a zone is deemed to be full of pinned pages then just give it a light
932  * scan then give up on it.
933  */
934 static unsigned long shrink_zones(int priority, struct zone **zones,
935                                         struct scan_control *sc)
936 {
937         unsigned long nr_reclaimed = 0;
938         int i;
939
940         sc->all_unreclaimable = 1;
941         for (i = 0; zones[i] != NULL; i++) {
942                 struct zone *zone = zones[i];
943
944                 if (!populated_zone(zone))
945                         continue;
946
947                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
948                         continue;
949
950                 zone->temp_priority = priority;
951                 if (zone->prev_priority > priority)
952                         zone->prev_priority = priority;
953
954                 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
955                         continue;       /* Let kswapd poll it */
956
957                 sc->all_unreclaimable = 0;
958
959                 nr_reclaimed += shrink_zone(priority, zone, sc);
960         }
961         return nr_reclaimed;
962 }
963  
964 /*
965  * This is the main entry point to direct page reclaim.
966  *
967  * If a full scan of the inactive list fails to free enough memory then we
968  * are "out of memory" and something needs to be killed.
969  *
970  * If the caller is !__GFP_FS then the probability of a failure is reasonably
971  * high - the zone may be full of dirty or under-writeback pages, which this
972  * caller can't do much about.  We kick pdflush and take explicit naps in the
973  * hope that some of these pages can be written.  But if the allocating task
974  * holds filesystem locks which prevent writeout this might not work, and the
975  * allocation attempt will fail.
976  */
977 unsigned long try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
978 {
979         int priority;
980         int ret = 0;
981         unsigned long total_scanned = 0;
982         unsigned long nr_reclaimed = 0;
983         struct reclaim_state *reclaim_state = current->reclaim_state;
984         unsigned long lru_pages = 0;
985         int i;
986         struct scan_control sc = {
987                 .gfp_mask = gfp_mask,
988                 .may_writepage = !laptop_mode,
989                 .swap_cluster_max = SWAP_CLUSTER_MAX,
990                 .may_swap = 1,
991                 .swappiness = vm_swappiness,
992         };
993
994         count_vm_event(ALLOCSTALL);
995
996         for (i = 0; zones[i] != NULL; i++) {
997                 struct zone *zone = zones[i];
998
999                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1000                         continue;
1001
1002                 zone->temp_priority = DEF_PRIORITY;
1003                 lru_pages += zone->nr_active + zone->nr_inactive;
1004         }
1005
1006         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1007                 sc.nr_scanned = 0;
1008                 if (!priority)
1009                         disable_swap_token();
1010                 nr_reclaimed += shrink_zones(priority, zones, &sc);
1011                 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1012                 if (reclaim_state) {
1013                         nr_reclaimed += reclaim_state->reclaimed_slab;
1014                         reclaim_state->reclaimed_slab = 0;
1015                 }
1016                 total_scanned += sc.nr_scanned;
1017                 if (nr_reclaimed >= sc.swap_cluster_max) {
1018                         ret = 1;
1019                         goto out;
1020                 }
1021
1022                 /*
1023                  * Try to write back as many pages as we just scanned.  This
1024                  * tends to cause slow streaming writers to write data to the
1025                  * disk smoothly, at the dirtying rate, which is nice.   But
1026                  * that's undesirable in laptop mode, where we *want* lumpy
1027                  * writeout.  So in laptop mode, write out the whole world.
1028                  */
1029                 if (total_scanned > sc.swap_cluster_max +
1030                                         sc.swap_cluster_max / 2) {
1031                         wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1032                         sc.may_writepage = 1;
1033                 }
1034
1035                 /* Take a nap, wait for some writeback to complete */
1036                 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1037                         blk_congestion_wait(WRITE, HZ/10);
1038         }
1039         /* top priority shrink_caches still had more to do? don't OOM, then */
1040         if (!sc.all_unreclaimable)
1041                 ret = 1;
1042 out:
1043         for (i = 0; zones[i] != 0; i++) {
1044                 struct zone *zone = zones[i];
1045
1046                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1047                         continue;
1048
1049                 zone->prev_priority = zone->temp_priority;
1050         }
1051         return ret;
1052 }
1053
1054 /*
1055  * For kswapd, balance_pgdat() will work across all this node's zones until
1056  * they are all at pages_high.
1057  *
1058  * Returns the number of pages which were actually freed.
1059  *
1060  * There is special handling here for zones which are full of pinned pages.
1061  * This can happen if the pages are all mlocked, or if they are all used by
1062  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1063  * What we do is to detect the case where all pages in the zone have been
1064  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1065  * dead and from now on, only perform a short scan.  Basically we're polling
1066  * the zone for when the problem goes away.
1067  *
1068  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1069  * zones which have free_pages > pages_high, but once a zone is found to have
1070  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1071  * of the number of free pages in the lower zones.  This interoperates with
1072  * the page allocator fallback scheme to ensure that aging of pages is balanced
1073  * across the zones.
1074  */
1075 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1076 {
1077         int all_zones_ok;
1078         int priority;
1079         int i;
1080         unsigned long total_scanned;
1081         unsigned long nr_reclaimed;
1082         struct reclaim_state *reclaim_state = current->reclaim_state;
1083         struct scan_control sc = {
1084                 .gfp_mask = GFP_KERNEL,
1085                 .may_swap = 1,
1086                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1087                 .swappiness = vm_swappiness,
1088         };
1089
1090 loop_again:
1091         total_scanned = 0;
1092         nr_reclaimed = 0;
1093         sc.may_writepage = !laptop_mode;
1094         count_vm_event(PAGEOUTRUN);
1095
1096         for (i = 0; i < pgdat->nr_zones; i++) {
1097                 struct zone *zone = pgdat->node_zones + i;
1098
1099                 zone->temp_priority = DEF_PRIORITY;
1100         }
1101
1102         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1103                 int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
1104                 unsigned long lru_pages = 0;
1105
1106                 /* The swap token gets in the way of swapout... */
1107                 if (!priority)
1108                         disable_swap_token();
1109
1110                 all_zones_ok = 1;
1111
1112                 /*
1113                  * Scan in the highmem->dma direction for the highest
1114                  * zone which needs scanning
1115                  */
1116                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1117                         struct zone *zone = pgdat->node_zones + i;
1118
1119                         if (!populated_zone(zone))
1120                                 continue;
1121
1122                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1123                                 continue;
1124
1125                         if (!zone_watermark_ok(zone, order, zone->pages_high,
1126                                                0, 0)) {
1127                                 end_zone = i;
1128                                 goto scan;
1129                         }
1130                 }
1131                 goto out;
1132 scan:
1133                 for (i = 0; i <= end_zone; i++) {
1134                         struct zone *zone = pgdat->node_zones + i;
1135
1136                         lru_pages += zone->nr_active + zone->nr_inactive;
1137                 }
1138
1139                 /*
1140                  * Now scan the zone in the dma->highmem direction, stopping
1141                  * at the last zone which needs scanning.
1142                  *
1143                  * We do this because the page allocator works in the opposite
1144                  * direction.  This prevents the page allocator from allocating
1145                  * pages behind kswapd's direction of progress, which would
1146                  * cause too much scanning of the lower zones.
1147                  */
1148                 for (i = 0; i <= end_zone; i++) {
1149                         struct zone *zone = pgdat->node_zones + i;
1150                         int nr_slab;
1151
1152                         if (!populated_zone(zone))
1153                                 continue;
1154
1155                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1156                                 continue;
1157
1158                         if (!zone_watermark_ok(zone, order, zone->pages_high,
1159                                                end_zone, 0))
1160                                 all_zones_ok = 0;
1161                         zone->temp_priority = priority;
1162                         if (zone->prev_priority > priority)
1163                                 zone->prev_priority = priority;
1164                         sc.nr_scanned = 0;
1165                         nr_reclaimed += shrink_zone(priority, zone, &sc);
1166                         reclaim_state->reclaimed_slab = 0;
1167                         nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1168                                                 lru_pages);
1169                         nr_reclaimed += reclaim_state->reclaimed_slab;
1170                         total_scanned += sc.nr_scanned;
1171                         if (zone->all_unreclaimable)
1172                                 continue;
1173                         if (nr_slab == 0 && zone->pages_scanned >=
1174                                     (zone->nr_active + zone->nr_inactive) * 6)
1175                                 zone->all_unreclaimable = 1;
1176                         /*
1177                          * If we've done a decent amount of scanning and
1178                          * the reclaim ratio is low, start doing writepage
1179                          * even in laptop mode
1180                          */
1181                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1182                             total_scanned > nr_reclaimed + nr_reclaimed / 2)
1183                                 sc.may_writepage = 1;
1184                 }
1185                 if (all_zones_ok)
1186                         break;          /* kswapd: all done */
1187                 /*
1188                  * OK, kswapd is getting into trouble.  Take a nap, then take
1189                  * another pass across the zones.
1190                  */
1191                 if (total_scanned && priority < DEF_PRIORITY - 2)
1192                         blk_congestion_wait(WRITE, HZ/10);
1193
1194                 /*
1195                  * We do this so kswapd doesn't build up large priorities for
1196                  * example when it is freeing in parallel with allocators. It
1197                  * matches the direct reclaim path behaviour in terms of impact
1198                  * on zone->*_priority.
1199                  */
1200                 if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1201                         break;
1202         }
1203 out:
1204         for (i = 0; i < pgdat->nr_zones; i++) {
1205                 struct zone *zone = pgdat->node_zones + i;
1206
1207                 zone->prev_priority = zone->temp_priority;
1208         }
1209         if (!all_zones_ok) {
1210                 cond_resched();
1211                 goto loop_again;
1212         }
1213
1214         return nr_reclaimed;
1215 }
1216
1217 /*
1218  * The background pageout daemon, started as a kernel thread
1219  * from the init process. 
1220  *
1221  * This basically trickles out pages so that we have _some_
1222  * free memory available even if there is no other activity
1223  * that frees anything up. This is needed for things like routing
1224  * etc, where we otherwise might have all activity going on in
1225  * asynchronous contexts that cannot page things out.
1226  *
1227  * If there are applications that are active memory-allocators
1228  * (most normal use), this basically shouldn't matter.
1229  */
1230 static int kswapd(void *p)
1231 {
1232         unsigned long order;
1233         pg_data_t *pgdat = (pg_data_t*)p;
1234         struct task_struct *tsk = current;
1235         DEFINE_WAIT(wait);
1236         struct reclaim_state reclaim_state = {
1237                 .reclaimed_slab = 0,
1238         };
1239         cpumask_t cpumask;
1240
1241         cpumask = node_to_cpumask(pgdat->node_id);
1242         if (!cpus_empty(cpumask))
1243                 set_cpus_allowed(tsk, cpumask);
1244         current->reclaim_state = &reclaim_state;
1245
1246         /*
1247          * Tell the memory management that we're a "memory allocator",
1248          * and that if we need more memory we should get access to it
1249          * regardless (see "__alloc_pages()"). "kswapd" should
1250          * never get caught in the normal page freeing logic.
1251          *
1252          * (Kswapd normally doesn't need memory anyway, but sometimes
1253          * you need a small amount of memory in order to be able to
1254          * page out something else, and this flag essentially protects
1255          * us from recursively trying to free more memory as we're
1256          * trying to free the first piece of memory in the first place).
1257          */
1258         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1259
1260         order = 0;
1261         for ( ; ; ) {
1262                 unsigned long new_order;
1263
1264                 try_to_freeze();
1265
1266                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1267                 new_order = pgdat->kswapd_max_order;
1268                 pgdat->kswapd_max_order = 0;
1269                 if (order < new_order) {
1270                         /*
1271                          * Don't sleep if someone wants a larger 'order'
1272                          * allocation
1273                          */
1274                         order = new_order;
1275                 } else {
1276                         schedule();
1277                         order = pgdat->kswapd_max_order;
1278                 }
1279                 finish_wait(&pgdat->kswapd_wait, &wait);
1280
1281                 balance_pgdat(pgdat, order);
1282         }
1283         return 0;
1284 }
1285
1286 /*
1287  * A zone is low on free memory, so wake its kswapd task to service it.
1288  */
1289 void wakeup_kswapd(struct zone *zone, int order)
1290 {
1291         pg_data_t *pgdat;
1292
1293         if (!populated_zone(zone))
1294                 return;
1295
1296         pgdat = zone->zone_pgdat;
1297         if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1298                 return;
1299         if (pgdat->kswapd_max_order < order)
1300                 pgdat->kswapd_max_order = order;
1301         if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1302                 return;
1303         if (!waitqueue_active(&pgdat->kswapd_wait))
1304                 return;
1305         wake_up_interruptible(&pgdat->kswapd_wait);
1306 }
1307
1308 #ifdef CONFIG_PM
1309 /*
1310  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
1311  * from LRU lists system-wide, for given pass and priority, and returns the
1312  * number of reclaimed pages
1313  *
1314  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1315  */
1316 static unsigned long shrink_all_zones(unsigned long nr_pages, int pass,
1317                                       int prio, struct scan_control *sc)
1318 {
1319         struct zone *zone;
1320         unsigned long nr_to_scan, ret = 0;
1321
1322         for_each_zone(zone) {
1323
1324                 if (!populated_zone(zone))
1325                         continue;
1326
1327                 if (zone->all_unreclaimable && prio != DEF_PRIORITY)
1328                         continue;
1329
1330                 /* For pass = 0 we don't shrink the active list */
1331                 if (pass > 0) {
1332                         zone->nr_scan_active += (zone->nr_active >> prio) + 1;
1333                         if (zone->nr_scan_active >= nr_pages || pass > 3) {
1334                                 zone->nr_scan_active = 0;
1335                                 nr_to_scan = min(nr_pages, zone->nr_active);
1336                                 shrink_active_list(nr_to_scan, zone, sc);
1337                         }
1338                 }
1339
1340                 zone->nr_scan_inactive += (zone->nr_inactive >> prio) + 1;
1341                 if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1342                         zone->nr_scan_inactive = 0;
1343                         nr_to_scan = min(nr_pages, zone->nr_inactive);
1344                         ret += shrink_inactive_list(nr_to_scan, zone, sc);
1345                         if (ret >= nr_pages)
1346                                 return ret;
1347                 }
1348         }
1349
1350         return ret;
1351 }
1352
1353 /*
1354  * Try to free `nr_pages' of memory, system-wide, and return the number of
1355  * freed pages.
1356  *
1357  * Rather than trying to age LRUs the aim is to preserve the overall
1358  * LRU order by reclaiming preferentially
1359  * inactive > active > active referenced > active mapped
1360  */
1361 unsigned long shrink_all_memory(unsigned long nr_pages)
1362 {
1363         unsigned long lru_pages, nr_slab;
1364         unsigned long ret = 0;
1365         int pass;
1366         struct reclaim_state reclaim_state;
1367         struct zone *zone;
1368         struct scan_control sc = {
1369                 .gfp_mask = GFP_KERNEL,
1370                 .may_swap = 0,
1371                 .swap_cluster_max = nr_pages,
1372                 .may_writepage = 1,
1373                 .swappiness = vm_swappiness,
1374         };
1375
1376         current->reclaim_state = &reclaim_state;
1377
1378         lru_pages = 0;
1379         for_each_zone(zone)
1380                 lru_pages += zone->nr_active + zone->nr_inactive;
1381
1382         nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1383         /* If slab caches are huge, it's better to hit them first */
1384         while (nr_slab >= lru_pages) {
1385                 reclaim_state.reclaimed_slab = 0;
1386                 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1387                 if (!reclaim_state.reclaimed_slab)
1388                         break;
1389
1390                 ret += reclaim_state.reclaimed_slab;
1391                 if (ret >= nr_pages)
1392                         goto out;
1393
1394                 nr_slab -= reclaim_state.reclaimed_slab;
1395         }
1396
1397         /*
1398          * We try to shrink LRUs in 5 passes:
1399          * 0 = Reclaim from inactive_list only
1400          * 1 = Reclaim from active list but don't reclaim mapped
1401          * 2 = 2nd pass of type 1
1402          * 3 = Reclaim mapped (normal reclaim)
1403          * 4 = 2nd pass of type 3
1404          */
1405         for (pass = 0; pass < 5; pass++) {
1406                 int prio;
1407
1408                 /* Needed for shrinking slab caches later on */
1409                 if (!lru_pages)
1410                         for_each_zone(zone) {
1411                                 lru_pages += zone->nr_active;
1412                                 lru_pages += zone->nr_inactive;
1413                         }
1414
1415                 /* Force reclaiming mapped pages in the passes #3 and #4 */
1416                 if (pass > 2) {
1417                         sc.may_swap = 1;
1418                         sc.swappiness = 100;
1419                 }
1420
1421                 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1422                         unsigned long nr_to_scan = nr_pages - ret;
1423
1424                         sc.nr_scanned = 0;
1425                         ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1426                         if (ret >= nr_pages)
1427                                 goto out;
1428
1429                         reclaim_state.reclaimed_slab = 0;
1430                         shrink_slab(sc.nr_scanned, sc.gfp_mask, lru_pages);
1431                         ret += reclaim_state.reclaimed_slab;
1432                         if (ret >= nr_pages)
1433                                 goto out;
1434
1435                         if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1436                                 blk_congestion_wait(WRITE, HZ / 10);
1437                 }
1438
1439                 lru_pages = 0;
1440         }
1441
1442         /*
1443          * If ret = 0, we could not shrink LRUs, but there may be something
1444          * in slab caches
1445          */
1446         if (!ret)
1447                 do {
1448                         reclaim_state.reclaimed_slab = 0;
1449                         shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1450                         ret += reclaim_state.reclaimed_slab;
1451                 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1452
1453 out:
1454         current->reclaim_state = NULL;
1455
1456         return ret;
1457 }
1458 #endif
1459
1460 #ifdef CONFIG_HOTPLUG_CPU
1461 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1462    not required for correctness.  So if the last cpu in a node goes
1463    away, we get changed to run anywhere: as the first one comes back,
1464    restore their cpu bindings. */
1465 static int __devinit cpu_callback(struct notifier_block *nfb,
1466                                   unsigned long action, void *hcpu)
1467 {
1468         pg_data_t *pgdat;
1469         cpumask_t mask;
1470
1471         if (action == CPU_ONLINE) {
1472                 for_each_online_pgdat(pgdat) {
1473                         mask = node_to_cpumask(pgdat->node_id);
1474                         if (any_online_cpu(mask) != NR_CPUS)
1475                                 /* One of our CPUs online: restore mask */
1476                                 set_cpus_allowed(pgdat->kswapd, mask);
1477                 }
1478         }
1479         return NOTIFY_OK;
1480 }
1481 #endif /* CONFIG_HOTPLUG_CPU */
1482
1483 /*
1484  * This kswapd start function will be called by init and node-hot-add.
1485  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1486  */
1487 int kswapd_run(int nid)
1488 {
1489         pg_data_t *pgdat = NODE_DATA(nid);
1490         int ret = 0;
1491
1492         if (pgdat->kswapd)
1493                 return 0;
1494
1495         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1496         if (IS_ERR(pgdat->kswapd)) {
1497                 /* failure at boot is fatal */
1498                 BUG_ON(system_state == SYSTEM_BOOTING);
1499                 printk("Failed to start kswapd on node %d\n",nid);
1500                 ret = -1;
1501         }
1502         return ret;
1503 }
1504
1505 static int __init kswapd_init(void)
1506 {
1507         int nid;
1508
1509         swap_setup();
1510         for_each_online_node(nid)
1511                 kswapd_run(nid);
1512         hotcpu_notifier(cpu_callback, 0);
1513         return 0;
1514 }
1515
1516 module_init(kswapd_init)
1517
1518 #ifdef CONFIG_NUMA
1519 /*
1520  * Zone reclaim mode
1521  *
1522  * If non-zero call zone_reclaim when the number of free pages falls below
1523  * the watermarks.
1524  */
1525 int zone_reclaim_mode __read_mostly;
1526
1527 #define RECLAIM_OFF 0
1528 #define RECLAIM_ZONE (1<<0)     /* Run shrink_cache on the zone */
1529 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
1530 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
1531
1532 /*
1533  * Priority for ZONE_RECLAIM. This determines the fraction of pages
1534  * of a node considered for each zone_reclaim. 4 scans 1/16th of
1535  * a zone.
1536  */
1537 #define ZONE_RECLAIM_PRIORITY 4
1538
1539 /*
1540  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1541  * occur.
1542  */
1543 int sysctl_min_unmapped_ratio = 1;
1544
1545 /*
1546  * If the number of slab pages in a zone grows beyond this percentage then
1547  * slab reclaim needs to occur.
1548  */
1549 int sysctl_min_slab_ratio = 5;
1550
1551 /*
1552  * Try to free up some pages from this zone through reclaim.
1553  */
1554 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1555 {
1556         /* Minimum pages needed in order to stay on node */
1557         const unsigned long nr_pages = 1 << order;
1558         struct task_struct *p = current;
1559         struct reclaim_state reclaim_state;
1560         int priority;
1561         unsigned long nr_reclaimed = 0;
1562         struct scan_control sc = {
1563                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1564                 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1565                 .swap_cluster_max = max_t(unsigned long, nr_pages,
1566                                         SWAP_CLUSTER_MAX),
1567                 .gfp_mask = gfp_mask,
1568                 .swappiness = vm_swappiness,
1569         };
1570         unsigned long slab_reclaimable;
1571
1572         disable_swap_token();
1573         cond_resched();
1574         /*
1575          * We need to be able to allocate from the reserves for RECLAIM_SWAP
1576          * and we also need to be able to write out pages for RECLAIM_WRITE
1577          * and RECLAIM_SWAP.
1578          */
1579         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1580         reclaim_state.reclaimed_slab = 0;
1581         p->reclaim_state = &reclaim_state;
1582
1583         if (zone_page_state(zone, NR_FILE_PAGES) -
1584                 zone_page_state(zone, NR_FILE_MAPPED) >
1585                 zone->min_unmapped_pages) {
1586                 /*
1587                  * Free memory by calling shrink zone with increasing
1588                  * priorities until we have enough memory freed.
1589                  */
1590                 priority = ZONE_RECLAIM_PRIORITY;
1591                 do {
1592                         nr_reclaimed += shrink_zone(priority, zone, &sc);
1593                         priority--;
1594                 } while (priority >= 0 && nr_reclaimed < nr_pages);
1595         }
1596
1597         slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1598         if (slab_reclaimable > zone->min_slab_pages) {
1599                 /*
1600                  * shrink_slab() does not currently allow us to determine how
1601                  * many pages were freed in this zone. So we take the current
1602                  * number of slab pages and shake the slab until it is reduced
1603                  * by the same nr_pages that we used for reclaiming unmapped
1604                  * pages.
1605                  *
1606                  * Note that shrink_slab will free memory on all zones and may
1607                  * take a long time.
1608                  */
1609                 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
1610                         zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
1611                                 slab_reclaimable - nr_pages)
1612                         ;
1613
1614                 /*
1615                  * Update nr_reclaimed by the number of slab pages we
1616                  * reclaimed from this zone.
1617                  */
1618                 nr_reclaimed += slab_reclaimable -
1619                         zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1620         }
1621
1622         p->reclaim_state = NULL;
1623         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1624         return nr_reclaimed >= nr_pages;
1625 }
1626
1627 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1628 {
1629         cpumask_t mask;
1630         int node_id;
1631
1632         /*
1633          * Zone reclaim reclaims unmapped file backed pages and
1634          * slab pages if we are over the defined limits.
1635          *
1636          * A small portion of unmapped file backed pages is needed for
1637          * file I/O otherwise pages read by file I/O will be immediately
1638          * thrown out if the zone is overallocated. So we do not reclaim
1639          * if less than a specified percentage of the zone is used by
1640          * unmapped file backed pages.
1641          */
1642         if (zone_page_state(zone, NR_FILE_PAGES) -
1643             zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
1644             && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
1645                         <= zone->min_slab_pages)
1646                 return 0;
1647
1648         /*
1649          * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1650          * not have reclaimable pages and if we should not delay the allocation
1651          * then do not scan.
1652          */
1653         if (!(gfp_mask & __GFP_WAIT) ||
1654                 zone->all_unreclaimable ||
1655                 atomic_read(&zone->reclaim_in_progress) > 0 ||
1656                 (current->flags & PF_MEMALLOC))
1657                         return 0;
1658
1659         /*
1660          * Only run zone reclaim on the local zone or on zones that do not
1661          * have associated processors. This will favor the local processor
1662          * over remote processors and spread off node memory allocations
1663          * as wide as possible.
1664          */
1665         node_id = zone_to_nid(zone);
1666         mask = node_to_cpumask(node_id);
1667         if (!cpus_empty(mask) && node_id != numa_node_id())
1668                 return 0;
1669         return __zone_reclaim(zone, gfp_mask, order);
1670 }
1671 #endif