mm/vmscan.c: consider swap space when deciding whether to continue reclaim
[pandora-kernel.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *                      page from the LRU and reclaim all pages within a
64  *                      naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *                      order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76         /* Incremented by the number of inactive pages that were scanned */
77         unsigned long nr_scanned;
78
79         /* Number of pages freed so far during a call to shrink_zones() */
80         unsigned long nr_reclaimed;
81
82         /* How many pages shrink_list() should reclaim */
83         unsigned long nr_to_reclaim;
84
85         unsigned long hibernation_mode;
86
87         /* This context's GFP mask */
88         gfp_t gfp_mask;
89
90         int may_writepage;
91
92         /* Can mapped pages be reclaimed? */
93         int may_unmap;
94
95         /* Can pages be swapped as part of reclaim? */
96         int may_swap;
97
98         int order;
99
100         /*
101          * Intend to reclaim enough continuous memory rather than reclaim
102          * enough amount of memory. i.e, mode for high order allocation.
103          */
104         reclaim_mode_t reclaim_mode;
105
106         /* Which cgroup do we reclaim from */
107         struct mem_cgroup *mem_cgroup;
108
109         /*
110          * Nodemask of nodes allowed by the caller. If NULL, all nodes
111          * are scanned.
112          */
113         nodemask_t      *nodemask;
114 };
115
116 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118 #ifdef ARCH_HAS_PREFETCH
119 #define prefetch_prev_lru_page(_page, _base, _field)                    \
120         do {                                                            \
121                 if ((_page)->lru.prev != _base) {                       \
122                         struct page *prev;                              \
123                                                                         \
124                         prev = lru_to_page(&(_page->lru));              \
125                         prefetch(&prev->_field);                        \
126                 }                                                       \
127         } while (0)
128 #else
129 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
131
132 #ifdef ARCH_HAS_PREFETCHW
133 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
134         do {                                                            \
135                 if ((_page)->lru.prev != _base) {                       \
136                         struct page *prev;                              \
137                                                                         \
138                         prev = lru_to_page(&(_page->lru));              \
139                         prefetchw(&prev->_field);                       \
140                 }                                                       \
141         } while (0)
142 #else
143 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144 #endif
145
146 /*
147  * From 0 .. 100.  Higher means more swappy.
148  */
149 int vm_swappiness = 60;
150 long vm_total_pages;    /* The total number of pages which the VM controls */
151
152 static LIST_HEAD(shrinker_list);
153 static DECLARE_RWSEM(shrinker_rwsem);
154
155 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
156 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
157 #else
158 #define scanning_global_lru(sc) (1)
159 #endif
160
161 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162                                                   struct scan_control *sc)
163 {
164         if (!scanning_global_lru(sc))
165                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
167         return &zone->reclaim_stat;
168 }
169
170 static unsigned long zone_nr_lru_pages(struct zone *zone,
171                                 struct scan_control *sc, enum lru_list lru)
172 {
173         if (!scanning_global_lru(sc))
174                 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175                                 zone_to_nid(zone), zone_idx(zone), BIT(lru));
176
177         return zone_page_state(zone, NR_LRU_BASE + lru);
178 }
179
180
181 /*
182  * Add a shrinker callback to be called from the vm
183  */
184 void register_shrinker(struct shrinker *shrinker)
185 {
186         atomic_long_set(&shrinker->nr_in_batch, 0);
187         down_write(&shrinker_rwsem);
188         list_add_tail(&shrinker->list, &shrinker_list);
189         up_write(&shrinker_rwsem);
190 }
191 EXPORT_SYMBOL(register_shrinker);
192
193 /*
194  * Remove one
195  */
196 void unregister_shrinker(struct shrinker *shrinker)
197 {
198         down_write(&shrinker_rwsem);
199         list_del(&shrinker->list);
200         up_write(&shrinker_rwsem);
201 }
202 EXPORT_SYMBOL(unregister_shrinker);
203
204 static inline int do_shrinker_shrink(struct shrinker *shrinker,
205                                      struct shrink_control *sc,
206                                      unsigned long nr_to_scan)
207 {
208         sc->nr_to_scan = nr_to_scan;
209         return (*shrinker->shrink)(shrinker, sc);
210 }
211
212 #define SHRINK_BATCH 128
213 /*
214  * Call the shrink functions to age shrinkable caches
215  *
216  * Here we assume it costs one seek to replace a lru page and that it also
217  * takes a seek to recreate a cache object.  With this in mind we age equal
218  * percentages of the lru and ageable caches.  This should balance the seeks
219  * generated by these structures.
220  *
221  * If the vm encountered mapped pages on the LRU it increase the pressure on
222  * slab to avoid swapping.
223  *
224  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225  *
226  * `lru_pages' represents the number of on-LRU pages in all the zones which
227  * are eligible for the caller's allocation attempt.  It is used for balancing
228  * slab reclaim versus page reclaim.
229  *
230  * Returns the number of slab objects which we shrunk.
231  */
232 unsigned long shrink_slab(struct shrink_control *shrink,
233                           unsigned long nr_pages_scanned,
234                           unsigned long lru_pages)
235 {
236         struct shrinker *shrinker;
237         unsigned long ret = 0;
238
239         if (nr_pages_scanned == 0)
240                 nr_pages_scanned = SWAP_CLUSTER_MAX;
241
242         if (!down_read_trylock(&shrinker_rwsem)) {
243                 /* Assume we'll be able to shrink next time */
244                 ret = 1;
245                 goto out;
246         }
247
248         list_for_each_entry(shrinker, &shrinker_list, list) {
249                 unsigned long long delta;
250                 long total_scan;
251                 long max_pass;
252                 int shrink_ret = 0;
253                 long nr;
254                 long new_nr;
255                 long batch_size = shrinker->batch ? shrinker->batch
256                                                   : SHRINK_BATCH;
257
258                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
259                 if (max_pass <= 0)
260                         continue;
261
262                 /*
263                  * copy the current shrinker scan count into a local variable
264                  * and zero it so that other concurrent shrinker invocations
265                  * don't also do this scanning work.
266                  */
267                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
268
269                 total_scan = nr;
270                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
271                 delta *= max_pass;
272                 do_div(delta, lru_pages + 1);
273                 total_scan += delta;
274                 if (total_scan < 0) {
275                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
276                                "delete nr=%ld\n",
277                                shrinker->shrink, total_scan);
278                         total_scan = max_pass;
279                 }
280
281                 /*
282                  * We need to avoid excessive windup on filesystem shrinkers
283                  * due to large numbers of GFP_NOFS allocations causing the
284                  * shrinkers to return -1 all the time. This results in a large
285                  * nr being built up so when a shrink that can do some work
286                  * comes along it empties the entire cache due to nr >>>
287                  * max_pass.  This is bad for sustaining a working set in
288                  * memory.
289                  *
290                  * Hence only allow the shrinker to scan the entire cache when
291                  * a large delta change is calculated directly.
292                  */
293                 if (delta < max_pass / 4)
294                         total_scan = min(total_scan, max_pass / 2);
295
296                 /*
297                  * Avoid risking looping forever due to too large nr value:
298                  * never try to free more than twice the estimate number of
299                  * freeable entries.
300                  */
301                 if (total_scan > max_pass * 2)
302                         total_scan = max_pass * 2;
303
304                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
305                                         nr_pages_scanned, lru_pages,
306                                         max_pass, delta, total_scan);
307
308                 while (total_scan >= batch_size) {
309                         int nr_before;
310
311                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
312                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
313                                                         batch_size);
314                         if (shrink_ret == -1)
315                                 break;
316                         if (shrink_ret < nr_before)
317                                 ret += nr_before - shrink_ret;
318                         count_vm_events(SLABS_SCANNED, batch_size);
319                         total_scan -= batch_size;
320
321                         cond_resched();
322                 }
323
324                 /*
325                  * move the unused scan count back into the shrinker in a
326                  * manner that handles concurrent updates. If we exhausted the
327                  * scan, there is no need to do an update.
328                  */
329                 if (total_scan > 0)
330                         new_nr = atomic_long_add_return(total_scan,
331                                         &shrinker->nr_in_batch);
332                 else
333                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
334
335                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
336         }
337         up_read(&shrinker_rwsem);
338 out:
339         cond_resched();
340         return ret;
341 }
342
343 static void set_reclaim_mode(int priority, struct scan_control *sc,
344                                    bool sync)
345 {
346         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
347
348         /*
349          * Initially assume we are entering either lumpy reclaim or
350          * reclaim/compaction.Depending on the order, we will either set the
351          * sync mode or just reclaim order-0 pages later.
352          */
353         if (COMPACTION_BUILD)
354                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
355         else
356                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
357
358         /*
359          * Avoid using lumpy reclaim or reclaim/compaction if possible by
360          * restricting when its set to either costly allocations or when
361          * under memory pressure
362          */
363         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364                 sc->reclaim_mode |= syncmode;
365         else if (sc->order && priority < DEF_PRIORITY - 2)
366                 sc->reclaim_mode |= syncmode;
367         else
368                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
369 }
370
371 static void reset_reclaim_mode(struct scan_control *sc)
372 {
373         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
374 }
375
376 static inline int is_page_cache_freeable(struct page *page)
377 {
378         /*
379          * A freeable page cache page is referenced only by the caller
380          * that isolated the page, the page cache radix tree and
381          * optional buffer heads at page->private.
382          */
383         return page_count(page) - page_has_private(page) == 2;
384 }
385
386 static int may_write_to_queue(struct backing_dev_info *bdi,
387                               struct scan_control *sc)
388 {
389         if (current->flags & PF_SWAPWRITE)
390                 return 1;
391         if (!bdi_write_congested(bdi))
392                 return 1;
393         if (bdi == current->backing_dev_info)
394                 return 1;
395
396         /* lumpy reclaim for hugepage often need a lot of write */
397         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398                 return 1;
399         return 0;
400 }
401
402 /*
403  * We detected a synchronous write error writing a page out.  Probably
404  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
405  * fsync(), msync() or close().
406  *
407  * The tricky part is that after writepage we cannot touch the mapping: nothing
408  * prevents it from being freed up.  But we have a ref on the page and once
409  * that page is locked, the mapping is pinned.
410  *
411  * We're allowed to run sleeping lock_page() here because we know the caller has
412  * __GFP_FS.
413  */
414 static void handle_write_error(struct address_space *mapping,
415                                 struct page *page, int error)
416 {
417         lock_page(page);
418         if (page_mapping(page) == mapping)
419                 mapping_set_error(mapping, error);
420         unlock_page(page);
421 }
422
423 /* possible outcome of pageout() */
424 typedef enum {
425         /* failed to write page out, page is locked */
426         PAGE_KEEP,
427         /* move page to the active list, page is locked */
428         PAGE_ACTIVATE,
429         /* page has been sent to the disk successfully, page is unlocked */
430         PAGE_SUCCESS,
431         /* page is clean and locked */
432         PAGE_CLEAN,
433 } pageout_t;
434
435 /*
436  * pageout is called by shrink_page_list() for each dirty page.
437  * Calls ->writepage().
438  */
439 static pageout_t pageout(struct page *page, struct address_space *mapping,
440                          struct scan_control *sc)
441 {
442         /*
443          * If the page is dirty, only perform writeback if that write
444          * will be non-blocking.  To prevent this allocation from being
445          * stalled by pagecache activity.  But note that there may be
446          * stalls if we need to run get_block().  We could test
447          * PagePrivate for that.
448          *
449          * If this process is currently in __generic_file_aio_write() against
450          * this page's queue, we can perform writeback even if that
451          * will block.
452          *
453          * If the page is swapcache, write it back even if that would
454          * block, for some throttling. This happens by accident, because
455          * swap_backing_dev_info is bust: it doesn't reflect the
456          * congestion state of the swapdevs.  Easy to fix, if needed.
457          */
458         if (!is_page_cache_freeable(page))
459                 return PAGE_KEEP;
460         if (!mapping) {
461                 /*
462                  * Some data journaling orphaned pages can have
463                  * page->mapping == NULL while being dirty with clean buffers.
464                  */
465                 if (page_has_private(page)) {
466                         if (try_to_free_buffers(page)) {
467                                 ClearPageDirty(page);
468                                 printk("%s: orphaned page\n", __func__);
469                                 return PAGE_CLEAN;
470                         }
471                 }
472                 return PAGE_KEEP;
473         }
474         if (mapping->a_ops->writepage == NULL)
475                 return PAGE_ACTIVATE;
476         if (!may_write_to_queue(mapping->backing_dev_info, sc))
477                 return PAGE_KEEP;
478
479         if (clear_page_dirty_for_io(page)) {
480                 int res;
481                 struct writeback_control wbc = {
482                         .sync_mode = WB_SYNC_NONE,
483                         .nr_to_write = SWAP_CLUSTER_MAX,
484                         .range_start = 0,
485                         .range_end = LLONG_MAX,
486                         .for_reclaim = 1,
487                 };
488
489                 SetPageReclaim(page);
490                 res = mapping->a_ops->writepage(page, &wbc);
491                 if (res < 0)
492                         handle_write_error(mapping, page, res);
493                 if (res == AOP_WRITEPAGE_ACTIVATE) {
494                         ClearPageReclaim(page);
495                         return PAGE_ACTIVATE;
496                 }
497
498                 if (!PageWriteback(page)) {
499                         /* synchronous write or broken a_ops? */
500                         ClearPageReclaim(page);
501                 }
502                 trace_mm_vmscan_writepage(page,
503                         trace_reclaim_flags(page, sc->reclaim_mode));
504                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
505                 return PAGE_SUCCESS;
506         }
507
508         return PAGE_CLEAN;
509 }
510
511 /*
512  * Same as remove_mapping, but if the page is removed from the mapping, it
513  * gets returned with a refcount of 0.
514  */
515 static int __remove_mapping(struct address_space *mapping, struct page *page)
516 {
517         BUG_ON(!PageLocked(page));
518         BUG_ON(mapping != page_mapping(page));
519
520         spin_lock_irq(&mapping->tree_lock);
521         /*
522          * The non racy check for a busy page.
523          *
524          * Must be careful with the order of the tests. When someone has
525          * a ref to the page, it may be possible that they dirty it then
526          * drop the reference. So if PageDirty is tested before page_count
527          * here, then the following race may occur:
528          *
529          * get_user_pages(&page);
530          * [user mapping goes away]
531          * write_to(page);
532          *                              !PageDirty(page)    [good]
533          * SetPageDirty(page);
534          * put_page(page);
535          *                              !page_count(page)   [good, discard it]
536          *
537          * [oops, our write_to data is lost]
538          *
539          * Reversing the order of the tests ensures such a situation cannot
540          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
541          * load is not satisfied before that of page->_count.
542          *
543          * Note that if SetPageDirty is always performed via set_page_dirty,
544          * and thus under tree_lock, then this ordering is not required.
545          */
546         if (!page_freeze_refs(page, 2))
547                 goto cannot_free;
548         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
549         if (unlikely(PageDirty(page))) {
550                 page_unfreeze_refs(page, 2);
551                 goto cannot_free;
552         }
553
554         if (PageSwapCache(page)) {
555                 swp_entry_t swap = { .val = page_private(page) };
556                 __delete_from_swap_cache(page);
557                 spin_unlock_irq(&mapping->tree_lock);
558                 swapcache_free(swap, page);
559         } else {
560                 void (*freepage)(struct page *);
561
562                 freepage = mapping->a_ops->freepage;
563
564                 __delete_from_page_cache(page);
565                 spin_unlock_irq(&mapping->tree_lock);
566                 mem_cgroup_uncharge_cache_page(page);
567
568                 if (freepage != NULL)
569                         freepage(page);
570         }
571
572         return 1;
573
574 cannot_free:
575         spin_unlock_irq(&mapping->tree_lock);
576         return 0;
577 }
578
579 /*
580  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
581  * someone else has a ref on the page, abort and return 0.  If it was
582  * successfully detached, return 1.  Assumes the caller has a single ref on
583  * this page.
584  */
585 int remove_mapping(struct address_space *mapping, struct page *page)
586 {
587         if (__remove_mapping(mapping, page)) {
588                 /*
589                  * Unfreezing the refcount with 1 rather than 2 effectively
590                  * drops the pagecache ref for us without requiring another
591                  * atomic operation.
592                  */
593                 page_unfreeze_refs(page, 1);
594                 return 1;
595         }
596         return 0;
597 }
598
599 /**
600  * putback_lru_page - put previously isolated page onto appropriate LRU list
601  * @page: page to be put back to appropriate lru list
602  *
603  * Add previously isolated @page to appropriate LRU list.
604  * Page may still be unevictable for other reasons.
605  *
606  * lru_lock must not be held, interrupts must be enabled.
607  */
608 void putback_lru_page(struct page *page)
609 {
610         int lru;
611         int active = !!TestClearPageActive(page);
612         int was_unevictable = PageUnevictable(page);
613
614         VM_BUG_ON(PageLRU(page));
615
616 redo:
617         ClearPageUnevictable(page);
618
619         if (page_evictable(page, NULL)) {
620                 /*
621                  * For evictable pages, we can use the cache.
622                  * In event of a race, worst case is we end up with an
623                  * unevictable page on [in]active list.
624                  * We know how to handle that.
625                  */
626                 lru = active + page_lru_base_type(page);
627                 lru_cache_add_lru(page, lru);
628         } else {
629                 /*
630                  * Put unevictable pages directly on zone's unevictable
631                  * list.
632                  */
633                 lru = LRU_UNEVICTABLE;
634                 add_page_to_unevictable_list(page);
635                 /*
636                  * When racing with an mlock or AS_UNEVICTABLE clearing
637                  * (page is unlocked) make sure that if the other thread
638                  * does not observe our setting of PG_lru and fails
639                  * isolation/check_move_unevictable_pages,
640                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
641                  * the page back to the evictable list.
642                  *
643                  * The other side is TestClearPageMlocked() or shmem_lock().
644                  */
645                 smp_mb();
646         }
647
648         /*
649          * page's status can change while we move it among lru. If an evictable
650          * page is on unevictable list, it never be freed. To avoid that,
651          * check after we added it to the list, again.
652          */
653         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
654                 if (!isolate_lru_page(page)) {
655                         put_page(page);
656                         goto redo;
657                 }
658                 /* This means someone else dropped this page from LRU
659                  * So, it will be freed or putback to LRU again. There is
660                  * nothing to do here.
661                  */
662         }
663
664         if (was_unevictable && lru != LRU_UNEVICTABLE)
665                 count_vm_event(UNEVICTABLE_PGRESCUED);
666         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
667                 count_vm_event(UNEVICTABLE_PGCULLED);
668
669         put_page(page);         /* drop ref from isolate */
670 }
671
672 enum page_references {
673         PAGEREF_RECLAIM,
674         PAGEREF_RECLAIM_CLEAN,
675         PAGEREF_KEEP,
676         PAGEREF_ACTIVATE,
677 };
678
679 static enum page_references page_check_references(struct page *page,
680                                                   struct scan_control *sc)
681 {
682         int referenced_ptes, referenced_page;
683         unsigned long vm_flags;
684
685         referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
686         referenced_page = TestClearPageReferenced(page);
687
688         /* Lumpy reclaim - ignore references */
689         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
690                 return PAGEREF_RECLAIM;
691
692         /*
693          * Mlock lost the isolation race with us.  Let try_to_unmap()
694          * move the page to the unevictable list.
695          */
696         if (vm_flags & VM_LOCKED)
697                 return PAGEREF_RECLAIM;
698
699         if (referenced_ptes) {
700                 if (PageSwapBacked(page))
701                         return PAGEREF_ACTIVATE;
702                 /*
703                  * All mapped pages start out with page table
704                  * references from the instantiating fault, so we need
705                  * to look twice if a mapped file page is used more
706                  * than once.
707                  *
708                  * Mark it and spare it for another trip around the
709                  * inactive list.  Another page table reference will
710                  * lead to its activation.
711                  *
712                  * Note: the mark is set for activated pages as well
713                  * so that recently deactivated but used pages are
714                  * quickly recovered.
715                  */
716                 SetPageReferenced(page);
717
718                 if (referenced_page || referenced_ptes > 1)
719                         return PAGEREF_ACTIVATE;
720
721                 /*
722                  * Activate file-backed executable pages after first usage.
723                  */
724                 if (vm_flags & VM_EXEC)
725                         return PAGEREF_ACTIVATE;
726
727                 return PAGEREF_KEEP;
728         }
729
730         /* Reclaim if clean, defer dirty pages to writeback */
731         if (referenced_page && !PageSwapBacked(page))
732                 return PAGEREF_RECLAIM_CLEAN;
733
734         return PAGEREF_RECLAIM;
735 }
736
737 static noinline_for_stack void free_page_list(struct list_head *free_pages)
738 {
739         struct pagevec freed_pvec;
740         struct page *page, *tmp;
741
742         pagevec_init(&freed_pvec, 1);
743
744         list_for_each_entry_safe(page, tmp, free_pages, lru) {
745                 list_del(&page->lru);
746                 if (!pagevec_add(&freed_pvec, page)) {
747                         __pagevec_free(&freed_pvec);
748                         pagevec_reinit(&freed_pvec);
749                 }
750         }
751
752         pagevec_free(&freed_pvec);
753 }
754
755 /*
756  * shrink_page_list() returns the number of reclaimed pages
757  */
758 static unsigned long shrink_page_list(struct list_head *page_list,
759                                       struct zone *zone,
760                                       struct scan_control *sc,
761                                       int priority,
762                                       unsigned long *ret_nr_dirty,
763                                       unsigned long *ret_nr_writeback)
764 {
765         LIST_HEAD(ret_pages);
766         LIST_HEAD(free_pages);
767         int pgactivate = 0;
768         unsigned long nr_dirty = 0;
769         unsigned long nr_congested = 0;
770         unsigned long nr_reclaimed = 0;
771         unsigned long nr_writeback = 0;
772
773         cond_resched();
774
775         while (!list_empty(page_list)) {
776                 enum page_references references;
777                 struct address_space *mapping;
778                 struct page *page;
779                 int may_enter_fs;
780
781                 cond_resched();
782
783                 page = lru_to_page(page_list);
784                 list_del(&page->lru);
785
786                 if (!trylock_page(page))
787                         goto keep;
788
789                 VM_BUG_ON(PageActive(page));
790                 VM_BUG_ON(page_zone(page) != zone);
791
792                 sc->nr_scanned++;
793
794                 if (unlikely(!page_evictable(page, NULL)))
795                         goto cull_mlocked;
796
797                 if (!sc->may_unmap && page_mapped(page))
798                         goto keep_locked;
799
800                 /* Double the slab pressure for mapped and swapcache pages */
801                 if (page_mapped(page) || PageSwapCache(page))
802                         sc->nr_scanned++;
803
804                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
805                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
806
807                 if (PageWriteback(page)) {
808                         nr_writeback++;
809                         /*
810                          * Synchronous reclaim cannot queue pages for
811                          * writeback due to the possibility of stack overflow
812                          * but if it encounters a page under writeback, wait
813                          * for the IO to complete.
814                          */
815                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
816                             may_enter_fs)
817                                 wait_on_page_writeback(page);
818                         else {
819                                 unlock_page(page);
820                                 goto keep_lumpy;
821                         }
822                 }
823
824                 references = page_check_references(page, sc);
825                 switch (references) {
826                 case PAGEREF_ACTIVATE:
827                         goto activate_locked;
828                 case PAGEREF_KEEP:
829                         goto keep_locked;
830                 case PAGEREF_RECLAIM:
831                 case PAGEREF_RECLAIM_CLEAN:
832                         ; /* try to reclaim the page below */
833                 }
834
835                 /*
836                  * Anonymous process memory has backing store?
837                  * Try to allocate it some swap space here.
838                  */
839                 if (PageAnon(page) && !PageSwapCache(page)) {
840                         if (!(sc->gfp_mask & __GFP_IO))
841                                 goto keep_locked;
842                         if (!add_to_swap(page))
843                                 goto activate_locked;
844                         may_enter_fs = 1;
845                 }
846
847                 mapping = page_mapping(page);
848
849                 /*
850                  * The page is mapped into the page tables of one or more
851                  * processes. Try to unmap it here.
852                  */
853                 if (page_mapped(page) && mapping) {
854                         switch (try_to_unmap(page, TTU_UNMAP)) {
855                         case SWAP_FAIL:
856                                 goto activate_locked;
857                         case SWAP_AGAIN:
858                                 goto keep_locked;
859                         case SWAP_MLOCK:
860                                 goto cull_mlocked;
861                         case SWAP_SUCCESS:
862                                 ; /* try to free the page below */
863                         }
864                 }
865
866                 if (PageDirty(page)) {
867                         nr_dirty++;
868
869                         /*
870                          * Only kswapd can writeback filesystem pages to
871                          * avoid risk of stack overflow but do not writeback
872                          * unless under significant pressure.
873                          */
874                         if (page_is_file_cache(page) &&
875                                         (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
876                                 /*
877                                  * Immediately reclaim when written back.
878                                  * Similar in principal to deactivate_page()
879                                  * except we already have the page isolated
880                                  * and know it's dirty
881                                  */
882                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
883                                 SetPageReclaim(page);
884
885                                 goto keep_locked;
886                         }
887
888                         if (references == PAGEREF_RECLAIM_CLEAN)
889                                 goto keep_locked;
890                         if (!may_enter_fs)
891                                 goto keep_locked;
892                         if (!sc->may_writepage)
893                                 goto keep_locked;
894
895                         /* Page is dirty, try to write it out here */
896                         switch (pageout(page, mapping, sc)) {
897                         case PAGE_KEEP:
898                                 nr_congested++;
899                                 goto keep_locked;
900                         case PAGE_ACTIVATE:
901                                 goto activate_locked;
902                         case PAGE_SUCCESS:
903                                 if (PageWriteback(page))
904                                         goto keep_lumpy;
905                                 if (PageDirty(page))
906                                         goto keep;
907
908                                 /*
909                                  * A synchronous write - probably a ramdisk.  Go
910                                  * ahead and try to reclaim the page.
911                                  */
912                                 if (!trylock_page(page))
913                                         goto keep;
914                                 if (PageDirty(page) || PageWriteback(page))
915                                         goto keep_locked;
916                                 mapping = page_mapping(page);
917                         case PAGE_CLEAN:
918                                 ; /* try to free the page below */
919                         }
920                 }
921
922                 /*
923                  * If the page has buffers, try to free the buffer mappings
924                  * associated with this page. If we succeed we try to free
925                  * the page as well.
926                  *
927                  * We do this even if the page is PageDirty().
928                  * try_to_release_page() does not perform I/O, but it is
929                  * possible for a page to have PageDirty set, but it is actually
930                  * clean (all its buffers are clean).  This happens if the
931                  * buffers were written out directly, with submit_bh(). ext3
932                  * will do this, as well as the blockdev mapping.
933                  * try_to_release_page() will discover that cleanness and will
934                  * drop the buffers and mark the page clean - it can be freed.
935                  *
936                  * Rarely, pages can have buffers and no ->mapping.  These are
937                  * the pages which were not successfully invalidated in
938                  * truncate_complete_page().  We try to drop those buffers here
939                  * and if that worked, and the page is no longer mapped into
940                  * process address space (page_count == 1) it can be freed.
941                  * Otherwise, leave the page on the LRU so it is swappable.
942                  */
943                 if (page_has_private(page)) {
944                         if (!try_to_release_page(page, sc->gfp_mask))
945                                 goto activate_locked;
946                         if (!mapping && page_count(page) == 1) {
947                                 unlock_page(page);
948                                 if (put_page_testzero(page))
949                                         goto free_it;
950                                 else {
951                                         /*
952                                          * rare race with speculative reference.
953                                          * the speculative reference will free
954                                          * this page shortly, so we may
955                                          * increment nr_reclaimed here (and
956                                          * leave it off the LRU).
957                                          */
958                                         nr_reclaimed++;
959                                         continue;
960                                 }
961                         }
962                 }
963
964                 if (!mapping || !__remove_mapping(mapping, page))
965                         goto keep_locked;
966
967                 /*
968                  * At this point, we have no other references and there is
969                  * no way to pick any more up (removed from LRU, removed
970                  * from pagecache). Can use non-atomic bitops now (and
971                  * we obviously don't have to worry about waking up a process
972                  * waiting on the page lock, because there are no references.
973                  */
974                 __clear_page_locked(page);
975 free_it:
976                 nr_reclaimed++;
977
978                 /*
979                  * Is there need to periodically free_page_list? It would
980                  * appear not as the counts should be low
981                  */
982                 list_add(&page->lru, &free_pages);
983                 continue;
984
985 cull_mlocked:
986                 if (PageSwapCache(page))
987                         try_to_free_swap(page);
988                 unlock_page(page);
989                 putback_lru_page(page);
990                 reset_reclaim_mode(sc);
991                 continue;
992
993 activate_locked:
994                 /* Not a candidate for swapping, so reclaim swap space. */
995                 if (PageSwapCache(page) && vm_swap_full())
996                         try_to_free_swap(page);
997                 VM_BUG_ON(PageActive(page));
998                 SetPageActive(page);
999                 pgactivate++;
1000 keep_locked:
1001                 unlock_page(page);
1002 keep:
1003                 reset_reclaim_mode(sc);
1004 keep_lumpy:
1005                 list_add(&page->lru, &ret_pages);
1006                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1007         }
1008
1009         /*
1010          * Tag a zone as congested if all the dirty pages encountered were
1011          * backed by a congested BDI. In this case, reclaimers should just
1012          * back off and wait for congestion to clear because further reclaim
1013          * will encounter the same problem
1014          */
1015         if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
1016                 zone_set_flag(zone, ZONE_CONGESTED);
1017
1018         free_page_list(&free_pages);
1019
1020         list_splice(&ret_pages, page_list);
1021         count_vm_events(PGACTIVATE, pgactivate);
1022         *ret_nr_dirty += nr_dirty;
1023         *ret_nr_writeback += nr_writeback;
1024         return nr_reclaimed;
1025 }
1026
1027 /*
1028  * Attempt to remove the specified page from its LRU.  Only take this page
1029  * if it is of the appropriate PageActive status.  Pages which are being
1030  * freed elsewhere are also ignored.
1031  *
1032  * page:        page to consider
1033  * mode:        one of the LRU isolation modes defined above
1034  *
1035  * returns 0 on success, -ve errno on failure.
1036  */
1037 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1038 {
1039         bool all_lru_mode;
1040         int ret = -EINVAL;
1041
1042         /* Only take pages on the LRU. */
1043         if (!PageLRU(page))
1044                 return ret;
1045
1046         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1047                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1048
1049         /*
1050          * When checking the active state, we need to be sure we are
1051          * dealing with comparible boolean values.  Take the logical not
1052          * of each.
1053          */
1054         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1055                 return ret;
1056
1057         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1058                 return ret;
1059
1060         /*
1061          * When this function is being called for lumpy reclaim, we
1062          * initially look into all LRU pages, active, inactive and
1063          * unevictable; only give shrink_page_list evictable pages.
1064          */
1065         if (PageUnevictable(page))
1066                 return ret;
1067
1068         ret = -EBUSY;
1069
1070         /*
1071          * To minimise LRU disruption, the caller can indicate that it only
1072          * wants to isolate pages it will be able to operate on without
1073          * blocking - clean pages for the most part.
1074          *
1075          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1076          * is used by reclaim when it is cannot write to backing storage
1077          *
1078          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1079          * that it is possible to migrate without blocking
1080          */
1081         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1082                 /* All the caller can do on PageWriteback is block */
1083                 if (PageWriteback(page))
1084                         return ret;
1085
1086                 if (PageDirty(page)) {
1087                         struct address_space *mapping;
1088
1089                         /* ISOLATE_CLEAN means only clean pages */
1090                         if (mode & ISOLATE_CLEAN)
1091                                 return ret;
1092
1093                         /*
1094                          * Only pages without mappings or that have a
1095                          * ->migratepage callback are possible to migrate
1096                          * without blocking
1097                          */
1098                         mapping = page_mapping(page);
1099                         if (mapping && !mapping->a_ops->migratepage)
1100                                 return ret;
1101                 }
1102         }
1103
1104         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1105                 return ret;
1106
1107         if (likely(get_page_unless_zero(page))) {
1108                 /*
1109                  * Be careful not to clear PageLRU until after we're
1110                  * sure the page is not being freed elsewhere -- the
1111                  * page release code relies on it.
1112                  */
1113                 ClearPageLRU(page);
1114                 ret = 0;
1115         }
1116
1117         return ret;
1118 }
1119
1120 /*
1121  * zone->lru_lock is heavily contended.  Some of the functions that
1122  * shrink the lists perform better by taking out a batch of pages
1123  * and working on them outside the LRU lock.
1124  *
1125  * For pagecache intensive workloads, this function is the hottest
1126  * spot in the kernel (apart from copy_*_user functions).
1127  *
1128  * Appropriate locks must be held before calling this function.
1129  *
1130  * @nr_to_scan: The number of pages to look through on the list.
1131  * @src:        The LRU list to pull pages off.
1132  * @dst:        The temp list to put pages on to.
1133  * @scanned:    The number of pages that were scanned.
1134  * @order:      The caller's attempted allocation order
1135  * @mode:       One of the LRU isolation modes
1136  * @file:       True [1] if isolating file [!anon] pages
1137  *
1138  * returns how many pages were moved onto *@dst.
1139  */
1140 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1141                 struct list_head *src, struct list_head *dst,
1142                 unsigned long *scanned, int order, isolate_mode_t mode,
1143                 int file)
1144 {
1145         unsigned long nr_taken = 0;
1146         unsigned long nr_lumpy_taken = 0;
1147         unsigned long nr_lumpy_dirty = 0;
1148         unsigned long nr_lumpy_failed = 0;
1149         unsigned long scan;
1150
1151         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1152                 struct page *page;
1153                 unsigned long pfn;
1154                 unsigned long end_pfn;
1155                 unsigned long page_pfn;
1156                 int zone_id;
1157
1158                 page = lru_to_page(src);
1159                 prefetchw_prev_lru_page(page, src, flags);
1160
1161                 VM_BUG_ON(!PageLRU(page));
1162
1163                 switch (__isolate_lru_page(page, mode, file)) {
1164                 case 0:
1165                         list_move(&page->lru, dst);
1166                         mem_cgroup_del_lru(page);
1167                         nr_taken += hpage_nr_pages(page);
1168                         break;
1169
1170                 case -EBUSY:
1171                         /* else it is being freed elsewhere */
1172                         list_move(&page->lru, src);
1173                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1174                         continue;
1175
1176                 default:
1177                         BUG();
1178                 }
1179
1180                 if (!order)
1181                         continue;
1182
1183                 /*
1184                  * Attempt to take all pages in the order aligned region
1185                  * surrounding the tag page.  Only take those pages of
1186                  * the same active state as that tag page.  We may safely
1187                  * round the target page pfn down to the requested order
1188                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1189                  * where that page is in a different zone we will detect
1190                  * it from its zone id and abort this block scan.
1191                  */
1192                 zone_id = page_zone_id(page);
1193                 page_pfn = page_to_pfn(page);
1194                 pfn = page_pfn & ~((1 << order) - 1);
1195                 end_pfn = pfn + (1 << order);
1196                 for (; pfn < end_pfn; pfn++) {
1197                         struct page *cursor_page;
1198
1199                         /* The target page is in the block, ignore it. */
1200                         if (unlikely(pfn == page_pfn))
1201                                 continue;
1202
1203                         /* Avoid holes within the zone. */
1204                         if (unlikely(!pfn_valid_within(pfn)))
1205                                 break;
1206
1207                         cursor_page = pfn_to_page(pfn);
1208
1209                         /* Check that we have not crossed a zone boundary. */
1210                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1211                                 break;
1212
1213                         /*
1214                          * If we don't have enough swap space, reclaiming of
1215                          * anon page which don't already have a swap slot is
1216                          * pointless.
1217                          */
1218                         if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1219                             !PageSwapCache(cursor_page))
1220                                 break;
1221
1222                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1223                                 list_move(&cursor_page->lru, dst);
1224                                 mem_cgroup_del_lru(cursor_page);
1225                                 nr_taken += hpage_nr_pages(page);
1226                                 nr_lumpy_taken++;
1227                                 if (PageDirty(cursor_page))
1228                                         nr_lumpy_dirty++;
1229                                 scan++;
1230                         } else {
1231                                 /*
1232                                  * Check if the page is freed already.
1233                                  *
1234                                  * We can't use page_count() as that
1235                                  * requires compound_head and we don't
1236                                  * have a pin on the page here. If a
1237                                  * page is tail, we may or may not
1238                                  * have isolated the head, so assume
1239                                  * it's not free, it'd be tricky to
1240                                  * track the head status without a
1241                                  * page pin.
1242                                  */
1243                                 if (!PageTail(cursor_page) &&
1244                                     !atomic_read(&cursor_page->_count))
1245                                         continue;
1246                                 break;
1247                         }
1248                 }
1249
1250                 /* If we break out of the loop above, lumpy reclaim failed */
1251                 if (pfn < end_pfn)
1252                         nr_lumpy_failed++;
1253         }
1254
1255         *scanned = scan;
1256
1257         trace_mm_vmscan_lru_isolate(order,
1258                         nr_to_scan, scan,
1259                         nr_taken,
1260                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1261                         mode);
1262         return nr_taken;
1263 }
1264
1265 static unsigned long isolate_pages_global(unsigned long nr,
1266                                         struct list_head *dst,
1267                                         unsigned long *scanned, int order,
1268                                         isolate_mode_t mode,
1269                                         struct zone *z, int active, int file)
1270 {
1271         int lru = LRU_BASE;
1272         if (active)
1273                 lru += LRU_ACTIVE;
1274         if (file)
1275                 lru += LRU_FILE;
1276         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1277                                                                 mode, file);
1278 }
1279
1280 /*
1281  * clear_active_flags() is a helper for shrink_active_list(), clearing
1282  * any active bits from the pages in the list.
1283  */
1284 static unsigned long clear_active_flags(struct list_head *page_list,
1285                                         unsigned int *count)
1286 {
1287         int nr_active = 0;
1288         int lru;
1289         struct page *page;
1290
1291         list_for_each_entry(page, page_list, lru) {
1292                 int numpages = hpage_nr_pages(page);
1293                 lru = page_lru_base_type(page);
1294                 if (PageActive(page)) {
1295                         lru += LRU_ACTIVE;
1296                         ClearPageActive(page);
1297                         nr_active += numpages;
1298                 }
1299                 if (count)
1300                         count[lru] += numpages;
1301         }
1302
1303         return nr_active;
1304 }
1305
1306 /**
1307  * isolate_lru_page - tries to isolate a page from its LRU list
1308  * @page: page to isolate from its LRU list
1309  *
1310  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1311  * vmstat statistic corresponding to whatever LRU list the page was on.
1312  *
1313  * Returns 0 if the page was removed from an LRU list.
1314  * Returns -EBUSY if the page was not on an LRU list.
1315  *
1316  * The returned page will have PageLRU() cleared.  If it was found on
1317  * the active list, it will have PageActive set.  If it was found on
1318  * the unevictable list, it will have the PageUnevictable bit set. That flag
1319  * may need to be cleared by the caller before letting the page go.
1320  *
1321  * The vmstat statistic corresponding to the list on which the page was
1322  * found will be decremented.
1323  *
1324  * Restrictions:
1325  * (1) Must be called with an elevated refcount on the page. This is a
1326  *     fundamentnal difference from isolate_lru_pages (which is called
1327  *     without a stable reference).
1328  * (2) the lru_lock must not be held.
1329  * (3) interrupts must be enabled.
1330  */
1331 int isolate_lru_page(struct page *page)
1332 {
1333         int ret = -EBUSY;
1334
1335         VM_BUG_ON(!page_count(page));
1336
1337         if (PageLRU(page)) {
1338                 struct zone *zone = page_zone(page);
1339
1340                 spin_lock_irq(&zone->lru_lock);
1341                 if (PageLRU(page)) {
1342                         int lru = page_lru(page);
1343                         ret = 0;
1344                         get_page(page);
1345                         ClearPageLRU(page);
1346
1347                         del_page_from_lru_list(zone, page, lru);
1348                 }
1349                 spin_unlock_irq(&zone->lru_lock);
1350         }
1351         return ret;
1352 }
1353
1354 /*
1355  * Are there way too many processes in the direct reclaim path already?
1356  */
1357 static int too_many_isolated(struct zone *zone, int file,
1358                 struct scan_control *sc)
1359 {
1360         unsigned long inactive, isolated;
1361
1362         if (current_is_kswapd())
1363                 return 0;
1364
1365         if (!scanning_global_lru(sc))
1366                 return 0;
1367
1368         if (file) {
1369                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1370                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1371         } else {
1372                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1373                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1374         }
1375
1376         return isolated > inactive;
1377 }
1378
1379 /*
1380  * TODO: Try merging with migrations version of putback_lru_pages
1381  */
1382 static noinline_for_stack void
1383 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1384                                 unsigned long nr_anon, unsigned long nr_file,
1385                                 struct list_head *page_list)
1386 {
1387         struct page *page;
1388         struct pagevec pvec;
1389         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1390
1391         pagevec_init(&pvec, 1);
1392
1393         /*
1394          * Put back any unfreeable pages.
1395          */
1396         spin_lock(&zone->lru_lock);
1397         while (!list_empty(page_list)) {
1398                 int lru;
1399                 page = lru_to_page(page_list);
1400                 VM_BUG_ON(PageLRU(page));
1401                 list_del(&page->lru);
1402                 if (unlikely(!page_evictable(page, NULL))) {
1403                         spin_unlock_irq(&zone->lru_lock);
1404                         putback_lru_page(page);
1405                         spin_lock_irq(&zone->lru_lock);
1406                         continue;
1407                 }
1408                 SetPageLRU(page);
1409                 lru = page_lru(page);
1410                 add_page_to_lru_list(zone, page, lru);
1411                 if (is_active_lru(lru)) {
1412                         int file = is_file_lru(lru);
1413                         int numpages = hpage_nr_pages(page);
1414                         reclaim_stat->recent_rotated[file] += numpages;
1415                 }
1416                 if (!pagevec_add(&pvec, page)) {
1417                         spin_unlock_irq(&zone->lru_lock);
1418                         __pagevec_release(&pvec);
1419                         spin_lock_irq(&zone->lru_lock);
1420                 }
1421         }
1422         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1423         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1424
1425         spin_unlock_irq(&zone->lru_lock);
1426         pagevec_release(&pvec);
1427 }
1428
1429 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1430                                         struct scan_control *sc,
1431                                         unsigned long *nr_anon,
1432                                         unsigned long *nr_file,
1433                                         struct list_head *isolated_list)
1434 {
1435         unsigned long nr_active;
1436         unsigned int count[NR_LRU_LISTS] = { 0, };
1437         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1438
1439         nr_active = clear_active_flags(isolated_list, count);
1440         __count_vm_events(PGDEACTIVATE, nr_active);
1441
1442         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1443                               -count[LRU_ACTIVE_FILE]);
1444         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1445                               -count[LRU_INACTIVE_FILE]);
1446         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1447                               -count[LRU_ACTIVE_ANON]);
1448         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1449                               -count[LRU_INACTIVE_ANON]);
1450
1451         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1452         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1453         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1454         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1455
1456         reclaim_stat->recent_scanned[0] += *nr_anon;
1457         reclaim_stat->recent_scanned[1] += *nr_file;
1458 }
1459
1460 /*
1461  * Returns true if a direct reclaim should wait on pages under writeback.
1462  *
1463  * If we are direct reclaiming for contiguous pages and we do not reclaim
1464  * everything in the list, try again and wait for writeback IO to complete.
1465  * This will stall high-order allocations noticeably. Only do that when really
1466  * need to free the pages under high memory pressure.
1467  */
1468 static inline bool should_reclaim_stall(unsigned long nr_taken,
1469                                         unsigned long nr_freed,
1470                                         int priority,
1471                                         struct scan_control *sc)
1472 {
1473         int lumpy_stall_priority;
1474
1475         /* kswapd should not stall on sync IO */
1476         if (current_is_kswapd())
1477                 return false;
1478
1479         /* Only stall on lumpy reclaim */
1480         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1481                 return false;
1482
1483         /* If we have reclaimed everything on the isolated list, no stall */
1484         if (nr_freed == nr_taken)
1485                 return false;
1486
1487         /*
1488          * For high-order allocations, there are two stall thresholds.
1489          * High-cost allocations stall immediately where as lower
1490          * order allocations such as stacks require the scanning
1491          * priority to be much higher before stalling.
1492          */
1493         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1494                 lumpy_stall_priority = DEF_PRIORITY;
1495         else
1496                 lumpy_stall_priority = DEF_PRIORITY / 3;
1497
1498         return priority <= lumpy_stall_priority;
1499 }
1500
1501 /*
1502  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1503  * of reclaimed pages
1504  */
1505 static noinline_for_stack unsigned long
1506 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1507                         struct scan_control *sc, int priority, int file)
1508 {
1509         LIST_HEAD(page_list);
1510         unsigned long nr_scanned;
1511         unsigned long nr_reclaimed = 0;
1512         unsigned long nr_taken;
1513         unsigned long nr_anon;
1514         unsigned long nr_file;
1515         unsigned long nr_dirty = 0;
1516         unsigned long nr_writeback = 0;
1517         isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1518
1519         while (unlikely(too_many_isolated(zone, file, sc))) {
1520                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1521
1522                 /* We are about to die and free our memory. Return now. */
1523                 if (fatal_signal_pending(current))
1524                         return SWAP_CLUSTER_MAX;
1525         }
1526
1527         set_reclaim_mode(priority, sc, false);
1528         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1529                 reclaim_mode |= ISOLATE_ACTIVE;
1530
1531         lru_add_drain();
1532
1533         if (!sc->may_unmap)
1534                 reclaim_mode |= ISOLATE_UNMAPPED;
1535         if (!sc->may_writepage)
1536                 reclaim_mode |= ISOLATE_CLEAN;
1537
1538         spin_lock_irq(&zone->lru_lock);
1539
1540         if (scanning_global_lru(sc)) {
1541                 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1542                         &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1543                 zone->pages_scanned += nr_scanned;
1544                 if (current_is_kswapd())
1545                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1546                                                nr_scanned);
1547                 else
1548                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1549                                                nr_scanned);
1550         } else {
1551                 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1552                         &nr_scanned, sc->order, reclaim_mode, zone,
1553                         sc->mem_cgroup, 0, file);
1554                 /*
1555                  * mem_cgroup_isolate_pages() keeps track of
1556                  * scanned pages on its own.
1557                  */
1558         }
1559
1560         if (nr_taken == 0) {
1561                 spin_unlock_irq(&zone->lru_lock);
1562                 return 0;
1563         }
1564
1565         update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1566
1567         spin_unlock_irq(&zone->lru_lock);
1568
1569         nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority,
1570                                                 &nr_dirty, &nr_writeback);
1571
1572         /* Check if we should syncronously wait for writeback */
1573         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1574                 set_reclaim_mode(priority, sc, true);
1575                 nr_reclaimed += shrink_page_list(&page_list, zone, sc,
1576                                         priority, &nr_dirty, &nr_writeback);
1577         }
1578
1579         local_irq_disable();
1580         if (current_is_kswapd())
1581                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1582         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1583
1584         putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1585
1586         /*
1587          * If reclaim is isolating dirty pages under writeback, it implies
1588          * that the long-lived page allocation rate is exceeding the page
1589          * laundering rate. Either the global limits are not being effective
1590          * at throttling processes due to the page distribution throughout
1591          * zones or there is heavy usage of a slow backing device. The
1592          * only option is to throttle from reclaim context which is not ideal
1593          * as there is no guarantee the dirtying process is throttled in the
1594          * same way balance_dirty_pages() manages.
1595          *
1596          * This scales the number of dirty pages that must be under writeback
1597          * before throttling depending on priority. It is a simple backoff
1598          * function that has the most effect in the range DEF_PRIORITY to
1599          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1600          * in trouble and reclaim is considered to be in trouble.
1601          *
1602          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1603          * DEF_PRIORITY-1  50% must be PageWriteback
1604          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1605          * ...
1606          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1607          *                     isolated page is PageWriteback
1608          */
1609         if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1610                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1611
1612         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1613                 zone_idx(zone),
1614                 nr_scanned, nr_reclaimed,
1615                 priority,
1616                 trace_shrink_flags(file, sc->reclaim_mode));
1617         return nr_reclaimed;
1618 }
1619
1620 /*
1621  * This moves pages from the active list to the inactive list.
1622  *
1623  * We move them the other way if the page is referenced by one or more
1624  * processes, from rmap.
1625  *
1626  * If the pages are mostly unmapped, the processing is fast and it is
1627  * appropriate to hold zone->lru_lock across the whole operation.  But if
1628  * the pages are mapped, the processing is slow (page_referenced()) so we
1629  * should drop zone->lru_lock around each page.  It's impossible to balance
1630  * this, so instead we remove the pages from the LRU while processing them.
1631  * It is safe to rely on PG_active against the non-LRU pages in here because
1632  * nobody will play with that bit on a non-LRU page.
1633  *
1634  * The downside is that we have to touch page->_count against each page.
1635  * But we had to alter page->flags anyway.
1636  */
1637
1638 static void move_active_pages_to_lru(struct zone *zone,
1639                                      struct list_head *list,
1640                                      enum lru_list lru)
1641 {
1642         unsigned long pgmoved = 0;
1643         struct pagevec pvec;
1644         struct page *page;
1645
1646         pagevec_init(&pvec, 1);
1647
1648         while (!list_empty(list)) {
1649                 page = lru_to_page(list);
1650
1651                 VM_BUG_ON(PageLRU(page));
1652                 SetPageLRU(page);
1653
1654                 list_move(&page->lru, &zone->lru[lru].list);
1655                 mem_cgroup_add_lru_list(page, lru);
1656                 pgmoved += hpage_nr_pages(page);
1657
1658                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1659                         spin_unlock_irq(&zone->lru_lock);
1660                         if (buffer_heads_over_limit)
1661                                 pagevec_strip(&pvec);
1662                         __pagevec_release(&pvec);
1663                         spin_lock_irq(&zone->lru_lock);
1664                 }
1665         }
1666         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1667         if (!is_active_lru(lru))
1668                 __count_vm_events(PGDEACTIVATE, pgmoved);
1669 }
1670
1671 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1672                         struct scan_control *sc, int priority, int file)
1673 {
1674         unsigned long nr_taken;
1675         unsigned long pgscanned;
1676         unsigned long vm_flags;
1677         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1678         LIST_HEAD(l_active);
1679         LIST_HEAD(l_inactive);
1680         struct page *page;
1681         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1682         unsigned long nr_rotated = 0;
1683         isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1684
1685         lru_add_drain();
1686
1687         if (!sc->may_unmap)
1688                 reclaim_mode |= ISOLATE_UNMAPPED;
1689         if (!sc->may_writepage)
1690                 reclaim_mode |= ISOLATE_CLEAN;
1691
1692         spin_lock_irq(&zone->lru_lock);
1693         if (scanning_global_lru(sc)) {
1694                 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1695                                                 &pgscanned, sc->order,
1696                                                 reclaim_mode, zone,
1697                                                 1, file);
1698                 zone->pages_scanned += pgscanned;
1699         } else {
1700                 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1701                                                 &pgscanned, sc->order,
1702                                                 reclaim_mode, zone,
1703                                                 sc->mem_cgroup, 1, file);
1704                 /*
1705                  * mem_cgroup_isolate_pages() keeps track of
1706                  * scanned pages on its own.
1707                  */
1708         }
1709
1710         reclaim_stat->recent_scanned[file] += nr_taken;
1711
1712         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1713         if (file)
1714                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1715         else
1716                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1717         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1718         spin_unlock_irq(&zone->lru_lock);
1719
1720         while (!list_empty(&l_hold)) {
1721                 cond_resched();
1722                 page = lru_to_page(&l_hold);
1723                 list_del(&page->lru);
1724
1725                 if (unlikely(!page_evictable(page, NULL))) {
1726                         putback_lru_page(page);
1727                         continue;
1728                 }
1729
1730                 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1731                         nr_rotated += hpage_nr_pages(page);
1732                         /*
1733                          * Identify referenced, file-backed active pages and
1734                          * give them one more trip around the active list. So
1735                          * that executable code get better chances to stay in
1736                          * memory under moderate memory pressure.  Anon pages
1737                          * are not likely to be evicted by use-once streaming
1738                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1739                          * so we ignore them here.
1740                          */
1741                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1742                                 list_add(&page->lru, &l_active);
1743                                 continue;
1744                         }
1745                 }
1746
1747                 ClearPageActive(page);  /* we are de-activating */
1748                 list_add(&page->lru, &l_inactive);
1749         }
1750
1751         /*
1752          * Move pages back to the lru list.
1753          */
1754         spin_lock_irq(&zone->lru_lock);
1755         /*
1756          * Count referenced pages from currently used mappings as rotated,
1757          * even though only some of them are actually re-activated.  This
1758          * helps balance scan pressure between file and anonymous pages in
1759          * get_scan_ratio.
1760          */
1761         reclaim_stat->recent_rotated[file] += nr_rotated;
1762
1763         move_active_pages_to_lru(zone, &l_active,
1764                                                 LRU_ACTIVE + file * LRU_FILE);
1765         move_active_pages_to_lru(zone, &l_inactive,
1766                                                 LRU_BASE   + file * LRU_FILE);
1767         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1768         spin_unlock_irq(&zone->lru_lock);
1769 }
1770
1771 #ifdef CONFIG_SWAP
1772 static int inactive_anon_is_low_global(struct zone *zone)
1773 {
1774         unsigned long active, inactive;
1775
1776         active = zone_page_state(zone, NR_ACTIVE_ANON);
1777         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1778
1779         if (inactive * zone->inactive_ratio < active)
1780                 return 1;
1781
1782         return 0;
1783 }
1784
1785 /**
1786  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1787  * @zone: zone to check
1788  * @sc:   scan control of this context
1789  *
1790  * Returns true if the zone does not have enough inactive anon pages,
1791  * meaning some active anon pages need to be deactivated.
1792  */
1793 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1794 {
1795         int low;
1796
1797         /*
1798          * If we don't have swap space, anonymous page deactivation
1799          * is pointless.
1800          */
1801         if (!total_swap_pages)
1802                 return 0;
1803
1804         if (scanning_global_lru(sc))
1805                 low = inactive_anon_is_low_global(zone);
1806         else
1807                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup, zone);
1808         return low;
1809 }
1810 #else
1811 static inline int inactive_anon_is_low(struct zone *zone,
1812                                         struct scan_control *sc)
1813 {
1814         return 0;
1815 }
1816 #endif
1817
1818 static int inactive_file_is_low_global(struct zone *zone)
1819 {
1820         unsigned long active, inactive;
1821
1822         active = zone_page_state(zone, NR_ACTIVE_FILE);
1823         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1824
1825         return (active > inactive);
1826 }
1827
1828 /**
1829  * inactive_file_is_low - check if file pages need to be deactivated
1830  * @zone: zone to check
1831  * @sc:   scan control of this context
1832  *
1833  * When the system is doing streaming IO, memory pressure here
1834  * ensures that active file pages get deactivated, until more
1835  * than half of the file pages are on the inactive list.
1836  *
1837  * Once we get to that situation, protect the system's working
1838  * set from being evicted by disabling active file page aging.
1839  *
1840  * This uses a different ratio than the anonymous pages, because
1841  * the page cache uses a use-once replacement algorithm.
1842  */
1843 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1844 {
1845         int low;
1846
1847         if (scanning_global_lru(sc))
1848                 low = inactive_file_is_low_global(zone);
1849         else
1850                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup, zone);
1851         return low;
1852 }
1853
1854 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1855                                 int file)
1856 {
1857         if (file)
1858                 return inactive_file_is_low(zone, sc);
1859         else
1860                 return inactive_anon_is_low(zone, sc);
1861 }
1862
1863 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1864         struct zone *zone, struct scan_control *sc, int priority)
1865 {
1866         int file = is_file_lru(lru);
1867
1868         if (is_active_lru(lru)) {
1869                 if (inactive_list_is_low(zone, sc, file))
1870                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1871                 return 0;
1872         }
1873
1874         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1875 }
1876
1877 static int vmscan_swappiness(struct scan_control *sc)
1878 {
1879         if (scanning_global_lru(sc))
1880                 return vm_swappiness;
1881         return mem_cgroup_swappiness(sc->mem_cgroup);
1882 }
1883
1884 /*
1885  * Determine how aggressively the anon and file LRU lists should be
1886  * scanned.  The relative value of each set of LRU lists is determined
1887  * by looking at the fraction of the pages scanned we did rotate back
1888  * onto the active list instead of evict.
1889  *
1890  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1891  */
1892 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1893                                         unsigned long *nr, int priority)
1894 {
1895         unsigned long anon, file, free;
1896         unsigned long anon_prio, file_prio;
1897         unsigned long ap, fp;
1898         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1899         u64 fraction[2], denominator;
1900         enum lru_list l;
1901         int noswap = 0;
1902         bool force_scan = false;
1903
1904         /*
1905          * If the zone or memcg is small, nr[l] can be 0.  This
1906          * results in no scanning on this priority and a potential
1907          * priority drop.  Global direct reclaim can go to the next
1908          * zone and tends to have no problems. Global kswapd is for
1909          * zone balancing and it needs to scan a minimum amount. When
1910          * reclaiming for a memcg, a priority drop can cause high
1911          * latencies, so it's better to scan a minimum amount there as
1912          * well.
1913          */
1914         if (scanning_global_lru(sc) && current_is_kswapd())
1915                 force_scan = true;
1916         if (!scanning_global_lru(sc))
1917                 force_scan = true;
1918
1919         /* If we have no swap space, do not bother scanning anon pages. */
1920         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1921                 noswap = 1;
1922                 fraction[0] = 0;
1923                 fraction[1] = 1;
1924                 denominator = 1;
1925                 goto out;
1926         }
1927
1928         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1929                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1930         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1931                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1932
1933         if (scanning_global_lru(sc)) {
1934                 free  = zone_page_state(zone, NR_FREE_PAGES);
1935                 /* If we have very few page cache pages,
1936                    force-scan anon pages. */
1937                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1938                         fraction[0] = 1;
1939                         fraction[1] = 0;
1940                         denominator = 1;
1941                         goto out;
1942                 }
1943         }
1944
1945         /*
1946          * With swappiness at 100, anonymous and file have the same priority.
1947          * This scanning priority is essentially the inverse of IO cost.
1948          */
1949         anon_prio = vmscan_swappiness(sc);
1950         file_prio = 200 - vmscan_swappiness(sc);
1951
1952         /*
1953          * OK, so we have swap space and a fair amount of page cache
1954          * pages.  We use the recently rotated / recently scanned
1955          * ratios to determine how valuable each cache is.
1956          *
1957          * Because workloads change over time (and to avoid overflow)
1958          * we keep these statistics as a floating average, which ends
1959          * up weighing recent references more than old ones.
1960          *
1961          * anon in [0], file in [1]
1962          */
1963         spin_lock_irq(&zone->lru_lock);
1964         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1965                 reclaim_stat->recent_scanned[0] /= 2;
1966                 reclaim_stat->recent_rotated[0] /= 2;
1967         }
1968
1969         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1970                 reclaim_stat->recent_scanned[1] /= 2;
1971                 reclaim_stat->recent_rotated[1] /= 2;
1972         }
1973
1974         /*
1975          * The amount of pressure on anon vs file pages is inversely
1976          * proportional to the fraction of recently scanned pages on
1977          * each list that were recently referenced and in active use.
1978          */
1979         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1980         ap /= reclaim_stat->recent_rotated[0] + 1;
1981
1982         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1983         fp /= reclaim_stat->recent_rotated[1] + 1;
1984         spin_unlock_irq(&zone->lru_lock);
1985
1986         fraction[0] = ap;
1987         fraction[1] = fp;
1988         denominator = ap + fp + 1;
1989 out:
1990         for_each_evictable_lru(l) {
1991                 int file = is_file_lru(l);
1992                 unsigned long scan;
1993
1994                 scan = zone_nr_lru_pages(zone, sc, l);
1995                 if (priority || noswap) {
1996                         scan >>= priority;
1997                         if (!scan && force_scan)
1998                                 scan = SWAP_CLUSTER_MAX;
1999                         scan = div64_u64(scan * fraction[file], denominator);
2000                 }
2001                 nr[l] = scan;
2002         }
2003 }
2004
2005 /*
2006  * Reclaim/compaction depends on a number of pages being freed. To avoid
2007  * disruption to the system, a small number of order-0 pages continue to be
2008  * rotated and reclaimed in the normal fashion. However, by the time we get
2009  * back to the allocator and call try_to_compact_zone(), we ensure that
2010  * there are enough free pages for it to be likely successful
2011  */
2012 static inline bool should_continue_reclaim(struct zone *zone,
2013                                         unsigned long nr_reclaimed,
2014                                         unsigned long nr_scanned,
2015                                         struct scan_control *sc)
2016 {
2017         unsigned long pages_for_compaction;
2018         unsigned long inactive_lru_pages;
2019
2020         /* If not in reclaim/compaction mode, stop */
2021         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
2022                 return false;
2023
2024         /* Consider stopping depending on scan and reclaim activity */
2025         if (sc->gfp_mask & __GFP_REPEAT) {
2026                 /*
2027                  * For __GFP_REPEAT allocations, stop reclaiming if the
2028                  * full LRU list has been scanned and we are still failing
2029                  * to reclaim pages. This full LRU scan is potentially
2030                  * expensive but a __GFP_REPEAT caller really wants to succeed
2031                  */
2032                 if (!nr_reclaimed && !nr_scanned)
2033                         return false;
2034         } else {
2035                 /*
2036                  * For non-__GFP_REPEAT allocations which can presumably
2037                  * fail without consequence, stop if we failed to reclaim
2038                  * any pages from the last SWAP_CLUSTER_MAX number of
2039                  * pages that were scanned. This will return to the
2040                  * caller faster at the risk reclaim/compaction and
2041                  * the resulting allocation attempt fails
2042                  */
2043                 if (!nr_reclaimed)
2044                         return false;
2045         }
2046
2047         /*
2048          * If we have not reclaimed enough pages for compaction and the
2049          * inactive lists are large enough, continue reclaiming
2050          */
2051         pages_for_compaction = (2UL << sc->order);
2052         inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
2053         if (nr_swap_pages > 0)
2054                 inactive_lru_pages += zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
2055         if (sc->nr_reclaimed < pages_for_compaction &&
2056                         inactive_lru_pages > pages_for_compaction)
2057                 return true;
2058
2059         /* If compaction would go ahead or the allocation would succeed, stop */
2060         switch (compaction_suitable(zone, sc->order)) {
2061         case COMPACT_PARTIAL:
2062         case COMPACT_CONTINUE:
2063                 return false;
2064         default:
2065                 return true;
2066         }
2067 }
2068
2069 /*
2070  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2071  */
2072 static void shrink_zone(int priority, struct zone *zone,
2073                                 struct scan_control *sc)
2074 {
2075         unsigned long nr[NR_LRU_LISTS];
2076         unsigned long nr_to_scan;
2077         enum lru_list l;
2078         unsigned long nr_reclaimed, nr_scanned;
2079         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2080         struct blk_plug plug;
2081
2082 restart:
2083         nr_reclaimed = 0;
2084         nr_scanned = sc->nr_scanned;
2085         get_scan_count(zone, sc, nr, priority);
2086
2087         blk_start_plug(&plug);
2088         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2089                                         nr[LRU_INACTIVE_FILE]) {
2090                 for_each_evictable_lru(l) {
2091                         if (nr[l]) {
2092                                 nr_to_scan = min_t(unsigned long,
2093                                                    nr[l], SWAP_CLUSTER_MAX);
2094                                 nr[l] -= nr_to_scan;
2095
2096                                 nr_reclaimed += shrink_list(l, nr_to_scan,
2097                                                             zone, sc, priority);
2098                         }
2099                 }
2100                 /*
2101                  * On large memory systems, scan >> priority can become
2102                  * really large. This is fine for the starting priority;
2103                  * we want to put equal scanning pressure on each zone.
2104                  * However, if the VM has a harder time of freeing pages,
2105                  * with multiple processes reclaiming pages, the total
2106                  * freeing target can get unreasonably large.
2107                  */
2108                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2109                         break;
2110         }
2111         blk_finish_plug(&plug);
2112         sc->nr_reclaimed += nr_reclaimed;
2113
2114         /*
2115          * Even if we did not try to evict anon pages at all, we want to
2116          * rebalance the anon lru active/inactive ratio.
2117          */
2118         if (inactive_anon_is_low(zone, sc))
2119                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2120
2121         /* reclaim/compaction might need reclaim to continue */
2122         if (should_continue_reclaim(zone, nr_reclaimed,
2123                                         sc->nr_scanned - nr_scanned, sc))
2124                 goto restart;
2125
2126         throttle_vm_writeout(sc->gfp_mask);
2127 }
2128
2129 /* Returns true if compaction should go ahead for a high-order request */
2130 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2131 {
2132         unsigned long balance_gap, watermark;
2133         bool watermark_ok;
2134
2135         /* Do not consider compaction for orders reclaim is meant to satisfy */
2136         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2137                 return false;
2138
2139         /*
2140          * Compaction takes time to run and there are potentially other
2141          * callers using the pages just freed. Continue reclaiming until
2142          * there is a buffer of free pages available to give compaction
2143          * a reasonable chance of completing and allocating the page
2144          */
2145         balance_gap = min(low_wmark_pages(zone),
2146                 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2147                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2148         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2149         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2150
2151         /*
2152          * If compaction is deferred, reclaim up to a point where
2153          * compaction will have a chance of success when re-enabled
2154          */
2155         if (compaction_deferred(zone))
2156                 return watermark_ok;
2157
2158         /* If compaction is not ready to start, keep reclaiming */
2159         if (!compaction_suitable(zone, sc->order))
2160                 return false;
2161
2162         return watermark_ok;
2163 }
2164
2165 /*
2166  * This is the direct reclaim path, for page-allocating processes.  We only
2167  * try to reclaim pages from zones which will satisfy the caller's allocation
2168  * request.
2169  *
2170  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2171  * Because:
2172  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2173  *    allocation or
2174  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2175  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2176  *    zone defense algorithm.
2177  *
2178  * If a zone is deemed to be full of pinned pages then just give it a light
2179  * scan then give up on it.
2180  *
2181  * This function returns true if a zone is being reclaimed for a costly
2182  * high-order allocation and compaction is ready to begin. This indicates to
2183  * the caller that it should consider retrying the allocation instead of
2184  * further reclaim.
2185  */
2186 static bool shrink_zones(int priority, struct zonelist *zonelist,
2187                                         struct scan_control *sc)
2188 {
2189         struct zoneref *z;
2190         struct zone *zone;
2191         unsigned long nr_soft_reclaimed;
2192         unsigned long nr_soft_scanned;
2193         bool aborted_reclaim = false;
2194
2195         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2196                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2197                 if (!populated_zone(zone))
2198                         continue;
2199                 /*
2200                  * Take care memory controller reclaiming has small influence
2201                  * to global LRU.
2202                  */
2203                 if (scanning_global_lru(sc)) {
2204                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2205                                 continue;
2206                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2207                                 continue;       /* Let kswapd poll it */
2208                         if (COMPACTION_BUILD) {
2209                                 /*
2210                                  * If we already have plenty of memory free for
2211                                  * compaction in this zone, don't free any more.
2212                                  * Even though compaction is invoked for any
2213                                  * non-zero order, only frequent costly order
2214                                  * reclamation is disruptive enough to become a
2215                                  * noticable problem, like transparent huge page
2216                                  * allocations.
2217                                  */
2218                                 if (compaction_ready(zone, sc)) {
2219                                         aborted_reclaim = true;
2220                                         continue;
2221                                 }
2222                         }
2223                         /*
2224                          * This steals pages from memory cgroups over softlimit
2225                          * and returns the number of reclaimed pages and
2226                          * scanned pages. This works for global memory pressure
2227                          * and balancing, not for a memcg's limit.
2228                          */
2229                         nr_soft_scanned = 0;
2230                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2231                                                 sc->order, sc->gfp_mask,
2232                                                 &nr_soft_scanned);
2233                         sc->nr_reclaimed += nr_soft_reclaimed;
2234                         sc->nr_scanned += nr_soft_scanned;
2235                         /* need some check for avoid more shrink_zone() */
2236                 }
2237
2238                 shrink_zone(priority, zone, sc);
2239         }
2240
2241         return aborted_reclaim;
2242 }
2243
2244 static bool zone_reclaimable(struct zone *zone)
2245 {
2246         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2247 }
2248
2249 /* All zones in zonelist are unreclaimable? */
2250 static bool all_unreclaimable(struct zonelist *zonelist,
2251                 struct scan_control *sc)
2252 {
2253         struct zoneref *z;
2254         struct zone *zone;
2255
2256         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2257                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2258                 if (!populated_zone(zone))
2259                         continue;
2260                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2261                         continue;
2262                 if (!zone->all_unreclaimable)
2263                         return false;
2264         }
2265
2266         return true;
2267 }
2268
2269 /*
2270  * This is the main entry point to direct page reclaim.
2271  *
2272  * If a full scan of the inactive list fails to free enough memory then we
2273  * are "out of memory" and something needs to be killed.
2274  *
2275  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2276  * high - the zone may be full of dirty or under-writeback pages, which this
2277  * caller can't do much about.  We kick the writeback threads and take explicit
2278  * naps in the hope that some of these pages can be written.  But if the
2279  * allocating task holds filesystem locks which prevent writeout this might not
2280  * work, and the allocation attempt will fail.
2281  *
2282  * returns:     0, if no pages reclaimed
2283  *              else, the number of pages reclaimed
2284  */
2285 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2286                                         struct scan_control *sc,
2287                                         struct shrink_control *shrink)
2288 {
2289         int priority;
2290         unsigned long total_scanned = 0;
2291         struct reclaim_state *reclaim_state = current->reclaim_state;
2292         struct zoneref *z;
2293         struct zone *zone;
2294         unsigned long writeback_threshold;
2295         bool aborted_reclaim;
2296
2297         get_mems_allowed();
2298         delayacct_freepages_start();
2299
2300         if (scanning_global_lru(sc))
2301                 count_vm_event(ALLOCSTALL);
2302
2303         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2304                 sc->nr_scanned = 0;
2305                 if (!priority)
2306                         disable_swap_token(sc->mem_cgroup);
2307                 aborted_reclaim = shrink_zones(priority, zonelist, sc);
2308
2309                 /*
2310                  * Don't shrink slabs when reclaiming memory from
2311                  * over limit cgroups
2312                  */
2313                 if (scanning_global_lru(sc)) {
2314                         unsigned long lru_pages = 0;
2315                         for_each_zone_zonelist(zone, z, zonelist,
2316                                         gfp_zone(sc->gfp_mask)) {
2317                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2318                                         continue;
2319
2320                                 lru_pages += zone_reclaimable_pages(zone);
2321                         }
2322
2323                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2324                         if (reclaim_state) {
2325                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2326                                 reclaim_state->reclaimed_slab = 0;
2327                         }
2328                 }
2329                 total_scanned += sc->nr_scanned;
2330                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2331                         goto out;
2332
2333                 /*
2334                  * Try to write back as many pages as we just scanned.  This
2335                  * tends to cause slow streaming writers to write data to the
2336                  * disk smoothly, at the dirtying rate, which is nice.   But
2337                  * that's undesirable in laptop mode, where we *want* lumpy
2338                  * writeout.  So in laptop mode, write out the whole world.
2339                  */
2340                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2341                 if (total_scanned > writeback_threshold) {
2342                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2343                                                 WB_REASON_TRY_TO_FREE_PAGES);
2344                         sc->may_writepage = 1;
2345                 }
2346
2347                 /* Take a nap, wait for some writeback to complete */
2348                 if (!sc->hibernation_mode && sc->nr_scanned &&
2349                     priority < DEF_PRIORITY - 2) {
2350                         struct zone *preferred_zone;
2351
2352                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2353                                                 &cpuset_current_mems_allowed,
2354                                                 &preferred_zone);
2355                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2356                 }
2357         }
2358
2359 out:
2360         delayacct_freepages_end();
2361         put_mems_allowed();
2362
2363         if (sc->nr_reclaimed)
2364                 return sc->nr_reclaimed;
2365
2366         /*
2367          * As hibernation is going on, kswapd is freezed so that it can't mark
2368          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2369          * check.
2370          */
2371         if (oom_killer_disabled)
2372                 return 0;
2373
2374         /* Aborted reclaim to try compaction? don't OOM, then */
2375         if (aborted_reclaim)
2376                 return 1;
2377
2378         /* top priority shrink_zones still had more to do? don't OOM, then */
2379         if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2380                 return 1;
2381
2382         return 0;
2383 }
2384
2385 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2386                                 gfp_t gfp_mask, nodemask_t *nodemask)
2387 {
2388         unsigned long nr_reclaimed;
2389         struct scan_control sc = {
2390                 .gfp_mask = gfp_mask,
2391                 .may_writepage = !laptop_mode,
2392                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2393                 .may_unmap = 1,
2394                 .may_swap = 1,
2395                 .order = order,
2396                 .mem_cgroup = NULL,
2397                 .nodemask = nodemask,
2398         };
2399         struct shrink_control shrink = {
2400                 .gfp_mask = sc.gfp_mask,
2401         };
2402
2403         trace_mm_vmscan_direct_reclaim_begin(order,
2404                                 sc.may_writepage,
2405                                 gfp_mask);
2406
2407         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2408
2409         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2410
2411         return nr_reclaimed;
2412 }
2413
2414 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2415
2416 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2417                                                 gfp_t gfp_mask, bool noswap,
2418                                                 struct zone *zone,
2419                                                 unsigned long *nr_scanned)
2420 {
2421         struct scan_control sc = {
2422                 .nr_scanned = 0,
2423                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2424                 .may_writepage = !laptop_mode,
2425                 .may_unmap = 1,
2426                 .may_swap = !noswap,
2427                 .order = 0,
2428                 .mem_cgroup = mem,
2429         };
2430
2431         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2432                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2433
2434         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2435                                                       sc.may_writepage,
2436                                                       sc.gfp_mask);
2437
2438         /*
2439          * NOTE: Although we can get the priority field, using it
2440          * here is not a good idea, since it limits the pages we can scan.
2441          * if we don't reclaim here, the shrink_zone from balance_pgdat
2442          * will pick up pages from other mem cgroup's as well. We hack
2443          * the priority and make it zero.
2444          */
2445         shrink_zone(0, zone, &sc);
2446
2447         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2448
2449         *nr_scanned = sc.nr_scanned;
2450         return sc.nr_reclaimed;
2451 }
2452
2453 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2454                                            gfp_t gfp_mask,
2455                                            bool noswap)
2456 {
2457         struct zonelist *zonelist;
2458         unsigned long nr_reclaimed;
2459         int nid;
2460         struct scan_control sc = {
2461                 .may_writepage = !laptop_mode,
2462                 .may_unmap = 1,
2463                 .may_swap = !noswap,
2464                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2465                 .order = 0,
2466                 .mem_cgroup = mem_cont,
2467                 .nodemask = NULL, /* we don't care the placement */
2468                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2469                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2470         };
2471         struct shrink_control shrink = {
2472                 .gfp_mask = sc.gfp_mask,
2473         };
2474
2475         /*
2476          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2477          * take care of from where we get pages. So the node where we start the
2478          * scan does not need to be the current node.
2479          */
2480         nid = mem_cgroup_select_victim_node(mem_cont);
2481
2482         zonelist = NODE_DATA(nid)->node_zonelists;
2483
2484         trace_mm_vmscan_memcg_reclaim_begin(0,
2485                                             sc.may_writepage,
2486                                             sc.gfp_mask);
2487
2488         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2489
2490         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2491
2492         return nr_reclaimed;
2493 }
2494 #endif
2495
2496 /*
2497  * pgdat_balanced is used when checking if a node is balanced for high-order
2498  * allocations. Only zones that meet watermarks and are in a zone allowed
2499  * by the callers classzone_idx are added to balanced_pages. The total of
2500  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2501  * for the node to be considered balanced. Forcing all zones to be balanced
2502  * for high orders can cause excessive reclaim when there are imbalanced zones.
2503  * The choice of 25% is due to
2504  *   o a 16M DMA zone that is balanced will not balance a zone on any
2505  *     reasonable sized machine
2506  *   o On all other machines, the top zone must be at least a reasonable
2507  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2508  *     would need to be at least 256M for it to be balance a whole node.
2509  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2510  *     to balance a node on its own. These seemed like reasonable ratios.
2511  */
2512 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2513                                                 int classzone_idx)
2514 {
2515         unsigned long present_pages = 0;
2516         int i;
2517
2518         for (i = 0; i <= classzone_idx; i++)
2519                 present_pages += pgdat->node_zones[i].present_pages;
2520
2521         /* A special case here: if zone has no page, we think it's balanced */
2522         return balanced_pages >= (present_pages >> 2);
2523 }
2524
2525 /* is kswapd sleeping prematurely? */
2526 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2527                                         int classzone_idx)
2528 {
2529         int i;
2530         unsigned long balanced = 0;
2531         bool all_zones_ok = true;
2532
2533         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2534         if (remaining)
2535                 return true;
2536
2537         /* Check the watermark levels */
2538         for (i = 0; i <= classzone_idx; i++) {
2539                 struct zone *zone = pgdat->node_zones + i;
2540
2541                 if (!populated_zone(zone))
2542                         continue;
2543
2544                 /*
2545                  * balance_pgdat() skips over all_unreclaimable after
2546                  * DEF_PRIORITY. Effectively, it considers them balanced so
2547                  * they must be considered balanced here as well if kswapd
2548                  * is to sleep
2549                  */
2550                 if (zone->all_unreclaimable) {
2551                         balanced += zone->present_pages;
2552                         continue;
2553                 }
2554
2555                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2556                                                         i, 0))
2557                         all_zones_ok = false;
2558                 else
2559                         balanced += zone->present_pages;
2560         }
2561
2562         /*
2563          * For high-order requests, the balanced zones must contain at least
2564          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2565          * must be balanced
2566          */
2567         if (order)
2568                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2569         else
2570                 return !all_zones_ok;
2571 }
2572
2573 /*
2574  * For kswapd, balance_pgdat() will work across all this node's zones until
2575  * they are all at high_wmark_pages(zone).
2576  *
2577  * Returns the final order kswapd was reclaiming at
2578  *
2579  * There is special handling here for zones which are full of pinned pages.
2580  * This can happen if the pages are all mlocked, or if they are all used by
2581  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2582  * What we do is to detect the case where all pages in the zone have been
2583  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2584  * dead and from now on, only perform a short scan.  Basically we're polling
2585  * the zone for when the problem goes away.
2586  *
2587  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2588  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2589  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2590  * lower zones regardless of the number of free pages in the lower zones. This
2591  * interoperates with the page allocator fallback scheme to ensure that aging
2592  * of pages is balanced across the zones.
2593  */
2594 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2595                                                         int *classzone_idx)
2596 {
2597         int all_zones_ok;
2598         unsigned long balanced;
2599         int priority;
2600         int i;
2601         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2602         unsigned long total_scanned;
2603         struct reclaim_state *reclaim_state = current->reclaim_state;
2604         unsigned long nr_soft_reclaimed;
2605         unsigned long nr_soft_scanned;
2606         struct scan_control sc = {
2607                 .gfp_mask = GFP_KERNEL,
2608                 .may_unmap = 1,
2609                 .may_swap = 1,
2610                 /*
2611                  * kswapd doesn't want to be bailed out while reclaim. because
2612                  * we want to put equal scanning pressure on each zone.
2613                  */
2614                 .nr_to_reclaim = ULONG_MAX,
2615                 .order = order,
2616                 .mem_cgroup = NULL,
2617         };
2618         struct shrink_control shrink = {
2619                 .gfp_mask = sc.gfp_mask,
2620         };
2621 loop_again:
2622         total_scanned = 0;
2623         sc.nr_reclaimed = 0;
2624         sc.may_writepage = !laptop_mode;
2625         count_vm_event(PAGEOUTRUN);
2626
2627         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2628                 unsigned long lru_pages = 0;
2629                 int has_under_min_watermark_zone = 0;
2630
2631                 /* The swap token gets in the way of swapout... */
2632                 if (!priority)
2633                         disable_swap_token(NULL);
2634
2635                 all_zones_ok = 1;
2636                 balanced = 0;
2637
2638                 /*
2639                  * Scan in the highmem->dma direction for the highest
2640                  * zone which needs scanning
2641                  */
2642                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2643                         struct zone *zone = pgdat->node_zones + i;
2644
2645                         if (!populated_zone(zone))
2646                                 continue;
2647
2648                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2649                                 continue;
2650
2651                         /*
2652                          * Do some background aging of the anon list, to give
2653                          * pages a chance to be referenced before reclaiming.
2654                          */
2655                         if (inactive_anon_is_low(zone, &sc))
2656                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2657                                                         &sc, priority, 0);
2658
2659                         if (!zone_watermark_ok_safe(zone, order,
2660                                         high_wmark_pages(zone), 0, 0)) {
2661                                 end_zone = i;
2662                                 break;
2663                         } else {
2664                                 /* If balanced, clear the congested flag */
2665                                 zone_clear_flag(zone, ZONE_CONGESTED);
2666                         }
2667                 }
2668                 if (i < 0)
2669                         goto out;
2670
2671                 for (i = 0; i <= end_zone; i++) {
2672                         struct zone *zone = pgdat->node_zones + i;
2673
2674                         lru_pages += zone_reclaimable_pages(zone);
2675                 }
2676
2677                 /*
2678                  * Now scan the zone in the dma->highmem direction, stopping
2679                  * at the last zone which needs scanning.
2680                  *
2681                  * We do this because the page allocator works in the opposite
2682                  * direction.  This prevents the page allocator from allocating
2683                  * pages behind kswapd's direction of progress, which would
2684                  * cause too much scanning of the lower zones.
2685                  */
2686                 for (i = 0; i <= end_zone; i++) {
2687                         struct zone *zone = pgdat->node_zones + i;
2688                         int nr_slab;
2689                         unsigned long balance_gap;
2690
2691                         if (!populated_zone(zone))
2692                                 continue;
2693
2694                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2695                                 continue;
2696
2697                         sc.nr_scanned = 0;
2698
2699                         nr_soft_scanned = 0;
2700                         /*
2701                          * Call soft limit reclaim before calling shrink_zone.
2702                          */
2703                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2704                                                         order, sc.gfp_mask,
2705                                                         &nr_soft_scanned);
2706                         sc.nr_reclaimed += nr_soft_reclaimed;
2707                         total_scanned += nr_soft_scanned;
2708
2709                         /*
2710                          * We put equal pressure on every zone, unless
2711                          * one zone has way too many pages free
2712                          * already. The "too many pages" is defined
2713                          * as the high wmark plus a "gap" where the
2714                          * gap is either the low watermark or 1%
2715                          * of the zone, whichever is smaller.
2716                          */
2717                         balance_gap = min(low_wmark_pages(zone),
2718                                 (zone->present_pages +
2719                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2720                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2721                         if (!zone_watermark_ok_safe(zone, order,
2722                                         high_wmark_pages(zone) + balance_gap,
2723                                         end_zone, 0)) {
2724                                 shrink_zone(priority, zone, &sc);
2725
2726                                 reclaim_state->reclaimed_slab = 0;
2727                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2728                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2729                                 total_scanned += sc.nr_scanned;
2730
2731                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2732                                         zone->all_unreclaimable = 1;
2733                         }
2734
2735                         /*
2736                          * If we've done a decent amount of scanning and
2737                          * the reclaim ratio is low, start doing writepage
2738                          * even in laptop mode
2739                          */
2740                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2741                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2742                                 sc.may_writepage = 1;
2743
2744                         if (zone->all_unreclaimable) {
2745                                 if (end_zone && end_zone == i)
2746                                         end_zone--;
2747                                 continue;
2748                         }
2749
2750                         if (!zone_watermark_ok_safe(zone, order,
2751                                         high_wmark_pages(zone), end_zone, 0)) {
2752                                 all_zones_ok = 0;
2753                                 /*
2754                                  * We are still under min water mark.  This
2755                                  * means that we have a GFP_ATOMIC allocation
2756                                  * failure risk. Hurry up!
2757                                  */
2758                                 if (!zone_watermark_ok_safe(zone, order,
2759                                             min_wmark_pages(zone), end_zone, 0))
2760                                         has_under_min_watermark_zone = 1;
2761                         } else {
2762                                 /*
2763                                  * If a zone reaches its high watermark,
2764                                  * consider it to be no longer congested. It's
2765                                  * possible there are dirty pages backed by
2766                                  * congested BDIs but as pressure is relieved,
2767                                  * spectulatively avoid congestion waits
2768                                  */
2769                                 zone_clear_flag(zone, ZONE_CONGESTED);
2770                                 if (i <= *classzone_idx)
2771                                         balanced += zone->present_pages;
2772                         }
2773
2774                 }
2775                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2776                         break;          /* kswapd: all done */
2777                 /*
2778                  * OK, kswapd is getting into trouble.  Take a nap, then take
2779                  * another pass across the zones.
2780                  */
2781                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2782                         if (has_under_min_watermark_zone)
2783                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2784                         else
2785                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2786                 }
2787
2788                 /*
2789                  * We do this so kswapd doesn't build up large priorities for
2790                  * example when it is freeing in parallel with allocators. It
2791                  * matches the direct reclaim path behaviour in terms of impact
2792                  * on zone->*_priority.
2793                  */
2794                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2795                         break;
2796         }
2797 out:
2798
2799         /*
2800          * order-0: All zones must meet high watermark for a balanced node
2801          * high-order: Balanced zones must make up at least 25% of the node
2802          *             for the node to be balanced
2803          */
2804         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2805                 cond_resched();
2806
2807                 try_to_freeze();
2808
2809                 /*
2810                  * Fragmentation may mean that the system cannot be
2811                  * rebalanced for high-order allocations in all zones.
2812                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2813                  * it means the zones have been fully scanned and are still
2814                  * not balanced. For high-order allocations, there is
2815                  * little point trying all over again as kswapd may
2816                  * infinite loop.
2817                  *
2818                  * Instead, recheck all watermarks at order-0 as they
2819                  * are the most important. If watermarks are ok, kswapd will go
2820                  * back to sleep. High-order users can still perform direct
2821                  * reclaim if they wish.
2822                  */
2823                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2824                         order = sc.order = 0;
2825
2826                 goto loop_again;
2827         }
2828
2829         /*
2830          * If kswapd was reclaiming at a higher order, it has the option of
2831          * sleeping without all zones being balanced. Before it does, it must
2832          * ensure that the watermarks for order-0 on *all* zones are met and
2833          * that the congestion flags are cleared. The congestion flag must
2834          * be cleared as kswapd is the only mechanism that clears the flag
2835          * and it is potentially going to sleep here.
2836          */
2837         if (order) {
2838                 for (i = 0; i <= end_zone; i++) {
2839                         struct zone *zone = pgdat->node_zones + i;
2840
2841                         if (!populated_zone(zone))
2842                                 continue;
2843
2844                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2845                                 continue;
2846
2847                         /* Confirm the zone is balanced for order-0 */
2848                         if (!zone_watermark_ok(zone, 0,
2849                                         high_wmark_pages(zone), 0, 0)) {
2850                                 order = sc.order = 0;
2851                                 goto loop_again;
2852                         }
2853
2854                         /* If balanced, clear the congested flag */
2855                         zone_clear_flag(zone, ZONE_CONGESTED);
2856                         if (i <= *classzone_idx)
2857                                 balanced += zone->present_pages;
2858                 }
2859         }
2860
2861         /*
2862          * Return the order we were reclaiming at so sleeping_prematurely()
2863          * makes a decision on the order we were last reclaiming at. However,
2864          * if another caller entered the allocator slow path while kswapd
2865          * was awake, order will remain at the higher level
2866          */
2867         *classzone_idx = end_zone;
2868         return order;
2869 }
2870
2871 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2872 {
2873         long remaining = 0;
2874         DEFINE_WAIT(wait);
2875
2876         if (freezing(current) || kthread_should_stop())
2877                 return;
2878
2879         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2880
2881         /* Try to sleep for a short interval */
2882         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2883                 remaining = schedule_timeout(HZ/10);
2884                 finish_wait(&pgdat->kswapd_wait, &wait);
2885                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2886         }
2887
2888         /*
2889          * After a short sleep, check if it was a premature sleep. If not, then
2890          * go fully to sleep until explicitly woken up.
2891          */
2892         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2893                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2894
2895                 /*
2896                  * vmstat counters are not perfectly accurate and the estimated
2897                  * value for counters such as NR_FREE_PAGES can deviate from the
2898                  * true value by nr_online_cpus * threshold. To avoid the zone
2899                  * watermarks being breached while under pressure, we reduce the
2900                  * per-cpu vmstat threshold while kswapd is awake and restore
2901                  * them before going back to sleep.
2902                  */
2903                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2904
2905                 if (!kthread_should_stop())
2906                         schedule();
2907
2908                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2909         } else {
2910                 if (remaining)
2911                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2912                 else
2913                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2914         }
2915         finish_wait(&pgdat->kswapd_wait, &wait);
2916 }
2917
2918 /*
2919  * The background pageout daemon, started as a kernel thread
2920  * from the init process.
2921  *
2922  * This basically trickles out pages so that we have _some_
2923  * free memory available even if there is no other activity
2924  * that frees anything up. This is needed for things like routing
2925  * etc, where we otherwise might have all activity going on in
2926  * asynchronous contexts that cannot page things out.
2927  *
2928  * If there are applications that are active memory-allocators
2929  * (most normal use), this basically shouldn't matter.
2930  */
2931 static int kswapd(void *p)
2932 {
2933         unsigned long order, new_order;
2934         unsigned balanced_order;
2935         int classzone_idx, new_classzone_idx;
2936         int balanced_classzone_idx;
2937         pg_data_t *pgdat = (pg_data_t*)p;
2938         struct task_struct *tsk = current;
2939
2940         struct reclaim_state reclaim_state = {
2941                 .reclaimed_slab = 0,
2942         };
2943         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2944
2945         lockdep_set_current_reclaim_state(GFP_KERNEL);
2946
2947         if (!cpumask_empty(cpumask))
2948                 set_cpus_allowed_ptr(tsk, cpumask);
2949         current->reclaim_state = &reclaim_state;
2950
2951         /*
2952          * Tell the memory management that we're a "memory allocator",
2953          * and that if we need more memory we should get access to it
2954          * regardless (see "__alloc_pages()"). "kswapd" should
2955          * never get caught in the normal page freeing logic.
2956          *
2957          * (Kswapd normally doesn't need memory anyway, but sometimes
2958          * you need a small amount of memory in order to be able to
2959          * page out something else, and this flag essentially protects
2960          * us from recursively trying to free more memory as we're
2961          * trying to free the first piece of memory in the first place).
2962          */
2963         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2964         set_freezable();
2965
2966         order = new_order = 0;
2967         balanced_order = 0;
2968         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2969         balanced_classzone_idx = classzone_idx;
2970         for ( ; ; ) {
2971                 int ret;
2972
2973                 /*
2974                  * If the last balance_pgdat was unsuccessful it's unlikely a
2975                  * new request of a similar or harder type will succeed soon
2976                  * so consider going to sleep on the basis we reclaimed at
2977                  */
2978                 if (balanced_classzone_idx >= new_classzone_idx &&
2979                                         balanced_order == new_order) {
2980                         new_order = pgdat->kswapd_max_order;
2981                         new_classzone_idx = pgdat->classzone_idx;
2982                         pgdat->kswapd_max_order =  0;
2983                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2984                 }
2985
2986                 if (order < new_order || classzone_idx > new_classzone_idx) {
2987                         /*
2988                          * Don't sleep if someone wants a larger 'order'
2989                          * allocation or has tigher zone constraints
2990                          */
2991                         order = new_order;
2992                         classzone_idx = new_classzone_idx;
2993                 } else {
2994                         kswapd_try_to_sleep(pgdat, balanced_order,
2995                                                 balanced_classzone_idx);
2996                         order = pgdat->kswapd_max_order;
2997                         classzone_idx = pgdat->classzone_idx;
2998                         new_order = order;
2999                         new_classzone_idx = classzone_idx;
3000                         pgdat->kswapd_max_order = 0;
3001                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3002                 }
3003
3004                 ret = try_to_freeze();
3005                 if (kthread_should_stop())
3006                         break;
3007
3008                 /*
3009                  * We can speed up thawing tasks if we don't call balance_pgdat
3010                  * after returning from the refrigerator
3011                  */
3012                 if (!ret) {
3013                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3014                         balanced_classzone_idx = classzone_idx;
3015                         balanced_order = balance_pgdat(pgdat, order,
3016                                                 &balanced_classzone_idx);
3017                 }
3018         }
3019         return 0;
3020 }
3021
3022 /*
3023  * A zone is low on free memory, so wake its kswapd task to service it.
3024  */
3025 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3026 {
3027         pg_data_t *pgdat;
3028
3029         if (!populated_zone(zone))
3030                 return;
3031
3032         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3033                 return;
3034         pgdat = zone->zone_pgdat;
3035         if (pgdat->kswapd_max_order < order) {
3036                 pgdat->kswapd_max_order = order;
3037                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3038         }
3039         if (!waitqueue_active(&pgdat->kswapd_wait))
3040                 return;
3041         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3042                 return;
3043
3044         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3045         wake_up_interruptible(&pgdat->kswapd_wait);
3046 }
3047
3048 /*
3049  * The reclaimable count would be mostly accurate.
3050  * The less reclaimable pages may be
3051  * - mlocked pages, which will be moved to unevictable list when encountered
3052  * - mapped pages, which may require several travels to be reclaimed
3053  * - dirty pages, which is not "instantly" reclaimable
3054  */
3055 unsigned long global_reclaimable_pages(void)
3056 {
3057         int nr;
3058
3059         nr = global_page_state(NR_ACTIVE_FILE) +
3060              global_page_state(NR_INACTIVE_FILE);
3061
3062         if (nr_swap_pages > 0)
3063                 nr += global_page_state(NR_ACTIVE_ANON) +
3064                       global_page_state(NR_INACTIVE_ANON);
3065
3066         return nr;
3067 }
3068
3069 unsigned long zone_reclaimable_pages(struct zone *zone)
3070 {
3071         int nr;
3072
3073         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3074              zone_page_state(zone, NR_INACTIVE_FILE);
3075
3076         if (nr_swap_pages > 0)
3077                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3078                       zone_page_state(zone, NR_INACTIVE_ANON);
3079
3080         return nr;
3081 }
3082
3083 #ifdef CONFIG_HIBERNATION
3084 /*
3085  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3086  * freed pages.
3087  *
3088  * Rather than trying to age LRUs the aim is to preserve the overall
3089  * LRU order by reclaiming preferentially
3090  * inactive > active > active referenced > active mapped
3091  */
3092 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3093 {
3094         struct reclaim_state reclaim_state;
3095         struct scan_control sc = {
3096                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3097                 .may_swap = 1,
3098                 .may_unmap = 1,
3099                 .may_writepage = 1,
3100                 .nr_to_reclaim = nr_to_reclaim,
3101                 .hibernation_mode = 1,
3102                 .order = 0,
3103         };
3104         struct shrink_control shrink = {
3105                 .gfp_mask = sc.gfp_mask,
3106         };
3107         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3108         struct task_struct *p = current;
3109         unsigned long nr_reclaimed;
3110
3111         p->flags |= PF_MEMALLOC;
3112         lockdep_set_current_reclaim_state(sc.gfp_mask);
3113         reclaim_state.reclaimed_slab = 0;
3114         p->reclaim_state = &reclaim_state;
3115
3116         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3117
3118         p->reclaim_state = NULL;
3119         lockdep_clear_current_reclaim_state();
3120         p->flags &= ~PF_MEMALLOC;
3121
3122         return nr_reclaimed;
3123 }
3124 #endif /* CONFIG_HIBERNATION */
3125
3126 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3127    not required for correctness.  So if the last cpu in a node goes
3128    away, we get changed to run anywhere: as the first one comes back,
3129    restore their cpu bindings. */
3130 static int __devinit cpu_callback(struct notifier_block *nfb,
3131                                   unsigned long action, void *hcpu)
3132 {
3133         int nid;
3134
3135         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3136                 for_each_node_state(nid, N_HIGH_MEMORY) {
3137                         pg_data_t *pgdat = NODE_DATA(nid);
3138                         const struct cpumask *mask;
3139
3140                         mask = cpumask_of_node(pgdat->node_id);
3141
3142                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3143                                 /* One of our CPUs online: restore mask */
3144                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3145                 }
3146         }
3147         return NOTIFY_OK;
3148 }
3149
3150 /*
3151  * This kswapd start function will be called by init and node-hot-add.
3152  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3153  */
3154 int kswapd_run(int nid)
3155 {
3156         pg_data_t *pgdat = NODE_DATA(nid);
3157         int ret = 0;
3158
3159         if (pgdat->kswapd)
3160                 return 0;
3161
3162         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3163         if (IS_ERR(pgdat->kswapd)) {
3164                 /* failure at boot is fatal */
3165                 BUG_ON(system_state == SYSTEM_BOOTING);
3166                 printk("Failed to start kswapd on node %d\n",nid);
3167                 ret = -1;
3168         }
3169         return ret;
3170 }
3171
3172 /*
3173  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3174  * hold lock_memory_hotplug().
3175  */
3176 void kswapd_stop(int nid)
3177 {
3178         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3179
3180         if (kswapd) {
3181                 kthread_stop(kswapd);
3182                 NODE_DATA(nid)->kswapd = NULL;
3183         }
3184 }
3185
3186 static int __init kswapd_init(void)
3187 {
3188         int nid;
3189
3190         swap_setup();
3191         for_each_node_state(nid, N_HIGH_MEMORY)
3192                 kswapd_run(nid);
3193         hotcpu_notifier(cpu_callback, 0);
3194         return 0;
3195 }
3196
3197 module_init(kswapd_init)
3198
3199 #ifdef CONFIG_NUMA
3200 /*
3201  * Zone reclaim mode
3202  *
3203  * If non-zero call zone_reclaim when the number of free pages falls below
3204  * the watermarks.
3205  */
3206 int zone_reclaim_mode __read_mostly;
3207
3208 #define RECLAIM_OFF 0
3209 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3210 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3211 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3212
3213 /*
3214  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3215  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3216  * a zone.
3217  */
3218 #define ZONE_RECLAIM_PRIORITY 4
3219
3220 /*
3221  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3222  * occur.
3223  */
3224 int sysctl_min_unmapped_ratio = 1;
3225
3226 /*
3227  * If the number of slab pages in a zone grows beyond this percentage then
3228  * slab reclaim needs to occur.
3229  */
3230 int sysctl_min_slab_ratio = 5;
3231
3232 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3233 {
3234         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3235         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3236                 zone_page_state(zone, NR_ACTIVE_FILE);
3237
3238         /*
3239          * It's possible for there to be more file mapped pages than
3240          * accounted for by the pages on the file LRU lists because
3241          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3242          */
3243         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3244 }
3245
3246 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3247 static long zone_pagecache_reclaimable(struct zone *zone)
3248 {
3249         long nr_pagecache_reclaimable;
3250         long delta = 0;
3251
3252         /*
3253          * If RECLAIM_SWAP is set, then all file pages are considered
3254          * potentially reclaimable. Otherwise, we have to worry about
3255          * pages like swapcache and zone_unmapped_file_pages() provides
3256          * a better estimate
3257          */
3258         if (zone_reclaim_mode & RECLAIM_SWAP)
3259                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3260         else
3261                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3262
3263         /* If we can't clean pages, remove dirty pages from consideration */
3264         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3265                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3266
3267         /* Watch for any possible underflows due to delta */
3268         if (unlikely(delta > nr_pagecache_reclaimable))
3269                 delta = nr_pagecache_reclaimable;
3270
3271         return nr_pagecache_reclaimable - delta;
3272 }
3273
3274 /*
3275  * Try to free up some pages from this zone through reclaim.
3276  */
3277 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3278 {
3279         /* Minimum pages needed in order to stay on node */
3280         const unsigned long nr_pages = 1 << order;
3281         struct task_struct *p = current;
3282         struct reclaim_state reclaim_state;
3283         int priority;
3284         struct scan_control sc = {
3285                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3286                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3287                 .may_swap = 1,
3288                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3289                                        SWAP_CLUSTER_MAX),
3290                 .gfp_mask = gfp_mask,
3291                 .order = order,
3292         };
3293         struct shrink_control shrink = {
3294                 .gfp_mask = sc.gfp_mask,
3295         };
3296         unsigned long nr_slab_pages0, nr_slab_pages1;
3297
3298         cond_resched();
3299         /*
3300          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3301          * and we also need to be able to write out pages for RECLAIM_WRITE
3302          * and RECLAIM_SWAP.
3303          */
3304         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3305         lockdep_set_current_reclaim_state(gfp_mask);
3306         reclaim_state.reclaimed_slab = 0;
3307         p->reclaim_state = &reclaim_state;
3308
3309         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3310                 /*
3311                  * Free memory by calling shrink zone with increasing
3312                  * priorities until we have enough memory freed.
3313                  */
3314                 priority = ZONE_RECLAIM_PRIORITY;
3315                 do {
3316                         shrink_zone(priority, zone, &sc);
3317                         priority--;
3318                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3319         }
3320
3321         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3322         if (nr_slab_pages0 > zone->min_slab_pages) {
3323                 /*
3324                  * shrink_slab() does not currently allow us to determine how
3325                  * many pages were freed in this zone. So we take the current
3326                  * number of slab pages and shake the slab until it is reduced
3327                  * by the same nr_pages that we used for reclaiming unmapped
3328                  * pages.
3329                  *
3330                  * Note that shrink_slab will free memory on all zones and may
3331                  * take a long time.
3332                  */
3333                 for (;;) {
3334                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3335
3336                         /* No reclaimable slab or very low memory pressure */
3337                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3338                                 break;
3339
3340                         /* Freed enough memory */
3341                         nr_slab_pages1 = zone_page_state(zone,
3342                                                         NR_SLAB_RECLAIMABLE);
3343                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3344                                 break;
3345                 }
3346
3347                 /*
3348                  * Update nr_reclaimed by the number of slab pages we
3349                  * reclaimed from this zone.
3350                  */
3351                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3352                 if (nr_slab_pages1 < nr_slab_pages0)
3353                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3354         }
3355
3356         p->reclaim_state = NULL;
3357         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3358         lockdep_clear_current_reclaim_state();
3359         return sc.nr_reclaimed >= nr_pages;
3360 }
3361
3362 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3363 {
3364         int node_id;
3365         int ret;
3366
3367         /*
3368          * Zone reclaim reclaims unmapped file backed pages and
3369          * slab pages if we are over the defined limits.
3370          *
3371          * A small portion of unmapped file backed pages is needed for
3372          * file I/O otherwise pages read by file I/O will be immediately
3373          * thrown out if the zone is overallocated. So we do not reclaim
3374          * if less than a specified percentage of the zone is used by
3375          * unmapped file backed pages.
3376          */
3377         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3378             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3379                 return ZONE_RECLAIM_FULL;
3380
3381         if (zone->all_unreclaimable)
3382                 return ZONE_RECLAIM_FULL;
3383
3384         /*
3385          * Do not scan if the allocation should not be delayed.
3386          */
3387         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3388                 return ZONE_RECLAIM_NOSCAN;
3389
3390         /*
3391          * Only run zone reclaim on the local zone or on zones that do not
3392          * have associated processors. This will favor the local processor
3393          * over remote processors and spread off node memory allocations
3394          * as wide as possible.
3395          */
3396         node_id = zone_to_nid(zone);
3397         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3398                 return ZONE_RECLAIM_NOSCAN;
3399
3400         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3401                 return ZONE_RECLAIM_NOSCAN;
3402
3403         ret = __zone_reclaim(zone, gfp_mask, order);
3404         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3405
3406         if (!ret)
3407                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3408
3409         return ret;
3410 }
3411 #endif
3412
3413 /*
3414  * page_evictable - test whether a page is evictable
3415  * @page: the page to test
3416  * @vma: the VMA in which the page is or will be mapped, may be NULL
3417  *
3418  * Test whether page is evictable--i.e., should be placed on active/inactive
3419  * lists vs unevictable list.  The vma argument is !NULL when called from the
3420  * fault path to determine how to instantate a new page.
3421  *
3422  * Reasons page might not be evictable:
3423  * (1) page's mapping marked unevictable
3424  * (2) page is part of an mlocked VMA
3425  *
3426  */
3427 int page_evictable(struct page *page, struct vm_area_struct *vma)
3428 {
3429
3430         if (mapping_unevictable(page_mapping(page)))
3431                 return 0;
3432
3433         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3434                 return 0;
3435
3436         return 1;
3437 }
3438
3439 #ifdef CONFIG_SHMEM
3440 /**
3441  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3442  * @pages:      array of pages to check
3443  * @nr_pages:   number of pages to check
3444  *
3445  * Checks pages for evictability and moves them to the appropriate lru list.
3446  *
3447  * This function is only used for SysV IPC SHM_UNLOCK.
3448  */
3449 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3450 {
3451         struct zone *zone = NULL;
3452         int pgscanned = 0;
3453         int pgrescued = 0;
3454         int i;
3455
3456         for (i = 0; i < nr_pages; i++) {
3457                 struct page *page = pages[i];
3458                 struct zone *pagezone;
3459
3460                 pgscanned++;
3461                 pagezone = page_zone(page);
3462                 if (pagezone != zone) {
3463                         if (zone)
3464                                 spin_unlock_irq(&zone->lru_lock);
3465                         zone = pagezone;
3466                         spin_lock_irq(&zone->lru_lock);
3467                 }
3468
3469                 if (!PageLRU(page) || !PageUnevictable(page))
3470                         continue;
3471
3472                 if (page_evictable(page, NULL)) {
3473                         enum lru_list lru = page_lru_base_type(page);
3474
3475                         VM_BUG_ON(PageActive(page));
3476                         ClearPageUnevictable(page);
3477                         __dec_zone_state(zone, NR_UNEVICTABLE);
3478                         list_move(&page->lru, &zone->lru[lru].list);
3479                         mem_cgroup_move_lists(page, LRU_UNEVICTABLE, lru);
3480                         __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3481                         pgrescued++;
3482                 }
3483         }
3484
3485         if (zone) {
3486                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3487                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3488                 spin_unlock_irq(&zone->lru_lock);
3489         }
3490 }
3491 #endif /* CONFIG_SHMEM */
3492
3493 static void warn_scan_unevictable_pages(void)
3494 {
3495         printk_once(KERN_WARNING
3496                     "The scan_unevictable_pages sysctl/node-interface has been "
3497                     "disabled for lack of a legitimate use case.  If you have "
3498                     "one, please send an email to linux-mm@kvack.org.\n");
3499 }
3500
3501 /*
3502  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3503  * all nodes' unevictable lists for evictable pages
3504  */
3505 unsigned long scan_unevictable_pages;
3506
3507 int scan_unevictable_handler(struct ctl_table *table, int write,
3508                            void __user *buffer,
3509                            size_t *length, loff_t *ppos)
3510 {
3511         warn_scan_unevictable_pages();
3512         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3513         scan_unevictable_pages = 0;
3514         return 0;
3515 }
3516
3517 #ifdef CONFIG_NUMA
3518 /*
3519  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3520  * a specified node's per zone unevictable lists for evictable pages.
3521  */
3522
3523 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3524                                           struct sysdev_attribute *attr,
3525                                           char *buf)
3526 {
3527         warn_scan_unevictable_pages();
3528         return sprintf(buf, "0\n");     /* always zero; should fit... */
3529 }
3530
3531 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3532                                            struct sysdev_attribute *attr,
3533                                         const char *buf, size_t count)
3534 {
3535         warn_scan_unevictable_pages();
3536         return 1;
3537 }
3538
3539
3540 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3541                         read_scan_unevictable_node,
3542                         write_scan_unevictable_node);
3543
3544 int scan_unevictable_register_node(struct node *node)
3545 {
3546         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3547 }
3548
3549 void scan_unevictable_unregister_node(struct node *node)
3550 {
3551         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3552 }
3553 #endif