Merge branches 'release' and 'throttling-domains' into release
[pandora-kernel.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/writeback.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/rmap.h>
25 #include <linux/security.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mutex.h>
28 #include <linux/capability.h>
29 #include <linux/syscalls.h>
30
31 #include <asm/pgtable.h>
32 #include <asm/tlbflush.h>
33 #include <linux/swapops.h>
34
35 DEFINE_SPINLOCK(swap_lock);
36 unsigned int nr_swapfiles;
37 long total_swap_pages;
38 static int swap_overflow;
39
40 static const char Bad_file[] = "Bad swap file entry ";
41 static const char Unused_file[] = "Unused swap file entry ";
42 static const char Bad_offset[] = "Bad swap offset entry ";
43 static const char Unused_offset[] = "Unused swap offset entry ";
44
45 struct swap_list_t swap_list = {-1, -1};
46
47 static struct swap_info_struct swap_info[MAX_SWAPFILES];
48
49 static DEFINE_MUTEX(swapon_mutex);
50
51 /*
52  * We need this because the bdev->unplug_fn can sleep and we cannot
53  * hold swap_lock while calling the unplug_fn. And swap_lock
54  * cannot be turned into a mutex.
55  */
56 static DECLARE_RWSEM(swap_unplug_sem);
57
58 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
59 {
60         swp_entry_t entry;
61
62         down_read(&swap_unplug_sem);
63         entry.val = page_private(page);
64         if (PageSwapCache(page)) {
65                 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
66                 struct backing_dev_info *bdi;
67
68                 /*
69                  * If the page is removed from swapcache from under us (with a
70                  * racy try_to_unuse/swapoff) we need an additional reference
71                  * count to avoid reading garbage from page_private(page) above.
72                  * If the WARN_ON triggers during a swapoff it maybe the race
73                  * condition and it's harmless. However if it triggers without
74                  * swapoff it signals a problem.
75                  */
76                 WARN_ON(page_count(page) <= 1);
77
78                 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
79                 blk_run_backing_dev(bdi, page);
80         }
81         up_read(&swap_unplug_sem);
82 }
83
84 #define SWAPFILE_CLUSTER        256
85 #define LATENCY_LIMIT           256
86
87 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
88 {
89         unsigned long offset, last_in_cluster;
90         int latency_ration = LATENCY_LIMIT;
91
92         /* 
93          * We try to cluster swap pages by allocating them sequentially
94          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
95          * way, however, we resort to first-free allocation, starting
96          * a new cluster.  This prevents us from scattering swap pages
97          * all over the entire swap partition, so that we reduce
98          * overall disk seek times between swap pages.  -- sct
99          * But we do now try to find an empty cluster.  -Andrea
100          */
101
102         si->flags += SWP_SCANNING;
103         if (unlikely(!si->cluster_nr)) {
104                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
105                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
106                         goto lowest;
107                 spin_unlock(&swap_lock);
108
109                 offset = si->lowest_bit;
110                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
111
112                 /* Locate the first empty (unaligned) cluster */
113                 for (; last_in_cluster <= si->highest_bit; offset++) {
114                         if (si->swap_map[offset])
115                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
116                         else if (offset == last_in_cluster) {
117                                 spin_lock(&swap_lock);
118                                 si->cluster_next = offset-SWAPFILE_CLUSTER+1;
119                                 goto cluster;
120                         }
121                         if (unlikely(--latency_ration < 0)) {
122                                 cond_resched();
123                                 latency_ration = LATENCY_LIMIT;
124                         }
125                 }
126                 spin_lock(&swap_lock);
127                 goto lowest;
128         }
129
130         si->cluster_nr--;
131 cluster:
132         offset = si->cluster_next;
133         if (offset > si->highest_bit)
134 lowest:         offset = si->lowest_bit;
135 checks: if (!(si->flags & SWP_WRITEOK))
136                 goto no_page;
137         if (!si->highest_bit)
138                 goto no_page;
139         if (!si->swap_map[offset]) {
140                 if (offset == si->lowest_bit)
141                         si->lowest_bit++;
142                 if (offset == si->highest_bit)
143                         si->highest_bit--;
144                 si->inuse_pages++;
145                 if (si->inuse_pages == si->pages) {
146                         si->lowest_bit = si->max;
147                         si->highest_bit = 0;
148                 }
149                 si->swap_map[offset] = 1;
150                 si->cluster_next = offset + 1;
151                 si->flags -= SWP_SCANNING;
152                 return offset;
153         }
154
155         spin_unlock(&swap_lock);
156         while (++offset <= si->highest_bit) {
157                 if (!si->swap_map[offset]) {
158                         spin_lock(&swap_lock);
159                         goto checks;
160                 }
161                 if (unlikely(--latency_ration < 0)) {
162                         cond_resched();
163                         latency_ration = LATENCY_LIMIT;
164                 }
165         }
166         spin_lock(&swap_lock);
167         goto lowest;
168
169 no_page:
170         si->flags -= SWP_SCANNING;
171         return 0;
172 }
173
174 swp_entry_t get_swap_page(void)
175 {
176         struct swap_info_struct *si;
177         pgoff_t offset;
178         int type, next;
179         int wrapped = 0;
180
181         spin_lock(&swap_lock);
182         if (nr_swap_pages <= 0)
183                 goto noswap;
184         nr_swap_pages--;
185
186         for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
187                 si = swap_info + type;
188                 next = si->next;
189                 if (next < 0 ||
190                     (!wrapped && si->prio != swap_info[next].prio)) {
191                         next = swap_list.head;
192                         wrapped++;
193                 }
194
195                 if (!si->highest_bit)
196                         continue;
197                 if (!(si->flags & SWP_WRITEOK))
198                         continue;
199
200                 swap_list.next = next;
201                 offset = scan_swap_map(si);
202                 if (offset) {
203                         spin_unlock(&swap_lock);
204                         return swp_entry(type, offset);
205                 }
206                 next = swap_list.next;
207         }
208
209         nr_swap_pages++;
210 noswap:
211         spin_unlock(&swap_lock);
212         return (swp_entry_t) {0};
213 }
214
215 swp_entry_t get_swap_page_of_type(int type)
216 {
217         struct swap_info_struct *si;
218         pgoff_t offset;
219
220         spin_lock(&swap_lock);
221         si = swap_info + type;
222         if (si->flags & SWP_WRITEOK) {
223                 nr_swap_pages--;
224                 offset = scan_swap_map(si);
225                 if (offset) {
226                         spin_unlock(&swap_lock);
227                         return swp_entry(type, offset);
228                 }
229                 nr_swap_pages++;
230         }
231         spin_unlock(&swap_lock);
232         return (swp_entry_t) {0};
233 }
234
235 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
236 {
237         struct swap_info_struct * p;
238         unsigned long offset, type;
239
240         if (!entry.val)
241                 goto out;
242         type = swp_type(entry);
243         if (type >= nr_swapfiles)
244                 goto bad_nofile;
245         p = & swap_info[type];
246         if (!(p->flags & SWP_USED))
247                 goto bad_device;
248         offset = swp_offset(entry);
249         if (offset >= p->max)
250                 goto bad_offset;
251         if (!p->swap_map[offset])
252                 goto bad_free;
253         spin_lock(&swap_lock);
254         return p;
255
256 bad_free:
257         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
258         goto out;
259 bad_offset:
260         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
261         goto out;
262 bad_device:
263         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
264         goto out;
265 bad_nofile:
266         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
267 out:
268         return NULL;
269 }       
270
271 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
272 {
273         int count = p->swap_map[offset];
274
275         if (count < SWAP_MAP_MAX) {
276                 count--;
277                 p->swap_map[offset] = count;
278                 if (!count) {
279                         if (offset < p->lowest_bit)
280                                 p->lowest_bit = offset;
281                         if (offset > p->highest_bit)
282                                 p->highest_bit = offset;
283                         if (p->prio > swap_info[swap_list.next].prio)
284                                 swap_list.next = p - swap_info;
285                         nr_swap_pages++;
286                         p->inuse_pages--;
287                 }
288         }
289         return count;
290 }
291
292 /*
293  * Caller has made sure that the swapdevice corresponding to entry
294  * is still around or has not been recycled.
295  */
296 void swap_free(swp_entry_t entry)
297 {
298         struct swap_info_struct * p;
299
300         p = swap_info_get(entry);
301         if (p) {
302                 swap_entry_free(p, swp_offset(entry));
303                 spin_unlock(&swap_lock);
304         }
305 }
306
307 /*
308  * How many references to page are currently swapped out?
309  */
310 static inline int page_swapcount(struct page *page)
311 {
312         int count = 0;
313         struct swap_info_struct *p;
314         swp_entry_t entry;
315
316         entry.val = page_private(page);
317         p = swap_info_get(entry);
318         if (p) {
319                 /* Subtract the 1 for the swap cache itself */
320                 count = p->swap_map[swp_offset(entry)] - 1;
321                 spin_unlock(&swap_lock);
322         }
323         return count;
324 }
325
326 /*
327  * We can use this swap cache entry directly
328  * if there are no other references to it.
329  */
330 int can_share_swap_page(struct page *page)
331 {
332         int count;
333
334         BUG_ON(!PageLocked(page));
335         count = page_mapcount(page);
336         if (count <= 1 && PageSwapCache(page))
337                 count += page_swapcount(page);
338         return count == 1;
339 }
340
341 /*
342  * Work out if there are any other processes sharing this
343  * swap cache page. Free it if you can. Return success.
344  */
345 int remove_exclusive_swap_page(struct page *page)
346 {
347         int retval;
348         struct swap_info_struct * p;
349         swp_entry_t entry;
350
351         BUG_ON(PagePrivate(page));
352         BUG_ON(!PageLocked(page));
353
354         if (!PageSwapCache(page))
355                 return 0;
356         if (PageWriteback(page))
357                 return 0;
358         if (page_count(page) != 2) /* 2: us + cache */
359                 return 0;
360
361         entry.val = page_private(page);
362         p = swap_info_get(entry);
363         if (!p)
364                 return 0;
365
366         /* Is the only swap cache user the cache itself? */
367         retval = 0;
368         if (p->swap_map[swp_offset(entry)] == 1) {
369                 /* Recheck the page count with the swapcache lock held.. */
370                 write_lock_irq(&swapper_space.tree_lock);
371                 if ((page_count(page) == 2) && !PageWriteback(page)) {
372                         __delete_from_swap_cache(page);
373                         SetPageDirty(page);
374                         retval = 1;
375                 }
376                 write_unlock_irq(&swapper_space.tree_lock);
377         }
378         spin_unlock(&swap_lock);
379
380         if (retval) {
381                 swap_free(entry);
382                 page_cache_release(page);
383         }
384
385         return retval;
386 }
387
388 /*
389  * Free the swap entry like above, but also try to
390  * free the page cache entry if it is the last user.
391  */
392 void free_swap_and_cache(swp_entry_t entry)
393 {
394         struct swap_info_struct * p;
395         struct page *page = NULL;
396
397         if (is_migration_entry(entry))
398                 return;
399
400         p = swap_info_get(entry);
401         if (p) {
402                 if (swap_entry_free(p, swp_offset(entry)) == 1) {
403                         page = find_get_page(&swapper_space, entry.val);
404                         if (page && unlikely(TestSetPageLocked(page))) {
405                                 page_cache_release(page);
406                                 page = NULL;
407                         }
408                 }
409                 spin_unlock(&swap_lock);
410         }
411         if (page) {
412                 int one_user;
413
414                 BUG_ON(PagePrivate(page));
415                 one_user = (page_count(page) == 2);
416                 /* Only cache user (+us), or swap space full? Free it! */
417                 /* Also recheck PageSwapCache after page is locked (above) */
418                 if (PageSwapCache(page) && !PageWriteback(page) &&
419                                         (one_user || vm_swap_full())) {
420                         delete_from_swap_cache(page);
421                         SetPageDirty(page);
422                 }
423                 unlock_page(page);
424                 page_cache_release(page);
425         }
426 }
427
428 #ifdef CONFIG_HIBERNATION
429 /*
430  * Find the swap type that corresponds to given device (if any).
431  *
432  * @offset - number of the PAGE_SIZE-sized block of the device, starting
433  * from 0, in which the swap header is expected to be located.
434  *
435  * This is needed for the suspend to disk (aka swsusp).
436  */
437 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
438 {
439         struct block_device *bdev = NULL;
440         int i;
441
442         if (device)
443                 bdev = bdget(device);
444
445         spin_lock(&swap_lock);
446         for (i = 0; i < nr_swapfiles; i++) {
447                 struct swap_info_struct *sis = swap_info + i;
448
449                 if (!(sis->flags & SWP_WRITEOK))
450                         continue;
451
452                 if (!bdev) {
453                         if (bdev_p)
454                                 *bdev_p = sis->bdev;
455
456                         spin_unlock(&swap_lock);
457                         return i;
458                 }
459                 if (bdev == sis->bdev) {
460                         struct swap_extent *se;
461
462                         se = list_entry(sis->extent_list.next,
463                                         struct swap_extent, list);
464                         if (se->start_block == offset) {
465                                 if (bdev_p)
466                                         *bdev_p = sis->bdev;
467
468                                 spin_unlock(&swap_lock);
469                                 bdput(bdev);
470                                 return i;
471                         }
472                 }
473         }
474         spin_unlock(&swap_lock);
475         if (bdev)
476                 bdput(bdev);
477
478         return -ENODEV;
479 }
480
481 /*
482  * Return either the total number of swap pages of given type, or the number
483  * of free pages of that type (depending on @free)
484  *
485  * This is needed for software suspend
486  */
487 unsigned int count_swap_pages(int type, int free)
488 {
489         unsigned int n = 0;
490
491         if (type < nr_swapfiles) {
492                 spin_lock(&swap_lock);
493                 if (swap_info[type].flags & SWP_WRITEOK) {
494                         n = swap_info[type].pages;
495                         if (free)
496                                 n -= swap_info[type].inuse_pages;
497                 }
498                 spin_unlock(&swap_lock);
499         }
500         return n;
501 }
502 #endif
503
504 /*
505  * No need to decide whether this PTE shares the swap entry with others,
506  * just let do_wp_page work it out if a write is requested later - to
507  * force COW, vm_page_prot omits write permission from any private vma.
508  */
509 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
510                 unsigned long addr, swp_entry_t entry, struct page *page)
511 {
512         spinlock_t *ptl;
513         pte_t *pte;
514         int found = 1;
515
516         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
517         if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
518                 found = 0;
519                 goto out;
520         }
521
522         inc_mm_counter(vma->vm_mm, anon_rss);
523         get_page(page);
524         set_pte_at(vma->vm_mm, addr, pte,
525                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
526         page_add_anon_rmap(page, vma, addr);
527         swap_free(entry);
528         /*
529          * Move the page to the active list so it is not
530          * immediately swapped out again after swapon.
531          */
532         activate_page(page);
533 out:
534         pte_unmap_unlock(pte, ptl);
535         return found;
536 }
537
538 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
539                                 unsigned long addr, unsigned long end,
540                                 swp_entry_t entry, struct page *page)
541 {
542         pte_t swp_pte = swp_entry_to_pte(entry);
543         pte_t *pte;
544         int found = 0;
545
546         /*
547          * We don't actually need pte lock while scanning for swp_pte: since
548          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
549          * page table while we're scanning; though it could get zapped, and on
550          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
551          * of unmatched parts which look like swp_pte, so unuse_pte must
552          * recheck under pte lock.  Scanning without pte lock lets it be
553          * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
554          */
555         pte = pte_offset_map(pmd, addr);
556         do {
557                 /*
558                  * swapoff spends a _lot_ of time in this loop!
559                  * Test inline before going to call unuse_pte.
560                  */
561                 if (unlikely(pte_same(*pte, swp_pte))) {
562                         pte_unmap(pte);
563                         found = unuse_pte(vma, pmd, addr, entry, page);
564                         if (found)
565                                 goto out;
566                         pte = pte_offset_map(pmd, addr);
567                 }
568         } while (pte++, addr += PAGE_SIZE, addr != end);
569         pte_unmap(pte - 1);
570 out:
571         return found;
572 }
573
574 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
575                                 unsigned long addr, unsigned long end,
576                                 swp_entry_t entry, struct page *page)
577 {
578         pmd_t *pmd;
579         unsigned long next;
580
581         pmd = pmd_offset(pud, addr);
582         do {
583                 next = pmd_addr_end(addr, end);
584                 if (pmd_none_or_clear_bad(pmd))
585                         continue;
586                 if (unuse_pte_range(vma, pmd, addr, next, entry, page))
587                         return 1;
588         } while (pmd++, addr = next, addr != end);
589         return 0;
590 }
591
592 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
593                                 unsigned long addr, unsigned long end,
594                                 swp_entry_t entry, struct page *page)
595 {
596         pud_t *pud;
597         unsigned long next;
598
599         pud = pud_offset(pgd, addr);
600         do {
601                 next = pud_addr_end(addr, end);
602                 if (pud_none_or_clear_bad(pud))
603                         continue;
604                 if (unuse_pmd_range(vma, pud, addr, next, entry, page))
605                         return 1;
606         } while (pud++, addr = next, addr != end);
607         return 0;
608 }
609
610 static int unuse_vma(struct vm_area_struct *vma,
611                                 swp_entry_t entry, struct page *page)
612 {
613         pgd_t *pgd;
614         unsigned long addr, end, next;
615
616         if (page->mapping) {
617                 addr = page_address_in_vma(page, vma);
618                 if (addr == -EFAULT)
619                         return 0;
620                 else
621                         end = addr + PAGE_SIZE;
622         } else {
623                 addr = vma->vm_start;
624                 end = vma->vm_end;
625         }
626
627         pgd = pgd_offset(vma->vm_mm, addr);
628         do {
629                 next = pgd_addr_end(addr, end);
630                 if (pgd_none_or_clear_bad(pgd))
631                         continue;
632                 if (unuse_pud_range(vma, pgd, addr, next, entry, page))
633                         return 1;
634         } while (pgd++, addr = next, addr != end);
635         return 0;
636 }
637
638 static int unuse_mm(struct mm_struct *mm,
639                                 swp_entry_t entry, struct page *page)
640 {
641         struct vm_area_struct *vma;
642
643         if (!down_read_trylock(&mm->mmap_sem)) {
644                 /*
645                  * Activate page so shrink_cache is unlikely to unmap its
646                  * ptes while lock is dropped, so swapoff can make progress.
647                  */
648                 activate_page(page);
649                 unlock_page(page);
650                 down_read(&mm->mmap_sem);
651                 lock_page(page);
652         }
653         for (vma = mm->mmap; vma; vma = vma->vm_next) {
654                 if (vma->anon_vma && unuse_vma(vma, entry, page))
655                         break;
656         }
657         up_read(&mm->mmap_sem);
658         /*
659          * Currently unuse_mm cannot fail, but leave error handling
660          * at call sites for now, since we change it from time to time.
661          */
662         return 0;
663 }
664
665 /*
666  * Scan swap_map from current position to next entry still in use.
667  * Recycle to start on reaching the end, returning 0 when empty.
668  */
669 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
670                                         unsigned int prev)
671 {
672         unsigned int max = si->max;
673         unsigned int i = prev;
674         int count;
675
676         /*
677          * No need for swap_lock here: we're just looking
678          * for whether an entry is in use, not modifying it; false
679          * hits are okay, and sys_swapoff() has already prevented new
680          * allocations from this area (while holding swap_lock).
681          */
682         for (;;) {
683                 if (++i >= max) {
684                         if (!prev) {
685                                 i = 0;
686                                 break;
687                         }
688                         /*
689                          * No entries in use at top of swap_map,
690                          * loop back to start and recheck there.
691                          */
692                         max = prev + 1;
693                         prev = 0;
694                         i = 1;
695                 }
696                 count = si->swap_map[i];
697                 if (count && count != SWAP_MAP_BAD)
698                         break;
699         }
700         return i;
701 }
702
703 /*
704  * We completely avoid races by reading each swap page in advance,
705  * and then search for the process using it.  All the necessary
706  * page table adjustments can then be made atomically.
707  */
708 static int try_to_unuse(unsigned int type)
709 {
710         struct swap_info_struct * si = &swap_info[type];
711         struct mm_struct *start_mm;
712         unsigned short *swap_map;
713         unsigned short swcount;
714         struct page *page;
715         swp_entry_t entry;
716         unsigned int i = 0;
717         int retval = 0;
718         int reset_overflow = 0;
719         int shmem;
720
721         /*
722          * When searching mms for an entry, a good strategy is to
723          * start at the first mm we freed the previous entry from
724          * (though actually we don't notice whether we or coincidence
725          * freed the entry).  Initialize this start_mm with a hold.
726          *
727          * A simpler strategy would be to start at the last mm we
728          * freed the previous entry from; but that would take less
729          * advantage of mmlist ordering, which clusters forked mms
730          * together, child after parent.  If we race with dup_mmap(), we
731          * prefer to resolve parent before child, lest we miss entries
732          * duplicated after we scanned child: using last mm would invert
733          * that.  Though it's only a serious concern when an overflowed
734          * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
735          */
736         start_mm = &init_mm;
737         atomic_inc(&init_mm.mm_users);
738
739         /*
740          * Keep on scanning until all entries have gone.  Usually,
741          * one pass through swap_map is enough, but not necessarily:
742          * there are races when an instance of an entry might be missed.
743          */
744         while ((i = find_next_to_unuse(si, i)) != 0) {
745                 if (signal_pending(current)) {
746                         retval = -EINTR;
747                         break;
748                 }
749
750                 /* 
751                  * Get a page for the entry, using the existing swap
752                  * cache page if there is one.  Otherwise, get a clean
753                  * page and read the swap into it. 
754                  */
755                 swap_map = &si->swap_map[i];
756                 entry = swp_entry(type, i);
757                 page = read_swap_cache_async(entry,
758                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
759                 if (!page) {
760                         /*
761                          * Either swap_duplicate() failed because entry
762                          * has been freed independently, and will not be
763                          * reused since sys_swapoff() already disabled
764                          * allocation from here, or alloc_page() failed.
765                          */
766                         if (!*swap_map)
767                                 continue;
768                         retval = -ENOMEM;
769                         break;
770                 }
771
772                 /*
773                  * Don't hold on to start_mm if it looks like exiting.
774                  */
775                 if (atomic_read(&start_mm->mm_users) == 1) {
776                         mmput(start_mm);
777                         start_mm = &init_mm;
778                         atomic_inc(&init_mm.mm_users);
779                 }
780
781                 /*
782                  * Wait for and lock page.  When do_swap_page races with
783                  * try_to_unuse, do_swap_page can handle the fault much
784                  * faster than try_to_unuse can locate the entry.  This
785                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
786                  * defer to do_swap_page in such a case - in some tests,
787                  * do_swap_page and try_to_unuse repeatedly compete.
788                  */
789                 wait_on_page_locked(page);
790                 wait_on_page_writeback(page);
791                 lock_page(page);
792                 wait_on_page_writeback(page);
793
794                 /*
795                  * Remove all references to entry.
796                  * Whenever we reach init_mm, there's no address space
797                  * to search, but use it as a reminder to search shmem.
798                  */
799                 shmem = 0;
800                 swcount = *swap_map;
801                 if (swcount > 1) {
802                         if (start_mm == &init_mm)
803                                 shmem = shmem_unuse(entry, page);
804                         else
805                                 retval = unuse_mm(start_mm, entry, page);
806                 }
807                 if (*swap_map > 1) {
808                         int set_start_mm = (*swap_map >= swcount);
809                         struct list_head *p = &start_mm->mmlist;
810                         struct mm_struct *new_start_mm = start_mm;
811                         struct mm_struct *prev_mm = start_mm;
812                         struct mm_struct *mm;
813
814                         atomic_inc(&new_start_mm->mm_users);
815                         atomic_inc(&prev_mm->mm_users);
816                         spin_lock(&mmlist_lock);
817                         while (*swap_map > 1 && !retval && !shmem &&
818                                         (p = p->next) != &start_mm->mmlist) {
819                                 mm = list_entry(p, struct mm_struct, mmlist);
820                                 if (!atomic_inc_not_zero(&mm->mm_users))
821                                         continue;
822                                 spin_unlock(&mmlist_lock);
823                                 mmput(prev_mm);
824                                 prev_mm = mm;
825
826                                 cond_resched();
827
828                                 swcount = *swap_map;
829                                 if (swcount <= 1)
830                                         ;
831                                 else if (mm == &init_mm) {
832                                         set_start_mm = 1;
833                                         shmem = shmem_unuse(entry, page);
834                                 } else
835                                         retval = unuse_mm(mm, entry, page);
836                                 if (set_start_mm && *swap_map < swcount) {
837                                         mmput(new_start_mm);
838                                         atomic_inc(&mm->mm_users);
839                                         new_start_mm = mm;
840                                         set_start_mm = 0;
841                                 }
842                                 spin_lock(&mmlist_lock);
843                         }
844                         spin_unlock(&mmlist_lock);
845                         mmput(prev_mm);
846                         mmput(start_mm);
847                         start_mm = new_start_mm;
848                 }
849                 if (shmem) {
850                         /* page has already been unlocked and released */
851                         if (shmem > 0)
852                                 continue;
853                         retval = shmem;
854                         break;
855                 }
856                 if (retval) {
857                         unlock_page(page);
858                         page_cache_release(page);
859                         break;
860                 }
861
862                 /*
863                  * How could swap count reach 0x7fff when the maximum
864                  * pid is 0x7fff, and there's no way to repeat a swap
865                  * page within an mm (except in shmem, where it's the
866                  * shared object which takes the reference count)?
867                  * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
868                  *
869                  * If that's wrong, then we should worry more about
870                  * exit_mmap() and do_munmap() cases described above:
871                  * we might be resetting SWAP_MAP_MAX too early here.
872                  * We know "Undead"s can happen, they're okay, so don't
873                  * report them; but do report if we reset SWAP_MAP_MAX.
874                  */
875                 if (*swap_map == SWAP_MAP_MAX) {
876                         spin_lock(&swap_lock);
877                         *swap_map = 1;
878                         spin_unlock(&swap_lock);
879                         reset_overflow = 1;
880                 }
881
882                 /*
883                  * If a reference remains (rare), we would like to leave
884                  * the page in the swap cache; but try_to_unmap could
885                  * then re-duplicate the entry once we drop page lock,
886                  * so we might loop indefinitely; also, that page could
887                  * not be swapped out to other storage meanwhile.  So:
888                  * delete from cache even if there's another reference,
889                  * after ensuring that the data has been saved to disk -
890                  * since if the reference remains (rarer), it will be
891                  * read from disk into another page.  Splitting into two
892                  * pages would be incorrect if swap supported "shared
893                  * private" pages, but they are handled by tmpfs files.
894                  */
895                 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
896                         struct writeback_control wbc = {
897                                 .sync_mode = WB_SYNC_NONE,
898                         };
899
900                         swap_writepage(page, &wbc);
901                         lock_page(page);
902                         wait_on_page_writeback(page);
903                 }
904                 if (PageSwapCache(page))
905                         delete_from_swap_cache(page);
906
907                 /*
908                  * So we could skip searching mms once swap count went
909                  * to 1, we did not mark any present ptes as dirty: must
910                  * mark page dirty so shrink_page_list will preserve it.
911                  */
912                 SetPageDirty(page);
913                 unlock_page(page);
914                 page_cache_release(page);
915
916                 /*
917                  * Make sure that we aren't completely killing
918                  * interactive performance.
919                  */
920                 cond_resched();
921         }
922
923         mmput(start_mm);
924         if (reset_overflow) {
925                 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
926                 swap_overflow = 0;
927         }
928         return retval;
929 }
930
931 /*
932  * After a successful try_to_unuse, if no swap is now in use, we know
933  * we can empty the mmlist.  swap_lock must be held on entry and exit.
934  * Note that mmlist_lock nests inside swap_lock, and an mm must be
935  * added to the mmlist just after page_duplicate - before would be racy.
936  */
937 static void drain_mmlist(void)
938 {
939         struct list_head *p, *next;
940         unsigned int i;
941
942         for (i = 0; i < nr_swapfiles; i++)
943                 if (swap_info[i].inuse_pages)
944                         return;
945         spin_lock(&mmlist_lock);
946         list_for_each_safe(p, next, &init_mm.mmlist)
947                 list_del_init(p);
948         spin_unlock(&mmlist_lock);
949 }
950
951 /*
952  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
953  * corresponds to page offset `offset'.
954  */
955 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
956 {
957         struct swap_extent *se = sis->curr_swap_extent;
958         struct swap_extent *start_se = se;
959
960         for ( ; ; ) {
961                 struct list_head *lh;
962
963                 if (se->start_page <= offset &&
964                                 offset < (se->start_page + se->nr_pages)) {
965                         return se->start_block + (offset - se->start_page);
966                 }
967                 lh = se->list.next;
968                 if (lh == &sis->extent_list)
969                         lh = lh->next;
970                 se = list_entry(lh, struct swap_extent, list);
971                 sis->curr_swap_extent = se;
972                 BUG_ON(se == start_se);         /* It *must* be present */
973         }
974 }
975
976 #ifdef CONFIG_HIBERNATION
977 /*
978  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
979  * corresponding to given index in swap_info (swap type).
980  */
981 sector_t swapdev_block(int swap_type, pgoff_t offset)
982 {
983         struct swap_info_struct *sis;
984
985         if (swap_type >= nr_swapfiles)
986                 return 0;
987
988         sis = swap_info + swap_type;
989         return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
990 }
991 #endif /* CONFIG_HIBERNATION */
992
993 /*
994  * Free all of a swapdev's extent information
995  */
996 static void destroy_swap_extents(struct swap_info_struct *sis)
997 {
998         while (!list_empty(&sis->extent_list)) {
999                 struct swap_extent *se;
1000
1001                 se = list_entry(sis->extent_list.next,
1002                                 struct swap_extent, list);
1003                 list_del(&se->list);
1004                 kfree(se);
1005         }
1006 }
1007
1008 /*
1009  * Add a block range (and the corresponding page range) into this swapdev's
1010  * extent list.  The extent list is kept sorted in page order.
1011  *
1012  * This function rather assumes that it is called in ascending page order.
1013  */
1014 static int
1015 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1016                 unsigned long nr_pages, sector_t start_block)
1017 {
1018         struct swap_extent *se;
1019         struct swap_extent *new_se;
1020         struct list_head *lh;
1021
1022         lh = sis->extent_list.prev;     /* The highest page extent */
1023         if (lh != &sis->extent_list) {
1024                 se = list_entry(lh, struct swap_extent, list);
1025                 BUG_ON(se->start_page + se->nr_pages != start_page);
1026                 if (se->start_block + se->nr_pages == start_block) {
1027                         /* Merge it */
1028                         se->nr_pages += nr_pages;
1029                         return 0;
1030                 }
1031         }
1032
1033         /*
1034          * No merge.  Insert a new extent, preserving ordering.
1035          */
1036         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1037         if (new_se == NULL)
1038                 return -ENOMEM;
1039         new_se->start_page = start_page;
1040         new_se->nr_pages = nr_pages;
1041         new_se->start_block = start_block;
1042
1043         list_add_tail(&new_se->list, &sis->extent_list);
1044         return 1;
1045 }
1046
1047 /*
1048  * A `swap extent' is a simple thing which maps a contiguous range of pages
1049  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1050  * is built at swapon time and is then used at swap_writepage/swap_readpage
1051  * time for locating where on disk a page belongs.
1052  *
1053  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1054  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1055  * swap files identically.
1056  *
1057  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1058  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1059  * swapfiles are handled *identically* after swapon time.
1060  *
1061  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1062  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1063  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1064  * requirements, they are simply tossed out - we will never use those blocks
1065  * for swapping.
1066  *
1067  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1068  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1069  * which will scribble on the fs.
1070  *
1071  * The amount of disk space which a single swap extent represents varies.
1072  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1073  * extents in the list.  To avoid much list walking, we cache the previous
1074  * search location in `curr_swap_extent', and start new searches from there.
1075  * This is extremely effective.  The average number of iterations in
1076  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1077  */
1078 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1079 {
1080         struct inode *inode;
1081         unsigned blocks_per_page;
1082         unsigned long page_no;
1083         unsigned blkbits;
1084         sector_t probe_block;
1085         sector_t last_block;
1086         sector_t lowest_block = -1;
1087         sector_t highest_block = 0;
1088         int nr_extents = 0;
1089         int ret;
1090
1091         inode = sis->swap_file->f_mapping->host;
1092         if (S_ISBLK(inode->i_mode)) {
1093                 ret = add_swap_extent(sis, 0, sis->max, 0);
1094                 *span = sis->pages;
1095                 goto done;
1096         }
1097
1098         blkbits = inode->i_blkbits;
1099         blocks_per_page = PAGE_SIZE >> blkbits;
1100
1101         /*
1102          * Map all the blocks into the extent list.  This code doesn't try
1103          * to be very smart.
1104          */
1105         probe_block = 0;
1106         page_no = 0;
1107         last_block = i_size_read(inode) >> blkbits;
1108         while ((probe_block + blocks_per_page) <= last_block &&
1109                         page_no < sis->max) {
1110                 unsigned block_in_page;
1111                 sector_t first_block;
1112
1113                 first_block = bmap(inode, probe_block);
1114                 if (first_block == 0)
1115                         goto bad_bmap;
1116
1117                 /*
1118                  * It must be PAGE_SIZE aligned on-disk
1119                  */
1120                 if (first_block & (blocks_per_page - 1)) {
1121                         probe_block++;
1122                         goto reprobe;
1123                 }
1124
1125                 for (block_in_page = 1; block_in_page < blocks_per_page;
1126                                         block_in_page++) {
1127                         sector_t block;
1128
1129                         block = bmap(inode, probe_block + block_in_page);
1130                         if (block == 0)
1131                                 goto bad_bmap;
1132                         if (block != first_block + block_in_page) {
1133                                 /* Discontiguity */
1134                                 probe_block++;
1135                                 goto reprobe;
1136                         }
1137                 }
1138
1139                 first_block >>= (PAGE_SHIFT - blkbits);
1140                 if (page_no) {  /* exclude the header page */
1141                         if (first_block < lowest_block)
1142                                 lowest_block = first_block;
1143                         if (first_block > highest_block)
1144                                 highest_block = first_block;
1145                 }
1146
1147                 /*
1148                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1149                  */
1150                 ret = add_swap_extent(sis, page_no, 1, first_block);
1151                 if (ret < 0)
1152                         goto out;
1153                 nr_extents += ret;
1154                 page_no++;
1155                 probe_block += blocks_per_page;
1156 reprobe:
1157                 continue;
1158         }
1159         ret = nr_extents;
1160         *span = 1 + highest_block - lowest_block;
1161         if (page_no == 0)
1162                 page_no = 1;    /* force Empty message */
1163         sis->max = page_no;
1164         sis->pages = page_no - 1;
1165         sis->highest_bit = page_no - 1;
1166 done:
1167         sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1168                                         struct swap_extent, list);
1169         goto out;
1170 bad_bmap:
1171         printk(KERN_ERR "swapon: swapfile has holes\n");
1172         ret = -EINVAL;
1173 out:
1174         return ret;
1175 }
1176
1177 #if 0   /* We don't need this yet */
1178 #include <linux/backing-dev.h>
1179 int page_queue_congested(struct page *page)
1180 {
1181         struct backing_dev_info *bdi;
1182
1183         BUG_ON(!PageLocked(page));      /* It pins the swap_info_struct */
1184
1185         if (PageSwapCache(page)) {
1186                 swp_entry_t entry = { .val = page_private(page) };
1187                 struct swap_info_struct *sis;
1188
1189                 sis = get_swap_info_struct(swp_type(entry));
1190                 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1191         } else
1192                 bdi = page->mapping->backing_dev_info;
1193         return bdi_write_congested(bdi);
1194 }
1195 #endif
1196
1197 asmlinkage long sys_swapoff(const char __user * specialfile)
1198 {
1199         struct swap_info_struct * p = NULL;
1200         unsigned short *swap_map;
1201         struct file *swap_file, *victim;
1202         struct address_space *mapping;
1203         struct inode *inode;
1204         char * pathname;
1205         int i, type, prev;
1206         int err;
1207         
1208         if (!capable(CAP_SYS_ADMIN))
1209                 return -EPERM;
1210
1211         pathname = getname(specialfile);
1212         err = PTR_ERR(pathname);
1213         if (IS_ERR(pathname))
1214                 goto out;
1215
1216         victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1217         putname(pathname);
1218         err = PTR_ERR(victim);
1219         if (IS_ERR(victim))
1220                 goto out;
1221
1222         mapping = victim->f_mapping;
1223         prev = -1;
1224         spin_lock(&swap_lock);
1225         for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1226                 p = swap_info + type;
1227                 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1228                         if (p->swap_file->f_mapping == mapping)
1229                                 break;
1230                 }
1231                 prev = type;
1232         }
1233         if (type < 0) {
1234                 err = -EINVAL;
1235                 spin_unlock(&swap_lock);
1236                 goto out_dput;
1237         }
1238         if (!security_vm_enough_memory(p->pages))
1239                 vm_unacct_memory(p->pages);
1240         else {
1241                 err = -ENOMEM;
1242                 spin_unlock(&swap_lock);
1243                 goto out_dput;
1244         }
1245         if (prev < 0) {
1246                 swap_list.head = p->next;
1247         } else {
1248                 swap_info[prev].next = p->next;
1249         }
1250         if (type == swap_list.next) {
1251                 /* just pick something that's safe... */
1252                 swap_list.next = swap_list.head;
1253         }
1254         nr_swap_pages -= p->pages;
1255         total_swap_pages -= p->pages;
1256         p->flags &= ~SWP_WRITEOK;
1257         spin_unlock(&swap_lock);
1258
1259         current->flags |= PF_SWAPOFF;
1260         err = try_to_unuse(type);
1261         current->flags &= ~PF_SWAPOFF;
1262
1263         if (err) {
1264                 /* re-insert swap space back into swap_list */
1265                 spin_lock(&swap_lock);
1266                 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1267                         if (p->prio >= swap_info[i].prio)
1268                                 break;
1269                 p->next = i;
1270                 if (prev < 0)
1271                         swap_list.head = swap_list.next = p - swap_info;
1272                 else
1273                         swap_info[prev].next = p - swap_info;
1274                 nr_swap_pages += p->pages;
1275                 total_swap_pages += p->pages;
1276                 p->flags |= SWP_WRITEOK;
1277                 spin_unlock(&swap_lock);
1278                 goto out_dput;
1279         }
1280
1281         /* wait for any unplug function to finish */
1282         down_write(&swap_unplug_sem);
1283         up_write(&swap_unplug_sem);
1284
1285         destroy_swap_extents(p);
1286         mutex_lock(&swapon_mutex);
1287         spin_lock(&swap_lock);
1288         drain_mmlist();
1289
1290         /* wait for anyone still in scan_swap_map */
1291         p->highest_bit = 0;             /* cuts scans short */
1292         while (p->flags >= SWP_SCANNING) {
1293                 spin_unlock(&swap_lock);
1294                 schedule_timeout_uninterruptible(1);
1295                 spin_lock(&swap_lock);
1296         }
1297
1298         swap_file = p->swap_file;
1299         p->swap_file = NULL;
1300         p->max = 0;
1301         swap_map = p->swap_map;
1302         p->swap_map = NULL;
1303         p->flags = 0;
1304         spin_unlock(&swap_lock);
1305         mutex_unlock(&swapon_mutex);
1306         vfree(swap_map);
1307         inode = mapping->host;
1308         if (S_ISBLK(inode->i_mode)) {
1309                 struct block_device *bdev = I_BDEV(inode);
1310                 set_blocksize(bdev, p->old_block_size);
1311                 bd_release(bdev);
1312         } else {
1313                 mutex_lock(&inode->i_mutex);
1314                 inode->i_flags &= ~S_SWAPFILE;
1315                 mutex_unlock(&inode->i_mutex);
1316         }
1317         filp_close(swap_file, NULL);
1318         err = 0;
1319
1320 out_dput:
1321         filp_close(victim, NULL);
1322 out:
1323         return err;
1324 }
1325
1326 #ifdef CONFIG_PROC_FS
1327 /* iterator */
1328 static void *swap_start(struct seq_file *swap, loff_t *pos)
1329 {
1330         struct swap_info_struct *ptr = swap_info;
1331         int i;
1332         loff_t l = *pos;
1333
1334         mutex_lock(&swapon_mutex);
1335
1336         if (!l)
1337                 return SEQ_START_TOKEN;
1338
1339         for (i = 0; i < nr_swapfiles; i++, ptr++) {
1340                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1341                         continue;
1342                 if (!--l)
1343                         return ptr;
1344         }
1345
1346         return NULL;
1347 }
1348
1349 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1350 {
1351         struct swap_info_struct *ptr;
1352         struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1353
1354         if (v == SEQ_START_TOKEN)
1355                 ptr = swap_info;
1356         else {
1357                 ptr = v;
1358                 ptr++;
1359         }
1360
1361         for (; ptr < endptr; ptr++) {
1362                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1363                         continue;
1364                 ++*pos;
1365                 return ptr;
1366         }
1367
1368         return NULL;
1369 }
1370
1371 static void swap_stop(struct seq_file *swap, void *v)
1372 {
1373         mutex_unlock(&swapon_mutex);
1374 }
1375
1376 static int swap_show(struct seq_file *swap, void *v)
1377 {
1378         struct swap_info_struct *ptr = v;
1379         struct file *file;
1380         int len;
1381
1382         if (ptr == SEQ_START_TOKEN) {
1383                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1384                 return 0;
1385         }
1386
1387         file = ptr->swap_file;
1388         len = seq_path(swap, file->f_path.mnt, file->f_path.dentry, " \t\n\\");
1389         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1390                        len < 40 ? 40 - len : 1, " ",
1391                        S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1392                                 "partition" : "file\t",
1393                        ptr->pages << (PAGE_SHIFT - 10),
1394                        ptr->inuse_pages << (PAGE_SHIFT - 10),
1395                        ptr->prio);
1396         return 0;
1397 }
1398
1399 static const struct seq_operations swaps_op = {
1400         .start =        swap_start,
1401         .next =         swap_next,
1402         .stop =         swap_stop,
1403         .show =         swap_show
1404 };
1405
1406 static int swaps_open(struct inode *inode, struct file *file)
1407 {
1408         return seq_open(file, &swaps_op);
1409 }
1410
1411 static const struct file_operations proc_swaps_operations = {
1412         .open           = swaps_open,
1413         .read           = seq_read,
1414         .llseek         = seq_lseek,
1415         .release        = seq_release,
1416 };
1417
1418 static int __init procswaps_init(void)
1419 {
1420         struct proc_dir_entry *entry;
1421
1422         entry = create_proc_entry("swaps", 0, NULL);
1423         if (entry)
1424                 entry->proc_fops = &proc_swaps_operations;
1425         return 0;
1426 }
1427 __initcall(procswaps_init);
1428 #endif /* CONFIG_PROC_FS */
1429
1430 /*
1431  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1432  *
1433  * The swapon system call
1434  */
1435 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1436 {
1437         struct swap_info_struct * p;
1438         char *name = NULL;
1439         struct block_device *bdev = NULL;
1440         struct file *swap_file = NULL;
1441         struct address_space *mapping;
1442         unsigned int type;
1443         int i, prev;
1444         int error;
1445         static int least_priority;
1446         union swap_header *swap_header = NULL;
1447         int swap_header_version;
1448         unsigned int nr_good_pages = 0;
1449         int nr_extents = 0;
1450         sector_t span;
1451         unsigned long maxpages = 1;
1452         int swapfilesize;
1453         unsigned short *swap_map;
1454         struct page *page = NULL;
1455         struct inode *inode = NULL;
1456         int did_down = 0;
1457
1458         if (!capable(CAP_SYS_ADMIN))
1459                 return -EPERM;
1460         spin_lock(&swap_lock);
1461         p = swap_info;
1462         for (type = 0 ; type < nr_swapfiles ; type++,p++)
1463                 if (!(p->flags & SWP_USED))
1464                         break;
1465         error = -EPERM;
1466         if (type >= MAX_SWAPFILES) {
1467                 spin_unlock(&swap_lock);
1468                 goto out;
1469         }
1470         if (type >= nr_swapfiles)
1471                 nr_swapfiles = type+1;
1472         INIT_LIST_HEAD(&p->extent_list);
1473         p->flags = SWP_USED;
1474         p->swap_file = NULL;
1475         p->old_block_size = 0;
1476         p->swap_map = NULL;
1477         p->lowest_bit = 0;
1478         p->highest_bit = 0;
1479         p->cluster_nr = 0;
1480         p->inuse_pages = 0;
1481         p->next = -1;
1482         if (swap_flags & SWAP_FLAG_PREFER) {
1483                 p->prio =
1484                   (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1485         } else {
1486                 p->prio = --least_priority;
1487         }
1488         spin_unlock(&swap_lock);
1489         name = getname(specialfile);
1490         error = PTR_ERR(name);
1491         if (IS_ERR(name)) {
1492                 name = NULL;
1493                 goto bad_swap_2;
1494         }
1495         swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1496         error = PTR_ERR(swap_file);
1497         if (IS_ERR(swap_file)) {
1498                 swap_file = NULL;
1499                 goto bad_swap_2;
1500         }
1501
1502         p->swap_file = swap_file;
1503         mapping = swap_file->f_mapping;
1504         inode = mapping->host;
1505
1506         error = -EBUSY;
1507         for (i = 0; i < nr_swapfiles; i++) {
1508                 struct swap_info_struct *q = &swap_info[i];
1509
1510                 if (i == type || !q->swap_file)
1511                         continue;
1512                 if (mapping == q->swap_file->f_mapping)
1513                         goto bad_swap;
1514         }
1515
1516         error = -EINVAL;
1517         if (S_ISBLK(inode->i_mode)) {
1518                 bdev = I_BDEV(inode);
1519                 error = bd_claim(bdev, sys_swapon);
1520                 if (error < 0) {
1521                         bdev = NULL;
1522                         error = -EINVAL;
1523                         goto bad_swap;
1524                 }
1525                 p->old_block_size = block_size(bdev);
1526                 error = set_blocksize(bdev, PAGE_SIZE);
1527                 if (error < 0)
1528                         goto bad_swap;
1529                 p->bdev = bdev;
1530         } else if (S_ISREG(inode->i_mode)) {
1531                 p->bdev = inode->i_sb->s_bdev;
1532                 mutex_lock(&inode->i_mutex);
1533                 did_down = 1;
1534                 if (IS_SWAPFILE(inode)) {
1535                         error = -EBUSY;
1536                         goto bad_swap;
1537                 }
1538         } else {
1539                 goto bad_swap;
1540         }
1541
1542         swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1543
1544         /*
1545          * Read the swap header.
1546          */
1547         if (!mapping->a_ops->readpage) {
1548                 error = -EINVAL;
1549                 goto bad_swap;
1550         }
1551         page = read_mapping_page(mapping, 0, swap_file);
1552         if (IS_ERR(page)) {
1553                 error = PTR_ERR(page);
1554                 goto bad_swap;
1555         }
1556         kmap(page);
1557         swap_header = page_address(page);
1558
1559         if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1560                 swap_header_version = 1;
1561         else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1562                 swap_header_version = 2;
1563         else {
1564                 printk(KERN_ERR "Unable to find swap-space signature\n");
1565                 error = -EINVAL;
1566                 goto bad_swap;
1567         }
1568         
1569         switch (swap_header_version) {
1570         case 1:
1571                 printk(KERN_ERR "version 0 swap is no longer supported. "
1572                         "Use mkswap -v1 %s\n", name);
1573                 error = -EINVAL;
1574                 goto bad_swap;
1575         case 2:
1576                 /* Check the swap header's sub-version and the size of
1577                    the swap file and bad block lists */
1578                 if (swap_header->info.version != 1) {
1579                         printk(KERN_WARNING
1580                                "Unable to handle swap header version %d\n",
1581                                swap_header->info.version);
1582                         error = -EINVAL;
1583                         goto bad_swap;
1584                 }
1585
1586                 p->lowest_bit  = 1;
1587                 p->cluster_next = 1;
1588
1589                 /*
1590                  * Find out how many pages are allowed for a single swap
1591                  * device. There are two limiting factors: 1) the number of
1592                  * bits for the swap offset in the swp_entry_t type and
1593                  * 2) the number of bits in the a swap pte as defined by
1594                  * the different architectures. In order to find the
1595                  * largest possible bit mask a swap entry with swap type 0
1596                  * and swap offset ~0UL is created, encoded to a swap pte,
1597                  * decoded to a swp_entry_t again and finally the swap
1598                  * offset is extracted. This will mask all the bits from
1599                  * the initial ~0UL mask that can't be encoded in either
1600                  * the swp_entry_t or the architecture definition of a
1601                  * swap pte.
1602                  */
1603                 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1604                 if (maxpages > swap_header->info.last_page)
1605                         maxpages = swap_header->info.last_page;
1606                 p->highest_bit = maxpages - 1;
1607
1608                 error = -EINVAL;
1609                 if (!maxpages)
1610                         goto bad_swap;
1611                 if (swapfilesize && maxpages > swapfilesize) {
1612                         printk(KERN_WARNING
1613                                "Swap area shorter than signature indicates\n");
1614                         goto bad_swap;
1615                 }
1616                 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1617                         goto bad_swap;
1618                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1619                         goto bad_swap;
1620
1621                 /* OK, set up the swap map and apply the bad block list */
1622                 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1623                         error = -ENOMEM;
1624                         goto bad_swap;
1625                 }
1626
1627                 error = 0;
1628                 memset(p->swap_map, 0, maxpages * sizeof(short));
1629                 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1630                         int page_nr = swap_header->info.badpages[i];
1631                         if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1632                                 error = -EINVAL;
1633                         else
1634                                 p->swap_map[page_nr] = SWAP_MAP_BAD;
1635                 }
1636                 nr_good_pages = swap_header->info.last_page -
1637                                 swap_header->info.nr_badpages -
1638                                 1 /* header page */;
1639                 if (error)
1640                         goto bad_swap;
1641         }
1642
1643         if (nr_good_pages) {
1644                 p->swap_map[0] = SWAP_MAP_BAD;
1645                 p->max = maxpages;
1646                 p->pages = nr_good_pages;
1647                 nr_extents = setup_swap_extents(p, &span);
1648                 if (nr_extents < 0) {
1649                         error = nr_extents;
1650                         goto bad_swap;
1651                 }
1652                 nr_good_pages = p->pages;
1653         }
1654         if (!nr_good_pages) {
1655                 printk(KERN_WARNING "Empty swap-file\n");
1656                 error = -EINVAL;
1657                 goto bad_swap;
1658         }
1659
1660         mutex_lock(&swapon_mutex);
1661         spin_lock(&swap_lock);
1662         p->flags = SWP_ACTIVE;
1663         nr_swap_pages += nr_good_pages;
1664         total_swap_pages += nr_good_pages;
1665
1666         printk(KERN_INFO "Adding %uk swap on %s.  "
1667                         "Priority:%d extents:%d across:%lluk\n",
1668                 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1669                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1670
1671         /* insert swap space into swap_list: */
1672         prev = -1;
1673         for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1674                 if (p->prio >= swap_info[i].prio) {
1675                         break;
1676                 }
1677                 prev = i;
1678         }
1679         p->next = i;
1680         if (prev < 0) {
1681                 swap_list.head = swap_list.next = p - swap_info;
1682         } else {
1683                 swap_info[prev].next = p - swap_info;
1684         }
1685         spin_unlock(&swap_lock);
1686         mutex_unlock(&swapon_mutex);
1687         error = 0;
1688         goto out;
1689 bad_swap:
1690         if (bdev) {
1691                 set_blocksize(bdev, p->old_block_size);
1692                 bd_release(bdev);
1693         }
1694         destroy_swap_extents(p);
1695 bad_swap_2:
1696         spin_lock(&swap_lock);
1697         swap_map = p->swap_map;
1698         p->swap_file = NULL;
1699         p->swap_map = NULL;
1700         p->flags = 0;
1701         if (!(swap_flags & SWAP_FLAG_PREFER))
1702                 ++least_priority;
1703         spin_unlock(&swap_lock);
1704         vfree(swap_map);
1705         if (swap_file)
1706                 filp_close(swap_file, NULL);
1707 out:
1708         if (page && !IS_ERR(page)) {
1709                 kunmap(page);
1710                 page_cache_release(page);
1711         }
1712         if (name)
1713                 putname(name);
1714         if (did_down) {
1715                 if (!error)
1716                         inode->i_flags |= S_SWAPFILE;
1717                 mutex_unlock(&inode->i_mutex);
1718         }
1719         return error;
1720 }
1721
1722 void si_swapinfo(struct sysinfo *val)
1723 {
1724         unsigned int i;
1725         unsigned long nr_to_be_unused = 0;
1726
1727         spin_lock(&swap_lock);
1728         for (i = 0; i < nr_swapfiles; i++) {
1729                 if (!(swap_info[i].flags & SWP_USED) ||
1730                      (swap_info[i].flags & SWP_WRITEOK))
1731                         continue;
1732                 nr_to_be_unused += swap_info[i].inuse_pages;
1733         }
1734         val->freeswap = nr_swap_pages + nr_to_be_unused;
1735         val->totalswap = total_swap_pages + nr_to_be_unused;
1736         spin_unlock(&swap_lock);
1737 }
1738
1739 /*
1740  * Verify that a swap entry is valid and increment its swap map count.
1741  *
1742  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1743  * "permanent", but will be reclaimed by the next swapoff.
1744  */
1745 int swap_duplicate(swp_entry_t entry)
1746 {
1747         struct swap_info_struct * p;
1748         unsigned long offset, type;
1749         int result = 0;
1750
1751         if (is_migration_entry(entry))
1752                 return 1;
1753
1754         type = swp_type(entry);
1755         if (type >= nr_swapfiles)
1756                 goto bad_file;
1757         p = type + swap_info;
1758         offset = swp_offset(entry);
1759
1760         spin_lock(&swap_lock);
1761         if (offset < p->max && p->swap_map[offset]) {
1762                 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1763                         p->swap_map[offset]++;
1764                         result = 1;
1765                 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1766                         if (swap_overflow++ < 5)
1767                                 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1768                         p->swap_map[offset] = SWAP_MAP_MAX;
1769                         result = 1;
1770                 }
1771         }
1772         spin_unlock(&swap_lock);
1773 out:
1774         return result;
1775
1776 bad_file:
1777         printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1778         goto out;
1779 }
1780
1781 struct swap_info_struct *
1782 get_swap_info_struct(unsigned type)
1783 {
1784         return &swap_info[type];
1785 }
1786
1787 /*
1788  * swap_lock prevents swap_map being freed. Don't grab an extra
1789  * reference on the swaphandle, it doesn't matter if it becomes unused.
1790  */
1791 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1792 {
1793         struct swap_info_struct *si;
1794         int our_page_cluster = page_cluster;
1795         pgoff_t target, toff;
1796         pgoff_t base, end;
1797         int nr_pages = 0;
1798
1799         if (!our_page_cluster)  /* no readahead */
1800                 return 0;
1801
1802         si = &swap_info[swp_type(entry)];
1803         target = swp_offset(entry);
1804         base = (target >> our_page_cluster) << our_page_cluster;
1805         end = base + (1 << our_page_cluster);
1806         if (!base)              /* first page is swap header */
1807                 base++;
1808
1809         spin_lock(&swap_lock);
1810         if (end > si->max)      /* don't go beyond end of map */
1811                 end = si->max;
1812
1813         /* Count contiguous allocated slots above our target */
1814         for (toff = target; ++toff < end; nr_pages++) {
1815                 /* Don't read in free or bad pages */
1816                 if (!si->swap_map[toff])
1817                         break;
1818                 if (si->swap_map[toff] == SWAP_MAP_BAD)
1819                         break;
1820         }
1821         /* Count contiguous allocated slots below our target */
1822         for (toff = target; --toff >= base; nr_pages++) {
1823                 /* Don't read in free or bad pages */
1824                 if (!si->swap_map[toff])
1825                         break;
1826                 if (si->swap_map[toff] == SWAP_MAP_BAD)
1827                         break;
1828         }
1829         spin_unlock(&swap_lock);
1830
1831         /*
1832          * Indicate starting offset, and return number of pages to get:
1833          * if only 1, say 0, since there's then no readahead to be done.
1834          */
1835         *offset = ++toff;
1836         return nr_pages? ++nr_pages: 0;
1837 }