4 * Internal slab definitions
8 * State of the slab allocator.
10 * This is used to describe the states of the allocator during bootup.
11 * Allocators use this to gradually bootstrap themselves. Most allocators
12 * have the problem that the structures used for managing slab caches are
13 * allocated from slab caches themselves.
16 DOWN, /* No slab functionality yet */
17 PARTIAL, /* SLUB: kmem_cache_node available */
18 PARTIAL_ARRAYCACHE, /* SLAB: kmalloc size for arraycache available */
19 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
20 UP, /* Slab caches usable but not all extras yet */
21 FULL /* Everything is working */
24 extern enum slab_state slab_state;
26 /* The slab cache mutex protects the management structures during changes */
27 extern struct mutex slab_mutex;
29 /* The list of all slab caches on the system */
30 extern struct list_head slab_caches;
32 /* The slab cache that manages slab cache information */
33 extern struct kmem_cache *kmem_cache;
35 unsigned long calculate_alignment(unsigned long flags,
36 unsigned long align, unsigned long size);
39 /* Kmalloc array related functions */
40 void create_kmalloc_caches(unsigned long);
42 /* Find the kmalloc slab corresponding for a certain size */
43 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
47 /* Functions provided by the slab allocators */
48 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
50 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
52 extern void create_boot_cache(struct kmem_cache *, const char *name,
53 size_t size, unsigned long flags);
58 __kmem_cache_alias(const char *name, size_t size, size_t align,
59 unsigned long flags, void (*ctor)(void *));
61 static inline struct kmem_cache *
62 __kmem_cache_alias(const char *name, size_t size, size_t align,
63 unsigned long flags, void (*ctor)(void *))
68 /* Legal flag mask for kmem_cache_create(), for various configurations */
69 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
70 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
72 #if defined(CONFIG_DEBUG_SLAB)
73 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
74 #elif defined(CONFIG_SLUB_DEBUG)
75 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
76 SLAB_TRACE | SLAB_DEBUG_FREE)
78 #define SLAB_DEBUG_FLAGS (0)
81 #if defined(CONFIG_SLAB)
82 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
83 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
84 #elif defined(CONFIG_SLUB)
85 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
86 SLAB_TEMPORARY | SLAB_NOTRACK)
88 #define SLAB_CACHE_FLAGS (0)
91 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
93 int __kmem_cache_shutdown(struct kmem_cache *);
94 int __kmem_cache_shrink(struct kmem_cache *);
95 void slab_kmem_cache_release(struct kmem_cache *);
101 unsigned long active_objs;
102 unsigned long num_objs;
103 unsigned long active_slabs;
104 unsigned long num_slabs;
105 unsigned long shared_avail;
107 unsigned int batchcount;
109 unsigned int objects_per_slab;
110 unsigned int cache_order;
113 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
114 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
115 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
116 size_t count, loff_t *ppos);
118 #ifdef CONFIG_MEMCG_KMEM
119 static inline bool is_root_cache(struct kmem_cache *s)
121 return !s->memcg_params || s->memcg_params->is_root_cache;
124 static inline bool slab_equal_or_root(struct kmem_cache *s,
125 struct kmem_cache *p)
128 (s->memcg_params && (p == s->memcg_params->root_cache));
132 * We use suffixes to the name in memcg because we can't have caches
133 * created in the system with the same name. But when we print them
134 * locally, better refer to them with the base name
136 static inline const char *cache_name(struct kmem_cache *s)
138 if (!is_root_cache(s))
139 return s->memcg_params->root_cache->name;
144 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
145 * That said the caller must assure the memcg's cache won't go away. Since once
146 * created a memcg's cache is destroyed only along with the root cache, it is
147 * true if we are going to allocate from the cache or hold a reference to the
148 * root cache by other means. Otherwise, we should hold either the slab_mutex
149 * or the memcg's slab_caches_mutex while calling this function and accessing
150 * the returned value.
152 static inline struct kmem_cache *
153 cache_from_memcg_idx(struct kmem_cache *s, int idx)
155 struct kmem_cache *cachep;
156 struct memcg_cache_params *params;
158 if (!s->memcg_params)
162 params = rcu_dereference(s->memcg_params);
163 cachep = params->memcg_caches[idx];
167 * Make sure we will access the up-to-date value. The code updating
168 * memcg_caches issues a write barrier to match this (see
169 * memcg_register_cache()).
171 smp_read_barrier_depends();
175 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
177 if (is_root_cache(s))
179 return s->memcg_params->root_cache;
182 static __always_inline int memcg_charge_slab(struct kmem_cache *s,
183 gfp_t gfp, int order)
185 if (!memcg_kmem_enabled())
187 if (is_root_cache(s))
189 return __memcg_charge_slab(s, gfp, order);
192 static __always_inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
194 if (!memcg_kmem_enabled())
196 if (is_root_cache(s))
198 __memcg_uncharge_slab(s, order);
201 static inline bool is_root_cache(struct kmem_cache *s)
206 static inline bool slab_equal_or_root(struct kmem_cache *s,
207 struct kmem_cache *p)
212 static inline const char *cache_name(struct kmem_cache *s)
217 static inline struct kmem_cache *
218 cache_from_memcg_idx(struct kmem_cache *s, int idx)
223 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
228 static inline int memcg_charge_slab(struct kmem_cache *s, gfp_t gfp, int order)
233 static inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
238 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
240 struct kmem_cache *cachep;
244 * When kmemcg is not being used, both assignments should return the
245 * same value. but we don't want to pay the assignment price in that
246 * case. If it is not compiled in, the compiler should be smart enough
247 * to not do even the assignment. In that case, slab_equal_or_root
248 * will also be a constant.
250 if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
253 page = virt_to_head_page(x);
254 cachep = page->slab_cache;
255 if (slab_equal_or_root(cachep, s))
258 pr_err("%s: Wrong slab cache. %s but object is from %s\n",
259 __FUNCTION__, cachep->name, s->name);
267 * The slab lists for all objects.
269 struct kmem_cache_node {
270 spinlock_t list_lock;
273 struct list_head slabs_partial; /* partial list first, better asm code */
274 struct list_head slabs_full;
275 struct list_head slabs_free;
276 unsigned long free_objects;
277 unsigned int free_limit;
278 unsigned int colour_next; /* Per-node cache coloring */
279 struct array_cache *shared; /* shared per node */
280 struct array_cache **alien; /* on other nodes */
281 unsigned long next_reap; /* updated without locking */
282 int free_touched; /* updated without locking */
286 unsigned long nr_partial;
287 struct list_head partial;
288 #ifdef CONFIG_SLUB_DEBUG
289 atomic_long_t nr_slabs;
290 atomic_long_t total_objects;
291 struct list_head full;
297 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
298 void slab_stop(struct seq_file *m, void *p);