writeback: dirty position control
[pandora-kernel.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    Andrew Morton
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
38
39 /*
40  * Sleep at most 200ms at a time in balance_dirty_pages().
41  */
42 #define MAX_PAUSE               max(HZ/5, 1)
43
44 /*
45  * Estimate write bandwidth at 200ms intervals.
46  */
47 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
48
49 #define RATELIMIT_CALC_SHIFT    10
50
51 /*
52  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
53  * will look to see if it needs to force writeback or throttling.
54  */
55 static long ratelimit_pages = 32;
56
57 /*
58  * When balance_dirty_pages decides that the caller needs to perform some
59  * non-background writeback, this is how many pages it will attempt to write.
60  * It should be somewhat larger than dirtied pages to ensure that reasonably
61  * large amounts of I/O are submitted.
62  */
63 static inline long sync_writeback_pages(unsigned long dirtied)
64 {
65         if (dirtied < ratelimit_pages)
66                 dirtied = ratelimit_pages;
67
68         return dirtied + dirtied / 2;
69 }
70
71 /* The following parameters are exported via /proc/sys/vm */
72
73 /*
74  * Start background writeback (via writeback threads) at this percentage
75  */
76 int dirty_background_ratio = 10;
77
78 /*
79  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
80  * dirty_background_ratio * the amount of dirtyable memory
81  */
82 unsigned long dirty_background_bytes;
83
84 /*
85  * free highmem will not be subtracted from the total free memory
86  * for calculating free ratios if vm_highmem_is_dirtyable is true
87  */
88 int vm_highmem_is_dirtyable;
89
90 /*
91  * The generator of dirty data starts writeback at this percentage
92  */
93 int vm_dirty_ratio = 20;
94
95 /*
96  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
97  * vm_dirty_ratio * the amount of dirtyable memory
98  */
99 unsigned long vm_dirty_bytes;
100
101 /*
102  * The interval between `kupdate'-style writebacks
103  */
104 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
105
106 /*
107  * The longest time for which data is allowed to remain dirty
108  */
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110
111 /*
112  * Flag that makes the machine dump writes/reads and block dirtyings.
113  */
114 int block_dump;
115
116 /*
117  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
118  * a full sync is triggered after this time elapses without any disk activity.
119  */
120 int laptop_mode;
121
122 EXPORT_SYMBOL(laptop_mode);
123
124 /* End of sysctl-exported parameters */
125
126 unsigned long global_dirty_limit;
127
128 /*
129  * Scale the writeback cache size proportional to the relative writeout speeds.
130  *
131  * We do this by keeping a floating proportion between BDIs, based on page
132  * writeback completions [end_page_writeback()]. Those devices that write out
133  * pages fastest will get the larger share, while the slower will get a smaller
134  * share.
135  *
136  * We use page writeout completions because we are interested in getting rid of
137  * dirty pages. Having them written out is the primary goal.
138  *
139  * We introduce a concept of time, a period over which we measure these events,
140  * because demand can/will vary over time. The length of this period itself is
141  * measured in page writeback completions.
142  *
143  */
144 static struct prop_descriptor vm_completions;
145 static struct prop_descriptor vm_dirties;
146
147 /*
148  * couple the period to the dirty_ratio:
149  *
150  *   period/2 ~ roundup_pow_of_two(dirty limit)
151  */
152 static int calc_period_shift(void)
153 {
154         unsigned long dirty_total;
155
156         if (vm_dirty_bytes)
157                 dirty_total = vm_dirty_bytes / PAGE_SIZE;
158         else
159                 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
160                                 100;
161         return 2 + ilog2(dirty_total - 1);
162 }
163
164 /*
165  * update the period when the dirty threshold changes.
166  */
167 static void update_completion_period(void)
168 {
169         int shift = calc_period_shift();
170         prop_change_shift(&vm_completions, shift);
171         prop_change_shift(&vm_dirties, shift);
172 }
173
174 int dirty_background_ratio_handler(struct ctl_table *table, int write,
175                 void __user *buffer, size_t *lenp,
176                 loff_t *ppos)
177 {
178         int ret;
179
180         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
181         if (ret == 0 && write)
182                 dirty_background_bytes = 0;
183         return ret;
184 }
185
186 int dirty_background_bytes_handler(struct ctl_table *table, int write,
187                 void __user *buffer, size_t *lenp,
188                 loff_t *ppos)
189 {
190         int ret;
191
192         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
193         if (ret == 0 && write)
194                 dirty_background_ratio = 0;
195         return ret;
196 }
197
198 int dirty_ratio_handler(struct ctl_table *table, int write,
199                 void __user *buffer, size_t *lenp,
200                 loff_t *ppos)
201 {
202         int old_ratio = vm_dirty_ratio;
203         int ret;
204
205         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
206         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
207                 update_completion_period();
208                 vm_dirty_bytes = 0;
209         }
210         return ret;
211 }
212
213
214 int dirty_bytes_handler(struct ctl_table *table, int write,
215                 void __user *buffer, size_t *lenp,
216                 loff_t *ppos)
217 {
218         unsigned long old_bytes = vm_dirty_bytes;
219         int ret;
220
221         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
222         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
223                 update_completion_period();
224                 vm_dirty_ratio = 0;
225         }
226         return ret;
227 }
228
229 /*
230  * Increment the BDI's writeout completion count and the global writeout
231  * completion count. Called from test_clear_page_writeback().
232  */
233 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
234 {
235         __inc_bdi_stat(bdi, BDI_WRITTEN);
236         __prop_inc_percpu_max(&vm_completions, &bdi->completions,
237                               bdi->max_prop_frac);
238 }
239
240 void bdi_writeout_inc(struct backing_dev_info *bdi)
241 {
242         unsigned long flags;
243
244         local_irq_save(flags);
245         __bdi_writeout_inc(bdi);
246         local_irq_restore(flags);
247 }
248 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
249
250 void task_dirty_inc(struct task_struct *tsk)
251 {
252         prop_inc_single(&vm_dirties, &tsk->dirties);
253 }
254
255 /*
256  * Obtain an accurate fraction of the BDI's portion.
257  */
258 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
259                 long *numerator, long *denominator)
260 {
261         prop_fraction_percpu(&vm_completions, &bdi->completions,
262                                 numerator, denominator);
263 }
264
265 static inline void task_dirties_fraction(struct task_struct *tsk,
266                 long *numerator, long *denominator)
267 {
268         prop_fraction_single(&vm_dirties, &tsk->dirties,
269                                 numerator, denominator);
270 }
271
272 /*
273  * task_dirty_limit - scale down dirty throttling threshold for one task
274  *
275  * task specific dirty limit:
276  *
277  *   dirty -= (dirty/8) * p_{t}
278  *
279  * To protect light/slow dirtying tasks from heavier/fast ones, we start
280  * throttling individual tasks before reaching the bdi dirty limit.
281  * Relatively low thresholds will be allocated to heavy dirtiers. So when
282  * dirty pages grow large, heavy dirtiers will be throttled first, which will
283  * effectively curb the growth of dirty pages. Light dirtiers with high enough
284  * dirty threshold may never get throttled.
285  */
286 #define TASK_LIMIT_FRACTION 8
287 static unsigned long task_dirty_limit(struct task_struct *tsk,
288                                        unsigned long bdi_dirty)
289 {
290         long numerator, denominator;
291         unsigned long dirty = bdi_dirty;
292         u64 inv = dirty / TASK_LIMIT_FRACTION;
293
294         task_dirties_fraction(tsk, &numerator, &denominator);
295         inv *= numerator;
296         do_div(inv, denominator);
297
298         dirty -= inv;
299
300         return max(dirty, bdi_dirty/2);
301 }
302
303 /* Minimum limit for any task */
304 static unsigned long task_min_dirty_limit(unsigned long bdi_dirty)
305 {
306         return bdi_dirty - bdi_dirty / TASK_LIMIT_FRACTION;
307 }
308
309 /*
310  *
311  */
312 static unsigned int bdi_min_ratio;
313
314 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
315 {
316         int ret = 0;
317
318         spin_lock_bh(&bdi_lock);
319         if (min_ratio > bdi->max_ratio) {
320                 ret = -EINVAL;
321         } else {
322                 min_ratio -= bdi->min_ratio;
323                 if (bdi_min_ratio + min_ratio < 100) {
324                         bdi_min_ratio += min_ratio;
325                         bdi->min_ratio += min_ratio;
326                 } else {
327                         ret = -EINVAL;
328                 }
329         }
330         spin_unlock_bh(&bdi_lock);
331
332         return ret;
333 }
334
335 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
336 {
337         int ret = 0;
338
339         if (max_ratio > 100)
340                 return -EINVAL;
341
342         spin_lock_bh(&bdi_lock);
343         if (bdi->min_ratio > max_ratio) {
344                 ret = -EINVAL;
345         } else {
346                 bdi->max_ratio = max_ratio;
347                 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
348         }
349         spin_unlock_bh(&bdi_lock);
350
351         return ret;
352 }
353 EXPORT_SYMBOL(bdi_set_max_ratio);
354
355 /*
356  * Work out the current dirty-memory clamping and background writeout
357  * thresholds.
358  *
359  * The main aim here is to lower them aggressively if there is a lot of mapped
360  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
361  * pages.  It is better to clamp down on writers than to start swapping, and
362  * performing lots of scanning.
363  *
364  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
365  *
366  * We don't permit the clamping level to fall below 5% - that is getting rather
367  * excessive.
368  *
369  * We make sure that the background writeout level is below the adjusted
370  * clamping level.
371  */
372
373 static unsigned long highmem_dirtyable_memory(unsigned long total)
374 {
375 #ifdef CONFIG_HIGHMEM
376         int node;
377         unsigned long x = 0;
378
379         for_each_node_state(node, N_HIGH_MEMORY) {
380                 struct zone *z =
381                         &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
382
383                 x += zone_page_state(z, NR_FREE_PAGES) +
384                      zone_reclaimable_pages(z);
385         }
386         /*
387          * Make sure that the number of highmem pages is never larger
388          * than the number of the total dirtyable memory. This can only
389          * occur in very strange VM situations but we want to make sure
390          * that this does not occur.
391          */
392         return min(x, total);
393 #else
394         return 0;
395 #endif
396 }
397
398 /**
399  * determine_dirtyable_memory - amount of memory that may be used
400  *
401  * Returns the numebr of pages that can currently be freed and used
402  * by the kernel for direct mappings.
403  */
404 unsigned long determine_dirtyable_memory(void)
405 {
406         unsigned long x;
407
408         x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
409
410         if (!vm_highmem_is_dirtyable)
411                 x -= highmem_dirtyable_memory(x);
412
413         return x + 1;   /* Ensure that we never return 0 */
414 }
415
416 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
417                                            unsigned long bg_thresh)
418 {
419         return (thresh + bg_thresh) / 2;
420 }
421
422 static unsigned long hard_dirty_limit(unsigned long thresh)
423 {
424         return max(thresh, global_dirty_limit);
425 }
426
427 /*
428  * global_dirty_limits - background-writeback and dirty-throttling thresholds
429  *
430  * Calculate the dirty thresholds based on sysctl parameters
431  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
432  * - vm.dirty_ratio             or  vm.dirty_bytes
433  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
434  * real-time tasks.
435  */
436 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
437 {
438         unsigned long background;
439         unsigned long dirty;
440         unsigned long uninitialized_var(available_memory);
441         struct task_struct *tsk;
442
443         if (!vm_dirty_bytes || !dirty_background_bytes)
444                 available_memory = determine_dirtyable_memory();
445
446         if (vm_dirty_bytes)
447                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
448         else
449                 dirty = (vm_dirty_ratio * available_memory) / 100;
450
451         if (dirty_background_bytes)
452                 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
453         else
454                 background = (dirty_background_ratio * available_memory) / 100;
455
456         if (background >= dirty)
457                 background = dirty / 2;
458         tsk = current;
459         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
460                 background += background / 4;
461                 dirty += dirty / 4;
462         }
463         *pbackground = background;
464         *pdirty = dirty;
465         trace_global_dirty_state(background, dirty);
466 }
467
468 /**
469  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
470  * @bdi: the backing_dev_info to query
471  * @dirty: global dirty limit in pages
472  *
473  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
474  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
475  * And the "limit" in the name is not seriously taken as hard limit in
476  * balance_dirty_pages().
477  *
478  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
479  * - starving fast devices
480  * - piling up dirty pages (that will take long time to sync) on slow devices
481  *
482  * The bdi's share of dirty limit will be adapting to its throughput and
483  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
484  */
485 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
486 {
487         u64 bdi_dirty;
488         long numerator, denominator;
489
490         /*
491          * Calculate this BDI's share of the dirty ratio.
492          */
493         bdi_writeout_fraction(bdi, &numerator, &denominator);
494
495         bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
496         bdi_dirty *= numerator;
497         do_div(bdi_dirty, denominator);
498
499         bdi_dirty += (dirty * bdi->min_ratio) / 100;
500         if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
501                 bdi_dirty = dirty * bdi->max_ratio / 100;
502
503         return bdi_dirty;
504 }
505
506 /*
507  * Dirty position control.
508  *
509  * (o) global/bdi setpoints
510  *
511  * We want the dirty pages be balanced around the global/bdi setpoints.
512  * When the number of dirty pages is higher/lower than the setpoint, the
513  * dirty position control ratio (and hence task dirty ratelimit) will be
514  * decreased/increased to bring the dirty pages back to the setpoint.
515  *
516  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
517  *
518  *     if (dirty < setpoint) scale up   pos_ratio
519  *     if (dirty > setpoint) scale down pos_ratio
520  *
521  *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
522  *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
523  *
524  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
525  *
526  * (o) global control line
527  *
528  *     ^ pos_ratio
529  *     |
530  *     |            |<===== global dirty control scope ======>|
531  * 2.0 .............*
532  *     |            .*
533  *     |            . *
534  *     |            .   *
535  *     |            .     *
536  *     |            .        *
537  *     |            .            *
538  * 1.0 ................................*
539  *     |            .                  .     *
540  *     |            .                  .          *
541  *     |            .                  .              *
542  *     |            .                  .                 *
543  *     |            .                  .                    *
544  *   0 +------------.------------------.----------------------*------------->
545  *           freerun^          setpoint^                 limit^   dirty pages
546  *
547  * (o) bdi control line
548  *
549  *     ^ pos_ratio
550  *     |
551  *     |            *
552  *     |              *
553  *     |                *
554  *     |                  *
555  *     |                    * |<=========== span ============>|
556  * 1.0 .......................*
557  *     |                      . *
558  *     |                      .   *
559  *     |                      .     *
560  *     |                      .       *
561  *     |                      .         *
562  *     |                      .           *
563  *     |                      .             *
564  *     |                      .               *
565  *     |                      .                 *
566  *     |                      .                   *
567  *     |                      .                     *
568  * 1/4 ...............................................* * * * * * * * * * * *
569  *     |                      .                         .
570  *     |                      .                           .
571  *     |                      .                             .
572  *   0 +----------------------.-------------------------------.------------->
573  *                bdi_setpoint^                    x_intercept^
574  *
575  * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
576  * be smoothly throttled down to normal if it starts high in situations like
577  * - start writing to a slow SD card and a fast disk at the same time. The SD
578  *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
579  * - the bdi dirty thresh drops quickly due to change of JBOD workload
580  */
581 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
582                                         unsigned long thresh,
583                                         unsigned long bg_thresh,
584                                         unsigned long dirty,
585                                         unsigned long bdi_thresh,
586                                         unsigned long bdi_dirty)
587 {
588         unsigned long write_bw = bdi->avg_write_bandwidth;
589         unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
590         unsigned long limit = hard_dirty_limit(thresh);
591         unsigned long x_intercept;
592         unsigned long setpoint;         /* dirty pages' target balance point */
593         unsigned long bdi_setpoint;
594         unsigned long span;
595         long long pos_ratio;            /* for scaling up/down the rate limit */
596         long x;
597
598         if (unlikely(dirty >= limit))
599                 return 0;
600
601         /*
602          * global setpoint
603          *
604          *                           setpoint - dirty 3
605          *        f(dirty) := 1.0 + (----------------)
606          *                           limit - setpoint
607          *
608          * it's a 3rd order polynomial that subjects to
609          *
610          * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
611          * (2) f(setpoint) = 1.0 => the balance point
612          * (3) f(limit)    = 0   => the hard limit
613          * (4) df/dx      <= 0   => negative feedback control
614          * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
615          *     => fast response on large errors; small oscillation near setpoint
616          */
617         setpoint = (freerun + limit) / 2;
618         x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
619                     limit - setpoint + 1);
620         pos_ratio = x;
621         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
622         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
623         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
624
625         /*
626          * We have computed basic pos_ratio above based on global situation. If
627          * the bdi is over/under its share of dirty pages, we want to scale
628          * pos_ratio further down/up. That is done by the following mechanism.
629          */
630
631         /*
632          * bdi setpoint
633          *
634          *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
635          *
636          *                        x_intercept - bdi_dirty
637          *                     := --------------------------
638          *                        x_intercept - bdi_setpoint
639          *
640          * The main bdi control line is a linear function that subjects to
641          *
642          * (1) f(bdi_setpoint) = 1.0
643          * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
644          *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
645          *
646          * For single bdi case, the dirty pages are observed to fluctuate
647          * regularly within range
648          *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
649          * for various filesystems, where (2) can yield in a reasonable 12.5%
650          * fluctuation range for pos_ratio.
651          *
652          * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
653          * own size, so move the slope over accordingly and choose a slope that
654          * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
655          */
656         if (unlikely(bdi_thresh > thresh))
657                 bdi_thresh = thresh;
658         /*
659          * scale global setpoint to bdi's:
660          *      bdi_setpoint = setpoint * bdi_thresh / thresh
661          */
662         x = div_u64((u64)bdi_thresh << 16, thresh + 1);
663         bdi_setpoint = setpoint * (u64)x >> 16;
664         /*
665          * Use span=(8*write_bw) in single bdi case as indicated by
666          * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
667          *
668          *        bdi_thresh                    thresh - bdi_thresh
669          * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
670          *          thresh                            thresh
671          */
672         span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
673         x_intercept = bdi_setpoint + span;
674
675         if (bdi_dirty < x_intercept - span / 4) {
676                 pos_ratio *= x_intercept - bdi_dirty;
677                 do_div(pos_ratio, x_intercept - bdi_setpoint + 1);
678         } else
679                 pos_ratio /= 4;
680
681         return pos_ratio;
682 }
683
684 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
685                                        unsigned long elapsed,
686                                        unsigned long written)
687 {
688         const unsigned long period = roundup_pow_of_two(3 * HZ);
689         unsigned long avg = bdi->avg_write_bandwidth;
690         unsigned long old = bdi->write_bandwidth;
691         u64 bw;
692
693         /*
694          * bw = written * HZ / elapsed
695          *
696          *                   bw * elapsed + write_bandwidth * (period - elapsed)
697          * write_bandwidth = ---------------------------------------------------
698          *                                          period
699          */
700         bw = written - bdi->written_stamp;
701         bw *= HZ;
702         if (unlikely(elapsed > period)) {
703                 do_div(bw, elapsed);
704                 avg = bw;
705                 goto out;
706         }
707         bw += (u64)bdi->write_bandwidth * (period - elapsed);
708         bw >>= ilog2(period);
709
710         /*
711          * one more level of smoothing, for filtering out sudden spikes
712          */
713         if (avg > old && old >= (unsigned long)bw)
714                 avg -= (avg - old) >> 3;
715
716         if (avg < old && old <= (unsigned long)bw)
717                 avg += (old - avg) >> 3;
718
719 out:
720         bdi->write_bandwidth = bw;
721         bdi->avg_write_bandwidth = avg;
722 }
723
724 /*
725  * The global dirtyable memory and dirty threshold could be suddenly knocked
726  * down by a large amount (eg. on the startup of KVM in a swapless system).
727  * This may throw the system into deep dirty exceeded state and throttle
728  * heavy/light dirtiers alike. To retain good responsiveness, maintain
729  * global_dirty_limit for tracking slowly down to the knocked down dirty
730  * threshold.
731  */
732 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
733 {
734         unsigned long limit = global_dirty_limit;
735
736         /*
737          * Follow up in one step.
738          */
739         if (limit < thresh) {
740                 limit = thresh;
741                 goto update;
742         }
743
744         /*
745          * Follow down slowly. Use the higher one as the target, because thresh
746          * may drop below dirty. This is exactly the reason to introduce
747          * global_dirty_limit which is guaranteed to lie above the dirty pages.
748          */
749         thresh = max(thresh, dirty);
750         if (limit > thresh) {
751                 limit -= (limit - thresh) >> 5;
752                 goto update;
753         }
754         return;
755 update:
756         global_dirty_limit = limit;
757 }
758
759 static void global_update_bandwidth(unsigned long thresh,
760                                     unsigned long dirty,
761                                     unsigned long now)
762 {
763         static DEFINE_SPINLOCK(dirty_lock);
764         static unsigned long update_time;
765
766         /*
767          * check locklessly first to optimize away locking for the most time
768          */
769         if (time_before(now, update_time + BANDWIDTH_INTERVAL))
770                 return;
771
772         spin_lock(&dirty_lock);
773         if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
774                 update_dirty_limit(thresh, dirty);
775                 update_time = now;
776         }
777         spin_unlock(&dirty_lock);
778 }
779
780 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
781                             unsigned long thresh,
782                             unsigned long dirty,
783                             unsigned long bdi_thresh,
784                             unsigned long bdi_dirty,
785                             unsigned long start_time)
786 {
787         unsigned long now = jiffies;
788         unsigned long elapsed = now - bdi->bw_time_stamp;
789         unsigned long written;
790
791         /*
792          * rate-limit, only update once every 200ms.
793          */
794         if (elapsed < BANDWIDTH_INTERVAL)
795                 return;
796
797         written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
798
799         /*
800          * Skip quiet periods when disk bandwidth is under-utilized.
801          * (at least 1s idle time between two flusher runs)
802          */
803         if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
804                 goto snapshot;
805
806         if (thresh)
807                 global_update_bandwidth(thresh, dirty, now);
808
809         bdi_update_write_bandwidth(bdi, elapsed, written);
810
811 snapshot:
812         bdi->written_stamp = written;
813         bdi->bw_time_stamp = now;
814 }
815
816 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
817                                  unsigned long thresh,
818                                  unsigned long dirty,
819                                  unsigned long bdi_thresh,
820                                  unsigned long bdi_dirty,
821                                  unsigned long start_time)
822 {
823         if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
824                 return;
825         spin_lock(&bdi->wb.list_lock);
826         __bdi_update_bandwidth(bdi, thresh, dirty, bdi_thresh, bdi_dirty,
827                                start_time);
828         spin_unlock(&bdi->wb.list_lock);
829 }
830
831 /*
832  * balance_dirty_pages() must be called by processes which are generating dirty
833  * data.  It looks at the number of dirty pages in the machine and will force
834  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
835  * If we're over `background_thresh' then the writeback threads are woken to
836  * perform some writeout.
837  */
838 static void balance_dirty_pages(struct address_space *mapping,
839                                 unsigned long write_chunk)
840 {
841         unsigned long nr_reclaimable, bdi_nr_reclaimable;
842         unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
843         unsigned long bdi_dirty;
844         unsigned long freerun;
845         unsigned long background_thresh;
846         unsigned long dirty_thresh;
847         unsigned long bdi_thresh;
848         unsigned long task_bdi_thresh;
849         unsigned long min_task_bdi_thresh;
850         unsigned long pages_written = 0;
851         unsigned long pause = 1;
852         bool dirty_exceeded = false;
853         bool clear_dirty_exceeded = true;
854         struct backing_dev_info *bdi = mapping->backing_dev_info;
855         unsigned long start_time = jiffies;
856
857         for (;;) {
858                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
859                                         global_page_state(NR_UNSTABLE_NFS);
860                 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
861
862                 global_dirty_limits(&background_thresh, &dirty_thresh);
863
864                 /*
865                  * Throttle it only when the background writeback cannot
866                  * catch-up. This avoids (excessively) small writeouts
867                  * when the bdi limits are ramping up.
868                  */
869                 freerun = dirty_freerun_ceiling(dirty_thresh,
870                                                 background_thresh);
871                 if (nr_dirty <= freerun)
872                         break;
873
874                 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
875                 min_task_bdi_thresh = task_min_dirty_limit(bdi_thresh);
876                 task_bdi_thresh = task_dirty_limit(current, bdi_thresh);
877
878                 /*
879                  * In order to avoid the stacked BDI deadlock we need
880                  * to ensure we accurately count the 'dirty' pages when
881                  * the threshold is low.
882                  *
883                  * Otherwise it would be possible to get thresh+n pages
884                  * reported dirty, even though there are thresh-m pages
885                  * actually dirty; with m+n sitting in the percpu
886                  * deltas.
887                  */
888                 if (task_bdi_thresh < 2 * bdi_stat_error(bdi)) {
889                         bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
890                         bdi_dirty = bdi_nr_reclaimable +
891                                     bdi_stat_sum(bdi, BDI_WRITEBACK);
892                 } else {
893                         bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
894                         bdi_dirty = bdi_nr_reclaimable +
895                                     bdi_stat(bdi, BDI_WRITEBACK);
896                 }
897
898                 /*
899                  * The bdi thresh is somehow "soft" limit derived from the
900                  * global "hard" limit. The former helps to prevent heavy IO
901                  * bdi or process from holding back light ones; The latter is
902                  * the last resort safeguard.
903                  */
904                 dirty_exceeded = (bdi_dirty > task_bdi_thresh) ||
905                                   (nr_dirty > dirty_thresh);
906                 clear_dirty_exceeded = (bdi_dirty <= min_task_bdi_thresh) &&
907                                         (nr_dirty <= dirty_thresh);
908
909                 if (!dirty_exceeded)
910                         break;
911
912                 if (!bdi->dirty_exceeded)
913                         bdi->dirty_exceeded = 1;
914
915                 bdi_update_bandwidth(bdi, dirty_thresh, nr_dirty,
916                                      bdi_thresh, bdi_dirty, start_time);
917
918                 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
919                  * Unstable writes are a feature of certain networked
920                  * filesystems (i.e. NFS) in which data may have been
921                  * written to the server's write cache, but has not yet
922                  * been flushed to permanent storage.
923                  * Only move pages to writeback if this bdi is over its
924                  * threshold otherwise wait until the disk writes catch
925                  * up.
926                  */
927                 trace_balance_dirty_start(bdi);
928                 if (bdi_nr_reclaimable > task_bdi_thresh) {
929                         pages_written += writeback_inodes_wb(&bdi->wb,
930                                                              write_chunk);
931                         trace_balance_dirty_written(bdi, pages_written);
932                         if (pages_written >= write_chunk)
933                                 break;          /* We've done our duty */
934                 }
935                 __set_current_state(TASK_UNINTERRUPTIBLE);
936                 io_schedule_timeout(pause);
937                 trace_balance_dirty_wait(bdi);
938
939                 dirty_thresh = hard_dirty_limit(dirty_thresh);
940                 /*
941                  * max-pause area. If dirty exceeded but still within this
942                  * area, no need to sleep for more than 200ms: (a) 8 pages per
943                  * 200ms is typically more than enough to curb heavy dirtiers;
944                  * (b) the pause time limit makes the dirtiers more responsive.
945                  */
946                 if (nr_dirty < dirty_thresh &&
947                     bdi_dirty < (task_bdi_thresh + bdi_thresh) / 2 &&
948                     time_after(jiffies, start_time + MAX_PAUSE))
949                         break;
950
951                 /*
952                  * Increase the delay for each loop, up to our previous
953                  * default of taking a 100ms nap.
954                  */
955                 pause <<= 1;
956                 if (pause > HZ / 10)
957                         pause = HZ / 10;
958         }
959
960         /* Clear dirty_exceeded flag only when no task can exceed the limit */
961         if (clear_dirty_exceeded && bdi->dirty_exceeded)
962                 bdi->dirty_exceeded = 0;
963
964         if (writeback_in_progress(bdi))
965                 return;
966
967         /*
968          * In laptop mode, we wait until hitting the higher threshold before
969          * starting background writeout, and then write out all the way down
970          * to the lower threshold.  So slow writers cause minimal disk activity.
971          *
972          * In normal mode, we start background writeout at the lower
973          * background_thresh, to keep the amount of dirty memory low.
974          */
975         if ((laptop_mode && pages_written) ||
976             (!laptop_mode && (nr_reclaimable > background_thresh)))
977                 bdi_start_background_writeback(bdi);
978 }
979
980 void set_page_dirty_balance(struct page *page, int page_mkwrite)
981 {
982         if (set_page_dirty(page) || page_mkwrite) {
983                 struct address_space *mapping = page_mapping(page);
984
985                 if (mapping)
986                         balance_dirty_pages_ratelimited(mapping);
987         }
988 }
989
990 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
991
992 /**
993  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
994  * @mapping: address_space which was dirtied
995  * @nr_pages_dirtied: number of pages which the caller has just dirtied
996  *
997  * Processes which are dirtying memory should call in here once for each page
998  * which was newly dirtied.  The function will periodically check the system's
999  * dirty state and will initiate writeback if needed.
1000  *
1001  * On really big machines, get_writeback_state is expensive, so try to avoid
1002  * calling it too often (ratelimiting).  But once we're over the dirty memory
1003  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1004  * from overshooting the limit by (ratelimit_pages) each.
1005  */
1006 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1007                                         unsigned long nr_pages_dirtied)
1008 {
1009         struct backing_dev_info *bdi = mapping->backing_dev_info;
1010         unsigned long ratelimit;
1011         unsigned long *p;
1012
1013         if (!bdi_cap_account_dirty(bdi))
1014                 return;
1015
1016         ratelimit = ratelimit_pages;
1017         if (mapping->backing_dev_info->dirty_exceeded)
1018                 ratelimit = 8;
1019
1020         /*
1021          * Check the rate limiting. Also, we do not want to throttle real-time
1022          * tasks in balance_dirty_pages(). Period.
1023          */
1024         preempt_disable();
1025         p =  &__get_cpu_var(bdp_ratelimits);
1026         *p += nr_pages_dirtied;
1027         if (unlikely(*p >= ratelimit)) {
1028                 ratelimit = sync_writeback_pages(*p);
1029                 *p = 0;
1030                 preempt_enable();
1031                 balance_dirty_pages(mapping, ratelimit);
1032                 return;
1033         }
1034         preempt_enable();
1035 }
1036 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1037
1038 void throttle_vm_writeout(gfp_t gfp_mask)
1039 {
1040         unsigned long background_thresh;
1041         unsigned long dirty_thresh;
1042
1043         for ( ; ; ) {
1044                 global_dirty_limits(&background_thresh, &dirty_thresh);
1045
1046                 /*
1047                  * Boost the allowable dirty threshold a bit for page
1048                  * allocators so they don't get DoS'ed by heavy writers
1049                  */
1050                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1051
1052                 if (global_page_state(NR_UNSTABLE_NFS) +
1053                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
1054                                 break;
1055                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1056
1057                 /*
1058                  * The caller might hold locks which can prevent IO completion
1059                  * or progress in the filesystem.  So we cannot just sit here
1060                  * waiting for IO to complete.
1061                  */
1062                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1063                         break;
1064         }
1065 }
1066
1067 /*
1068  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1069  */
1070 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1071         void __user *buffer, size_t *length, loff_t *ppos)
1072 {
1073         proc_dointvec(table, write, buffer, length, ppos);
1074         bdi_arm_supers_timer();
1075         return 0;
1076 }
1077
1078 #ifdef CONFIG_BLOCK
1079 void laptop_mode_timer_fn(unsigned long data)
1080 {
1081         struct request_queue *q = (struct request_queue *)data;
1082         int nr_pages = global_page_state(NR_FILE_DIRTY) +
1083                 global_page_state(NR_UNSTABLE_NFS);
1084
1085         /*
1086          * We want to write everything out, not just down to the dirty
1087          * threshold
1088          */
1089         if (bdi_has_dirty_io(&q->backing_dev_info))
1090                 bdi_start_writeback(&q->backing_dev_info, nr_pages);
1091 }
1092
1093 /*
1094  * We've spun up the disk and we're in laptop mode: schedule writeback
1095  * of all dirty data a few seconds from now.  If the flush is already scheduled
1096  * then push it back - the user is still using the disk.
1097  */
1098 void laptop_io_completion(struct backing_dev_info *info)
1099 {
1100         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1101 }
1102
1103 /*
1104  * We're in laptop mode and we've just synced. The sync's writes will have
1105  * caused another writeback to be scheduled by laptop_io_completion.
1106  * Nothing needs to be written back anymore, so we unschedule the writeback.
1107  */
1108 void laptop_sync_completion(void)
1109 {
1110         struct backing_dev_info *bdi;
1111
1112         rcu_read_lock();
1113
1114         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1115                 del_timer(&bdi->laptop_mode_wb_timer);
1116
1117         rcu_read_unlock();
1118 }
1119 #endif
1120
1121 /*
1122  * If ratelimit_pages is too high then we can get into dirty-data overload
1123  * if a large number of processes all perform writes at the same time.
1124  * If it is too low then SMP machines will call the (expensive)
1125  * get_writeback_state too often.
1126  *
1127  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1128  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1129  * thresholds before writeback cuts in.
1130  *
1131  * But the limit should not be set too high.  Because it also controls the
1132  * amount of memory which the balance_dirty_pages() caller has to write back.
1133  * If this is too large then the caller will block on the IO queue all the
1134  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
1135  * will write six megabyte chunks, max.
1136  */
1137
1138 void writeback_set_ratelimit(void)
1139 {
1140         ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
1141         if (ratelimit_pages < 16)
1142                 ratelimit_pages = 16;
1143         if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
1144                 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
1145 }
1146
1147 static int __cpuinit
1148 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1149 {
1150         writeback_set_ratelimit();
1151         return NOTIFY_DONE;
1152 }
1153
1154 static struct notifier_block __cpuinitdata ratelimit_nb = {
1155         .notifier_call  = ratelimit_handler,
1156         .next           = NULL,
1157 };
1158
1159 /*
1160  * Called early on to tune the page writeback dirty limits.
1161  *
1162  * We used to scale dirty pages according to how total memory
1163  * related to pages that could be allocated for buffers (by
1164  * comparing nr_free_buffer_pages() to vm_total_pages.
1165  *
1166  * However, that was when we used "dirty_ratio" to scale with
1167  * all memory, and we don't do that any more. "dirty_ratio"
1168  * is now applied to total non-HIGHPAGE memory (by subtracting
1169  * totalhigh_pages from vm_total_pages), and as such we can't
1170  * get into the old insane situation any more where we had
1171  * large amounts of dirty pages compared to a small amount of
1172  * non-HIGHMEM memory.
1173  *
1174  * But we might still want to scale the dirty_ratio by how
1175  * much memory the box has..
1176  */
1177 void __init page_writeback_init(void)
1178 {
1179         int shift;
1180
1181         writeback_set_ratelimit();
1182         register_cpu_notifier(&ratelimit_nb);
1183
1184         shift = calc_period_shift();
1185         prop_descriptor_init(&vm_completions, shift);
1186         prop_descriptor_init(&vm_dirties, shift);
1187 }
1188
1189 /**
1190  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1191  * @mapping: address space structure to write
1192  * @start: starting page index
1193  * @end: ending page index (inclusive)
1194  *
1195  * This function scans the page range from @start to @end (inclusive) and tags
1196  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1197  * that write_cache_pages (or whoever calls this function) will then use
1198  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1199  * used to avoid livelocking of writeback by a process steadily creating new
1200  * dirty pages in the file (thus it is important for this function to be quick
1201  * so that it can tag pages faster than a dirtying process can create them).
1202  */
1203 /*
1204  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1205  */
1206 void tag_pages_for_writeback(struct address_space *mapping,
1207                              pgoff_t start, pgoff_t end)
1208 {
1209 #define WRITEBACK_TAG_BATCH 4096
1210         unsigned long tagged;
1211
1212         do {
1213                 spin_lock_irq(&mapping->tree_lock);
1214                 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1215                                 &start, end, WRITEBACK_TAG_BATCH,
1216                                 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1217                 spin_unlock_irq(&mapping->tree_lock);
1218                 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1219                 cond_resched();
1220                 /* We check 'start' to handle wrapping when end == ~0UL */
1221         } while (tagged >= WRITEBACK_TAG_BATCH && start);
1222 }
1223 EXPORT_SYMBOL(tag_pages_for_writeback);
1224
1225 /**
1226  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1227  * @mapping: address space structure to write
1228  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1229  * @writepage: function called for each page
1230  * @data: data passed to writepage function
1231  *
1232  * If a page is already under I/O, write_cache_pages() skips it, even
1233  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1234  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1235  * and msync() need to guarantee that all the data which was dirty at the time
1236  * the call was made get new I/O started against them.  If wbc->sync_mode is
1237  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1238  * existing IO to complete.
1239  *
1240  * To avoid livelocks (when other process dirties new pages), we first tag
1241  * pages which should be written back with TOWRITE tag and only then start
1242  * writing them. For data-integrity sync we have to be careful so that we do
1243  * not miss some pages (e.g., because some other process has cleared TOWRITE
1244  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1245  * by the process clearing the DIRTY tag (and submitting the page for IO).
1246  */
1247 int write_cache_pages(struct address_space *mapping,
1248                       struct writeback_control *wbc, writepage_t writepage,
1249                       void *data)
1250 {
1251         int ret = 0;
1252         int done = 0;
1253         struct pagevec pvec;
1254         int nr_pages;
1255         pgoff_t uninitialized_var(writeback_index);
1256         pgoff_t index;
1257         pgoff_t end;            /* Inclusive */
1258         pgoff_t done_index;
1259         int cycled;
1260         int range_whole = 0;
1261         int tag;
1262
1263         pagevec_init(&pvec, 0);
1264         if (wbc->range_cyclic) {
1265                 writeback_index = mapping->writeback_index; /* prev offset */
1266                 index = writeback_index;
1267                 if (index == 0)
1268                         cycled = 1;
1269                 else
1270                         cycled = 0;
1271                 end = -1;
1272         } else {
1273                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1274                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1275                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1276                         range_whole = 1;
1277                 cycled = 1; /* ignore range_cyclic tests */
1278         }
1279         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1280                 tag = PAGECACHE_TAG_TOWRITE;
1281         else
1282                 tag = PAGECACHE_TAG_DIRTY;
1283 retry:
1284         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1285                 tag_pages_for_writeback(mapping, index, end);
1286         done_index = index;
1287         while (!done && (index <= end)) {
1288                 int i;
1289
1290                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1291                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1292                 if (nr_pages == 0)
1293                         break;
1294
1295                 for (i = 0; i < nr_pages; i++) {
1296                         struct page *page = pvec.pages[i];
1297
1298                         /*
1299                          * At this point, the page may be truncated or
1300                          * invalidated (changing page->mapping to NULL), or
1301                          * even swizzled back from swapper_space to tmpfs file
1302                          * mapping. However, page->index will not change
1303                          * because we have a reference on the page.
1304                          */
1305                         if (page->index > end) {
1306                                 /*
1307                                  * can't be range_cyclic (1st pass) because
1308                                  * end == -1 in that case.
1309                                  */
1310                                 done = 1;
1311                                 break;
1312                         }
1313
1314                         done_index = page->index;
1315
1316                         lock_page(page);
1317
1318                         /*
1319                          * Page truncated or invalidated. We can freely skip it
1320                          * then, even for data integrity operations: the page
1321                          * has disappeared concurrently, so there could be no
1322                          * real expectation of this data interity operation
1323                          * even if there is now a new, dirty page at the same
1324                          * pagecache address.
1325                          */
1326                         if (unlikely(page->mapping != mapping)) {
1327 continue_unlock:
1328                                 unlock_page(page);
1329                                 continue;
1330                         }
1331
1332                         if (!PageDirty(page)) {
1333                                 /* someone wrote it for us */
1334                                 goto continue_unlock;
1335                         }
1336
1337                         if (PageWriteback(page)) {
1338                                 if (wbc->sync_mode != WB_SYNC_NONE)
1339                                         wait_on_page_writeback(page);
1340                                 else
1341                                         goto continue_unlock;
1342                         }
1343
1344                         BUG_ON(PageWriteback(page));
1345                         if (!clear_page_dirty_for_io(page))
1346                                 goto continue_unlock;
1347
1348                         trace_wbc_writepage(wbc, mapping->backing_dev_info);
1349                         ret = (*writepage)(page, wbc, data);
1350                         if (unlikely(ret)) {
1351                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1352                                         unlock_page(page);
1353                                         ret = 0;
1354                                 } else {
1355                                         /*
1356                                          * done_index is set past this page,
1357                                          * so media errors will not choke
1358                                          * background writeout for the entire
1359                                          * file. This has consequences for
1360                                          * range_cyclic semantics (ie. it may
1361                                          * not be suitable for data integrity
1362                                          * writeout).
1363                                          */
1364                                         done_index = page->index + 1;
1365                                         done = 1;
1366                                         break;
1367                                 }
1368                         }
1369
1370                         /*
1371                          * We stop writing back only if we are not doing
1372                          * integrity sync. In case of integrity sync we have to
1373                          * keep going until we have written all the pages
1374                          * we tagged for writeback prior to entering this loop.
1375                          */
1376                         if (--wbc->nr_to_write <= 0 &&
1377                             wbc->sync_mode == WB_SYNC_NONE) {
1378                                 done = 1;
1379                                 break;
1380                         }
1381                 }
1382                 pagevec_release(&pvec);
1383                 cond_resched();
1384         }
1385         if (!cycled && !done) {
1386                 /*
1387                  * range_cyclic:
1388                  * We hit the last page and there is more work to be done: wrap
1389                  * back to the start of the file
1390                  */
1391                 cycled = 1;
1392                 index = 0;
1393                 end = writeback_index - 1;
1394                 goto retry;
1395         }
1396         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1397                 mapping->writeback_index = done_index;
1398
1399         return ret;
1400 }
1401 EXPORT_SYMBOL(write_cache_pages);
1402
1403 /*
1404  * Function used by generic_writepages to call the real writepage
1405  * function and set the mapping flags on error
1406  */
1407 static int __writepage(struct page *page, struct writeback_control *wbc,
1408                        void *data)
1409 {
1410         struct address_space *mapping = data;
1411         int ret = mapping->a_ops->writepage(page, wbc);
1412         mapping_set_error(mapping, ret);
1413         return ret;
1414 }
1415
1416 /**
1417  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1418  * @mapping: address space structure to write
1419  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1420  *
1421  * This is a library function, which implements the writepages()
1422  * address_space_operation.
1423  */
1424 int generic_writepages(struct address_space *mapping,
1425                        struct writeback_control *wbc)
1426 {
1427         struct blk_plug plug;
1428         int ret;
1429
1430         /* deal with chardevs and other special file */
1431         if (!mapping->a_ops->writepage)
1432                 return 0;
1433
1434         blk_start_plug(&plug);
1435         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1436         blk_finish_plug(&plug);
1437         return ret;
1438 }
1439
1440 EXPORT_SYMBOL(generic_writepages);
1441
1442 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1443 {
1444         int ret;
1445
1446         if (wbc->nr_to_write <= 0)
1447                 return 0;
1448         if (mapping->a_ops->writepages)
1449                 ret = mapping->a_ops->writepages(mapping, wbc);
1450         else
1451                 ret = generic_writepages(mapping, wbc);
1452         return ret;
1453 }
1454
1455 /**
1456  * write_one_page - write out a single page and optionally wait on I/O
1457  * @page: the page to write
1458  * @wait: if true, wait on writeout
1459  *
1460  * The page must be locked by the caller and will be unlocked upon return.
1461  *
1462  * write_one_page() returns a negative error code if I/O failed.
1463  */
1464 int write_one_page(struct page *page, int wait)
1465 {
1466         struct address_space *mapping = page->mapping;
1467         int ret = 0;
1468         struct writeback_control wbc = {
1469                 .sync_mode = WB_SYNC_ALL,
1470                 .nr_to_write = 1,
1471         };
1472
1473         BUG_ON(!PageLocked(page));
1474
1475         if (wait)
1476                 wait_on_page_writeback(page);
1477
1478         if (clear_page_dirty_for_io(page)) {
1479                 page_cache_get(page);
1480                 ret = mapping->a_ops->writepage(page, &wbc);
1481                 if (ret == 0 && wait) {
1482                         wait_on_page_writeback(page);
1483                         if (PageError(page))
1484                                 ret = -EIO;
1485                 }
1486                 page_cache_release(page);
1487         } else {
1488                 unlock_page(page);
1489         }
1490         return ret;
1491 }
1492 EXPORT_SYMBOL(write_one_page);
1493
1494 /*
1495  * For address_spaces which do not use buffers nor write back.
1496  */
1497 int __set_page_dirty_no_writeback(struct page *page)
1498 {
1499         if (!PageDirty(page))
1500                 return !TestSetPageDirty(page);
1501         return 0;
1502 }
1503
1504 /*
1505  * Helper function for set_page_dirty family.
1506  * NOTE: This relies on being atomic wrt interrupts.
1507  */
1508 void account_page_dirtied(struct page *page, struct address_space *mapping)
1509 {
1510         if (mapping_cap_account_dirty(mapping)) {
1511                 __inc_zone_page_state(page, NR_FILE_DIRTY);
1512                 __inc_zone_page_state(page, NR_DIRTIED);
1513                 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1514                 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1515                 task_dirty_inc(current);
1516                 task_io_account_write(PAGE_CACHE_SIZE);
1517         }
1518 }
1519 EXPORT_SYMBOL(account_page_dirtied);
1520
1521 /*
1522  * Helper function for set_page_writeback family.
1523  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1524  * wrt interrupts.
1525  */
1526 void account_page_writeback(struct page *page)
1527 {
1528         inc_zone_page_state(page, NR_WRITEBACK);
1529 }
1530 EXPORT_SYMBOL(account_page_writeback);
1531
1532 /*
1533  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1534  * its radix tree.
1535  *
1536  * This is also used when a single buffer is being dirtied: we want to set the
1537  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1538  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1539  *
1540  * Most callers have locked the page, which pins the address_space in memory.
1541  * But zap_pte_range() does not lock the page, however in that case the
1542  * mapping is pinned by the vma's ->vm_file reference.
1543  *
1544  * We take care to handle the case where the page was truncated from the
1545  * mapping by re-checking page_mapping() inside tree_lock.
1546  */
1547 int __set_page_dirty_nobuffers(struct page *page)
1548 {
1549         if (!TestSetPageDirty(page)) {
1550                 struct address_space *mapping = page_mapping(page);
1551                 struct address_space *mapping2;
1552
1553                 if (!mapping)
1554                         return 1;
1555
1556                 spin_lock_irq(&mapping->tree_lock);
1557                 mapping2 = page_mapping(page);
1558                 if (mapping2) { /* Race with truncate? */
1559                         BUG_ON(mapping2 != mapping);
1560                         WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1561                         account_page_dirtied(page, mapping);
1562                         radix_tree_tag_set(&mapping->page_tree,
1563                                 page_index(page), PAGECACHE_TAG_DIRTY);
1564                 }
1565                 spin_unlock_irq(&mapping->tree_lock);
1566                 if (mapping->host) {
1567                         /* !PageAnon && !swapper_space */
1568                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1569                 }
1570                 return 1;
1571         }
1572         return 0;
1573 }
1574 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1575
1576 /*
1577  * When a writepage implementation decides that it doesn't want to write this
1578  * page for some reason, it should redirty the locked page via
1579  * redirty_page_for_writepage() and it should then unlock the page and return 0
1580  */
1581 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1582 {
1583         wbc->pages_skipped++;
1584         return __set_page_dirty_nobuffers(page);
1585 }
1586 EXPORT_SYMBOL(redirty_page_for_writepage);
1587
1588 /*
1589  * Dirty a page.
1590  *
1591  * For pages with a mapping this should be done under the page lock
1592  * for the benefit of asynchronous memory errors who prefer a consistent
1593  * dirty state. This rule can be broken in some special cases,
1594  * but should be better not to.
1595  *
1596  * If the mapping doesn't provide a set_page_dirty a_op, then
1597  * just fall through and assume that it wants buffer_heads.
1598  */
1599 int set_page_dirty(struct page *page)
1600 {
1601         struct address_space *mapping = page_mapping(page);
1602
1603         if (likely(mapping)) {
1604                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1605                 /*
1606                  * readahead/lru_deactivate_page could remain
1607                  * PG_readahead/PG_reclaim due to race with end_page_writeback
1608                  * About readahead, if the page is written, the flags would be
1609                  * reset. So no problem.
1610                  * About lru_deactivate_page, if the page is redirty, the flag
1611                  * will be reset. So no problem. but if the page is used by readahead
1612                  * it will confuse readahead and make it restart the size rampup
1613                  * process. But it's a trivial problem.
1614                  */
1615                 ClearPageReclaim(page);
1616 #ifdef CONFIG_BLOCK
1617                 if (!spd)
1618                         spd = __set_page_dirty_buffers;
1619 #endif
1620                 return (*spd)(page);
1621         }
1622         if (!PageDirty(page)) {
1623                 if (!TestSetPageDirty(page))
1624                         return 1;
1625         }
1626         return 0;
1627 }
1628 EXPORT_SYMBOL(set_page_dirty);
1629
1630 /*
1631  * set_page_dirty() is racy if the caller has no reference against
1632  * page->mapping->host, and if the page is unlocked.  This is because another
1633  * CPU could truncate the page off the mapping and then free the mapping.
1634  *
1635  * Usually, the page _is_ locked, or the caller is a user-space process which
1636  * holds a reference on the inode by having an open file.
1637  *
1638  * In other cases, the page should be locked before running set_page_dirty().
1639  */
1640 int set_page_dirty_lock(struct page *page)
1641 {
1642         int ret;
1643
1644         lock_page(page);
1645         ret = set_page_dirty(page);
1646         unlock_page(page);
1647         return ret;
1648 }
1649 EXPORT_SYMBOL(set_page_dirty_lock);
1650
1651 /*
1652  * Clear a page's dirty flag, while caring for dirty memory accounting.
1653  * Returns true if the page was previously dirty.
1654  *
1655  * This is for preparing to put the page under writeout.  We leave the page
1656  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1657  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1658  * implementation will run either set_page_writeback() or set_page_dirty(),
1659  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1660  * back into sync.
1661  *
1662  * This incoherency between the page's dirty flag and radix-tree tag is
1663  * unfortunate, but it only exists while the page is locked.
1664  */
1665 int clear_page_dirty_for_io(struct page *page)
1666 {
1667         struct address_space *mapping = page_mapping(page);
1668
1669         BUG_ON(!PageLocked(page));
1670
1671         if (mapping && mapping_cap_account_dirty(mapping)) {
1672                 /*
1673                  * Yes, Virginia, this is indeed insane.
1674                  *
1675                  * We use this sequence to make sure that
1676                  *  (a) we account for dirty stats properly
1677                  *  (b) we tell the low-level filesystem to
1678                  *      mark the whole page dirty if it was
1679                  *      dirty in a pagetable. Only to then
1680                  *  (c) clean the page again and return 1 to
1681                  *      cause the writeback.
1682                  *
1683                  * This way we avoid all nasty races with the
1684                  * dirty bit in multiple places and clearing
1685                  * them concurrently from different threads.
1686                  *
1687                  * Note! Normally the "set_page_dirty(page)"
1688                  * has no effect on the actual dirty bit - since
1689                  * that will already usually be set. But we
1690                  * need the side effects, and it can help us
1691                  * avoid races.
1692                  *
1693                  * We basically use the page "master dirty bit"
1694                  * as a serialization point for all the different
1695                  * threads doing their things.
1696                  */
1697                 if (page_mkclean(page))
1698                         set_page_dirty(page);
1699                 /*
1700                  * We carefully synchronise fault handlers against
1701                  * installing a dirty pte and marking the page dirty
1702                  * at this point. We do this by having them hold the
1703                  * page lock at some point after installing their
1704                  * pte, but before marking the page dirty.
1705                  * Pages are always locked coming in here, so we get
1706                  * the desired exclusion. See mm/memory.c:do_wp_page()
1707                  * for more comments.
1708                  */
1709                 if (TestClearPageDirty(page)) {
1710                         dec_zone_page_state(page, NR_FILE_DIRTY);
1711                         dec_bdi_stat(mapping->backing_dev_info,
1712                                         BDI_RECLAIMABLE);
1713                         return 1;
1714                 }
1715                 return 0;
1716         }
1717         return TestClearPageDirty(page);
1718 }
1719 EXPORT_SYMBOL(clear_page_dirty_for_io);
1720
1721 int test_clear_page_writeback(struct page *page)
1722 {
1723         struct address_space *mapping = page_mapping(page);
1724         int ret;
1725
1726         if (mapping) {
1727                 struct backing_dev_info *bdi = mapping->backing_dev_info;
1728                 unsigned long flags;
1729
1730                 spin_lock_irqsave(&mapping->tree_lock, flags);
1731                 ret = TestClearPageWriteback(page);
1732                 if (ret) {
1733                         radix_tree_tag_clear(&mapping->page_tree,
1734                                                 page_index(page),
1735                                                 PAGECACHE_TAG_WRITEBACK);
1736                         if (bdi_cap_account_writeback(bdi)) {
1737                                 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1738                                 __bdi_writeout_inc(bdi);
1739                         }
1740                 }
1741                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1742         } else {
1743                 ret = TestClearPageWriteback(page);
1744         }
1745         if (ret) {
1746                 dec_zone_page_state(page, NR_WRITEBACK);
1747                 inc_zone_page_state(page, NR_WRITTEN);
1748         }
1749         return ret;
1750 }
1751
1752 int test_set_page_writeback(struct page *page)
1753 {
1754         struct address_space *mapping = page_mapping(page);
1755         int ret;
1756
1757         if (mapping) {
1758                 struct backing_dev_info *bdi = mapping->backing_dev_info;
1759                 unsigned long flags;
1760
1761                 spin_lock_irqsave(&mapping->tree_lock, flags);
1762                 ret = TestSetPageWriteback(page);
1763                 if (!ret) {
1764                         radix_tree_tag_set(&mapping->page_tree,
1765                                                 page_index(page),
1766                                                 PAGECACHE_TAG_WRITEBACK);
1767                         if (bdi_cap_account_writeback(bdi))
1768                                 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1769                 }
1770                 if (!PageDirty(page))
1771                         radix_tree_tag_clear(&mapping->page_tree,
1772                                                 page_index(page),
1773                                                 PAGECACHE_TAG_DIRTY);
1774                 radix_tree_tag_clear(&mapping->page_tree,
1775                                      page_index(page),
1776                                      PAGECACHE_TAG_TOWRITE);
1777                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1778         } else {
1779                 ret = TestSetPageWriteback(page);
1780         }
1781         if (!ret)
1782                 account_page_writeback(page);
1783         return ret;
1784
1785 }
1786 EXPORT_SYMBOL(test_set_page_writeback);
1787
1788 /*
1789  * Return true if any of the pages in the mapping are marked with the
1790  * passed tag.
1791  */
1792 int mapping_tagged(struct address_space *mapping, int tag)
1793 {
1794         return radix_tree_tagged(&mapping->page_tree, tag);
1795 }
1796 EXPORT_SYMBOL(mapping_tagged);