mm/migrate.c: remove the unused macro lru_to_page
[pandora-kernel.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    Andrew Morton
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
38
39 /*
40  * Sleep at most 200ms at a time in balance_dirty_pages().
41  */
42 #define MAX_PAUSE               max(HZ/5, 1)
43
44 /*
45  * Estimate write bandwidth at 200ms intervals.
46  */
47 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
48
49 #define RATELIMIT_CALC_SHIFT    10
50
51 /*
52  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
53  * will look to see if it needs to force writeback or throttling.
54  */
55 static long ratelimit_pages = 32;
56
57 /* The following parameters are exported via /proc/sys/vm */
58
59 /*
60  * Start background writeback (via writeback threads) at this percentage
61  */
62 int dirty_background_ratio = 10;
63
64 /*
65  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
66  * dirty_background_ratio * the amount of dirtyable memory
67  */
68 unsigned long dirty_background_bytes;
69
70 /*
71  * free highmem will not be subtracted from the total free memory
72  * for calculating free ratios if vm_highmem_is_dirtyable is true
73  */
74 int vm_highmem_is_dirtyable;
75
76 /*
77  * The generator of dirty data starts writeback at this percentage
78  */
79 int vm_dirty_ratio = 20;
80
81 /*
82  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
83  * vm_dirty_ratio * the amount of dirtyable memory
84  */
85 unsigned long vm_dirty_bytes;
86
87 /*
88  * The interval between `kupdate'-style writebacks
89  */
90 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
91
92 /*
93  * The longest time for which data is allowed to remain dirty
94  */
95 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
96
97 /*
98  * Flag that makes the machine dump writes/reads and block dirtyings.
99  */
100 int block_dump;
101
102 /*
103  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
104  * a full sync is triggered after this time elapses without any disk activity.
105  */
106 int laptop_mode;
107
108 EXPORT_SYMBOL(laptop_mode);
109
110 /* End of sysctl-exported parameters */
111
112 unsigned long global_dirty_limit;
113
114 /*
115  * Scale the writeback cache size proportional to the relative writeout speeds.
116  *
117  * We do this by keeping a floating proportion between BDIs, based on page
118  * writeback completions [end_page_writeback()]. Those devices that write out
119  * pages fastest will get the larger share, while the slower will get a smaller
120  * share.
121  *
122  * We use page writeout completions because we are interested in getting rid of
123  * dirty pages. Having them written out is the primary goal.
124  *
125  * We introduce a concept of time, a period over which we measure these events,
126  * because demand can/will vary over time. The length of this period itself is
127  * measured in page writeback completions.
128  *
129  */
130 static struct prop_descriptor vm_completions;
131
132 /*
133  * Work out the current dirty-memory clamping and background writeout
134  * thresholds.
135  *
136  * The main aim here is to lower them aggressively if there is a lot of mapped
137  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
138  * pages.  It is better to clamp down on writers than to start swapping, and
139  * performing lots of scanning.
140  *
141  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
142  *
143  * We don't permit the clamping level to fall below 5% - that is getting rather
144  * excessive.
145  *
146  * We make sure that the background writeout level is below the adjusted
147  * clamping level.
148  */
149
150 /*
151  * In a memory zone, there is a certain amount of pages we consider
152  * available for the page cache, which is essentially the number of
153  * free and reclaimable pages, minus some zone reserves to protect
154  * lowmem and the ability to uphold the zone's watermarks without
155  * requiring writeback.
156  *
157  * This number of dirtyable pages is the base value of which the
158  * user-configurable dirty ratio is the effictive number of pages that
159  * are allowed to be actually dirtied.  Per individual zone, or
160  * globally by using the sum of dirtyable pages over all zones.
161  *
162  * Because the user is allowed to specify the dirty limit globally as
163  * absolute number of bytes, calculating the per-zone dirty limit can
164  * require translating the configured limit into a percentage of
165  * global dirtyable memory first.
166  */
167
168 static unsigned long highmem_dirtyable_memory(unsigned long total)
169 {
170 #ifdef CONFIG_HIGHMEM
171         int node;
172         unsigned long x = 0;
173
174         for_each_node_state(node, N_HIGH_MEMORY) {
175                 struct zone *z =
176                         &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
177
178                 x += zone_page_state(z, NR_FREE_PAGES) +
179                      zone_reclaimable_pages(z) - z->dirty_balance_reserve;
180         }
181         /*
182          * Make sure that the number of highmem pages is never larger
183          * than the number of the total dirtyable memory. This can only
184          * occur in very strange VM situations but we want to make sure
185          * that this does not occur.
186          */
187         return min(x, total);
188 #else
189         return 0;
190 #endif
191 }
192
193 /**
194  * global_dirtyable_memory - number of globally dirtyable pages
195  *
196  * Returns the global number of pages potentially available for dirty
197  * page cache.  This is the base value for the global dirty limits.
198  */
199 unsigned long global_dirtyable_memory(void)
200 {
201         unsigned long x;
202
203         x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages() -
204             dirty_balance_reserve;
205
206         if (!vm_highmem_is_dirtyable)
207                 x -= highmem_dirtyable_memory(x);
208
209         return x + 1;   /* Ensure that we never return 0 */
210 }
211
212 /*
213  * global_dirty_limits - background-writeback and dirty-throttling thresholds
214  *
215  * Calculate the dirty thresholds based on sysctl parameters
216  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
217  * - vm.dirty_ratio             or  vm.dirty_bytes
218  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
219  * real-time tasks.
220  */
221 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
222 {
223         unsigned long background;
224         unsigned long dirty;
225         unsigned long uninitialized_var(available_memory);
226         struct task_struct *tsk;
227
228         if (!vm_dirty_bytes || !dirty_background_bytes)
229                 available_memory = global_dirtyable_memory();
230
231         if (vm_dirty_bytes)
232                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
233         else
234                 dirty = (vm_dirty_ratio * available_memory) / 100;
235
236         if (dirty_background_bytes)
237                 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
238         else
239                 background = (dirty_background_ratio * available_memory) / 100;
240
241         if (background >= dirty)
242                 background = dirty / 2;
243         tsk = current;
244         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
245                 background += background / 4;
246                 dirty += dirty / 4;
247         }
248         *pbackground = background;
249         *pdirty = dirty;
250         trace_global_dirty_state(background, dirty);
251 }
252
253 /**
254  * zone_dirtyable_memory - number of dirtyable pages in a zone
255  * @zone: the zone
256  *
257  * Returns the zone's number of pages potentially available for dirty
258  * page cache.  This is the base value for the per-zone dirty limits.
259  */
260 static unsigned long zone_dirtyable_memory(struct zone *zone)
261 {
262         /*
263          * The effective global number of dirtyable pages may exclude
264          * highmem as a big-picture measure to keep the ratio between
265          * dirty memory and lowmem reasonable.
266          *
267          * But this function is purely about the individual zone and a
268          * highmem zone can hold its share of dirty pages, so we don't
269          * care about vm_highmem_is_dirtyable here.
270          */
271         return zone_page_state(zone, NR_FREE_PAGES) +
272                zone_reclaimable_pages(zone) -
273                zone->dirty_balance_reserve;
274 }
275
276 /**
277  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
278  * @zone: the zone
279  *
280  * Returns the maximum number of dirty pages allowed in a zone, based
281  * on the zone's dirtyable memory.
282  */
283 static unsigned long zone_dirty_limit(struct zone *zone)
284 {
285         unsigned long zone_memory = zone_dirtyable_memory(zone);
286         struct task_struct *tsk = current;
287         unsigned long dirty;
288
289         if (vm_dirty_bytes)
290                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
291                         zone_memory / global_dirtyable_memory();
292         else
293                 dirty = vm_dirty_ratio * zone_memory / 100;
294
295         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
296                 dirty += dirty / 4;
297
298         return dirty;
299 }
300
301 /**
302  * zone_dirty_ok - tells whether a zone is within its dirty limits
303  * @zone: the zone to check
304  *
305  * Returns %true when the dirty pages in @zone are within the zone's
306  * dirty limit, %false if the limit is exceeded.
307  */
308 bool zone_dirty_ok(struct zone *zone)
309 {
310         unsigned long limit = zone_dirty_limit(zone);
311
312         return zone_page_state(zone, NR_FILE_DIRTY) +
313                zone_page_state(zone, NR_UNSTABLE_NFS) +
314                zone_page_state(zone, NR_WRITEBACK) <= limit;
315 }
316
317 /*
318  * couple the period to the dirty_ratio:
319  *
320  *   period/2 ~ roundup_pow_of_two(dirty limit)
321  */
322 static int calc_period_shift(void)
323 {
324         unsigned long dirty_total;
325
326         if (vm_dirty_bytes)
327                 dirty_total = vm_dirty_bytes / PAGE_SIZE;
328         else
329                 dirty_total = (vm_dirty_ratio * global_dirtyable_memory()) /
330                                 100;
331         return 2 + ilog2(dirty_total - 1);
332 }
333
334 /*
335  * update the period when the dirty threshold changes.
336  */
337 static void update_completion_period(void)
338 {
339         int shift = calc_period_shift();
340         prop_change_shift(&vm_completions, shift);
341
342         writeback_set_ratelimit();
343 }
344
345 int dirty_background_ratio_handler(struct ctl_table *table, int write,
346                 void __user *buffer, size_t *lenp,
347                 loff_t *ppos)
348 {
349         int ret;
350
351         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
352         if (ret == 0 && write)
353                 dirty_background_bytes = 0;
354         return ret;
355 }
356
357 int dirty_background_bytes_handler(struct ctl_table *table, int write,
358                 void __user *buffer, size_t *lenp,
359                 loff_t *ppos)
360 {
361         int ret;
362
363         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
364         if (ret == 0 && write)
365                 dirty_background_ratio = 0;
366         return ret;
367 }
368
369 int dirty_ratio_handler(struct ctl_table *table, int write,
370                 void __user *buffer, size_t *lenp,
371                 loff_t *ppos)
372 {
373         int old_ratio = vm_dirty_ratio;
374         int ret;
375
376         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
377         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
378                 update_completion_period();
379                 vm_dirty_bytes = 0;
380         }
381         return ret;
382 }
383
384 int dirty_bytes_handler(struct ctl_table *table, int write,
385                 void __user *buffer, size_t *lenp,
386                 loff_t *ppos)
387 {
388         unsigned long old_bytes = vm_dirty_bytes;
389         int ret;
390
391         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
392         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
393                 update_completion_period();
394                 vm_dirty_ratio = 0;
395         }
396         return ret;
397 }
398
399 /*
400  * Increment the BDI's writeout completion count and the global writeout
401  * completion count. Called from test_clear_page_writeback().
402  */
403 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
404 {
405         __inc_bdi_stat(bdi, BDI_WRITTEN);
406         __prop_inc_percpu_max(&vm_completions, &bdi->completions,
407                               bdi->max_prop_frac);
408 }
409
410 void bdi_writeout_inc(struct backing_dev_info *bdi)
411 {
412         unsigned long flags;
413
414         local_irq_save(flags);
415         __bdi_writeout_inc(bdi);
416         local_irq_restore(flags);
417 }
418 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
419
420 /*
421  * Obtain an accurate fraction of the BDI's portion.
422  */
423 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
424                 long *numerator, long *denominator)
425 {
426         prop_fraction_percpu(&vm_completions, &bdi->completions,
427                                 numerator, denominator);
428 }
429
430 /*
431  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
432  * registered backing devices, which, for obvious reasons, can not
433  * exceed 100%.
434  */
435 static unsigned int bdi_min_ratio;
436
437 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
438 {
439         int ret = 0;
440
441         spin_lock_bh(&bdi_lock);
442         if (min_ratio > bdi->max_ratio) {
443                 ret = -EINVAL;
444         } else {
445                 min_ratio -= bdi->min_ratio;
446                 if (bdi_min_ratio + min_ratio < 100) {
447                         bdi_min_ratio += min_ratio;
448                         bdi->min_ratio += min_ratio;
449                 } else {
450                         ret = -EINVAL;
451                 }
452         }
453         spin_unlock_bh(&bdi_lock);
454
455         return ret;
456 }
457
458 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
459 {
460         int ret = 0;
461
462         if (max_ratio > 100)
463                 return -EINVAL;
464
465         spin_lock_bh(&bdi_lock);
466         if (bdi->min_ratio > max_ratio) {
467                 ret = -EINVAL;
468         } else {
469                 bdi->max_ratio = max_ratio;
470                 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
471         }
472         spin_unlock_bh(&bdi_lock);
473
474         return ret;
475 }
476 EXPORT_SYMBOL(bdi_set_max_ratio);
477
478 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
479                                            unsigned long bg_thresh)
480 {
481         return (thresh + bg_thresh) / 2;
482 }
483
484 static unsigned long hard_dirty_limit(unsigned long thresh)
485 {
486         return max(thresh, global_dirty_limit);
487 }
488
489 /**
490  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
491  * @bdi: the backing_dev_info to query
492  * @dirty: global dirty limit in pages
493  *
494  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
495  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
496  *
497  * Note that balance_dirty_pages() will only seriously take it as a hard limit
498  * when sleeping max_pause per page is not enough to keep the dirty pages under
499  * control. For example, when the device is completely stalled due to some error
500  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
501  * In the other normal situations, it acts more gently by throttling the tasks
502  * more (rather than completely block them) when the bdi dirty pages go high.
503  *
504  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
505  * - starving fast devices
506  * - piling up dirty pages (that will take long time to sync) on slow devices
507  *
508  * The bdi's share of dirty limit will be adapting to its throughput and
509  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
510  */
511 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
512 {
513         u64 bdi_dirty;
514         long numerator, denominator;
515
516         /*
517          * Calculate this BDI's share of the dirty ratio.
518          */
519         bdi_writeout_fraction(bdi, &numerator, &denominator);
520
521         bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
522         bdi_dirty *= numerator;
523         do_div(bdi_dirty, denominator);
524
525         bdi_dirty += (dirty * bdi->min_ratio) / 100;
526         if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
527                 bdi_dirty = dirty * bdi->max_ratio / 100;
528
529         return bdi_dirty;
530 }
531
532 /*
533  * Dirty position control.
534  *
535  * (o) global/bdi setpoints
536  *
537  * We want the dirty pages be balanced around the global/bdi setpoints.
538  * When the number of dirty pages is higher/lower than the setpoint, the
539  * dirty position control ratio (and hence task dirty ratelimit) will be
540  * decreased/increased to bring the dirty pages back to the setpoint.
541  *
542  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
543  *
544  *     if (dirty < setpoint) scale up   pos_ratio
545  *     if (dirty > setpoint) scale down pos_ratio
546  *
547  *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
548  *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
549  *
550  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
551  *
552  * (o) global control line
553  *
554  *     ^ pos_ratio
555  *     |
556  *     |            |<===== global dirty control scope ======>|
557  * 2.0 .............*
558  *     |            .*
559  *     |            . *
560  *     |            .   *
561  *     |            .     *
562  *     |            .        *
563  *     |            .            *
564  * 1.0 ................................*
565  *     |            .                  .     *
566  *     |            .                  .          *
567  *     |            .                  .              *
568  *     |            .                  .                 *
569  *     |            .                  .                    *
570  *   0 +------------.------------------.----------------------*------------->
571  *           freerun^          setpoint^                 limit^   dirty pages
572  *
573  * (o) bdi control line
574  *
575  *     ^ pos_ratio
576  *     |
577  *     |            *
578  *     |              *
579  *     |                *
580  *     |                  *
581  *     |                    * |<=========== span ============>|
582  * 1.0 .......................*
583  *     |                      . *
584  *     |                      .   *
585  *     |                      .     *
586  *     |                      .       *
587  *     |                      .         *
588  *     |                      .           *
589  *     |                      .             *
590  *     |                      .               *
591  *     |                      .                 *
592  *     |                      .                   *
593  *     |                      .                     *
594  * 1/4 ...............................................* * * * * * * * * * * *
595  *     |                      .                         .
596  *     |                      .                           .
597  *     |                      .                             .
598  *   0 +----------------------.-------------------------------.------------->
599  *                bdi_setpoint^                    x_intercept^
600  *
601  * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
602  * be smoothly throttled down to normal if it starts high in situations like
603  * - start writing to a slow SD card and a fast disk at the same time. The SD
604  *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
605  * - the bdi dirty thresh drops quickly due to change of JBOD workload
606  */
607 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
608                                         unsigned long thresh,
609                                         unsigned long bg_thresh,
610                                         unsigned long dirty,
611                                         unsigned long bdi_thresh,
612                                         unsigned long bdi_dirty)
613 {
614         unsigned long write_bw = bdi->avg_write_bandwidth;
615         unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
616         unsigned long limit = hard_dirty_limit(thresh);
617         unsigned long x_intercept;
618         unsigned long setpoint;         /* dirty pages' target balance point */
619         unsigned long bdi_setpoint;
620         unsigned long span;
621         long long pos_ratio;            /* for scaling up/down the rate limit */
622         long x;
623
624         if (unlikely(dirty >= limit))
625                 return 0;
626
627         /*
628          * global setpoint
629          *
630          *                           setpoint - dirty 3
631          *        f(dirty) := 1.0 + (----------------)
632          *                           limit - setpoint
633          *
634          * it's a 3rd order polynomial that subjects to
635          *
636          * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
637          * (2) f(setpoint) = 1.0 => the balance point
638          * (3) f(limit)    = 0   => the hard limit
639          * (4) df/dx      <= 0   => negative feedback control
640          * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
641          *     => fast response on large errors; small oscillation near setpoint
642          */
643         setpoint = (freerun + limit) / 2;
644         x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
645                     limit - setpoint + 1);
646         pos_ratio = x;
647         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
648         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
649         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
650
651         /*
652          * We have computed basic pos_ratio above based on global situation. If
653          * the bdi is over/under its share of dirty pages, we want to scale
654          * pos_ratio further down/up. That is done by the following mechanism.
655          */
656
657         /*
658          * bdi setpoint
659          *
660          *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
661          *
662          *                        x_intercept - bdi_dirty
663          *                     := --------------------------
664          *                        x_intercept - bdi_setpoint
665          *
666          * The main bdi control line is a linear function that subjects to
667          *
668          * (1) f(bdi_setpoint) = 1.0
669          * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
670          *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
671          *
672          * For single bdi case, the dirty pages are observed to fluctuate
673          * regularly within range
674          *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
675          * for various filesystems, where (2) can yield in a reasonable 12.5%
676          * fluctuation range for pos_ratio.
677          *
678          * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
679          * own size, so move the slope over accordingly and choose a slope that
680          * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
681          */
682         if (unlikely(bdi_thresh > thresh))
683                 bdi_thresh = thresh;
684         /*
685          * It's very possible that bdi_thresh is close to 0 not because the
686          * device is slow, but that it has remained inactive for long time.
687          * Honour such devices a reasonable good (hopefully IO efficient)
688          * threshold, so that the occasional writes won't be blocked and active
689          * writes can rampup the threshold quickly.
690          */
691         bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
692         /*
693          * scale global setpoint to bdi's:
694          *      bdi_setpoint = setpoint * bdi_thresh / thresh
695          */
696         x = div_u64((u64)bdi_thresh << 16, thresh + 1);
697         bdi_setpoint = setpoint * (u64)x >> 16;
698         /*
699          * Use span=(8*write_bw) in single bdi case as indicated by
700          * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
701          *
702          *        bdi_thresh                    thresh - bdi_thresh
703          * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
704          *          thresh                            thresh
705          */
706         span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
707         x_intercept = bdi_setpoint + span;
708
709         if (bdi_dirty < x_intercept - span / 4) {
710                 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
711                                     x_intercept - bdi_setpoint + 1);
712         } else
713                 pos_ratio /= 4;
714
715         /*
716          * bdi reserve area, safeguard against dirty pool underrun and disk idle
717          * It may push the desired control point of global dirty pages higher
718          * than setpoint.
719          */
720         x_intercept = bdi_thresh / 2;
721         if (bdi_dirty < x_intercept) {
722                 if (bdi_dirty > x_intercept / 8)
723                         pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
724                 else
725                         pos_ratio *= 8;
726         }
727
728         return pos_ratio;
729 }
730
731 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
732                                        unsigned long elapsed,
733                                        unsigned long written)
734 {
735         const unsigned long period = roundup_pow_of_two(3 * HZ);
736         unsigned long avg = bdi->avg_write_bandwidth;
737         unsigned long old = bdi->write_bandwidth;
738         u64 bw;
739
740         /*
741          * bw = written * HZ / elapsed
742          *
743          *                   bw * elapsed + write_bandwidth * (period - elapsed)
744          * write_bandwidth = ---------------------------------------------------
745          *                                          period
746          */
747         bw = written - bdi->written_stamp;
748         bw *= HZ;
749         if (unlikely(elapsed > period)) {
750                 do_div(bw, elapsed);
751                 avg = bw;
752                 goto out;
753         }
754         bw += (u64)bdi->write_bandwidth * (period - elapsed);
755         bw >>= ilog2(period);
756
757         /*
758          * one more level of smoothing, for filtering out sudden spikes
759          */
760         if (avg > old && old >= (unsigned long)bw)
761                 avg -= (avg - old) >> 3;
762
763         if (avg < old && old <= (unsigned long)bw)
764                 avg += (old - avg) >> 3;
765
766 out:
767         bdi->write_bandwidth = bw;
768         bdi->avg_write_bandwidth = avg;
769 }
770
771 /*
772  * The global dirtyable memory and dirty threshold could be suddenly knocked
773  * down by a large amount (eg. on the startup of KVM in a swapless system).
774  * This may throw the system into deep dirty exceeded state and throttle
775  * heavy/light dirtiers alike. To retain good responsiveness, maintain
776  * global_dirty_limit for tracking slowly down to the knocked down dirty
777  * threshold.
778  */
779 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
780 {
781         unsigned long limit = global_dirty_limit;
782
783         /*
784          * Follow up in one step.
785          */
786         if (limit < thresh) {
787                 limit = thresh;
788                 goto update;
789         }
790
791         /*
792          * Follow down slowly. Use the higher one as the target, because thresh
793          * may drop below dirty. This is exactly the reason to introduce
794          * global_dirty_limit which is guaranteed to lie above the dirty pages.
795          */
796         thresh = max(thresh, dirty);
797         if (limit > thresh) {
798                 limit -= (limit - thresh) >> 5;
799                 goto update;
800         }
801         return;
802 update:
803         global_dirty_limit = limit;
804 }
805
806 static void global_update_bandwidth(unsigned long thresh,
807                                     unsigned long dirty,
808                                     unsigned long now)
809 {
810         static DEFINE_SPINLOCK(dirty_lock);
811         static unsigned long update_time;
812
813         /*
814          * check locklessly first to optimize away locking for the most time
815          */
816         if (time_before(now, update_time + BANDWIDTH_INTERVAL))
817                 return;
818
819         spin_lock(&dirty_lock);
820         if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
821                 update_dirty_limit(thresh, dirty);
822                 update_time = now;
823         }
824         spin_unlock(&dirty_lock);
825 }
826
827 /*
828  * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
829  *
830  * Normal bdi tasks will be curbed at or below it in long term.
831  * Obviously it should be around (write_bw / N) when there are N dd tasks.
832  */
833 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
834                                        unsigned long thresh,
835                                        unsigned long bg_thresh,
836                                        unsigned long dirty,
837                                        unsigned long bdi_thresh,
838                                        unsigned long bdi_dirty,
839                                        unsigned long dirtied,
840                                        unsigned long elapsed)
841 {
842         unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
843         unsigned long limit = hard_dirty_limit(thresh);
844         unsigned long setpoint = (freerun + limit) / 2;
845         unsigned long write_bw = bdi->avg_write_bandwidth;
846         unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
847         unsigned long dirty_rate;
848         unsigned long task_ratelimit;
849         unsigned long balanced_dirty_ratelimit;
850         unsigned long pos_ratio;
851         unsigned long step;
852         unsigned long x;
853
854         /*
855          * The dirty rate will match the writeout rate in long term, except
856          * when dirty pages are truncated by userspace or re-dirtied by FS.
857          */
858         dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
859
860         pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
861                                        bdi_thresh, bdi_dirty);
862         /*
863          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
864          */
865         task_ratelimit = (u64)dirty_ratelimit *
866                                         pos_ratio >> RATELIMIT_CALC_SHIFT;
867         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
868
869         /*
870          * A linear estimation of the "balanced" throttle rate. The theory is,
871          * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
872          * dirty_rate will be measured to be (N * task_ratelimit). So the below
873          * formula will yield the balanced rate limit (write_bw / N).
874          *
875          * Note that the expanded form is not a pure rate feedback:
876          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
877          * but also takes pos_ratio into account:
878          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
879          *
880          * (1) is not realistic because pos_ratio also takes part in balancing
881          * the dirty rate.  Consider the state
882          *      pos_ratio = 0.5                                              (3)
883          *      rate = 2 * (write_bw / N)                                    (4)
884          * If (1) is used, it will stuck in that state! Because each dd will
885          * be throttled at
886          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
887          * yielding
888          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
889          * put (6) into (1) we get
890          *      rate_(i+1) = rate_(i)                                        (7)
891          *
892          * So we end up using (2) to always keep
893          *      rate_(i+1) ~= (write_bw / N)                                 (8)
894          * regardless of the value of pos_ratio. As long as (8) is satisfied,
895          * pos_ratio is able to drive itself to 1.0, which is not only where
896          * the dirty count meet the setpoint, but also where the slope of
897          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
898          */
899         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
900                                            dirty_rate | 1);
901
902         /*
903          * We could safely do this and return immediately:
904          *
905          *      bdi->dirty_ratelimit = balanced_dirty_ratelimit;
906          *
907          * However to get a more stable dirty_ratelimit, the below elaborated
908          * code makes use of task_ratelimit to filter out sigular points and
909          * limit the step size.
910          *
911          * The below code essentially only uses the relative value of
912          *
913          *      task_ratelimit - dirty_ratelimit
914          *      = (pos_ratio - 1) * dirty_ratelimit
915          *
916          * which reflects the direction and size of dirty position error.
917          */
918
919         /*
920          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
921          * task_ratelimit is on the same side of dirty_ratelimit, too.
922          * For example, when
923          * - dirty_ratelimit > balanced_dirty_ratelimit
924          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
925          * lowering dirty_ratelimit will help meet both the position and rate
926          * control targets. Otherwise, don't update dirty_ratelimit if it will
927          * only help meet the rate target. After all, what the users ultimately
928          * feel and care are stable dirty rate and small position error.
929          *
930          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
931          * and filter out the sigular points of balanced_dirty_ratelimit. Which
932          * keeps jumping around randomly and can even leap far away at times
933          * due to the small 200ms estimation period of dirty_rate (we want to
934          * keep that period small to reduce time lags).
935          */
936         step = 0;
937         if (dirty < setpoint) {
938                 x = min(bdi->balanced_dirty_ratelimit,
939                          min(balanced_dirty_ratelimit, task_ratelimit));
940                 if (dirty_ratelimit < x)
941                         step = x - dirty_ratelimit;
942         } else {
943                 x = max(bdi->balanced_dirty_ratelimit,
944                          max(balanced_dirty_ratelimit, task_ratelimit));
945                 if (dirty_ratelimit > x)
946                         step = dirty_ratelimit - x;
947         }
948
949         /*
950          * Don't pursue 100% rate matching. It's impossible since the balanced
951          * rate itself is constantly fluctuating. So decrease the track speed
952          * when it gets close to the target. Helps eliminate pointless tremors.
953          */
954         step >>= dirty_ratelimit / (2 * step + 1);
955         /*
956          * Limit the tracking speed to avoid overshooting.
957          */
958         step = (step + 7) / 8;
959
960         if (dirty_ratelimit < balanced_dirty_ratelimit)
961                 dirty_ratelimit += step;
962         else
963                 dirty_ratelimit -= step;
964
965         bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
966         bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
967
968         trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
969 }
970
971 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
972                             unsigned long thresh,
973                             unsigned long bg_thresh,
974                             unsigned long dirty,
975                             unsigned long bdi_thresh,
976                             unsigned long bdi_dirty,
977                             unsigned long start_time)
978 {
979         unsigned long now = jiffies;
980         unsigned long elapsed = now - bdi->bw_time_stamp;
981         unsigned long dirtied;
982         unsigned long written;
983
984         /*
985          * rate-limit, only update once every 200ms.
986          */
987         if (elapsed < BANDWIDTH_INTERVAL)
988                 return;
989
990         dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
991         written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
992
993         /*
994          * Skip quiet periods when disk bandwidth is under-utilized.
995          * (at least 1s idle time between two flusher runs)
996          */
997         if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
998                 goto snapshot;
999
1000         if (thresh) {
1001                 global_update_bandwidth(thresh, dirty, now);
1002                 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1003                                            bdi_thresh, bdi_dirty,
1004                                            dirtied, elapsed);
1005         }
1006         bdi_update_write_bandwidth(bdi, elapsed, written);
1007
1008 snapshot:
1009         bdi->dirtied_stamp = dirtied;
1010         bdi->written_stamp = written;
1011         bdi->bw_time_stamp = now;
1012 }
1013
1014 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1015                                  unsigned long thresh,
1016                                  unsigned long bg_thresh,
1017                                  unsigned long dirty,
1018                                  unsigned long bdi_thresh,
1019                                  unsigned long bdi_dirty,
1020                                  unsigned long start_time)
1021 {
1022         if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1023                 return;
1024         spin_lock(&bdi->wb.list_lock);
1025         __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1026                                bdi_thresh, bdi_dirty, start_time);
1027         spin_unlock(&bdi->wb.list_lock);
1028 }
1029
1030 /*
1031  * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
1032  * will look to see if it needs to start dirty throttling.
1033  *
1034  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1035  * global_page_state() too often. So scale it near-sqrt to the safety margin
1036  * (the number of pages we may dirty without exceeding the dirty limits).
1037  */
1038 static unsigned long dirty_poll_interval(unsigned long dirty,
1039                                          unsigned long thresh)
1040 {
1041         if (thresh > dirty)
1042                 return 1UL << (ilog2(thresh - dirty) >> 1);
1043
1044         return 1;
1045 }
1046
1047 static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
1048                                    unsigned long bdi_dirty)
1049 {
1050         unsigned long bw = bdi->avg_write_bandwidth;
1051         unsigned long hi = ilog2(bw);
1052         unsigned long lo = ilog2(bdi->dirty_ratelimit);
1053         unsigned long t;
1054
1055         /* target for 20ms max pause on 1-dd case */
1056         t = HZ / 50;
1057
1058         /*
1059          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1060          * overheads.
1061          *
1062          * (N * 20ms) on 2^N concurrent tasks.
1063          */
1064         if (hi > lo)
1065                 t += (hi - lo) * (20 * HZ) / 1024;
1066
1067         /*
1068          * Limit pause time for small memory systems. If sleeping for too long
1069          * time, a small pool of dirty/writeback pages may go empty and disk go
1070          * idle.
1071          *
1072          * 8 serves as the safety ratio.
1073          */
1074         t = min(t, bdi_dirty * HZ / (8 * bw + 1));
1075
1076         /*
1077          * The pause time will be settled within range (max_pause/4, max_pause).
1078          * Apply a minimal value of 4 to get a non-zero max_pause/4.
1079          */
1080         return clamp_val(t, 4, MAX_PAUSE);
1081 }
1082
1083 /*
1084  * balance_dirty_pages() must be called by processes which are generating dirty
1085  * data.  It looks at the number of dirty pages in the machine and will force
1086  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1087  * If we're over `background_thresh' then the writeback threads are woken to
1088  * perform some writeout.
1089  */
1090 static void balance_dirty_pages(struct address_space *mapping,
1091                                 unsigned long pages_dirtied)
1092 {
1093         unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1094         unsigned long bdi_reclaimable;
1095         unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1096         unsigned long bdi_dirty;
1097         unsigned long freerun;
1098         unsigned long background_thresh;
1099         unsigned long dirty_thresh;
1100         unsigned long bdi_thresh;
1101         long pause = 0;
1102         long uninitialized_var(max_pause);
1103         bool dirty_exceeded = false;
1104         unsigned long task_ratelimit;
1105         unsigned long uninitialized_var(dirty_ratelimit);
1106         unsigned long pos_ratio;
1107         struct backing_dev_info *bdi = mapping->backing_dev_info;
1108         unsigned long start_time = jiffies;
1109
1110         for (;;) {
1111                 /*
1112                  * Unstable writes are a feature of certain networked
1113                  * filesystems (i.e. NFS) in which data may have been
1114                  * written to the server's write cache, but has not yet
1115                  * been flushed to permanent storage.
1116                  */
1117                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1118                                         global_page_state(NR_UNSTABLE_NFS);
1119                 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1120
1121                 global_dirty_limits(&background_thresh, &dirty_thresh);
1122
1123                 /*
1124                  * Throttle it only when the background writeback cannot
1125                  * catch-up. This avoids (excessively) small writeouts
1126                  * when the bdi limits are ramping up.
1127                  */
1128                 freerun = dirty_freerun_ceiling(dirty_thresh,
1129                                                 background_thresh);
1130                 if (nr_dirty <= freerun)
1131                         break;
1132
1133                 if (unlikely(!writeback_in_progress(bdi)))
1134                         bdi_start_background_writeback(bdi);
1135
1136                 /*
1137                  * bdi_thresh is not treated as some limiting factor as
1138                  * dirty_thresh, due to reasons
1139                  * - in JBOD setup, bdi_thresh can fluctuate a lot
1140                  * - in a system with HDD and USB key, the USB key may somehow
1141                  *   go into state (bdi_dirty >> bdi_thresh) either because
1142                  *   bdi_dirty starts high, or because bdi_thresh drops low.
1143                  *   In this case we don't want to hard throttle the USB key
1144                  *   dirtiers for 100 seconds until bdi_dirty drops under
1145                  *   bdi_thresh. Instead the auxiliary bdi control line in
1146                  *   bdi_position_ratio() will let the dirtier task progress
1147                  *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1148                  */
1149                 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1150
1151                 /*
1152                  * In order to avoid the stacked BDI deadlock we need
1153                  * to ensure we accurately count the 'dirty' pages when
1154                  * the threshold is low.
1155                  *
1156                  * Otherwise it would be possible to get thresh+n pages
1157                  * reported dirty, even though there are thresh-m pages
1158                  * actually dirty; with m+n sitting in the percpu
1159                  * deltas.
1160                  */
1161                 if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1162                         bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1163                         bdi_dirty = bdi_reclaimable +
1164                                     bdi_stat_sum(bdi, BDI_WRITEBACK);
1165                 } else {
1166                         bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1167                         bdi_dirty = bdi_reclaimable +
1168                                     bdi_stat(bdi, BDI_WRITEBACK);
1169                 }
1170
1171                 dirty_exceeded = (bdi_dirty > bdi_thresh) ||
1172                                   (nr_dirty > dirty_thresh);
1173                 if (dirty_exceeded && !bdi->dirty_exceeded)
1174                         bdi->dirty_exceeded = 1;
1175
1176                 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1177                                      nr_dirty, bdi_thresh, bdi_dirty,
1178                                      start_time);
1179
1180                 max_pause = bdi_max_pause(bdi, bdi_dirty);
1181
1182                 dirty_ratelimit = bdi->dirty_ratelimit;
1183                 pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1184                                                background_thresh, nr_dirty,
1185                                                bdi_thresh, bdi_dirty);
1186                 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1187                                                         RATELIMIT_CALC_SHIFT;
1188                 if (unlikely(task_ratelimit == 0)) {
1189                         pause = max_pause;
1190                         goto pause;
1191                 }
1192                 pause = HZ * pages_dirtied / task_ratelimit;
1193                 if (unlikely(pause <= 0)) {
1194                         trace_balance_dirty_pages(bdi,
1195                                                   dirty_thresh,
1196                                                   background_thresh,
1197                                                   nr_dirty,
1198                                                   bdi_thresh,
1199                                                   bdi_dirty,
1200                                                   dirty_ratelimit,
1201                                                   task_ratelimit,
1202                                                   pages_dirtied,
1203                                                   pause,
1204                                                   start_time);
1205                         pause = 1; /* avoid resetting nr_dirtied_pause below */
1206                         break;
1207                 }
1208                 pause = min(pause, max_pause);
1209
1210 pause:
1211                 trace_balance_dirty_pages(bdi,
1212                                           dirty_thresh,
1213                                           background_thresh,
1214                                           nr_dirty,
1215                                           bdi_thresh,
1216                                           bdi_dirty,
1217                                           dirty_ratelimit,
1218                                           task_ratelimit,
1219                                           pages_dirtied,
1220                                           pause,
1221                                           start_time);
1222                 __set_current_state(TASK_KILLABLE);
1223                 io_schedule_timeout(pause);
1224
1225                 /*
1226                  * This is typically equal to (nr_dirty < dirty_thresh) and can
1227                  * also keep "1000+ dd on a slow USB stick" under control.
1228                  */
1229                 if (task_ratelimit)
1230                         break;
1231
1232                 /*
1233                  * In the case of an unresponding NFS server and the NFS dirty
1234                  * pages exceeds dirty_thresh, give the other good bdi's a pipe
1235                  * to go through, so that tasks on them still remain responsive.
1236                  *
1237                  * In theory 1 page is enough to keep the comsumer-producer
1238                  * pipe going: the flusher cleans 1 page => the task dirties 1
1239                  * more page. However bdi_dirty has accounting errors.  So use
1240                  * the larger and more IO friendly bdi_stat_error.
1241                  */
1242                 if (bdi_dirty <= bdi_stat_error(bdi))
1243                         break;
1244
1245                 if (fatal_signal_pending(current))
1246                         break;
1247         }
1248
1249         if (!dirty_exceeded && bdi->dirty_exceeded)
1250                 bdi->dirty_exceeded = 0;
1251
1252         current->nr_dirtied = 0;
1253         if (pause == 0) { /* in freerun area */
1254                 current->nr_dirtied_pause =
1255                                 dirty_poll_interval(nr_dirty, dirty_thresh);
1256         } else if (pause <= max_pause / 4 &&
1257                    pages_dirtied >= current->nr_dirtied_pause) {
1258                 current->nr_dirtied_pause = clamp_val(
1259                                         dirty_ratelimit * (max_pause / 2) / HZ,
1260                                         pages_dirtied + pages_dirtied / 8,
1261                                         pages_dirtied * 4);
1262         } else if (pause >= max_pause) {
1263                 current->nr_dirtied_pause = 1 | clamp_val(
1264                                         dirty_ratelimit * (max_pause / 2) / HZ,
1265                                         pages_dirtied / 4,
1266                                         pages_dirtied - pages_dirtied / 8);
1267         }
1268
1269         if (writeback_in_progress(bdi))
1270                 return;
1271
1272         /*
1273          * In laptop mode, we wait until hitting the higher threshold before
1274          * starting background writeout, and then write out all the way down
1275          * to the lower threshold.  So slow writers cause minimal disk activity.
1276          *
1277          * In normal mode, we start background writeout at the lower
1278          * background_thresh, to keep the amount of dirty memory low.
1279          */
1280         if (laptop_mode)
1281                 return;
1282
1283         if (nr_reclaimable > background_thresh)
1284                 bdi_start_background_writeback(bdi);
1285 }
1286
1287 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1288 {
1289         if (set_page_dirty(page) || page_mkwrite) {
1290                 struct address_space *mapping = page_mapping(page);
1291
1292                 if (mapping)
1293                         balance_dirty_pages_ratelimited(mapping);
1294         }
1295 }
1296
1297 static DEFINE_PER_CPU(int, bdp_ratelimits);
1298
1299 /**
1300  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
1301  * @mapping: address_space which was dirtied
1302  * @nr_pages_dirtied: number of pages which the caller has just dirtied
1303  *
1304  * Processes which are dirtying memory should call in here once for each page
1305  * which was newly dirtied.  The function will periodically check the system's
1306  * dirty state and will initiate writeback if needed.
1307  *
1308  * On really big machines, get_writeback_state is expensive, so try to avoid
1309  * calling it too often (ratelimiting).  But once we're over the dirty memory
1310  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1311  * from overshooting the limit by (ratelimit_pages) each.
1312  */
1313 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1314                                         unsigned long nr_pages_dirtied)
1315 {
1316         struct backing_dev_info *bdi = mapping->backing_dev_info;
1317         int ratelimit;
1318         int *p;
1319
1320         if (!bdi_cap_account_dirty(bdi))
1321                 return;
1322
1323         ratelimit = current->nr_dirtied_pause;
1324         if (bdi->dirty_exceeded)
1325                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1326
1327         current->nr_dirtied += nr_pages_dirtied;
1328
1329         preempt_disable();
1330         /*
1331          * This prevents one CPU to accumulate too many dirtied pages without
1332          * calling into balance_dirty_pages(), which can happen when there are
1333          * 1000+ tasks, all of them start dirtying pages at exactly the same
1334          * time, hence all honoured too large initial task->nr_dirtied_pause.
1335          */
1336         p =  &__get_cpu_var(bdp_ratelimits);
1337         if (unlikely(current->nr_dirtied >= ratelimit))
1338                 *p = 0;
1339         else {
1340                 *p += nr_pages_dirtied;
1341                 if (unlikely(*p >= ratelimit_pages)) {
1342                         *p = 0;
1343                         ratelimit = 0;
1344                 }
1345         }
1346         preempt_enable();
1347
1348         if (unlikely(current->nr_dirtied >= ratelimit))
1349                 balance_dirty_pages(mapping, current->nr_dirtied);
1350 }
1351 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1352
1353 void throttle_vm_writeout(gfp_t gfp_mask)
1354 {
1355         unsigned long background_thresh;
1356         unsigned long dirty_thresh;
1357
1358         for ( ; ; ) {
1359                 global_dirty_limits(&background_thresh, &dirty_thresh);
1360
1361                 /*
1362                  * Boost the allowable dirty threshold a bit for page
1363                  * allocators so they don't get DoS'ed by heavy writers
1364                  */
1365                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1366
1367                 if (global_page_state(NR_UNSTABLE_NFS) +
1368                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
1369                                 break;
1370                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1371
1372                 /*
1373                  * The caller might hold locks which can prevent IO completion
1374                  * or progress in the filesystem.  So we cannot just sit here
1375                  * waiting for IO to complete.
1376                  */
1377                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1378                         break;
1379         }
1380 }
1381
1382 /*
1383  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1384  */
1385 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1386         void __user *buffer, size_t *length, loff_t *ppos)
1387 {
1388         proc_dointvec(table, write, buffer, length, ppos);
1389         bdi_arm_supers_timer();
1390         return 0;
1391 }
1392
1393 #ifdef CONFIG_BLOCK
1394 void laptop_mode_timer_fn(unsigned long data)
1395 {
1396         struct request_queue *q = (struct request_queue *)data;
1397         int nr_pages = global_page_state(NR_FILE_DIRTY) +
1398                 global_page_state(NR_UNSTABLE_NFS);
1399
1400         /*
1401          * We want to write everything out, not just down to the dirty
1402          * threshold
1403          */
1404         if (bdi_has_dirty_io(&q->backing_dev_info))
1405                 bdi_start_writeback(&q->backing_dev_info, nr_pages,
1406                                         WB_REASON_LAPTOP_TIMER);
1407 }
1408
1409 /*
1410  * We've spun up the disk and we're in laptop mode: schedule writeback
1411  * of all dirty data a few seconds from now.  If the flush is already scheduled
1412  * then push it back - the user is still using the disk.
1413  */
1414 void laptop_io_completion(struct backing_dev_info *info)
1415 {
1416         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1417 }
1418
1419 /*
1420  * We're in laptop mode and we've just synced. The sync's writes will have
1421  * caused another writeback to be scheduled by laptop_io_completion.
1422  * Nothing needs to be written back anymore, so we unschedule the writeback.
1423  */
1424 void laptop_sync_completion(void)
1425 {
1426         struct backing_dev_info *bdi;
1427
1428         rcu_read_lock();
1429
1430         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1431                 del_timer(&bdi->laptop_mode_wb_timer);
1432
1433         rcu_read_unlock();
1434 }
1435 #endif
1436
1437 /*
1438  * If ratelimit_pages is too high then we can get into dirty-data overload
1439  * if a large number of processes all perform writes at the same time.
1440  * If it is too low then SMP machines will call the (expensive)
1441  * get_writeback_state too often.
1442  *
1443  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1444  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1445  * thresholds.
1446  */
1447
1448 void writeback_set_ratelimit(void)
1449 {
1450         unsigned long background_thresh;
1451         unsigned long dirty_thresh;
1452         global_dirty_limits(&background_thresh, &dirty_thresh);
1453         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1454         if (ratelimit_pages < 16)
1455                 ratelimit_pages = 16;
1456 }
1457
1458 static int __cpuinit
1459 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1460 {
1461         writeback_set_ratelimit();
1462         return NOTIFY_DONE;
1463 }
1464
1465 static struct notifier_block __cpuinitdata ratelimit_nb = {
1466         .notifier_call  = ratelimit_handler,
1467         .next           = NULL,
1468 };
1469
1470 /*
1471  * Called early on to tune the page writeback dirty limits.
1472  *
1473  * We used to scale dirty pages according to how total memory
1474  * related to pages that could be allocated for buffers (by
1475  * comparing nr_free_buffer_pages() to vm_total_pages.
1476  *
1477  * However, that was when we used "dirty_ratio" to scale with
1478  * all memory, and we don't do that any more. "dirty_ratio"
1479  * is now applied to total non-HIGHPAGE memory (by subtracting
1480  * totalhigh_pages from vm_total_pages), and as such we can't
1481  * get into the old insane situation any more where we had
1482  * large amounts of dirty pages compared to a small amount of
1483  * non-HIGHMEM memory.
1484  *
1485  * But we might still want to scale the dirty_ratio by how
1486  * much memory the box has..
1487  */
1488 void __init page_writeback_init(void)
1489 {
1490         int shift;
1491
1492         writeback_set_ratelimit();
1493         register_cpu_notifier(&ratelimit_nb);
1494
1495         shift = calc_period_shift();
1496         prop_descriptor_init(&vm_completions, shift);
1497 }
1498
1499 /**
1500  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1501  * @mapping: address space structure to write
1502  * @start: starting page index
1503  * @end: ending page index (inclusive)
1504  *
1505  * This function scans the page range from @start to @end (inclusive) and tags
1506  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1507  * that write_cache_pages (or whoever calls this function) will then use
1508  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1509  * used to avoid livelocking of writeback by a process steadily creating new
1510  * dirty pages in the file (thus it is important for this function to be quick
1511  * so that it can tag pages faster than a dirtying process can create them).
1512  */
1513 /*
1514  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1515  */
1516 void tag_pages_for_writeback(struct address_space *mapping,
1517                              pgoff_t start, pgoff_t end)
1518 {
1519 #define WRITEBACK_TAG_BATCH 4096
1520         unsigned long tagged;
1521
1522         do {
1523                 spin_lock_irq(&mapping->tree_lock);
1524                 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1525                                 &start, end, WRITEBACK_TAG_BATCH,
1526                                 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1527                 spin_unlock_irq(&mapping->tree_lock);
1528                 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1529                 cond_resched();
1530                 /* We check 'start' to handle wrapping when end == ~0UL */
1531         } while (tagged >= WRITEBACK_TAG_BATCH && start);
1532 }
1533 EXPORT_SYMBOL(tag_pages_for_writeback);
1534
1535 /**
1536  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1537  * @mapping: address space structure to write
1538  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1539  * @writepage: function called for each page
1540  * @data: data passed to writepage function
1541  *
1542  * If a page is already under I/O, write_cache_pages() skips it, even
1543  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1544  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1545  * and msync() need to guarantee that all the data which was dirty at the time
1546  * the call was made get new I/O started against them.  If wbc->sync_mode is
1547  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1548  * existing IO to complete.
1549  *
1550  * To avoid livelocks (when other process dirties new pages), we first tag
1551  * pages which should be written back with TOWRITE tag and only then start
1552  * writing them. For data-integrity sync we have to be careful so that we do
1553  * not miss some pages (e.g., because some other process has cleared TOWRITE
1554  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1555  * by the process clearing the DIRTY tag (and submitting the page for IO).
1556  */
1557 int write_cache_pages(struct address_space *mapping,
1558                       struct writeback_control *wbc, writepage_t writepage,
1559                       void *data)
1560 {
1561         int ret = 0;
1562         int done = 0;
1563         struct pagevec pvec;
1564         int nr_pages;
1565         pgoff_t uninitialized_var(writeback_index);
1566         pgoff_t index;
1567         pgoff_t end;            /* Inclusive */
1568         pgoff_t done_index;
1569         int cycled;
1570         int range_whole = 0;
1571         int tag;
1572
1573         pagevec_init(&pvec, 0);
1574         if (wbc->range_cyclic) {
1575                 writeback_index = mapping->writeback_index; /* prev offset */
1576                 index = writeback_index;
1577                 if (index == 0)
1578                         cycled = 1;
1579                 else
1580                         cycled = 0;
1581                 end = -1;
1582         } else {
1583                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1584                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1585                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1586                         range_whole = 1;
1587                 cycled = 1; /* ignore range_cyclic tests */
1588         }
1589         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1590                 tag = PAGECACHE_TAG_TOWRITE;
1591         else
1592                 tag = PAGECACHE_TAG_DIRTY;
1593 retry:
1594         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1595                 tag_pages_for_writeback(mapping, index, end);
1596         done_index = index;
1597         while (!done && (index <= end)) {
1598                 int i;
1599
1600                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1601                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1602                 if (nr_pages == 0)
1603                         break;
1604
1605                 for (i = 0; i < nr_pages; i++) {
1606                         struct page *page = pvec.pages[i];
1607
1608                         /*
1609                          * At this point, the page may be truncated or
1610                          * invalidated (changing page->mapping to NULL), or
1611                          * even swizzled back from swapper_space to tmpfs file
1612                          * mapping. However, page->index will not change
1613                          * because we have a reference on the page.
1614                          */
1615                         if (page->index > end) {
1616                                 /*
1617                                  * can't be range_cyclic (1st pass) because
1618                                  * end == -1 in that case.
1619                                  */
1620                                 done = 1;
1621                                 break;
1622                         }
1623
1624                         done_index = page->index;
1625
1626                         lock_page(page);
1627
1628                         /*
1629                          * Page truncated or invalidated. We can freely skip it
1630                          * then, even for data integrity operations: the page
1631                          * has disappeared concurrently, so there could be no
1632                          * real expectation of this data interity operation
1633                          * even if there is now a new, dirty page at the same
1634                          * pagecache address.
1635                          */
1636                         if (unlikely(page->mapping != mapping)) {
1637 continue_unlock:
1638                                 unlock_page(page);
1639                                 continue;
1640                         }
1641
1642                         if (!PageDirty(page)) {
1643                                 /* someone wrote it for us */
1644                                 goto continue_unlock;
1645                         }
1646
1647                         if (PageWriteback(page)) {
1648                                 if (wbc->sync_mode != WB_SYNC_NONE)
1649                                         wait_on_page_writeback(page);
1650                                 else
1651                                         goto continue_unlock;
1652                         }
1653
1654                         BUG_ON(PageWriteback(page));
1655                         if (!clear_page_dirty_for_io(page))
1656                                 goto continue_unlock;
1657
1658                         trace_wbc_writepage(wbc, mapping->backing_dev_info);
1659                         ret = (*writepage)(page, wbc, data);
1660                         if (unlikely(ret)) {
1661                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1662                                         unlock_page(page);
1663                                         ret = 0;
1664                                 } else {
1665                                         /*
1666                                          * done_index is set past this page,
1667                                          * so media errors will not choke
1668                                          * background writeout for the entire
1669                                          * file. This has consequences for
1670                                          * range_cyclic semantics (ie. it may
1671                                          * not be suitable for data integrity
1672                                          * writeout).
1673                                          */
1674                                         done_index = page->index + 1;
1675                                         done = 1;
1676                                         break;
1677                                 }
1678                         }
1679
1680                         /*
1681                          * We stop writing back only if we are not doing
1682                          * integrity sync. In case of integrity sync we have to
1683                          * keep going until we have written all the pages
1684                          * we tagged for writeback prior to entering this loop.
1685                          */
1686                         if (--wbc->nr_to_write <= 0 &&
1687                             wbc->sync_mode == WB_SYNC_NONE) {
1688                                 done = 1;
1689                                 break;
1690                         }
1691                 }
1692                 pagevec_release(&pvec);
1693                 cond_resched();
1694         }
1695         if (!cycled && !done) {
1696                 /*
1697                  * range_cyclic:
1698                  * We hit the last page and there is more work to be done: wrap
1699                  * back to the start of the file
1700                  */
1701                 cycled = 1;
1702                 index = 0;
1703                 end = writeback_index - 1;
1704                 goto retry;
1705         }
1706         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1707                 mapping->writeback_index = done_index;
1708
1709         return ret;
1710 }
1711 EXPORT_SYMBOL(write_cache_pages);
1712
1713 /*
1714  * Function used by generic_writepages to call the real writepage
1715  * function and set the mapping flags on error
1716  */
1717 static int __writepage(struct page *page, struct writeback_control *wbc,
1718                        void *data)
1719 {
1720         struct address_space *mapping = data;
1721         int ret = mapping->a_ops->writepage(page, wbc);
1722         mapping_set_error(mapping, ret);
1723         return ret;
1724 }
1725
1726 /**
1727  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1728  * @mapping: address space structure to write
1729  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1730  *
1731  * This is a library function, which implements the writepages()
1732  * address_space_operation.
1733  */
1734 int generic_writepages(struct address_space *mapping,
1735                        struct writeback_control *wbc)
1736 {
1737         struct blk_plug plug;
1738         int ret;
1739
1740         /* deal with chardevs and other special file */
1741         if (!mapping->a_ops->writepage)
1742                 return 0;
1743
1744         blk_start_plug(&plug);
1745         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1746         blk_finish_plug(&plug);
1747         return ret;
1748 }
1749
1750 EXPORT_SYMBOL(generic_writepages);
1751
1752 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1753 {
1754         int ret;
1755
1756         if (wbc->nr_to_write <= 0)
1757                 return 0;
1758         if (mapping->a_ops->writepages)
1759                 ret = mapping->a_ops->writepages(mapping, wbc);
1760         else
1761                 ret = generic_writepages(mapping, wbc);
1762         return ret;
1763 }
1764
1765 /**
1766  * write_one_page - write out a single page and optionally wait on I/O
1767  * @page: the page to write
1768  * @wait: if true, wait on writeout
1769  *
1770  * The page must be locked by the caller and will be unlocked upon return.
1771  *
1772  * write_one_page() returns a negative error code if I/O failed.
1773  */
1774 int write_one_page(struct page *page, int wait)
1775 {
1776         struct address_space *mapping = page->mapping;
1777         int ret = 0;
1778         struct writeback_control wbc = {
1779                 .sync_mode = WB_SYNC_ALL,
1780                 .nr_to_write = 1,
1781         };
1782
1783         BUG_ON(!PageLocked(page));
1784
1785         if (wait)
1786                 wait_on_page_writeback(page);
1787
1788         if (clear_page_dirty_for_io(page)) {
1789                 page_cache_get(page);
1790                 ret = mapping->a_ops->writepage(page, &wbc);
1791                 if (ret == 0 && wait) {
1792                         wait_on_page_writeback(page);
1793                         if (PageError(page))
1794                                 ret = -EIO;
1795                 }
1796                 page_cache_release(page);
1797         } else {
1798                 unlock_page(page);
1799         }
1800         return ret;
1801 }
1802 EXPORT_SYMBOL(write_one_page);
1803
1804 /*
1805  * For address_spaces which do not use buffers nor write back.
1806  */
1807 int __set_page_dirty_no_writeback(struct page *page)
1808 {
1809         if (!PageDirty(page))
1810                 return !TestSetPageDirty(page);
1811         return 0;
1812 }
1813
1814 /*
1815  * Helper function for set_page_dirty family.
1816  * NOTE: This relies on being atomic wrt interrupts.
1817  */
1818 void account_page_dirtied(struct page *page, struct address_space *mapping)
1819 {
1820         if (mapping_cap_account_dirty(mapping)) {
1821                 __inc_zone_page_state(page, NR_FILE_DIRTY);
1822                 __inc_zone_page_state(page, NR_DIRTIED);
1823                 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1824                 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1825                 task_io_account_write(PAGE_CACHE_SIZE);
1826         }
1827 }
1828 EXPORT_SYMBOL(account_page_dirtied);
1829
1830 /*
1831  * Helper function for set_page_writeback family.
1832  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1833  * wrt interrupts.
1834  */
1835 void account_page_writeback(struct page *page)
1836 {
1837         inc_zone_page_state(page, NR_WRITEBACK);
1838 }
1839 EXPORT_SYMBOL(account_page_writeback);
1840
1841 /*
1842  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1843  * its radix tree.
1844  *
1845  * This is also used when a single buffer is being dirtied: we want to set the
1846  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1847  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1848  *
1849  * Most callers have locked the page, which pins the address_space in memory.
1850  * But zap_pte_range() does not lock the page, however in that case the
1851  * mapping is pinned by the vma's ->vm_file reference.
1852  *
1853  * We take care to handle the case where the page was truncated from the
1854  * mapping by re-checking page_mapping() inside tree_lock.
1855  */
1856 int __set_page_dirty_nobuffers(struct page *page)
1857 {
1858         if (!TestSetPageDirty(page)) {
1859                 struct address_space *mapping = page_mapping(page);
1860                 struct address_space *mapping2;
1861
1862                 if (!mapping)
1863                         return 1;
1864
1865                 spin_lock_irq(&mapping->tree_lock);
1866                 mapping2 = page_mapping(page);
1867                 if (mapping2) { /* Race with truncate? */
1868                         BUG_ON(mapping2 != mapping);
1869                         WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1870                         account_page_dirtied(page, mapping);
1871                         radix_tree_tag_set(&mapping->page_tree,
1872                                 page_index(page), PAGECACHE_TAG_DIRTY);
1873                 }
1874                 spin_unlock_irq(&mapping->tree_lock);
1875                 if (mapping->host) {
1876                         /* !PageAnon && !swapper_space */
1877                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1878                 }
1879                 return 1;
1880         }
1881         return 0;
1882 }
1883 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1884
1885 /*
1886  * When a writepage implementation decides that it doesn't want to write this
1887  * page for some reason, it should redirty the locked page via
1888  * redirty_page_for_writepage() and it should then unlock the page and return 0
1889  */
1890 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1891 {
1892         wbc->pages_skipped++;
1893         return __set_page_dirty_nobuffers(page);
1894 }
1895 EXPORT_SYMBOL(redirty_page_for_writepage);
1896
1897 /*
1898  * Dirty a page.
1899  *
1900  * For pages with a mapping this should be done under the page lock
1901  * for the benefit of asynchronous memory errors who prefer a consistent
1902  * dirty state. This rule can be broken in some special cases,
1903  * but should be better not to.
1904  *
1905  * If the mapping doesn't provide a set_page_dirty a_op, then
1906  * just fall through and assume that it wants buffer_heads.
1907  */
1908 int set_page_dirty(struct page *page)
1909 {
1910         struct address_space *mapping = page_mapping(page);
1911
1912         if (likely(mapping)) {
1913                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1914                 /*
1915                  * readahead/lru_deactivate_page could remain
1916                  * PG_readahead/PG_reclaim due to race with end_page_writeback
1917                  * About readahead, if the page is written, the flags would be
1918                  * reset. So no problem.
1919                  * About lru_deactivate_page, if the page is redirty, the flag
1920                  * will be reset. So no problem. but if the page is used by readahead
1921                  * it will confuse readahead and make it restart the size rampup
1922                  * process. But it's a trivial problem.
1923                  */
1924                 ClearPageReclaim(page);
1925 #ifdef CONFIG_BLOCK
1926                 if (!spd)
1927                         spd = __set_page_dirty_buffers;
1928 #endif
1929                 return (*spd)(page);
1930         }
1931         if (!PageDirty(page)) {
1932                 if (!TestSetPageDirty(page))
1933                         return 1;
1934         }
1935         return 0;
1936 }
1937 EXPORT_SYMBOL(set_page_dirty);
1938
1939 /*
1940  * set_page_dirty() is racy if the caller has no reference against
1941  * page->mapping->host, and if the page is unlocked.  This is because another
1942  * CPU could truncate the page off the mapping and then free the mapping.
1943  *
1944  * Usually, the page _is_ locked, or the caller is a user-space process which
1945  * holds a reference on the inode by having an open file.
1946  *
1947  * In other cases, the page should be locked before running set_page_dirty().
1948  */
1949 int set_page_dirty_lock(struct page *page)
1950 {
1951         int ret;
1952
1953         lock_page(page);
1954         ret = set_page_dirty(page);
1955         unlock_page(page);
1956         return ret;
1957 }
1958 EXPORT_SYMBOL(set_page_dirty_lock);
1959
1960 /*
1961  * Clear a page's dirty flag, while caring for dirty memory accounting.
1962  * Returns true if the page was previously dirty.
1963  *
1964  * This is for preparing to put the page under writeout.  We leave the page
1965  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1966  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1967  * implementation will run either set_page_writeback() or set_page_dirty(),
1968  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1969  * back into sync.
1970  *
1971  * This incoherency between the page's dirty flag and radix-tree tag is
1972  * unfortunate, but it only exists while the page is locked.
1973  */
1974 int clear_page_dirty_for_io(struct page *page)
1975 {
1976         struct address_space *mapping = page_mapping(page);
1977
1978         BUG_ON(!PageLocked(page));
1979
1980         if (mapping && mapping_cap_account_dirty(mapping)) {
1981                 /*
1982                  * Yes, Virginia, this is indeed insane.
1983                  *
1984                  * We use this sequence to make sure that
1985                  *  (a) we account for dirty stats properly
1986                  *  (b) we tell the low-level filesystem to
1987                  *      mark the whole page dirty if it was
1988                  *      dirty in a pagetable. Only to then
1989                  *  (c) clean the page again and return 1 to
1990                  *      cause the writeback.
1991                  *
1992                  * This way we avoid all nasty races with the
1993                  * dirty bit in multiple places and clearing
1994                  * them concurrently from different threads.
1995                  *
1996                  * Note! Normally the "set_page_dirty(page)"
1997                  * has no effect on the actual dirty bit - since
1998                  * that will already usually be set. But we
1999                  * need the side effects, and it can help us
2000                  * avoid races.
2001                  *
2002                  * We basically use the page "master dirty bit"
2003                  * as a serialization point for all the different
2004                  * threads doing their things.
2005                  */
2006                 if (page_mkclean(page))
2007                         set_page_dirty(page);
2008                 /*
2009                  * We carefully synchronise fault handlers against
2010                  * installing a dirty pte and marking the page dirty
2011                  * at this point. We do this by having them hold the
2012                  * page lock at some point after installing their
2013                  * pte, but before marking the page dirty.
2014                  * Pages are always locked coming in here, so we get
2015                  * the desired exclusion. See mm/memory.c:do_wp_page()
2016                  * for more comments.
2017                  */
2018                 if (TestClearPageDirty(page)) {
2019                         dec_zone_page_state(page, NR_FILE_DIRTY);
2020                         dec_bdi_stat(mapping->backing_dev_info,
2021                                         BDI_RECLAIMABLE);
2022                         return 1;
2023                 }
2024                 return 0;
2025         }
2026         return TestClearPageDirty(page);
2027 }
2028 EXPORT_SYMBOL(clear_page_dirty_for_io);
2029
2030 int test_clear_page_writeback(struct page *page)
2031 {
2032         struct address_space *mapping = page_mapping(page);
2033         int ret;
2034
2035         if (mapping) {
2036                 struct backing_dev_info *bdi = mapping->backing_dev_info;
2037                 unsigned long flags;
2038
2039                 spin_lock_irqsave(&mapping->tree_lock, flags);
2040                 ret = TestClearPageWriteback(page);
2041                 if (ret) {
2042                         radix_tree_tag_clear(&mapping->page_tree,
2043                                                 page_index(page),
2044                                                 PAGECACHE_TAG_WRITEBACK);
2045                         if (bdi_cap_account_writeback(bdi)) {
2046                                 __dec_bdi_stat(bdi, BDI_WRITEBACK);
2047                                 __bdi_writeout_inc(bdi);
2048                         }
2049                 }
2050                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2051         } else {
2052                 ret = TestClearPageWriteback(page);
2053         }
2054         if (ret) {
2055                 dec_zone_page_state(page, NR_WRITEBACK);
2056                 inc_zone_page_state(page, NR_WRITTEN);
2057         }
2058         return ret;
2059 }
2060
2061 int test_set_page_writeback(struct page *page)
2062 {
2063         struct address_space *mapping = page_mapping(page);
2064         int ret;
2065
2066         if (mapping) {
2067                 struct backing_dev_info *bdi = mapping->backing_dev_info;
2068                 unsigned long flags;
2069
2070                 spin_lock_irqsave(&mapping->tree_lock, flags);
2071                 ret = TestSetPageWriteback(page);
2072                 if (!ret) {
2073                         radix_tree_tag_set(&mapping->page_tree,
2074                                                 page_index(page),
2075                                                 PAGECACHE_TAG_WRITEBACK);
2076                         if (bdi_cap_account_writeback(bdi))
2077                                 __inc_bdi_stat(bdi, BDI_WRITEBACK);
2078                 }
2079                 if (!PageDirty(page))
2080                         radix_tree_tag_clear(&mapping->page_tree,
2081                                                 page_index(page),
2082                                                 PAGECACHE_TAG_DIRTY);
2083                 radix_tree_tag_clear(&mapping->page_tree,
2084                                      page_index(page),
2085                                      PAGECACHE_TAG_TOWRITE);
2086                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2087         } else {
2088                 ret = TestSetPageWriteback(page);
2089         }
2090         if (!ret)
2091                 account_page_writeback(page);
2092         return ret;
2093
2094 }
2095 EXPORT_SYMBOL(test_set_page_writeback);
2096
2097 /*
2098  * Return true if any of the pages in the mapping are marked with the
2099  * passed tag.
2100  */
2101 int mapping_tagged(struct address_space *mapping, int tag)
2102 {
2103         return radix_tree_tagged(&mapping->page_tree, tag);
2104 }
2105 EXPORT_SYMBOL(mapping_tagged);