mmap: avoid unnecessary anon_vma lock
[pandora-kernel.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlb.h>
37 #include <asm/mmu_context.h>
38
39 #include "internal.h"
40
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags)       (0)
43 #endif
44
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len)              (addr)
47 #endif
48
49 static void unmap_region(struct mm_struct *mm,
50                 struct vm_area_struct *vma, struct vm_area_struct *prev,
51                 unsigned long start, unsigned long end);
52
53 /*
54  * WARNING: the debugging will use recursive algorithms so never enable this
55  * unless you know what you are doing.
56  */
57 #undef DEBUG_MM_RB
58
59 /* description of effects of mapping type and prot in current implementation.
60  * this is due to the limited x86 page protection hardware.  The expected
61  * behavior is in parens:
62  *
63  * map_type     prot
64  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
65  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
66  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
67  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
68  *              
69  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
70  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
71  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
72  *
73  */
74 pgprot_t protection_map[16] = {
75         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81         return __pgprot(pgprot_val(protection_map[vm_flags &
82                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 /*
91  * Make sure vm_committed_as in one cacheline and not cacheline shared with
92  * other variables. It can be updated by several CPUs frequently.
93  */
94 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
95
96 /*
97  * Check that a process has enough memory to allocate a new virtual
98  * mapping. 0 means there is enough memory for the allocation to
99  * succeed and -ENOMEM implies there is not.
100  *
101  * We currently support three overcommit policies, which are set via the
102  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
103  *
104  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
105  * Additional code 2002 Jul 20 by Robert Love.
106  *
107  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
108  *
109  * Note this is a helper function intended to be used by LSMs which
110  * wish to use this logic.
111  */
112 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
113 {
114         unsigned long free, allowed;
115
116         vm_acct_memory(pages);
117
118         /*
119          * Sometimes we want to use more memory than we have
120          */
121         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
122                 return 0;
123
124         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
125                 unsigned long n;
126
127                 free = global_page_state(NR_FILE_PAGES);
128                 free += nr_swap_pages;
129
130                 /*
131                  * Any slabs which are created with the
132                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
133                  * which are reclaimable, under pressure.  The dentry
134                  * cache and most inode caches should fall into this
135                  */
136                 free += global_page_state(NR_SLAB_RECLAIMABLE);
137
138                 /*
139                  * Leave the last 3% for root
140                  */
141                 if (!cap_sys_admin)
142                         free -= free / 32;
143
144                 if (free > pages)
145                         return 0;
146
147                 /*
148                  * nr_free_pages() is very expensive on large systems,
149                  * only call if we're about to fail.
150                  */
151                 n = nr_free_pages();
152
153                 /*
154                  * Leave reserved pages. The pages are not for anonymous pages.
155                  */
156                 if (n <= totalreserve_pages)
157                         goto error;
158                 else
159                         n -= totalreserve_pages;
160
161                 /*
162                  * Leave the last 3% for root
163                  */
164                 if (!cap_sys_admin)
165                         n -= n / 32;
166                 free += n;
167
168                 if (free > pages)
169                         return 0;
170
171                 goto error;
172         }
173
174         allowed = (totalram_pages - hugetlb_total_pages())
175                 * sysctl_overcommit_ratio / 100;
176         /*
177          * Leave the last 3% for root
178          */
179         if (!cap_sys_admin)
180                 allowed -= allowed / 32;
181         allowed += total_swap_pages;
182
183         /* Don't let a single process grow too big:
184            leave 3% of the size of this process for other processes */
185         if (mm)
186                 allowed -= mm->total_vm / 32;
187
188         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
189                 return 0;
190 error:
191         vm_unacct_memory(pages);
192
193         return -ENOMEM;
194 }
195
196 /*
197  * Requires inode->i_mapping->i_mmap_lock
198  */
199 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
200                 struct file *file, struct address_space *mapping)
201 {
202         if (vma->vm_flags & VM_DENYWRITE)
203                 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
204         if (vma->vm_flags & VM_SHARED)
205                 mapping->i_mmap_writable--;
206
207         flush_dcache_mmap_lock(mapping);
208         if (unlikely(vma->vm_flags & VM_NONLINEAR))
209                 list_del_init(&vma->shared.vm_set.list);
210         else
211                 vma_prio_tree_remove(vma, &mapping->i_mmap);
212         flush_dcache_mmap_unlock(mapping);
213 }
214
215 /*
216  * Unlink a file-based vm structure from its prio_tree, to hide
217  * vma from rmap and vmtruncate before freeing its page tables.
218  */
219 void unlink_file_vma(struct vm_area_struct *vma)
220 {
221         struct file *file = vma->vm_file;
222
223         if (file) {
224                 struct address_space *mapping = file->f_mapping;
225                 spin_lock(&mapping->i_mmap_lock);
226                 __remove_shared_vm_struct(vma, file, mapping);
227                 spin_unlock(&mapping->i_mmap_lock);
228         }
229 }
230
231 /*
232  * Close a vm structure and free it, returning the next.
233  */
234 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
235 {
236         struct vm_area_struct *next = vma->vm_next;
237
238         might_sleep();
239         if (vma->vm_ops && vma->vm_ops->close)
240                 vma->vm_ops->close(vma);
241         if (vma->vm_file) {
242                 fput(vma->vm_file);
243                 if (vma->vm_flags & VM_EXECUTABLE)
244                         removed_exe_file_vma(vma->vm_mm);
245         }
246         mpol_put(vma_policy(vma));
247         kmem_cache_free(vm_area_cachep, vma);
248         return next;
249 }
250
251 SYSCALL_DEFINE1(brk, unsigned long, brk)
252 {
253         unsigned long rlim, retval;
254         unsigned long newbrk, oldbrk;
255         struct mm_struct *mm = current->mm;
256         unsigned long min_brk;
257
258         down_write(&mm->mmap_sem);
259
260 #ifdef CONFIG_COMPAT_BRK
261         /*
262          * CONFIG_COMPAT_BRK can still be overridden by setting
263          * randomize_va_space to 2, which will still cause mm->start_brk
264          * to be arbitrarily shifted
265          */
266         if (current->brk_randomized)
267                 min_brk = mm->start_brk;
268         else
269                 min_brk = mm->end_data;
270 #else
271         min_brk = mm->start_brk;
272 #endif
273         if (brk < min_brk)
274                 goto out;
275
276         /*
277          * Check against rlimit here. If this check is done later after the test
278          * of oldbrk with newbrk then it can escape the test and let the data
279          * segment grow beyond its set limit the in case where the limit is
280          * not page aligned -Ram Gupta
281          */
282         rlim = rlimit(RLIMIT_DATA);
283         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
284                         (mm->end_data - mm->start_data) > rlim)
285                 goto out;
286
287         newbrk = PAGE_ALIGN(brk);
288         oldbrk = PAGE_ALIGN(mm->brk);
289         if (oldbrk == newbrk)
290                 goto set_brk;
291
292         /* Always allow shrinking brk. */
293         if (brk <= mm->brk) {
294                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
295                         goto set_brk;
296                 goto out;
297         }
298
299         /* Check against existing mmap mappings. */
300         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
301                 goto out;
302
303         /* Ok, looks good - let it rip. */
304         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
305                 goto out;
306 set_brk:
307         mm->brk = brk;
308 out:
309         retval = mm->brk;
310         up_write(&mm->mmap_sem);
311         return retval;
312 }
313
314 #ifdef DEBUG_MM_RB
315 static int browse_rb(struct rb_root *root)
316 {
317         int i = 0, j;
318         struct rb_node *nd, *pn = NULL;
319         unsigned long prev = 0, pend = 0;
320
321         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
322                 struct vm_area_struct *vma;
323                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
324                 if (vma->vm_start < prev)
325                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
326                 if (vma->vm_start < pend)
327                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
328                 if (vma->vm_start > vma->vm_end)
329                         printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
330                 i++;
331                 pn = nd;
332                 prev = vma->vm_start;
333                 pend = vma->vm_end;
334         }
335         j = 0;
336         for (nd = pn; nd; nd = rb_prev(nd)) {
337                 j++;
338         }
339         if (i != j)
340                 printk("backwards %d, forwards %d\n", j, i), i = 0;
341         return i;
342 }
343
344 void validate_mm(struct mm_struct *mm)
345 {
346         int bug = 0;
347         int i = 0;
348         struct vm_area_struct *tmp = mm->mmap;
349         while (tmp) {
350                 tmp = tmp->vm_next;
351                 i++;
352         }
353         if (i != mm->map_count)
354                 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
355         i = browse_rb(&mm->mm_rb);
356         if (i != mm->map_count)
357                 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
358         BUG_ON(bug);
359 }
360 #else
361 #define validate_mm(mm) do { } while (0)
362 #endif
363
364 static struct vm_area_struct *
365 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
366                 struct vm_area_struct **pprev, struct rb_node ***rb_link,
367                 struct rb_node ** rb_parent)
368 {
369         struct vm_area_struct * vma;
370         struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
371
372         __rb_link = &mm->mm_rb.rb_node;
373         rb_prev = __rb_parent = NULL;
374         vma = NULL;
375
376         while (*__rb_link) {
377                 struct vm_area_struct *vma_tmp;
378
379                 __rb_parent = *__rb_link;
380                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
381
382                 if (vma_tmp->vm_end > addr) {
383                         vma = vma_tmp;
384                         if (vma_tmp->vm_start <= addr)
385                                 break;
386                         __rb_link = &__rb_parent->rb_left;
387                 } else {
388                         rb_prev = __rb_parent;
389                         __rb_link = &__rb_parent->rb_right;
390                 }
391         }
392
393         *pprev = NULL;
394         if (rb_prev)
395                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
396         *rb_link = __rb_link;
397         *rb_parent = __rb_parent;
398         return vma;
399 }
400
401 static inline void
402 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
403                 struct vm_area_struct *prev, struct rb_node *rb_parent)
404 {
405         struct vm_area_struct *next;
406
407         vma->vm_prev = prev;
408         if (prev) {
409                 next = prev->vm_next;
410                 prev->vm_next = vma;
411         } else {
412                 mm->mmap = vma;
413                 if (rb_parent)
414                         next = rb_entry(rb_parent,
415                                         struct vm_area_struct, vm_rb);
416                 else
417                         next = NULL;
418         }
419         vma->vm_next = next;
420         if (next)
421                 next->vm_prev = vma;
422 }
423
424 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
425                 struct rb_node **rb_link, struct rb_node *rb_parent)
426 {
427         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
428         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
429 }
430
431 static void __vma_link_file(struct vm_area_struct *vma)
432 {
433         struct file *file;
434
435         file = vma->vm_file;
436         if (file) {
437                 struct address_space *mapping = file->f_mapping;
438
439                 if (vma->vm_flags & VM_DENYWRITE)
440                         atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
441                 if (vma->vm_flags & VM_SHARED)
442                         mapping->i_mmap_writable++;
443
444                 flush_dcache_mmap_lock(mapping);
445                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
446                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
447                 else
448                         vma_prio_tree_insert(vma, &mapping->i_mmap);
449                 flush_dcache_mmap_unlock(mapping);
450         }
451 }
452
453 static void
454 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
455         struct vm_area_struct *prev, struct rb_node **rb_link,
456         struct rb_node *rb_parent)
457 {
458         __vma_link_list(mm, vma, prev, rb_parent);
459         __vma_link_rb(mm, vma, rb_link, rb_parent);
460 }
461
462 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
463                         struct vm_area_struct *prev, struct rb_node **rb_link,
464                         struct rb_node *rb_parent)
465 {
466         struct address_space *mapping = NULL;
467
468         if (vma->vm_file)
469                 mapping = vma->vm_file->f_mapping;
470
471         if (mapping) {
472                 spin_lock(&mapping->i_mmap_lock);
473                 vma->vm_truncate_count = mapping->truncate_count;
474         }
475
476         __vma_link(mm, vma, prev, rb_link, rb_parent);
477         __vma_link_file(vma);
478
479         if (mapping)
480                 spin_unlock(&mapping->i_mmap_lock);
481
482         mm->map_count++;
483         validate_mm(mm);
484 }
485
486 /*
487  * Helper for vma_adjust in the split_vma insert case:
488  * insert vm structure into list and rbtree and anon_vma,
489  * but it has already been inserted into prio_tree earlier.
490  */
491 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
492 {
493         struct vm_area_struct *__vma, *prev;
494         struct rb_node **rb_link, *rb_parent;
495
496         __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
497         BUG_ON(__vma && __vma->vm_start < vma->vm_end);
498         __vma_link(mm, vma, prev, rb_link, rb_parent);
499         mm->map_count++;
500 }
501
502 static inline void
503 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
504                 struct vm_area_struct *prev)
505 {
506         struct vm_area_struct *next = vma->vm_next;
507
508         prev->vm_next = next;
509         if (next)
510                 next->vm_prev = prev;
511         rb_erase(&vma->vm_rb, &mm->mm_rb);
512         if (mm->mmap_cache == vma)
513                 mm->mmap_cache = prev;
514 }
515
516 /*
517  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
518  * is already present in an i_mmap tree without adjusting the tree.
519  * The following helper function should be used when such adjustments
520  * are necessary.  The "insert" vma (if any) is to be inserted
521  * before we drop the necessary locks.
522  */
523 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
524         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
525 {
526         struct mm_struct *mm = vma->vm_mm;
527         struct vm_area_struct *next = vma->vm_next;
528         struct vm_area_struct *importer = NULL;
529         struct address_space *mapping = NULL;
530         struct prio_tree_root *root = NULL;
531         struct anon_vma *anon_vma = NULL;
532         struct file *file = vma->vm_file;
533         long adjust_next = 0;
534         int remove_next = 0;
535
536         if (next && !insert) {
537                 struct vm_area_struct *exporter = NULL;
538
539                 if (end >= next->vm_end) {
540                         /*
541                          * vma expands, overlapping all the next, and
542                          * perhaps the one after too (mprotect case 6).
543                          */
544 again:                  remove_next = 1 + (end > next->vm_end);
545                         end = next->vm_end;
546                         exporter = next;
547                         importer = vma;
548                 } else if (end > next->vm_start) {
549                         /*
550                          * vma expands, overlapping part of the next:
551                          * mprotect case 5 shifting the boundary up.
552                          */
553                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
554                         exporter = next;
555                         importer = vma;
556                 } else if (end < vma->vm_end) {
557                         /*
558                          * vma shrinks, and !insert tells it's not
559                          * split_vma inserting another: so it must be
560                          * mprotect case 4 shifting the boundary down.
561                          */
562                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
563                         exporter = vma;
564                         importer = next;
565                 }
566
567                 /*
568                  * Easily overlooked: when mprotect shifts the boundary,
569                  * make sure the expanding vma has anon_vma set if the
570                  * shrinking vma had, to cover any anon pages imported.
571                  */
572                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
573                         if (anon_vma_clone(importer, exporter))
574                                 return -ENOMEM;
575                         importer->anon_vma = exporter->anon_vma;
576                 }
577         }
578
579         if (file) {
580                 mapping = file->f_mapping;
581                 if (!(vma->vm_flags & VM_NONLINEAR))
582                         root = &mapping->i_mmap;
583                 spin_lock(&mapping->i_mmap_lock);
584                 if (importer &&
585                     vma->vm_truncate_count != next->vm_truncate_count) {
586                         /*
587                          * unmap_mapping_range might be in progress:
588                          * ensure that the expanding vma is rescanned.
589                          */
590                         importer->vm_truncate_count = 0;
591                 }
592                 if (insert) {
593                         insert->vm_truncate_count = vma->vm_truncate_count;
594                         /*
595                          * Put into prio_tree now, so instantiated pages
596                          * are visible to arm/parisc __flush_dcache_page
597                          * throughout; but we cannot insert into address
598                          * space until vma start or end is updated.
599                          */
600                         __vma_link_file(insert);
601                 }
602         }
603
604         vma_adjust_trans_huge(vma, start, end, adjust_next);
605
606         /*
607          * When changing only vma->vm_end, we don't really need anon_vma
608          * lock. This is a fairly rare case by itself, but the anon_vma
609          * lock may be shared between many sibling processes.  Skipping
610          * the lock for brk adjustments makes a difference sometimes.
611          */
612         if (vma->anon_vma && (importer || start != vma->vm_start)) {
613                 anon_vma = vma->anon_vma;
614                 anon_vma_lock(anon_vma);
615         }
616
617         if (root) {
618                 flush_dcache_mmap_lock(mapping);
619                 vma_prio_tree_remove(vma, root);
620                 if (adjust_next)
621                         vma_prio_tree_remove(next, root);
622         }
623
624         vma->vm_start = start;
625         vma->vm_end = end;
626         vma->vm_pgoff = pgoff;
627         if (adjust_next) {
628                 next->vm_start += adjust_next << PAGE_SHIFT;
629                 next->vm_pgoff += adjust_next;
630         }
631
632         if (root) {
633                 if (adjust_next)
634                         vma_prio_tree_insert(next, root);
635                 vma_prio_tree_insert(vma, root);
636                 flush_dcache_mmap_unlock(mapping);
637         }
638
639         if (remove_next) {
640                 /*
641                  * vma_merge has merged next into vma, and needs
642                  * us to remove next before dropping the locks.
643                  */
644                 __vma_unlink(mm, next, vma);
645                 if (file)
646                         __remove_shared_vm_struct(next, file, mapping);
647         } else if (insert) {
648                 /*
649                  * split_vma has split insert from vma, and needs
650                  * us to insert it before dropping the locks
651                  * (it may either follow vma or precede it).
652                  */
653                 __insert_vm_struct(mm, insert);
654         }
655
656         if (anon_vma)
657                 anon_vma_unlock(anon_vma);
658         if (mapping)
659                 spin_unlock(&mapping->i_mmap_lock);
660
661         if (remove_next) {
662                 if (file) {
663                         fput(file);
664                         if (next->vm_flags & VM_EXECUTABLE)
665                                 removed_exe_file_vma(mm);
666                 }
667                 if (next->anon_vma)
668                         anon_vma_merge(vma, next);
669                 mm->map_count--;
670                 mpol_put(vma_policy(next));
671                 kmem_cache_free(vm_area_cachep, next);
672                 /*
673                  * In mprotect's case 6 (see comments on vma_merge),
674                  * we must remove another next too. It would clutter
675                  * up the code too much to do both in one go.
676                  */
677                 if (remove_next == 2) {
678                         next = vma->vm_next;
679                         goto again;
680                 }
681         }
682
683         validate_mm(mm);
684
685         return 0;
686 }
687
688 /*
689  * If the vma has a ->close operation then the driver probably needs to release
690  * per-vma resources, so we don't attempt to merge those.
691  */
692 static inline int is_mergeable_vma(struct vm_area_struct *vma,
693                         struct file *file, unsigned long vm_flags)
694 {
695         /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
696         if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
697                 return 0;
698         if (vma->vm_file != file)
699                 return 0;
700         if (vma->vm_ops && vma->vm_ops->close)
701                 return 0;
702         return 1;
703 }
704
705 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
706                                         struct anon_vma *anon_vma2)
707 {
708         return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
709 }
710
711 /*
712  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
713  * in front of (at a lower virtual address and file offset than) the vma.
714  *
715  * We cannot merge two vmas if they have differently assigned (non-NULL)
716  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
717  *
718  * We don't check here for the merged mmap wrapping around the end of pagecache
719  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
720  * wrap, nor mmaps which cover the final page at index -1UL.
721  */
722 static int
723 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
724         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
725 {
726         if (is_mergeable_vma(vma, file, vm_flags) &&
727             is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
728                 if (vma->vm_pgoff == vm_pgoff)
729                         return 1;
730         }
731         return 0;
732 }
733
734 /*
735  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
736  * beyond (at a higher virtual address and file offset than) the vma.
737  *
738  * We cannot merge two vmas if they have differently assigned (non-NULL)
739  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
740  */
741 static int
742 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
743         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
744 {
745         if (is_mergeable_vma(vma, file, vm_flags) &&
746             is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
747                 pgoff_t vm_pglen;
748                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
749                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
750                         return 1;
751         }
752         return 0;
753 }
754
755 /*
756  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
757  * whether that can be merged with its predecessor or its successor.
758  * Or both (it neatly fills a hole).
759  *
760  * In most cases - when called for mmap, brk or mremap - [addr,end) is
761  * certain not to be mapped by the time vma_merge is called; but when
762  * called for mprotect, it is certain to be already mapped (either at
763  * an offset within prev, or at the start of next), and the flags of
764  * this area are about to be changed to vm_flags - and the no-change
765  * case has already been eliminated.
766  *
767  * The following mprotect cases have to be considered, where AAAA is
768  * the area passed down from mprotect_fixup, never extending beyond one
769  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
770  *
771  *     AAAA             AAAA                AAAA          AAAA
772  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
773  *    cannot merge    might become    might become    might become
774  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
775  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
776  *    mremap move:                                    PPPPNNNNNNNN 8
777  *        AAAA
778  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
779  *    might become    case 1 below    case 2 below    case 3 below
780  *
781  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
782  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
783  */
784 struct vm_area_struct *vma_merge(struct mm_struct *mm,
785                         struct vm_area_struct *prev, unsigned long addr,
786                         unsigned long end, unsigned long vm_flags,
787                         struct anon_vma *anon_vma, struct file *file,
788                         pgoff_t pgoff, struct mempolicy *policy)
789 {
790         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
791         struct vm_area_struct *area, *next;
792         int err;
793
794         /*
795          * We later require that vma->vm_flags == vm_flags,
796          * so this tests vma->vm_flags & VM_SPECIAL, too.
797          */
798         if (vm_flags & VM_SPECIAL)
799                 return NULL;
800
801         if (prev)
802                 next = prev->vm_next;
803         else
804                 next = mm->mmap;
805         area = next;
806         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
807                 next = next->vm_next;
808
809         /*
810          * Can it merge with the predecessor?
811          */
812         if (prev && prev->vm_end == addr &&
813                         mpol_equal(vma_policy(prev), policy) &&
814                         can_vma_merge_after(prev, vm_flags,
815                                                 anon_vma, file, pgoff)) {
816                 /*
817                  * OK, it can.  Can we now merge in the successor as well?
818                  */
819                 if (next && end == next->vm_start &&
820                                 mpol_equal(policy, vma_policy(next)) &&
821                                 can_vma_merge_before(next, vm_flags,
822                                         anon_vma, file, pgoff+pglen) &&
823                                 is_mergeable_anon_vma(prev->anon_vma,
824                                                       next->anon_vma)) {
825                                                         /* cases 1, 6 */
826                         err = vma_adjust(prev, prev->vm_start,
827                                 next->vm_end, prev->vm_pgoff, NULL);
828                 } else                                  /* cases 2, 5, 7 */
829                         err = vma_adjust(prev, prev->vm_start,
830                                 end, prev->vm_pgoff, NULL);
831                 if (err)
832                         return NULL;
833                 khugepaged_enter_vma_merge(prev);
834                 return prev;
835         }
836
837         /*
838          * Can this new request be merged in front of next?
839          */
840         if (next && end == next->vm_start &&
841                         mpol_equal(policy, vma_policy(next)) &&
842                         can_vma_merge_before(next, vm_flags,
843                                         anon_vma, file, pgoff+pglen)) {
844                 if (prev && addr < prev->vm_end)        /* case 4 */
845                         err = vma_adjust(prev, prev->vm_start,
846                                 addr, prev->vm_pgoff, NULL);
847                 else                                    /* cases 3, 8 */
848                         err = vma_adjust(area, addr, next->vm_end,
849                                 next->vm_pgoff - pglen, NULL);
850                 if (err)
851                         return NULL;
852                 khugepaged_enter_vma_merge(area);
853                 return area;
854         }
855
856         return NULL;
857 }
858
859 /*
860  * Rough compatbility check to quickly see if it's even worth looking
861  * at sharing an anon_vma.
862  *
863  * They need to have the same vm_file, and the flags can only differ
864  * in things that mprotect may change.
865  *
866  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
867  * we can merge the two vma's. For example, we refuse to merge a vma if
868  * there is a vm_ops->close() function, because that indicates that the
869  * driver is doing some kind of reference counting. But that doesn't
870  * really matter for the anon_vma sharing case.
871  */
872 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
873 {
874         return a->vm_end == b->vm_start &&
875                 mpol_equal(vma_policy(a), vma_policy(b)) &&
876                 a->vm_file == b->vm_file &&
877                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
878                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
879 }
880
881 /*
882  * Do some basic sanity checking to see if we can re-use the anon_vma
883  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
884  * the same as 'old', the other will be the new one that is trying
885  * to share the anon_vma.
886  *
887  * NOTE! This runs with mm_sem held for reading, so it is possible that
888  * the anon_vma of 'old' is concurrently in the process of being set up
889  * by another page fault trying to merge _that_. But that's ok: if it
890  * is being set up, that automatically means that it will be a singleton
891  * acceptable for merging, so we can do all of this optimistically. But
892  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
893  *
894  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
895  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
896  * is to return an anon_vma that is "complex" due to having gone through
897  * a fork).
898  *
899  * We also make sure that the two vma's are compatible (adjacent,
900  * and with the same memory policies). That's all stable, even with just
901  * a read lock on the mm_sem.
902  */
903 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
904 {
905         if (anon_vma_compatible(a, b)) {
906                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
907
908                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
909                         return anon_vma;
910         }
911         return NULL;
912 }
913
914 /*
915  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
916  * neighbouring vmas for a suitable anon_vma, before it goes off
917  * to allocate a new anon_vma.  It checks because a repetitive
918  * sequence of mprotects and faults may otherwise lead to distinct
919  * anon_vmas being allocated, preventing vma merge in subsequent
920  * mprotect.
921  */
922 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
923 {
924         struct anon_vma *anon_vma;
925         struct vm_area_struct *near;
926
927         near = vma->vm_next;
928         if (!near)
929                 goto try_prev;
930
931         anon_vma = reusable_anon_vma(near, vma, near);
932         if (anon_vma)
933                 return anon_vma;
934 try_prev:
935         /*
936          * It is potentially slow to have to call find_vma_prev here.
937          * But it's only on the first write fault on the vma, not
938          * every time, and we could devise a way to avoid it later
939          * (e.g. stash info in next's anon_vma_node when assigning
940          * an anon_vma, or when trying vma_merge).  Another time.
941          */
942         BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
943         if (!near)
944                 goto none;
945
946         anon_vma = reusable_anon_vma(near, near, vma);
947         if (anon_vma)
948                 return anon_vma;
949 none:
950         /*
951          * There's no absolute need to look only at touching neighbours:
952          * we could search further afield for "compatible" anon_vmas.
953          * But it would probably just be a waste of time searching,
954          * or lead to too many vmas hanging off the same anon_vma.
955          * We're trying to allow mprotect remerging later on,
956          * not trying to minimize memory used for anon_vmas.
957          */
958         return NULL;
959 }
960
961 #ifdef CONFIG_PROC_FS
962 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
963                                                 struct file *file, long pages)
964 {
965         const unsigned long stack_flags
966                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
967
968         if (file) {
969                 mm->shared_vm += pages;
970                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
971                         mm->exec_vm += pages;
972         } else if (flags & stack_flags)
973                 mm->stack_vm += pages;
974         if (flags & (VM_RESERVED|VM_IO))
975                 mm->reserved_vm += pages;
976 }
977 #endif /* CONFIG_PROC_FS */
978
979 /*
980  * The caller must hold down_write(&current->mm->mmap_sem).
981  */
982
983 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
984                         unsigned long len, unsigned long prot,
985                         unsigned long flags, unsigned long pgoff)
986 {
987         struct mm_struct * mm = current->mm;
988         struct inode *inode;
989         unsigned int vm_flags;
990         int error;
991         unsigned long reqprot = prot;
992
993         /*
994          * Does the application expect PROT_READ to imply PROT_EXEC?
995          *
996          * (the exception is when the underlying filesystem is noexec
997          *  mounted, in which case we dont add PROT_EXEC.)
998          */
999         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1000                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1001                         prot |= PROT_EXEC;
1002
1003         if (!len)
1004                 return -EINVAL;
1005
1006         if (!(flags & MAP_FIXED))
1007                 addr = round_hint_to_min(addr);
1008
1009         /* Careful about overflows.. */
1010         len = PAGE_ALIGN(len);
1011         if (!len)
1012                 return -ENOMEM;
1013
1014         /* offset overflow? */
1015         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1016                return -EOVERFLOW;
1017
1018         /* Too many mappings? */
1019         if (mm->map_count > sysctl_max_map_count)
1020                 return -ENOMEM;
1021
1022         /* Obtain the address to map to. we verify (or select) it and ensure
1023          * that it represents a valid section of the address space.
1024          */
1025         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1026         if (addr & ~PAGE_MASK)
1027                 return addr;
1028
1029         /* Do simple checking here so the lower-level routines won't have
1030          * to. we assume access permissions have been handled by the open
1031          * of the memory object, so we don't do any here.
1032          */
1033         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1034                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1035
1036         if (flags & MAP_LOCKED)
1037                 if (!can_do_mlock())
1038                         return -EPERM;
1039
1040         /* mlock MCL_FUTURE? */
1041         if (vm_flags & VM_LOCKED) {
1042                 unsigned long locked, lock_limit;
1043                 locked = len >> PAGE_SHIFT;
1044                 locked += mm->locked_vm;
1045                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1046                 lock_limit >>= PAGE_SHIFT;
1047                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1048                         return -EAGAIN;
1049         }
1050
1051         inode = file ? file->f_path.dentry->d_inode : NULL;
1052
1053         if (file) {
1054                 switch (flags & MAP_TYPE) {
1055                 case MAP_SHARED:
1056                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1057                                 return -EACCES;
1058
1059                         /*
1060                          * Make sure we don't allow writing to an append-only
1061                          * file..
1062                          */
1063                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1064                                 return -EACCES;
1065
1066                         /*
1067                          * Make sure there are no mandatory locks on the file.
1068                          */
1069                         if (locks_verify_locked(inode))
1070                                 return -EAGAIN;
1071
1072                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1073                         if (!(file->f_mode & FMODE_WRITE))
1074                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1075
1076                         /* fall through */
1077                 case MAP_PRIVATE:
1078                         if (!(file->f_mode & FMODE_READ))
1079                                 return -EACCES;
1080                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1081                                 if (vm_flags & VM_EXEC)
1082                                         return -EPERM;
1083                                 vm_flags &= ~VM_MAYEXEC;
1084                         }
1085
1086                         if (!file->f_op || !file->f_op->mmap)
1087                                 return -ENODEV;
1088                         break;
1089
1090                 default:
1091                         return -EINVAL;
1092                 }
1093         } else {
1094                 switch (flags & MAP_TYPE) {
1095                 case MAP_SHARED:
1096                         /*
1097                          * Ignore pgoff.
1098                          */
1099                         pgoff = 0;
1100                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1101                         break;
1102                 case MAP_PRIVATE:
1103                         /*
1104                          * Set pgoff according to addr for anon_vma.
1105                          */
1106                         pgoff = addr >> PAGE_SHIFT;
1107                         break;
1108                 default:
1109                         return -EINVAL;
1110                 }
1111         }
1112
1113         error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1114         if (error)
1115                 return error;
1116
1117         return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1118 }
1119 EXPORT_SYMBOL(do_mmap_pgoff);
1120
1121 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1122                 unsigned long, prot, unsigned long, flags,
1123                 unsigned long, fd, unsigned long, pgoff)
1124 {
1125         struct file *file = NULL;
1126         unsigned long retval = -EBADF;
1127
1128         if (!(flags & MAP_ANONYMOUS)) {
1129                 audit_mmap_fd(fd, flags);
1130                 if (unlikely(flags & MAP_HUGETLB))
1131                         return -EINVAL;
1132                 file = fget(fd);
1133                 if (!file)
1134                         goto out;
1135         } else if (flags & MAP_HUGETLB) {
1136                 struct user_struct *user = NULL;
1137                 /*
1138                  * VM_NORESERVE is used because the reservations will be
1139                  * taken when vm_ops->mmap() is called
1140                  * A dummy user value is used because we are not locking
1141                  * memory so no accounting is necessary
1142                  */
1143                 len = ALIGN(len, huge_page_size(&default_hstate));
1144                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1145                                                 &user, HUGETLB_ANONHUGE_INODE);
1146                 if (IS_ERR(file))
1147                         return PTR_ERR(file);
1148         }
1149
1150         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1151
1152         down_write(&current->mm->mmap_sem);
1153         retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1154         up_write(&current->mm->mmap_sem);
1155
1156         if (file)
1157                 fput(file);
1158 out:
1159         return retval;
1160 }
1161
1162 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1163 struct mmap_arg_struct {
1164         unsigned long addr;
1165         unsigned long len;
1166         unsigned long prot;
1167         unsigned long flags;
1168         unsigned long fd;
1169         unsigned long offset;
1170 };
1171
1172 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1173 {
1174         struct mmap_arg_struct a;
1175
1176         if (copy_from_user(&a, arg, sizeof(a)))
1177                 return -EFAULT;
1178         if (a.offset & ~PAGE_MASK)
1179                 return -EINVAL;
1180
1181         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1182                               a.offset >> PAGE_SHIFT);
1183 }
1184 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1185
1186 /*
1187  * Some shared mappigns will want the pages marked read-only
1188  * to track write events. If so, we'll downgrade vm_page_prot
1189  * to the private version (using protection_map[] without the
1190  * VM_SHARED bit).
1191  */
1192 int vma_wants_writenotify(struct vm_area_struct *vma)
1193 {
1194         unsigned int vm_flags = vma->vm_flags;
1195
1196         /* If it was private or non-writable, the write bit is already clear */
1197         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1198                 return 0;
1199
1200         /* The backer wishes to know when pages are first written to? */
1201         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1202                 return 1;
1203
1204         /* The open routine did something to the protections already? */
1205         if (pgprot_val(vma->vm_page_prot) !=
1206             pgprot_val(vm_get_page_prot(vm_flags)))
1207                 return 0;
1208
1209         /* Specialty mapping? */
1210         if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1211                 return 0;
1212
1213         /* Can the mapping track the dirty pages? */
1214         return vma->vm_file && vma->vm_file->f_mapping &&
1215                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1216 }
1217
1218 /*
1219  * We account for memory if it's a private writeable mapping,
1220  * not hugepages and VM_NORESERVE wasn't set.
1221  */
1222 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1223 {
1224         /*
1225          * hugetlb has its own accounting separate from the core VM
1226          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1227          */
1228         if (file && is_file_hugepages(file))
1229                 return 0;
1230
1231         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1232 }
1233
1234 unsigned long mmap_region(struct file *file, unsigned long addr,
1235                           unsigned long len, unsigned long flags,
1236                           unsigned int vm_flags, unsigned long pgoff)
1237 {
1238         struct mm_struct *mm = current->mm;
1239         struct vm_area_struct *vma, *prev;
1240         int correct_wcount = 0;
1241         int error;
1242         struct rb_node **rb_link, *rb_parent;
1243         unsigned long charged = 0;
1244         struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1245
1246         /* Clear old maps */
1247         error = -ENOMEM;
1248 munmap_back:
1249         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1250         if (vma && vma->vm_start < addr + len) {
1251                 if (do_munmap(mm, addr, len))
1252                         return -ENOMEM;
1253                 goto munmap_back;
1254         }
1255
1256         /* Check against address space limit. */
1257         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1258                 return -ENOMEM;
1259
1260         /*
1261          * Set 'VM_NORESERVE' if we should not account for the
1262          * memory use of this mapping.
1263          */
1264         if ((flags & MAP_NORESERVE)) {
1265                 /* We honor MAP_NORESERVE if allowed to overcommit */
1266                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1267                         vm_flags |= VM_NORESERVE;
1268
1269                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1270                 if (file && is_file_hugepages(file))
1271                         vm_flags |= VM_NORESERVE;
1272         }
1273
1274         /*
1275          * Private writable mapping: check memory availability
1276          */
1277         if (accountable_mapping(file, vm_flags)) {
1278                 charged = len >> PAGE_SHIFT;
1279                 if (security_vm_enough_memory(charged))
1280                         return -ENOMEM;
1281                 vm_flags |= VM_ACCOUNT;
1282         }
1283
1284         /*
1285          * Can we just expand an old mapping?
1286          */
1287         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1288         if (vma)
1289                 goto out;
1290
1291         /*
1292          * Determine the object being mapped and call the appropriate
1293          * specific mapper. the address has already been validated, but
1294          * not unmapped, but the maps are removed from the list.
1295          */
1296         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1297         if (!vma) {
1298                 error = -ENOMEM;
1299                 goto unacct_error;
1300         }
1301
1302         vma->vm_mm = mm;
1303         vma->vm_start = addr;
1304         vma->vm_end = addr + len;
1305         vma->vm_flags = vm_flags;
1306         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1307         vma->vm_pgoff = pgoff;
1308         INIT_LIST_HEAD(&vma->anon_vma_chain);
1309
1310         if (file) {
1311                 error = -EINVAL;
1312                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1313                         goto free_vma;
1314                 if (vm_flags & VM_DENYWRITE) {
1315                         error = deny_write_access(file);
1316                         if (error)
1317                                 goto free_vma;
1318                         correct_wcount = 1;
1319                 }
1320                 vma->vm_file = file;
1321                 get_file(file);
1322                 error = file->f_op->mmap(file, vma);
1323                 if (error)
1324                         goto unmap_and_free_vma;
1325                 if (vm_flags & VM_EXECUTABLE)
1326                         added_exe_file_vma(mm);
1327
1328                 /* Can addr have changed??
1329                  *
1330                  * Answer: Yes, several device drivers can do it in their
1331                  *         f_op->mmap method. -DaveM
1332                  */
1333                 addr = vma->vm_start;
1334                 pgoff = vma->vm_pgoff;
1335                 vm_flags = vma->vm_flags;
1336         } else if (vm_flags & VM_SHARED) {
1337                 error = shmem_zero_setup(vma);
1338                 if (error)
1339                         goto free_vma;
1340         }
1341
1342         if (vma_wants_writenotify(vma)) {
1343                 pgprot_t pprot = vma->vm_page_prot;
1344
1345                 /* Can vma->vm_page_prot have changed??
1346                  *
1347                  * Answer: Yes, drivers may have changed it in their
1348                  *         f_op->mmap method.
1349                  *
1350                  * Ensures that vmas marked as uncached stay that way.
1351                  */
1352                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1353                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1354                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1355         }
1356
1357         vma_link(mm, vma, prev, rb_link, rb_parent);
1358         file = vma->vm_file;
1359
1360         /* Once vma denies write, undo our temporary denial count */
1361         if (correct_wcount)
1362                 atomic_inc(&inode->i_writecount);
1363 out:
1364         perf_event_mmap(vma);
1365
1366         mm->total_vm += len >> PAGE_SHIFT;
1367         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1368         if (vm_flags & VM_LOCKED) {
1369                 if (!mlock_vma_pages_range(vma, addr, addr + len))
1370                         mm->locked_vm += (len >> PAGE_SHIFT);
1371         } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1372                 make_pages_present(addr, addr + len);
1373         return addr;
1374
1375 unmap_and_free_vma:
1376         if (correct_wcount)
1377                 atomic_inc(&inode->i_writecount);
1378         vma->vm_file = NULL;
1379         fput(file);
1380
1381         /* Undo any partial mapping done by a device driver. */
1382         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1383         charged = 0;
1384 free_vma:
1385         kmem_cache_free(vm_area_cachep, vma);
1386 unacct_error:
1387         if (charged)
1388                 vm_unacct_memory(charged);
1389         return error;
1390 }
1391
1392 /* Get an address range which is currently unmapped.
1393  * For shmat() with addr=0.
1394  *
1395  * Ugly calling convention alert:
1396  * Return value with the low bits set means error value,
1397  * ie
1398  *      if (ret & ~PAGE_MASK)
1399  *              error = ret;
1400  *
1401  * This function "knows" that -ENOMEM has the bits set.
1402  */
1403 #ifndef HAVE_ARCH_UNMAPPED_AREA
1404 unsigned long
1405 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1406                 unsigned long len, unsigned long pgoff, unsigned long flags)
1407 {
1408         struct mm_struct *mm = current->mm;
1409         struct vm_area_struct *vma;
1410         unsigned long start_addr;
1411
1412         if (len > TASK_SIZE)
1413                 return -ENOMEM;
1414
1415         if (flags & MAP_FIXED)
1416                 return addr;
1417
1418         if (addr) {
1419                 addr = PAGE_ALIGN(addr);
1420                 vma = find_vma(mm, addr);
1421                 if (TASK_SIZE - len >= addr &&
1422                     (!vma || addr + len <= vma->vm_start))
1423                         return addr;
1424         }
1425         if (len > mm->cached_hole_size) {
1426                 start_addr = addr = mm->free_area_cache;
1427         } else {
1428                 start_addr = addr = TASK_UNMAPPED_BASE;
1429                 mm->cached_hole_size = 0;
1430         }
1431
1432 full_search:
1433         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1434                 /* At this point:  (!vma || addr < vma->vm_end). */
1435                 if (TASK_SIZE - len < addr) {
1436                         /*
1437                          * Start a new search - just in case we missed
1438                          * some holes.
1439                          */
1440                         if (start_addr != TASK_UNMAPPED_BASE) {
1441                                 addr = TASK_UNMAPPED_BASE;
1442                                 start_addr = addr;
1443                                 mm->cached_hole_size = 0;
1444                                 goto full_search;
1445                         }
1446                         return -ENOMEM;
1447                 }
1448                 if (!vma || addr + len <= vma->vm_start) {
1449                         /*
1450                          * Remember the place where we stopped the search:
1451                          */
1452                         mm->free_area_cache = addr + len;
1453                         return addr;
1454                 }
1455                 if (addr + mm->cached_hole_size < vma->vm_start)
1456                         mm->cached_hole_size = vma->vm_start - addr;
1457                 addr = vma->vm_end;
1458         }
1459 }
1460 #endif  
1461
1462 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1463 {
1464         /*
1465          * Is this a new hole at the lowest possible address?
1466          */
1467         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1468                 mm->free_area_cache = addr;
1469                 mm->cached_hole_size = ~0UL;
1470         }
1471 }
1472
1473 /*
1474  * This mmap-allocator allocates new areas top-down from below the
1475  * stack's low limit (the base):
1476  */
1477 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1478 unsigned long
1479 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1480                           const unsigned long len, const unsigned long pgoff,
1481                           const unsigned long flags)
1482 {
1483         struct vm_area_struct *vma;
1484         struct mm_struct *mm = current->mm;
1485         unsigned long addr = addr0;
1486
1487         /* requested length too big for entire address space */
1488         if (len > TASK_SIZE)
1489                 return -ENOMEM;
1490
1491         if (flags & MAP_FIXED)
1492                 return addr;
1493
1494         /* requesting a specific address */
1495         if (addr) {
1496                 addr = PAGE_ALIGN(addr);
1497                 vma = find_vma(mm, addr);
1498                 if (TASK_SIZE - len >= addr &&
1499                                 (!vma || addr + len <= vma->vm_start))
1500                         return addr;
1501         }
1502
1503         /* check if free_area_cache is useful for us */
1504         if (len <= mm->cached_hole_size) {
1505                 mm->cached_hole_size = 0;
1506                 mm->free_area_cache = mm->mmap_base;
1507         }
1508
1509         /* either no address requested or can't fit in requested address hole */
1510         addr = mm->free_area_cache;
1511
1512         /* make sure it can fit in the remaining address space */
1513         if (addr > len) {
1514                 vma = find_vma(mm, addr-len);
1515                 if (!vma || addr <= vma->vm_start)
1516                         /* remember the address as a hint for next time */
1517                         return (mm->free_area_cache = addr-len);
1518         }
1519
1520         if (mm->mmap_base < len)
1521                 goto bottomup;
1522
1523         addr = mm->mmap_base-len;
1524
1525         do {
1526                 /*
1527                  * Lookup failure means no vma is above this address,
1528                  * else if new region fits below vma->vm_start,
1529                  * return with success:
1530                  */
1531                 vma = find_vma(mm, addr);
1532                 if (!vma || addr+len <= vma->vm_start)
1533                         /* remember the address as a hint for next time */
1534                         return (mm->free_area_cache = addr);
1535
1536                 /* remember the largest hole we saw so far */
1537                 if (addr + mm->cached_hole_size < vma->vm_start)
1538                         mm->cached_hole_size = vma->vm_start - addr;
1539
1540                 /* try just below the current vma->vm_start */
1541                 addr = vma->vm_start-len;
1542         } while (len < vma->vm_start);
1543
1544 bottomup:
1545         /*
1546          * A failed mmap() very likely causes application failure,
1547          * so fall back to the bottom-up function here. This scenario
1548          * can happen with large stack limits and large mmap()
1549          * allocations.
1550          */
1551         mm->cached_hole_size = ~0UL;
1552         mm->free_area_cache = TASK_UNMAPPED_BASE;
1553         addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1554         /*
1555          * Restore the topdown base:
1556          */
1557         mm->free_area_cache = mm->mmap_base;
1558         mm->cached_hole_size = ~0UL;
1559
1560         return addr;
1561 }
1562 #endif
1563
1564 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1565 {
1566         /*
1567          * Is this a new hole at the highest possible address?
1568          */
1569         if (addr > mm->free_area_cache)
1570                 mm->free_area_cache = addr;
1571
1572         /* dont allow allocations above current base */
1573         if (mm->free_area_cache > mm->mmap_base)
1574                 mm->free_area_cache = mm->mmap_base;
1575 }
1576
1577 unsigned long
1578 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1579                 unsigned long pgoff, unsigned long flags)
1580 {
1581         unsigned long (*get_area)(struct file *, unsigned long,
1582                                   unsigned long, unsigned long, unsigned long);
1583
1584         unsigned long error = arch_mmap_check(addr, len, flags);
1585         if (error)
1586                 return error;
1587
1588         /* Careful about overflows.. */
1589         if (len > TASK_SIZE)
1590                 return -ENOMEM;
1591
1592         get_area = current->mm->get_unmapped_area;
1593         if (file && file->f_op && file->f_op->get_unmapped_area)
1594                 get_area = file->f_op->get_unmapped_area;
1595         addr = get_area(file, addr, len, pgoff, flags);
1596         if (IS_ERR_VALUE(addr))
1597                 return addr;
1598
1599         if (addr > TASK_SIZE - len)
1600                 return -ENOMEM;
1601         if (addr & ~PAGE_MASK)
1602                 return -EINVAL;
1603
1604         return arch_rebalance_pgtables(addr, len);
1605 }
1606
1607 EXPORT_SYMBOL(get_unmapped_area);
1608
1609 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1610 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1611 {
1612         struct vm_area_struct *vma = NULL;
1613
1614         if (mm) {
1615                 /* Check the cache first. */
1616                 /* (Cache hit rate is typically around 35%.) */
1617                 vma = mm->mmap_cache;
1618                 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1619                         struct rb_node * rb_node;
1620
1621                         rb_node = mm->mm_rb.rb_node;
1622                         vma = NULL;
1623
1624                         while (rb_node) {
1625                                 struct vm_area_struct * vma_tmp;
1626
1627                                 vma_tmp = rb_entry(rb_node,
1628                                                 struct vm_area_struct, vm_rb);
1629
1630                                 if (vma_tmp->vm_end > addr) {
1631                                         vma = vma_tmp;
1632                                         if (vma_tmp->vm_start <= addr)
1633                                                 break;
1634                                         rb_node = rb_node->rb_left;
1635                                 } else
1636                                         rb_node = rb_node->rb_right;
1637                         }
1638                         if (vma)
1639                                 mm->mmap_cache = vma;
1640                 }
1641         }
1642         return vma;
1643 }
1644
1645 EXPORT_SYMBOL(find_vma);
1646
1647 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1648 struct vm_area_struct *
1649 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1650                         struct vm_area_struct **pprev)
1651 {
1652         struct vm_area_struct *vma = NULL, *prev = NULL;
1653         struct rb_node *rb_node;
1654         if (!mm)
1655                 goto out;
1656
1657         /* Guard against addr being lower than the first VMA */
1658         vma = mm->mmap;
1659
1660         /* Go through the RB tree quickly. */
1661         rb_node = mm->mm_rb.rb_node;
1662
1663         while (rb_node) {
1664                 struct vm_area_struct *vma_tmp;
1665                 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1666
1667                 if (addr < vma_tmp->vm_end) {
1668                         rb_node = rb_node->rb_left;
1669                 } else {
1670                         prev = vma_tmp;
1671                         if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1672                                 break;
1673                         rb_node = rb_node->rb_right;
1674                 }
1675         }
1676
1677 out:
1678         *pprev = prev;
1679         return prev ? prev->vm_next : vma;
1680 }
1681
1682 /*
1683  * Verify that the stack growth is acceptable and
1684  * update accounting. This is shared with both the
1685  * grow-up and grow-down cases.
1686  */
1687 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1688 {
1689         struct mm_struct *mm = vma->vm_mm;
1690         struct rlimit *rlim = current->signal->rlim;
1691         unsigned long new_start;
1692
1693         /* address space limit tests */
1694         if (!may_expand_vm(mm, grow))
1695                 return -ENOMEM;
1696
1697         /* Stack limit test */
1698         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1699                 return -ENOMEM;
1700
1701         /* mlock limit tests */
1702         if (vma->vm_flags & VM_LOCKED) {
1703                 unsigned long locked;
1704                 unsigned long limit;
1705                 locked = mm->locked_vm + grow;
1706                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1707                 limit >>= PAGE_SHIFT;
1708                 if (locked > limit && !capable(CAP_IPC_LOCK))
1709                         return -ENOMEM;
1710         }
1711
1712         /* Check to ensure the stack will not grow into a hugetlb-only region */
1713         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1714                         vma->vm_end - size;
1715         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1716                 return -EFAULT;
1717
1718         /*
1719          * Overcommit..  This must be the final test, as it will
1720          * update security statistics.
1721          */
1722         if (security_vm_enough_memory_mm(mm, grow))
1723                 return -ENOMEM;
1724
1725         /* Ok, everything looks good - let it rip */
1726         mm->total_vm += grow;
1727         if (vma->vm_flags & VM_LOCKED)
1728                 mm->locked_vm += grow;
1729         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1730         return 0;
1731 }
1732
1733 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1734 /*
1735  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1736  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1737  */
1738 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1739 {
1740         int error;
1741
1742         if (!(vma->vm_flags & VM_GROWSUP))
1743                 return -EFAULT;
1744
1745         /*
1746          * We must make sure the anon_vma is allocated
1747          * so that the anon_vma locking is not a noop.
1748          */
1749         if (unlikely(anon_vma_prepare(vma)))
1750                 return -ENOMEM;
1751         vma_lock_anon_vma(vma);
1752
1753         /*
1754          * vma->vm_start/vm_end cannot change under us because the caller
1755          * is required to hold the mmap_sem in read mode.  We need the
1756          * anon_vma lock to serialize against concurrent expand_stacks.
1757          * Also guard against wrapping around to address 0.
1758          */
1759         if (address < PAGE_ALIGN(address+4))
1760                 address = PAGE_ALIGN(address+4);
1761         else {
1762                 vma_unlock_anon_vma(vma);
1763                 return -ENOMEM;
1764         }
1765         error = 0;
1766
1767         /* Somebody else might have raced and expanded it already */
1768         if (address > vma->vm_end) {
1769                 unsigned long size, grow;
1770
1771                 size = address - vma->vm_start;
1772                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1773
1774                 error = -ENOMEM;
1775                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1776                         error = acct_stack_growth(vma, size, grow);
1777                         if (!error) {
1778                                 vma->vm_end = address;
1779                                 perf_event_mmap(vma);
1780                         }
1781                 }
1782         }
1783         vma_unlock_anon_vma(vma);
1784         khugepaged_enter_vma_merge(vma);
1785         return error;
1786 }
1787 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1788
1789 /*
1790  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1791  */
1792 static int expand_downwards(struct vm_area_struct *vma,
1793                                    unsigned long address)
1794 {
1795         int error;
1796
1797         /*
1798          * We must make sure the anon_vma is allocated
1799          * so that the anon_vma locking is not a noop.
1800          */
1801         if (unlikely(anon_vma_prepare(vma)))
1802                 return -ENOMEM;
1803
1804         address &= PAGE_MASK;
1805         error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1806         if (error)
1807                 return error;
1808
1809         vma_lock_anon_vma(vma);
1810
1811         /*
1812          * vma->vm_start/vm_end cannot change under us because the caller
1813          * is required to hold the mmap_sem in read mode.  We need the
1814          * anon_vma lock to serialize against concurrent expand_stacks.
1815          */
1816
1817         /* Somebody else might have raced and expanded it already */
1818         if (address < vma->vm_start) {
1819                 unsigned long size, grow;
1820
1821                 size = vma->vm_end - address;
1822                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1823
1824                 error = -ENOMEM;
1825                 if (grow <= vma->vm_pgoff) {
1826                         error = acct_stack_growth(vma, size, grow);
1827                         if (!error) {
1828                                 vma->vm_start = address;
1829                                 vma->vm_pgoff -= grow;
1830                                 perf_event_mmap(vma);
1831                         }
1832                 }
1833         }
1834         vma_unlock_anon_vma(vma);
1835         khugepaged_enter_vma_merge(vma);
1836         return error;
1837 }
1838
1839 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1840 {
1841         return expand_downwards(vma, address);
1842 }
1843
1844 #ifdef CONFIG_STACK_GROWSUP
1845 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1846 {
1847         return expand_upwards(vma, address);
1848 }
1849
1850 struct vm_area_struct *
1851 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1852 {
1853         struct vm_area_struct *vma, *prev;
1854
1855         addr &= PAGE_MASK;
1856         vma = find_vma_prev(mm, addr, &prev);
1857         if (vma && (vma->vm_start <= addr))
1858                 return vma;
1859         if (!prev || expand_stack(prev, addr))
1860                 return NULL;
1861         if (prev->vm_flags & VM_LOCKED) {
1862                 mlock_vma_pages_range(prev, addr, prev->vm_end);
1863         }
1864         return prev;
1865 }
1866 #else
1867 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1868 {
1869         return expand_downwards(vma, address);
1870 }
1871
1872 struct vm_area_struct *
1873 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1874 {
1875         struct vm_area_struct * vma;
1876         unsigned long start;
1877
1878         addr &= PAGE_MASK;
1879         vma = find_vma(mm,addr);
1880         if (!vma)
1881                 return NULL;
1882         if (vma->vm_start <= addr)
1883                 return vma;
1884         if (!(vma->vm_flags & VM_GROWSDOWN))
1885                 return NULL;
1886         start = vma->vm_start;
1887         if (expand_stack(vma, addr))
1888                 return NULL;
1889         if (vma->vm_flags & VM_LOCKED) {
1890                 mlock_vma_pages_range(vma, addr, start);
1891         }
1892         return vma;
1893 }
1894 #endif
1895
1896 /*
1897  * Ok - we have the memory areas we should free on the vma list,
1898  * so release them, and do the vma updates.
1899  *
1900  * Called with the mm semaphore held.
1901  */
1902 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1903 {
1904         /* Update high watermark before we lower total_vm */
1905         update_hiwater_vm(mm);
1906         do {
1907                 long nrpages = vma_pages(vma);
1908
1909                 mm->total_vm -= nrpages;
1910                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1911                 vma = remove_vma(vma);
1912         } while (vma);
1913         validate_mm(mm);
1914 }
1915
1916 /*
1917  * Get rid of page table information in the indicated region.
1918  *
1919  * Called with the mm semaphore held.
1920  */
1921 static void unmap_region(struct mm_struct *mm,
1922                 struct vm_area_struct *vma, struct vm_area_struct *prev,
1923                 unsigned long start, unsigned long end)
1924 {
1925         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1926         struct mmu_gather *tlb;
1927         unsigned long nr_accounted = 0;
1928
1929         lru_add_drain();
1930         tlb = tlb_gather_mmu(mm, 0);
1931         update_hiwater_rss(mm);
1932         unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1933         vm_unacct_memory(nr_accounted);
1934         free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1935                                  next? next->vm_start: 0);
1936         tlb_finish_mmu(tlb, start, end);
1937 }
1938
1939 /*
1940  * Create a list of vma's touched by the unmap, removing them from the mm's
1941  * vma list as we go..
1942  */
1943 static void
1944 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1945         struct vm_area_struct *prev, unsigned long end)
1946 {
1947         struct vm_area_struct **insertion_point;
1948         struct vm_area_struct *tail_vma = NULL;
1949         unsigned long addr;
1950
1951         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1952         vma->vm_prev = NULL;
1953         do {
1954                 rb_erase(&vma->vm_rb, &mm->mm_rb);
1955                 mm->map_count--;
1956                 tail_vma = vma;
1957                 vma = vma->vm_next;
1958         } while (vma && vma->vm_start < end);
1959         *insertion_point = vma;
1960         if (vma)
1961                 vma->vm_prev = prev;
1962         tail_vma->vm_next = NULL;
1963         if (mm->unmap_area == arch_unmap_area)
1964                 addr = prev ? prev->vm_end : mm->mmap_base;
1965         else
1966                 addr = vma ?  vma->vm_start : mm->mmap_base;
1967         mm->unmap_area(mm, addr);
1968         mm->mmap_cache = NULL;          /* Kill the cache. */
1969 }
1970
1971 /*
1972  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1973  * munmap path where it doesn't make sense to fail.
1974  */
1975 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1976               unsigned long addr, int new_below)
1977 {
1978         struct mempolicy *pol;
1979         struct vm_area_struct *new;
1980         int err = -ENOMEM;
1981
1982         if (is_vm_hugetlb_page(vma) && (addr &
1983                                         ~(huge_page_mask(hstate_vma(vma)))))
1984                 return -EINVAL;
1985
1986         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1987         if (!new)
1988                 goto out_err;
1989
1990         /* most fields are the same, copy all, and then fixup */
1991         *new = *vma;
1992
1993         INIT_LIST_HEAD(&new->anon_vma_chain);
1994
1995         if (new_below)
1996                 new->vm_end = addr;
1997         else {
1998                 new->vm_start = addr;
1999                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2000         }
2001
2002         pol = mpol_dup(vma_policy(vma));
2003         if (IS_ERR(pol)) {
2004                 err = PTR_ERR(pol);
2005                 goto out_free_vma;
2006         }
2007         vma_set_policy(new, pol);
2008
2009         if (anon_vma_clone(new, vma))
2010                 goto out_free_mpol;
2011
2012         if (new->vm_file) {
2013                 get_file(new->vm_file);
2014                 if (vma->vm_flags & VM_EXECUTABLE)
2015                         added_exe_file_vma(mm);
2016         }
2017
2018         if (new->vm_ops && new->vm_ops->open)
2019                 new->vm_ops->open(new);
2020
2021         if (new_below)
2022                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2023                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2024         else
2025                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2026
2027         /* Success. */
2028         if (!err)
2029                 return 0;
2030
2031         /* Clean everything up if vma_adjust failed. */
2032         if (new->vm_ops && new->vm_ops->close)
2033                 new->vm_ops->close(new);
2034         if (new->vm_file) {
2035                 if (vma->vm_flags & VM_EXECUTABLE)
2036                         removed_exe_file_vma(mm);
2037                 fput(new->vm_file);
2038         }
2039         unlink_anon_vmas(new);
2040  out_free_mpol:
2041         mpol_put(pol);
2042  out_free_vma:
2043         kmem_cache_free(vm_area_cachep, new);
2044  out_err:
2045         return err;
2046 }
2047
2048 /*
2049  * Split a vma into two pieces at address 'addr', a new vma is allocated
2050  * either for the first part or the tail.
2051  */
2052 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2053               unsigned long addr, int new_below)
2054 {
2055         if (mm->map_count >= sysctl_max_map_count)
2056                 return -ENOMEM;
2057
2058         return __split_vma(mm, vma, addr, new_below);
2059 }
2060
2061 /* Munmap is split into 2 main parts -- this part which finds
2062  * what needs doing, and the areas themselves, which do the
2063  * work.  This now handles partial unmappings.
2064  * Jeremy Fitzhardinge <jeremy@goop.org>
2065  */
2066 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2067 {
2068         unsigned long end;
2069         struct vm_area_struct *vma, *prev, *last;
2070
2071         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2072                 return -EINVAL;
2073
2074         if ((len = PAGE_ALIGN(len)) == 0)
2075                 return -EINVAL;
2076
2077         /* Find the first overlapping VMA */
2078         vma = find_vma_prev(mm, start, &prev);
2079         if (!vma)
2080                 return 0;
2081         /* we have  start < vma->vm_end  */
2082
2083         /* if it doesn't overlap, we have nothing.. */
2084         end = start + len;
2085         if (vma->vm_start >= end)
2086                 return 0;
2087
2088         /*
2089          * If we need to split any vma, do it now to save pain later.
2090          *
2091          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2092          * unmapped vm_area_struct will remain in use: so lower split_vma
2093          * places tmp vma above, and higher split_vma places tmp vma below.
2094          */
2095         if (start > vma->vm_start) {
2096                 int error;
2097
2098                 /*
2099                  * Make sure that map_count on return from munmap() will
2100                  * not exceed its limit; but let map_count go just above
2101                  * its limit temporarily, to help free resources as expected.
2102                  */
2103                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2104                         return -ENOMEM;
2105
2106                 error = __split_vma(mm, vma, start, 0);
2107                 if (error)
2108                         return error;
2109                 prev = vma;
2110         }
2111
2112         /* Does it split the last one? */
2113         last = find_vma(mm, end);
2114         if (last && end > last->vm_start) {
2115                 int error = __split_vma(mm, last, end, 1);
2116                 if (error)
2117                         return error;
2118         }
2119         vma = prev? prev->vm_next: mm->mmap;
2120
2121         /*
2122          * unlock any mlock()ed ranges before detaching vmas
2123          */
2124         if (mm->locked_vm) {
2125                 struct vm_area_struct *tmp = vma;
2126                 while (tmp && tmp->vm_start < end) {
2127                         if (tmp->vm_flags & VM_LOCKED) {
2128                                 mm->locked_vm -= vma_pages(tmp);
2129                                 munlock_vma_pages_all(tmp);
2130                         }
2131                         tmp = tmp->vm_next;
2132                 }
2133         }
2134
2135         /*
2136          * Remove the vma's, and unmap the actual pages
2137          */
2138         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2139         unmap_region(mm, vma, prev, start, end);
2140
2141         /* Fix up all other VM information */
2142         remove_vma_list(mm, vma);
2143
2144         return 0;
2145 }
2146
2147 EXPORT_SYMBOL(do_munmap);
2148
2149 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2150 {
2151         int ret;
2152         struct mm_struct *mm = current->mm;
2153
2154         profile_munmap(addr);
2155
2156         down_write(&mm->mmap_sem);
2157         ret = do_munmap(mm, addr, len);
2158         up_write(&mm->mmap_sem);
2159         return ret;
2160 }
2161
2162 static inline void verify_mm_writelocked(struct mm_struct *mm)
2163 {
2164 #ifdef CONFIG_DEBUG_VM
2165         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2166                 WARN_ON(1);
2167                 up_read(&mm->mmap_sem);
2168         }
2169 #endif
2170 }
2171
2172 /*
2173  *  this is really a simplified "do_mmap".  it only handles
2174  *  anonymous maps.  eventually we may be able to do some
2175  *  brk-specific accounting here.
2176  */
2177 unsigned long do_brk(unsigned long addr, unsigned long len)
2178 {
2179         struct mm_struct * mm = current->mm;
2180         struct vm_area_struct * vma, * prev;
2181         unsigned long flags;
2182         struct rb_node ** rb_link, * rb_parent;
2183         pgoff_t pgoff = addr >> PAGE_SHIFT;
2184         int error;
2185
2186         len = PAGE_ALIGN(len);
2187         if (!len)
2188                 return addr;
2189
2190         error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2191         if (error)
2192                 return error;
2193
2194         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2195
2196         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2197         if (error & ~PAGE_MASK)
2198                 return error;
2199
2200         /*
2201          * mlock MCL_FUTURE?
2202          */
2203         if (mm->def_flags & VM_LOCKED) {
2204                 unsigned long locked, lock_limit;
2205                 locked = len >> PAGE_SHIFT;
2206                 locked += mm->locked_vm;
2207                 lock_limit = rlimit(RLIMIT_MEMLOCK);
2208                 lock_limit >>= PAGE_SHIFT;
2209                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2210                         return -EAGAIN;
2211         }
2212
2213         /*
2214          * mm->mmap_sem is required to protect against another thread
2215          * changing the mappings in case we sleep.
2216          */
2217         verify_mm_writelocked(mm);
2218
2219         /*
2220          * Clear old maps.  this also does some error checking for us
2221          */
2222  munmap_back:
2223         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2224         if (vma && vma->vm_start < addr + len) {
2225                 if (do_munmap(mm, addr, len))
2226                         return -ENOMEM;
2227                 goto munmap_back;
2228         }
2229
2230         /* Check against address space limits *after* clearing old maps... */
2231         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2232                 return -ENOMEM;
2233
2234         if (mm->map_count > sysctl_max_map_count)
2235                 return -ENOMEM;
2236
2237         if (security_vm_enough_memory(len >> PAGE_SHIFT))
2238                 return -ENOMEM;
2239
2240         /* Can we just expand an old private anonymous mapping? */
2241         vma = vma_merge(mm, prev, addr, addr + len, flags,
2242                                         NULL, NULL, pgoff, NULL);
2243         if (vma)
2244                 goto out;
2245
2246         /*
2247          * create a vma struct for an anonymous mapping
2248          */
2249         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2250         if (!vma) {
2251                 vm_unacct_memory(len >> PAGE_SHIFT);
2252                 return -ENOMEM;
2253         }
2254
2255         INIT_LIST_HEAD(&vma->anon_vma_chain);
2256         vma->vm_mm = mm;
2257         vma->vm_start = addr;
2258         vma->vm_end = addr + len;
2259         vma->vm_pgoff = pgoff;
2260         vma->vm_flags = flags;
2261         vma->vm_page_prot = vm_get_page_prot(flags);
2262         vma_link(mm, vma, prev, rb_link, rb_parent);
2263 out:
2264         perf_event_mmap(vma);
2265         mm->total_vm += len >> PAGE_SHIFT;
2266         if (flags & VM_LOCKED) {
2267                 if (!mlock_vma_pages_range(vma, addr, addr + len))
2268                         mm->locked_vm += (len >> PAGE_SHIFT);
2269         }
2270         return addr;
2271 }
2272
2273 EXPORT_SYMBOL(do_brk);
2274
2275 /* Release all mmaps. */
2276 void exit_mmap(struct mm_struct *mm)
2277 {
2278         struct mmu_gather *tlb;
2279         struct vm_area_struct *vma;
2280         unsigned long nr_accounted = 0;
2281         unsigned long end;
2282
2283         /* mm's last user has gone, and its about to be pulled down */
2284         mmu_notifier_release(mm);
2285
2286         if (mm->locked_vm) {
2287                 vma = mm->mmap;
2288                 while (vma) {
2289                         if (vma->vm_flags & VM_LOCKED)
2290                                 munlock_vma_pages_all(vma);
2291                         vma = vma->vm_next;
2292                 }
2293         }
2294
2295         arch_exit_mmap(mm);
2296
2297         vma = mm->mmap;
2298         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2299                 return;
2300
2301         lru_add_drain();
2302         flush_cache_mm(mm);
2303         tlb = tlb_gather_mmu(mm, 1);
2304         /* update_hiwater_rss(mm) here? but nobody should be looking */
2305         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2306         end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2307         vm_unacct_memory(nr_accounted);
2308
2309         free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2310         tlb_finish_mmu(tlb, 0, end);
2311
2312         /*
2313          * Walk the list again, actually closing and freeing it,
2314          * with preemption enabled, without holding any MM locks.
2315          */
2316         while (vma)
2317                 vma = remove_vma(vma);
2318
2319         BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2320 }
2321
2322 /* Insert vm structure into process list sorted by address
2323  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2324  * then i_mmap_lock is taken here.
2325  */
2326 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2327 {
2328         struct vm_area_struct * __vma, * prev;
2329         struct rb_node ** rb_link, * rb_parent;
2330
2331         /*
2332          * The vm_pgoff of a purely anonymous vma should be irrelevant
2333          * until its first write fault, when page's anon_vma and index
2334          * are set.  But now set the vm_pgoff it will almost certainly
2335          * end up with (unless mremap moves it elsewhere before that
2336          * first wfault), so /proc/pid/maps tells a consistent story.
2337          *
2338          * By setting it to reflect the virtual start address of the
2339          * vma, merges and splits can happen in a seamless way, just
2340          * using the existing file pgoff checks and manipulations.
2341          * Similarly in do_mmap_pgoff and in do_brk.
2342          */
2343         if (!vma->vm_file) {
2344                 BUG_ON(vma->anon_vma);
2345                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2346         }
2347         __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2348         if (__vma && __vma->vm_start < vma->vm_end)
2349                 return -ENOMEM;
2350         if ((vma->vm_flags & VM_ACCOUNT) &&
2351              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2352                 return -ENOMEM;
2353         vma_link(mm, vma, prev, rb_link, rb_parent);
2354         return 0;
2355 }
2356
2357 /*
2358  * Copy the vma structure to a new location in the same mm,
2359  * prior to moving page table entries, to effect an mremap move.
2360  */
2361 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2362         unsigned long addr, unsigned long len, pgoff_t pgoff)
2363 {
2364         struct vm_area_struct *vma = *vmap;
2365         unsigned long vma_start = vma->vm_start;
2366         struct mm_struct *mm = vma->vm_mm;
2367         struct vm_area_struct *new_vma, *prev;
2368         struct rb_node **rb_link, *rb_parent;
2369         struct mempolicy *pol;
2370
2371         /*
2372          * If anonymous vma has not yet been faulted, update new pgoff
2373          * to match new location, to increase its chance of merging.
2374          */
2375         if (!vma->vm_file && !vma->anon_vma)
2376                 pgoff = addr >> PAGE_SHIFT;
2377
2378         find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2379         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2380                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2381         if (new_vma) {
2382                 /*
2383                  * Source vma may have been merged into new_vma
2384                  */
2385                 if (vma_start >= new_vma->vm_start &&
2386                     vma_start < new_vma->vm_end)
2387                         *vmap = new_vma;
2388         } else {
2389                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2390                 if (new_vma) {
2391                         *new_vma = *vma;
2392                         pol = mpol_dup(vma_policy(vma));
2393                         if (IS_ERR(pol))
2394                                 goto out_free_vma;
2395                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2396                         if (anon_vma_clone(new_vma, vma))
2397                                 goto out_free_mempol;
2398                         vma_set_policy(new_vma, pol);
2399                         new_vma->vm_start = addr;
2400                         new_vma->vm_end = addr + len;
2401                         new_vma->vm_pgoff = pgoff;
2402                         if (new_vma->vm_file) {
2403                                 get_file(new_vma->vm_file);
2404                                 if (vma->vm_flags & VM_EXECUTABLE)
2405                                         added_exe_file_vma(mm);
2406                         }
2407                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2408                                 new_vma->vm_ops->open(new_vma);
2409                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2410                 }
2411         }
2412         return new_vma;
2413
2414  out_free_mempol:
2415         mpol_put(pol);
2416  out_free_vma:
2417         kmem_cache_free(vm_area_cachep, new_vma);
2418         return NULL;
2419 }
2420
2421 /*
2422  * Return true if the calling process may expand its vm space by the passed
2423  * number of pages
2424  */
2425 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2426 {
2427         unsigned long cur = mm->total_vm;       /* pages */
2428         unsigned long lim;
2429
2430         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2431
2432         if (cur + npages > lim)
2433                 return 0;
2434         return 1;
2435 }
2436
2437
2438 static int special_mapping_fault(struct vm_area_struct *vma,
2439                                 struct vm_fault *vmf)
2440 {
2441         pgoff_t pgoff;
2442         struct page **pages;
2443
2444         /*
2445          * special mappings have no vm_file, and in that case, the mm
2446          * uses vm_pgoff internally. So we have to subtract it from here.
2447          * We are allowed to do this because we are the mm; do not copy
2448          * this code into drivers!
2449          */
2450         pgoff = vmf->pgoff - vma->vm_pgoff;
2451
2452         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2453                 pgoff--;
2454
2455         if (*pages) {
2456                 struct page *page = *pages;
2457                 get_page(page);
2458                 vmf->page = page;
2459                 return 0;
2460         }
2461
2462         return VM_FAULT_SIGBUS;
2463 }
2464
2465 /*
2466  * Having a close hook prevents vma merging regardless of flags.
2467  */
2468 static void special_mapping_close(struct vm_area_struct *vma)
2469 {
2470 }
2471
2472 static const struct vm_operations_struct special_mapping_vmops = {
2473         .close = special_mapping_close,
2474         .fault = special_mapping_fault,
2475 };
2476
2477 /*
2478  * Called with mm->mmap_sem held for writing.
2479  * Insert a new vma covering the given region, with the given flags.
2480  * Its pages are supplied by the given array of struct page *.
2481  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2482  * The region past the last page supplied will always produce SIGBUS.
2483  * The array pointer and the pages it points to are assumed to stay alive
2484  * for as long as this mapping might exist.
2485  */
2486 int install_special_mapping(struct mm_struct *mm,
2487                             unsigned long addr, unsigned long len,
2488                             unsigned long vm_flags, struct page **pages)
2489 {
2490         int ret;
2491         struct vm_area_struct *vma;
2492
2493         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2494         if (unlikely(vma == NULL))
2495                 return -ENOMEM;
2496
2497         INIT_LIST_HEAD(&vma->anon_vma_chain);
2498         vma->vm_mm = mm;
2499         vma->vm_start = addr;
2500         vma->vm_end = addr + len;
2501
2502         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2503         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2504
2505         vma->vm_ops = &special_mapping_vmops;
2506         vma->vm_private_data = pages;
2507
2508         ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2509         if (ret)
2510                 goto out;
2511
2512         ret = insert_vm_struct(mm, vma);
2513         if (ret)
2514                 goto out;
2515
2516         mm->total_vm += len >> PAGE_SHIFT;
2517
2518         perf_event_mmap(vma);
2519
2520         return 0;
2521
2522 out:
2523         kmem_cache_free(vm_area_cachep, vma);
2524         return ret;
2525 }
2526
2527 static DEFINE_MUTEX(mm_all_locks_mutex);
2528
2529 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2530 {
2531         if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2532                 /*
2533                  * The LSB of head.next can't change from under us
2534                  * because we hold the mm_all_locks_mutex.
2535                  */
2536                 spin_lock_nest_lock(&anon_vma->root->lock, &mm->mmap_sem);
2537                 /*
2538                  * We can safely modify head.next after taking the
2539                  * anon_vma->root->lock. If some other vma in this mm shares
2540                  * the same anon_vma we won't take it again.
2541                  *
2542                  * No need of atomic instructions here, head.next
2543                  * can't change from under us thanks to the
2544                  * anon_vma->root->lock.
2545                  */
2546                 if (__test_and_set_bit(0, (unsigned long *)
2547                                        &anon_vma->root->head.next))
2548                         BUG();
2549         }
2550 }
2551
2552 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2553 {
2554         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2555                 /*
2556                  * AS_MM_ALL_LOCKS can't change from under us because
2557                  * we hold the mm_all_locks_mutex.
2558                  *
2559                  * Operations on ->flags have to be atomic because
2560                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2561                  * mm_all_locks_mutex, there may be other cpus
2562                  * changing other bitflags in parallel to us.
2563                  */
2564                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2565                         BUG();
2566                 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2567         }
2568 }
2569
2570 /*
2571  * This operation locks against the VM for all pte/vma/mm related
2572  * operations that could ever happen on a certain mm. This includes
2573  * vmtruncate, try_to_unmap, and all page faults.
2574  *
2575  * The caller must take the mmap_sem in write mode before calling
2576  * mm_take_all_locks(). The caller isn't allowed to release the
2577  * mmap_sem until mm_drop_all_locks() returns.
2578  *
2579  * mmap_sem in write mode is required in order to block all operations
2580  * that could modify pagetables and free pages without need of
2581  * altering the vma layout (for example populate_range() with
2582  * nonlinear vmas). It's also needed in write mode to avoid new
2583  * anon_vmas to be associated with existing vmas.
2584  *
2585  * A single task can't take more than one mm_take_all_locks() in a row
2586  * or it would deadlock.
2587  *
2588  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2589  * mapping->flags avoid to take the same lock twice, if more than one
2590  * vma in this mm is backed by the same anon_vma or address_space.
2591  *
2592  * We can take all the locks in random order because the VM code
2593  * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2594  * takes more than one of them in a row. Secondly we're protected
2595  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2596  *
2597  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2598  * that may have to take thousand of locks.
2599  *
2600  * mm_take_all_locks() can fail if it's interrupted by signals.
2601  */
2602 int mm_take_all_locks(struct mm_struct *mm)
2603 {
2604         struct vm_area_struct *vma;
2605         struct anon_vma_chain *avc;
2606         int ret = -EINTR;
2607
2608         BUG_ON(down_read_trylock(&mm->mmap_sem));
2609
2610         mutex_lock(&mm_all_locks_mutex);
2611
2612         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2613                 if (signal_pending(current))
2614                         goto out_unlock;
2615                 if (vma->vm_file && vma->vm_file->f_mapping)
2616                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
2617         }
2618
2619         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2620                 if (signal_pending(current))
2621                         goto out_unlock;
2622                 if (vma->anon_vma)
2623                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2624                                 vm_lock_anon_vma(mm, avc->anon_vma);
2625         }
2626
2627         ret = 0;
2628
2629 out_unlock:
2630         if (ret)
2631                 mm_drop_all_locks(mm);
2632
2633         return ret;
2634 }
2635
2636 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2637 {
2638         if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2639                 /*
2640                  * The LSB of head.next can't change to 0 from under
2641                  * us because we hold the mm_all_locks_mutex.
2642                  *
2643                  * We must however clear the bitflag before unlocking
2644                  * the vma so the users using the anon_vma->head will
2645                  * never see our bitflag.
2646                  *
2647                  * No need of atomic instructions here, head.next
2648                  * can't change from under us until we release the
2649                  * anon_vma->root->lock.
2650                  */
2651                 if (!__test_and_clear_bit(0, (unsigned long *)
2652                                           &anon_vma->root->head.next))
2653                         BUG();
2654                 anon_vma_unlock(anon_vma);
2655         }
2656 }
2657
2658 static void vm_unlock_mapping(struct address_space *mapping)
2659 {
2660         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2661                 /*
2662                  * AS_MM_ALL_LOCKS can't change to 0 from under us
2663                  * because we hold the mm_all_locks_mutex.
2664                  */
2665                 spin_unlock(&mapping->i_mmap_lock);
2666                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2667                                         &mapping->flags))
2668                         BUG();
2669         }
2670 }
2671
2672 /*
2673  * The mmap_sem cannot be released by the caller until
2674  * mm_drop_all_locks() returns.
2675  */
2676 void mm_drop_all_locks(struct mm_struct *mm)
2677 {
2678         struct vm_area_struct *vma;
2679         struct anon_vma_chain *avc;
2680
2681         BUG_ON(down_read_trylock(&mm->mmap_sem));
2682         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2683
2684         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2685                 if (vma->anon_vma)
2686                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2687                                 vm_unlock_anon_vma(avc->anon_vma);
2688                 if (vma->vm_file && vma->vm_file->f_mapping)
2689                         vm_unlock_mapping(vma->vm_file->f_mapping);
2690         }
2691
2692         mutex_unlock(&mm_all_locks_mutex);
2693 }
2694
2695 /*
2696  * initialise the VMA slab
2697  */
2698 void __init mmap_init(void)
2699 {
2700         int ret;
2701
2702         ret = percpu_counter_init(&vm_committed_as, 0);
2703         VM_BUG_ON(ret);
2704 }