2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
57 fix mmap readahead to honour policy and enable policy for any page cache
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
62 handle mremap for shared memory (currently ignored for the policy)
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #include <linux/mempolicy.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/module.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
94 #include <asm/tlbflush.h>
95 #include <asm/uaccess.h>
96 #include <linux/random.h>
101 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
102 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
104 static struct kmem_cache *policy_cache;
105 static struct kmem_cache *sn_cache;
107 /* Highest zone. An specific allocation for a zone below that is not
109 enum zone_type policy_zone = 0;
112 * run-time system-wide default policy => local allocation
114 struct mempolicy default_policy = {
115 .refcnt = ATOMIC_INIT(1), /* never free it */
116 .mode = MPOL_PREFERRED,
117 .flags = MPOL_F_LOCAL,
120 static const struct mempolicy_operations {
121 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
123 * If read-side task has no lock to protect task->mempolicy, write-side
124 * task will rebind the task->mempolicy by two step. The first step is
125 * setting all the newly nodes, and the second step is cleaning all the
126 * disallowed nodes. In this way, we can avoid finding no node to alloc
128 * If we have a lock to protect task->mempolicy in read-side, we do
132 * MPOL_REBIND_ONCE - do rebind work at once
133 * MPOL_REBIND_STEP1 - set all the newly nodes
134 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
136 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
137 enum mpol_rebind_step step);
138 } mpol_ops[MPOL_MAX];
140 /* Check that the nodemask contains at least one populated zone */
141 static int is_valid_nodemask(const nodemask_t *nodemask)
145 for_each_node_mask(nd, *nodemask) {
148 for (k = 0; k <= policy_zone; k++) {
149 z = &NODE_DATA(nd)->node_zones[k];
150 if (z->present_pages > 0)
158 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
160 return pol->flags & MPOL_MODE_FLAGS;
163 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
164 const nodemask_t *rel)
167 nodes_fold(tmp, *orig, nodes_weight(*rel));
168 nodes_onto(*ret, tmp, *rel);
171 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
173 if (nodes_empty(*nodes))
175 pol->v.nodes = *nodes;
179 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
182 pol->flags |= MPOL_F_LOCAL; /* local allocation */
183 else if (nodes_empty(*nodes))
184 return -EINVAL; /* no allowed nodes */
186 pol->v.preferred_node = first_node(*nodes);
190 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
192 if (!is_valid_nodemask(nodes))
194 pol->v.nodes = *nodes;
199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200 * any, for the new policy. mpol_new() has already validated the nodes
201 * parameter with respect to the policy mode and flags. But, we need to
202 * handle an empty nodemask with MPOL_PREFERRED here.
204 * Must be called holding task's alloc_lock to protect task's mems_allowed
205 * and mempolicy. May also be called holding the mmap_semaphore for write.
207 static int mpol_set_nodemask(struct mempolicy *pol,
208 const nodemask_t *nodes, struct nodemask_scratch *nsc)
212 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
215 /* Check N_HIGH_MEMORY */
216 nodes_and(nsc->mask1,
217 cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
220 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
221 nodes = NULL; /* explicit local allocation */
223 if (pol->flags & MPOL_F_RELATIVE_NODES)
224 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
226 nodes_and(nsc->mask2, *nodes, nsc->mask1);
228 if (mpol_store_user_nodemask(pol))
229 pol->w.user_nodemask = *nodes;
231 pol->w.cpuset_mems_allowed =
232 cpuset_current_mems_allowed;
236 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
238 ret = mpol_ops[pol->mode].create(pol, NULL);
243 * This function just creates a new policy, does some check and simple
244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
246 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
249 struct mempolicy *policy;
251 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
254 if (mode == MPOL_DEFAULT) {
255 if (nodes && !nodes_empty(*nodes))
256 return ERR_PTR(-EINVAL);
257 return NULL; /* simply delete any existing policy */
262 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264 * All other modes require a valid pointer to a non-empty nodemask.
266 if (mode == MPOL_PREFERRED) {
267 if (nodes_empty(*nodes)) {
268 if (((flags & MPOL_F_STATIC_NODES) ||
269 (flags & MPOL_F_RELATIVE_NODES)))
270 return ERR_PTR(-EINVAL);
272 } else if (nodes_empty(*nodes))
273 return ERR_PTR(-EINVAL);
274 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
276 return ERR_PTR(-ENOMEM);
277 atomic_set(&policy->refcnt, 1);
279 policy->flags = flags;
284 /* Slow path of a mpol destructor. */
285 void __mpol_put(struct mempolicy *p)
287 if (!atomic_dec_and_test(&p->refcnt))
289 kmem_cache_free(policy_cache, p);
292 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
293 enum mpol_rebind_step step)
299 * MPOL_REBIND_ONCE - do rebind work at once
300 * MPOL_REBIND_STEP1 - set all the newly nodes
301 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
303 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
304 enum mpol_rebind_step step)
308 if (pol->flags & MPOL_F_STATIC_NODES)
309 nodes_and(tmp, pol->w.user_nodemask, *nodes);
310 else if (pol->flags & MPOL_F_RELATIVE_NODES)
311 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
314 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
317 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
318 nodes_remap(tmp, pol->v.nodes,
319 pol->w.cpuset_mems_allowed, *nodes);
320 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
321 } else if (step == MPOL_REBIND_STEP2) {
322 tmp = pol->w.cpuset_mems_allowed;
323 pol->w.cpuset_mems_allowed = *nodes;
328 if (nodes_empty(tmp))
331 if (step == MPOL_REBIND_STEP1)
332 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
333 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
338 if (!node_isset(current->il_next, tmp)) {
339 current->il_next = next_node(current->il_next, tmp);
340 if (current->il_next >= MAX_NUMNODES)
341 current->il_next = first_node(tmp);
342 if (current->il_next >= MAX_NUMNODES)
343 current->il_next = numa_node_id();
347 static void mpol_rebind_preferred(struct mempolicy *pol,
348 const nodemask_t *nodes,
349 enum mpol_rebind_step step)
353 if (pol->flags & MPOL_F_STATIC_NODES) {
354 int node = first_node(pol->w.user_nodemask);
356 if (node_isset(node, *nodes)) {
357 pol->v.preferred_node = node;
358 pol->flags &= ~MPOL_F_LOCAL;
360 pol->flags |= MPOL_F_LOCAL;
361 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
362 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 pol->v.preferred_node = first_node(tmp);
364 } else if (!(pol->flags & MPOL_F_LOCAL)) {
365 pol->v.preferred_node = node_remap(pol->v.preferred_node,
366 pol->w.cpuset_mems_allowed,
368 pol->w.cpuset_mems_allowed = *nodes;
373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
375 * If read-side task has no lock to protect task->mempolicy, write-side
376 * task will rebind the task->mempolicy by two step. The first step is
377 * setting all the newly nodes, and the second step is cleaning all the
378 * disallowed nodes. In this way, we can avoid finding no node to alloc
380 * If we have a lock to protect task->mempolicy in read-side, we do
384 * MPOL_REBIND_ONCE - do rebind work at once
385 * MPOL_REBIND_STEP1 - set all the newly nodes
386 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
389 enum mpol_rebind_step step)
393 if (!mpol_store_user_nodemask(pol) && step == 0 &&
394 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
397 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
400 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
403 if (step == MPOL_REBIND_STEP1)
404 pol->flags |= MPOL_F_REBINDING;
405 else if (step == MPOL_REBIND_STEP2)
406 pol->flags &= ~MPOL_F_REBINDING;
407 else if (step >= MPOL_REBIND_NSTEP)
410 mpol_ops[pol->mode].rebind(pol, newmask, step);
414 * Wrapper for mpol_rebind_policy() that just requires task
415 * pointer, and updates task mempolicy.
417 * Called with task's alloc_lock held.
420 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
421 enum mpol_rebind_step step)
423 mpol_rebind_policy(tsk->mempolicy, new, step);
427 * Rebind each vma in mm to new nodemask.
429 * Call holding a reference to mm. Takes mm->mmap_sem during call.
432 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
434 struct vm_area_struct *vma;
436 down_write(&mm->mmap_sem);
437 for (vma = mm->mmap; vma; vma = vma->vm_next)
438 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
439 up_write(&mm->mmap_sem);
442 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
444 .rebind = mpol_rebind_default,
446 [MPOL_INTERLEAVE] = {
447 .create = mpol_new_interleave,
448 .rebind = mpol_rebind_nodemask,
451 .create = mpol_new_preferred,
452 .rebind = mpol_rebind_preferred,
455 .create = mpol_new_bind,
456 .rebind = mpol_rebind_nodemask,
460 static void migrate_page_add(struct page *page, struct list_head *pagelist,
461 unsigned long flags);
463 /* Scan through pages checking if pages follow certain conditions. */
464 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
465 unsigned long addr, unsigned long end,
466 const nodemask_t *nodes, unsigned long flags,
473 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
478 if (!pte_present(*pte))
480 page = vm_normal_page(vma, addr, *pte);
484 * vm_normal_page() filters out zero pages, but there might
485 * still be PageReserved pages to skip, perhaps in a VDSO.
486 * And we cannot move PageKsm pages sensibly or safely yet.
488 if (PageReserved(page) || PageKsm(page))
490 nid = page_to_nid(page);
491 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
494 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
495 migrate_page_add(page, private, flags);
498 } while (pte++, addr += PAGE_SIZE, addr != end);
499 pte_unmap_unlock(orig_pte, ptl);
503 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
504 unsigned long addr, unsigned long end,
505 const nodemask_t *nodes, unsigned long flags,
511 pmd = pmd_offset(pud, addr);
513 next = pmd_addr_end(addr, end);
514 split_huge_page_pmd(vma->vm_mm, pmd);
515 if (pmd_none_or_clear_bad(pmd))
517 if (check_pte_range(vma, pmd, addr, next, nodes,
520 } while (pmd++, addr = next, addr != end);
524 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
525 unsigned long addr, unsigned long end,
526 const nodemask_t *nodes, unsigned long flags,
532 pud = pud_offset(pgd, addr);
534 next = pud_addr_end(addr, end);
535 if (pud_none_or_clear_bad(pud))
537 if (check_pmd_range(vma, pud, addr, next, nodes,
540 } while (pud++, addr = next, addr != end);
544 static inline int check_pgd_range(struct vm_area_struct *vma,
545 unsigned long addr, unsigned long end,
546 const nodemask_t *nodes, unsigned long flags,
552 pgd = pgd_offset(vma->vm_mm, addr);
554 next = pgd_addr_end(addr, end);
555 if (pgd_none_or_clear_bad(pgd))
557 if (check_pud_range(vma, pgd, addr, next, nodes,
560 } while (pgd++, addr = next, addr != end);
565 * Check if all pages in a range are on a set of nodes.
566 * If pagelist != NULL then isolate pages from the LRU and
567 * put them on the pagelist.
569 static struct vm_area_struct *
570 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
571 const nodemask_t *nodes, unsigned long flags, void *private)
574 struct vm_area_struct *first, *vma, *prev;
577 first = find_vma(mm, start);
579 return ERR_PTR(-EFAULT);
581 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
582 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
583 if (!vma->vm_next && vma->vm_end < end)
584 return ERR_PTR(-EFAULT);
585 if (prev && prev->vm_end < vma->vm_start)
586 return ERR_PTR(-EFAULT);
588 if (!is_vm_hugetlb_page(vma) &&
589 ((flags & MPOL_MF_STRICT) ||
590 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
591 vma_migratable(vma)))) {
592 unsigned long endvma = vma->vm_end;
596 if (vma->vm_start > start)
597 start = vma->vm_start;
598 err = check_pgd_range(vma, start, endvma, nodes,
601 first = ERR_PTR(err);
610 /* Apply policy to a single VMA */
611 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
614 struct mempolicy *old = vma->vm_policy;
616 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
617 vma->vm_start, vma->vm_end, vma->vm_pgoff,
618 vma->vm_ops, vma->vm_file,
619 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
621 if (vma->vm_ops && vma->vm_ops->set_policy)
622 err = vma->vm_ops->set_policy(vma, new);
625 vma->vm_policy = new;
631 /* Step 2: apply policy to a range and do splits. */
632 static int mbind_range(struct mm_struct *mm, unsigned long start,
633 unsigned long end, struct mempolicy *new_pol)
635 struct vm_area_struct *next;
636 struct vm_area_struct *prev;
637 struct vm_area_struct *vma;
640 unsigned long vmstart;
643 vma = find_vma_prev(mm, start, &prev);
644 if (!vma || vma->vm_start > start)
647 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
649 vmstart = max(start, vma->vm_start);
650 vmend = min(end, vma->vm_end);
652 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
653 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
654 vma->anon_vma, vma->vm_file, pgoff, new_pol);
660 if (vma->vm_start != vmstart) {
661 err = split_vma(vma->vm_mm, vma, vmstart, 1);
665 if (vma->vm_end != vmend) {
666 err = split_vma(vma->vm_mm, vma, vmend, 0);
670 err = policy_vma(vma, new_pol);
680 * Update task->flags PF_MEMPOLICY bit: set iff non-default
681 * mempolicy. Allows more rapid checking of this (combined perhaps
682 * with other PF_* flag bits) on memory allocation hot code paths.
684 * If called from outside this file, the task 'p' should -only- be
685 * a newly forked child not yet visible on the task list, because
686 * manipulating the task flags of a visible task is not safe.
688 * The above limitation is why this routine has the funny name
689 * mpol_fix_fork_child_flag().
691 * It is also safe to call this with a task pointer of current,
692 * which the static wrapper mpol_set_task_struct_flag() does,
693 * for use within this file.
696 void mpol_fix_fork_child_flag(struct task_struct *p)
699 p->flags |= PF_MEMPOLICY;
701 p->flags &= ~PF_MEMPOLICY;
704 static void mpol_set_task_struct_flag(void)
706 mpol_fix_fork_child_flag(current);
709 /* Set the process memory policy */
710 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
713 struct mempolicy *new, *old;
714 struct mm_struct *mm = current->mm;
715 NODEMASK_SCRATCH(scratch);
721 new = mpol_new(mode, flags, nodes);
727 * prevent changing our mempolicy while show_numa_maps()
729 * Note: do_set_mempolicy() can be called at init time
733 down_write(&mm->mmap_sem);
735 ret = mpol_set_nodemask(new, nodes, scratch);
737 task_unlock(current);
739 up_write(&mm->mmap_sem);
743 old = current->mempolicy;
744 current->mempolicy = new;
745 mpol_set_task_struct_flag();
746 if (new && new->mode == MPOL_INTERLEAVE &&
747 nodes_weight(new->v.nodes))
748 current->il_next = first_node(new->v.nodes);
749 task_unlock(current);
751 up_write(&mm->mmap_sem);
756 NODEMASK_SCRATCH_FREE(scratch);
761 * Return nodemask for policy for get_mempolicy() query
763 * Called with task's alloc_lock held
765 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
768 if (p == &default_policy)
774 case MPOL_INTERLEAVE:
778 if (!(p->flags & MPOL_F_LOCAL))
779 node_set(p->v.preferred_node, *nodes);
780 /* else return empty node mask for local allocation */
787 static int lookup_node(struct mm_struct *mm, unsigned long addr)
792 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
794 err = page_to_nid(p);
800 /* Retrieve NUMA policy */
801 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
802 unsigned long addr, unsigned long flags)
805 struct mm_struct *mm = current->mm;
806 struct vm_area_struct *vma = NULL;
807 struct mempolicy *pol = current->mempolicy;
810 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
813 if (flags & MPOL_F_MEMS_ALLOWED) {
814 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
816 *policy = 0; /* just so it's initialized */
818 *nmask = cpuset_current_mems_allowed;
819 task_unlock(current);
823 if (flags & MPOL_F_ADDR) {
825 * Do NOT fall back to task policy if the
826 * vma/shared policy at addr is NULL. We
827 * want to return MPOL_DEFAULT in this case.
829 down_read(&mm->mmap_sem);
830 vma = find_vma_intersection(mm, addr, addr+1);
832 up_read(&mm->mmap_sem);
835 if (vma->vm_ops && vma->vm_ops->get_policy)
836 pol = vma->vm_ops->get_policy(vma, addr);
838 pol = vma->vm_policy;
843 pol = &default_policy; /* indicates default behavior */
845 if (flags & MPOL_F_NODE) {
846 if (flags & MPOL_F_ADDR) {
847 err = lookup_node(mm, addr);
851 } else if (pol == current->mempolicy &&
852 pol->mode == MPOL_INTERLEAVE) {
853 *policy = current->il_next;
859 *policy = pol == &default_policy ? MPOL_DEFAULT :
862 * Internal mempolicy flags must be masked off before exposing
863 * the policy to userspace.
865 *policy |= (pol->flags & MPOL_MODE_FLAGS);
869 up_read(¤t->mm->mmap_sem);
875 if (mpol_store_user_nodemask(pol)) {
876 *nmask = pol->w.user_nodemask;
879 get_policy_nodemask(pol, nmask);
880 task_unlock(current);
887 up_read(¤t->mm->mmap_sem);
891 #ifdef CONFIG_MIGRATION
895 static void migrate_page_add(struct page *page, struct list_head *pagelist,
899 * Avoid migrating a page that is shared with others.
901 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
902 if (!isolate_lru_page(page)) {
903 list_add_tail(&page->lru, pagelist);
904 inc_zone_page_state(page, NR_ISOLATED_ANON +
905 page_is_file_cache(page));
910 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
912 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
916 * Migrate pages from one node to a target node.
917 * Returns error or the number of pages not migrated.
919 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
925 struct vm_area_struct *vma;
928 node_set(source, nmask);
930 vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
931 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
935 if (!list_empty(&pagelist)) {
936 err = migrate_pages(&pagelist, new_node_page, dest,
939 putback_lru_pages(&pagelist);
946 * Move pages between the two nodesets so as to preserve the physical
947 * layout as much as possible.
949 * Returns the number of page that could not be moved.
951 int do_migrate_pages(struct mm_struct *mm,
952 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
958 err = migrate_prep();
962 down_read(&mm->mmap_sem);
964 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
969 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
970 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
971 * bit in 'tmp', and return that <source, dest> pair for migration.
972 * The pair of nodemasks 'to' and 'from' define the map.
974 * If no pair of bits is found that way, fallback to picking some
975 * pair of 'source' and 'dest' bits that are not the same. If the
976 * 'source' and 'dest' bits are the same, this represents a node
977 * that will be migrating to itself, so no pages need move.
979 * If no bits are left in 'tmp', or if all remaining bits left
980 * in 'tmp' correspond to the same bit in 'to', return false
981 * (nothing left to migrate).
983 * This lets us pick a pair of nodes to migrate between, such that
984 * if possible the dest node is not already occupied by some other
985 * source node, minimizing the risk of overloading the memory on a
986 * node that would happen if we migrated incoming memory to a node
987 * before migrating outgoing memory source that same node.
989 * A single scan of tmp is sufficient. As we go, we remember the
990 * most recent <s, d> pair that moved (s != d). If we find a pair
991 * that not only moved, but what's better, moved to an empty slot
992 * (d is not set in tmp), then we break out then, with that pair.
993 * Otherwise when we finish scanning from_tmp, we at least have the
994 * most recent <s, d> pair that moved. If we get all the way through
995 * the scan of tmp without finding any node that moved, much less
996 * moved to an empty node, then there is nothing left worth migrating.
1000 while (!nodes_empty(tmp)) {
1005 for_each_node_mask(s, tmp) {
1006 d = node_remap(s, *from_nodes, *to_nodes);
1010 source = s; /* Node moved. Memorize */
1013 /* dest not in remaining from nodes? */
1014 if (!node_isset(dest, tmp))
1020 node_clear(source, tmp);
1021 err = migrate_to_node(mm, source, dest, flags);
1028 up_read(&mm->mmap_sem);
1036 * Allocate a new page for page migration based on vma policy.
1037 * Start assuming that page is mapped by vma pointed to by @private.
1038 * Search forward from there, if not. N.B., this assumes that the
1039 * list of pages handed to migrate_pages()--which is how we get here--
1040 * is in virtual address order.
1042 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1044 struct vm_area_struct *vma = (struct vm_area_struct *)private;
1045 unsigned long uninitialized_var(address);
1048 address = page_address_in_vma(page, vma);
1049 if (address != -EFAULT)
1055 * if !vma, alloc_page_vma() will use task or system default policy
1057 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1061 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1062 unsigned long flags)
1066 int do_migrate_pages(struct mm_struct *mm,
1067 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
1072 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1078 static long do_mbind(unsigned long start, unsigned long len,
1079 unsigned short mode, unsigned short mode_flags,
1080 nodemask_t *nmask, unsigned long flags)
1082 struct vm_area_struct *vma;
1083 struct mm_struct *mm = current->mm;
1084 struct mempolicy *new;
1087 LIST_HEAD(pagelist);
1089 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1090 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1092 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1095 if (start & ~PAGE_MASK)
1098 if (mode == MPOL_DEFAULT)
1099 flags &= ~MPOL_MF_STRICT;
1101 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1109 new = mpol_new(mode, mode_flags, nmask);
1111 return PTR_ERR(new);
1114 * If we are using the default policy then operation
1115 * on discontinuous address spaces is okay after all
1118 flags |= MPOL_MF_DISCONTIG_OK;
1120 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1121 start, start + len, mode, mode_flags,
1122 nmask ? nodes_addr(*nmask)[0] : -1);
1124 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1126 err = migrate_prep();
1131 NODEMASK_SCRATCH(scratch);
1133 down_write(&mm->mmap_sem);
1135 err = mpol_set_nodemask(new, nmask, scratch);
1136 task_unlock(current);
1138 up_write(&mm->mmap_sem);
1141 NODEMASK_SCRATCH_FREE(scratch);
1146 vma = check_range(mm, start, end, nmask,
1147 flags | MPOL_MF_INVERT, &pagelist);
1153 err = mbind_range(mm, start, end, new);
1155 if (!list_empty(&pagelist)) {
1156 nr_failed = migrate_pages(&pagelist, new_vma_page,
1160 putback_lru_pages(&pagelist);
1163 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1166 putback_lru_pages(&pagelist);
1168 up_write(&mm->mmap_sem);
1175 * User space interface with variable sized bitmaps for nodelists.
1178 /* Copy a node mask from user space. */
1179 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1180 unsigned long maxnode)
1183 unsigned long nlongs;
1184 unsigned long endmask;
1187 nodes_clear(*nodes);
1188 if (maxnode == 0 || !nmask)
1190 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1193 nlongs = BITS_TO_LONGS(maxnode);
1194 if ((maxnode % BITS_PER_LONG) == 0)
1197 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1199 /* When the user specified more nodes than supported just check
1200 if the non supported part is all zero. */
1201 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1202 if (nlongs > PAGE_SIZE/sizeof(long))
1204 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1206 if (get_user(t, nmask + k))
1208 if (k == nlongs - 1) {
1214 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1218 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1220 nodes_addr(*nodes)[nlongs-1] &= endmask;
1224 /* Copy a kernel node mask to user space */
1225 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1228 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1229 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1231 if (copy > nbytes) {
1232 if (copy > PAGE_SIZE)
1234 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1238 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1241 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1242 unsigned long, mode, unsigned long __user *, nmask,
1243 unsigned long, maxnode, unsigned, flags)
1247 unsigned short mode_flags;
1249 mode_flags = mode & MPOL_MODE_FLAGS;
1250 mode &= ~MPOL_MODE_FLAGS;
1251 if (mode >= MPOL_MAX)
1253 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1254 (mode_flags & MPOL_F_RELATIVE_NODES))
1256 err = get_nodes(&nodes, nmask, maxnode);
1259 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1262 /* Set the process memory policy */
1263 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1264 unsigned long, maxnode)
1268 unsigned short flags;
1270 flags = mode & MPOL_MODE_FLAGS;
1271 mode &= ~MPOL_MODE_FLAGS;
1272 if ((unsigned int)mode >= MPOL_MAX)
1274 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1276 err = get_nodes(&nodes, nmask, maxnode);
1279 return do_set_mempolicy(mode, flags, &nodes);
1282 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1283 const unsigned long __user *, old_nodes,
1284 const unsigned long __user *, new_nodes)
1286 const struct cred *cred = current_cred(), *tcred;
1287 struct mm_struct *mm = NULL;
1288 struct task_struct *task;
1289 nodemask_t task_nodes;
1293 NODEMASK_SCRATCH(scratch);
1298 old = &scratch->mask1;
1299 new = &scratch->mask2;
1301 err = get_nodes(old, old_nodes, maxnode);
1305 err = get_nodes(new, new_nodes, maxnode);
1309 /* Find the mm_struct */
1311 task = pid ? find_task_by_vpid(pid) : current;
1317 mm = get_task_mm(task);
1325 * Check if this process has the right to modify the specified
1326 * process. The right exists if the process has administrative
1327 * capabilities, superuser privileges or the same
1328 * userid as the target process.
1331 tcred = __task_cred(task);
1332 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1333 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1334 !capable(CAP_SYS_NICE)) {
1341 task_nodes = cpuset_mems_allowed(task);
1342 /* Is the user allowed to access the target nodes? */
1343 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1348 if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1353 err = security_task_movememory(task);
1357 err = do_migrate_pages(mm, old, new,
1358 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1362 NODEMASK_SCRATCH_FREE(scratch);
1368 /* Retrieve NUMA policy */
1369 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1370 unsigned long __user *, nmask, unsigned long, maxnode,
1371 unsigned long, addr, unsigned long, flags)
1374 int uninitialized_var(pval);
1377 if (nmask != NULL && maxnode < MAX_NUMNODES)
1380 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1385 if (policy && put_user(pval, policy))
1389 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1394 #ifdef CONFIG_COMPAT
1396 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1397 compat_ulong_t __user *nmask,
1398 compat_ulong_t maxnode,
1399 compat_ulong_t addr, compat_ulong_t flags)
1402 unsigned long __user *nm = NULL;
1403 unsigned long nr_bits, alloc_size;
1404 DECLARE_BITMAP(bm, MAX_NUMNODES);
1406 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1407 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1410 nm = compat_alloc_user_space(alloc_size);
1412 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1414 if (!err && nmask) {
1415 err = copy_from_user(bm, nm, alloc_size);
1416 /* ensure entire bitmap is zeroed */
1417 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1418 err |= compat_put_bitmap(nmask, bm, nr_bits);
1424 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1425 compat_ulong_t maxnode)
1428 unsigned long __user *nm = NULL;
1429 unsigned long nr_bits, alloc_size;
1430 DECLARE_BITMAP(bm, MAX_NUMNODES);
1432 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1433 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1436 err = compat_get_bitmap(bm, nmask, nr_bits);
1437 nm = compat_alloc_user_space(alloc_size);
1438 err |= copy_to_user(nm, bm, alloc_size);
1444 return sys_set_mempolicy(mode, nm, nr_bits+1);
1447 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1448 compat_ulong_t mode, compat_ulong_t __user *nmask,
1449 compat_ulong_t maxnode, compat_ulong_t flags)
1452 unsigned long __user *nm = NULL;
1453 unsigned long nr_bits, alloc_size;
1456 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1457 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1460 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1461 nm = compat_alloc_user_space(alloc_size);
1462 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1468 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1474 * get_vma_policy(@task, @vma, @addr)
1475 * @task - task for fallback if vma policy == default
1476 * @vma - virtual memory area whose policy is sought
1477 * @addr - address in @vma for shared policy lookup
1479 * Returns effective policy for a VMA at specified address.
1480 * Falls back to @task or system default policy, as necessary.
1481 * Current or other task's task mempolicy and non-shared vma policies
1482 * are protected by the task's mmap_sem, which must be held for read by
1484 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1485 * count--added by the get_policy() vm_op, as appropriate--to protect against
1486 * freeing by another task. It is the caller's responsibility to free the
1487 * extra reference for shared policies.
1489 struct mempolicy *get_vma_policy(struct task_struct *task,
1490 struct vm_area_struct *vma, unsigned long addr)
1492 struct mempolicy *pol = task->mempolicy;
1495 if (vma->vm_ops && vma->vm_ops->get_policy) {
1496 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1500 } else if (vma->vm_policy)
1501 pol = vma->vm_policy;
1504 pol = &default_policy;
1509 * Return a nodemask representing a mempolicy for filtering nodes for
1512 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1514 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1515 if (unlikely(policy->mode == MPOL_BIND) &&
1516 gfp_zone(gfp) >= policy_zone &&
1517 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1518 return &policy->v.nodes;
1523 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1524 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1527 switch (policy->mode) {
1528 case MPOL_PREFERRED:
1529 if (!(policy->flags & MPOL_F_LOCAL))
1530 nd = policy->v.preferred_node;
1534 * Normally, MPOL_BIND allocations are node-local within the
1535 * allowed nodemask. However, if __GFP_THISNODE is set and the
1536 * current node isn't part of the mask, we use the zonelist for
1537 * the first node in the mask instead.
1539 if (unlikely(gfp & __GFP_THISNODE) &&
1540 unlikely(!node_isset(nd, policy->v.nodes)))
1541 nd = first_node(policy->v.nodes);
1546 return node_zonelist(nd, gfp);
1549 /* Do dynamic interleaving for a process */
1550 static unsigned interleave_nodes(struct mempolicy *policy)
1553 struct task_struct *me = current;
1556 next = next_node(nid, policy->v.nodes);
1557 if (next >= MAX_NUMNODES)
1558 next = first_node(policy->v.nodes);
1559 if (next < MAX_NUMNODES)
1565 * Depending on the memory policy provide a node from which to allocate the
1567 * @policy must be protected by freeing by the caller. If @policy is
1568 * the current task's mempolicy, this protection is implicit, as only the
1569 * task can change it's policy. The system default policy requires no
1572 unsigned slab_node(struct mempolicy *policy)
1574 if (!policy || policy->flags & MPOL_F_LOCAL)
1575 return numa_node_id();
1577 switch (policy->mode) {
1578 case MPOL_PREFERRED:
1580 * handled MPOL_F_LOCAL above
1582 return policy->v.preferred_node;
1584 case MPOL_INTERLEAVE:
1585 return interleave_nodes(policy);
1589 * Follow bind policy behavior and start allocation at the
1592 struct zonelist *zonelist;
1594 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1595 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1596 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1599 return zone ? zone->node : numa_node_id();
1607 /* Do static interleaving for a VMA with known offset. */
1608 static unsigned offset_il_node(struct mempolicy *pol,
1609 struct vm_area_struct *vma, unsigned long off)
1611 unsigned nnodes = nodes_weight(pol->v.nodes);
1617 return numa_node_id();
1618 target = (unsigned int)off % nnodes;
1621 nid = next_node(nid, pol->v.nodes);
1623 } while (c <= target);
1627 /* Determine a node number for interleave */
1628 static inline unsigned interleave_nid(struct mempolicy *pol,
1629 struct vm_area_struct *vma, unsigned long addr, int shift)
1635 * for small pages, there is no difference between
1636 * shift and PAGE_SHIFT, so the bit-shift is safe.
1637 * for huge pages, since vm_pgoff is in units of small
1638 * pages, we need to shift off the always 0 bits to get
1641 BUG_ON(shift < PAGE_SHIFT);
1642 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1643 off += (addr - vma->vm_start) >> shift;
1644 return offset_il_node(pol, vma, off);
1646 return interleave_nodes(pol);
1650 * Return the bit number of a random bit set in the nodemask.
1651 * (returns -1 if nodemask is empty)
1653 int node_random(const nodemask_t *maskp)
1657 w = nodes_weight(*maskp);
1659 bit = bitmap_ord_to_pos(maskp->bits,
1660 get_random_int() % w, MAX_NUMNODES);
1664 #ifdef CONFIG_HUGETLBFS
1666 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1667 * @vma = virtual memory area whose policy is sought
1668 * @addr = address in @vma for shared policy lookup and interleave policy
1669 * @gfp_flags = for requested zone
1670 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1671 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1673 * Returns a zonelist suitable for a huge page allocation and a pointer
1674 * to the struct mempolicy for conditional unref after allocation.
1675 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1676 * @nodemask for filtering the zonelist.
1678 * Must be protected by get_mems_allowed()
1680 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1681 gfp_t gfp_flags, struct mempolicy **mpol,
1682 nodemask_t **nodemask)
1684 struct zonelist *zl;
1686 *mpol = get_vma_policy(current, vma, addr);
1687 *nodemask = NULL; /* assume !MPOL_BIND */
1689 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1690 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1691 huge_page_shift(hstate_vma(vma))), gfp_flags);
1693 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1694 if ((*mpol)->mode == MPOL_BIND)
1695 *nodemask = &(*mpol)->v.nodes;
1701 * init_nodemask_of_mempolicy
1703 * If the current task's mempolicy is "default" [NULL], return 'false'
1704 * to indicate default policy. Otherwise, extract the policy nodemask
1705 * for 'bind' or 'interleave' policy into the argument nodemask, or
1706 * initialize the argument nodemask to contain the single node for
1707 * 'preferred' or 'local' policy and return 'true' to indicate presence
1708 * of non-default mempolicy.
1710 * We don't bother with reference counting the mempolicy [mpol_get/put]
1711 * because the current task is examining it's own mempolicy and a task's
1712 * mempolicy is only ever changed by the task itself.
1714 * N.B., it is the caller's responsibility to free a returned nodemask.
1716 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1718 struct mempolicy *mempolicy;
1721 if (!(mask && current->mempolicy))
1725 mempolicy = current->mempolicy;
1726 switch (mempolicy->mode) {
1727 case MPOL_PREFERRED:
1728 if (mempolicy->flags & MPOL_F_LOCAL)
1729 nid = numa_node_id();
1731 nid = mempolicy->v.preferred_node;
1732 init_nodemask_of_node(mask, nid);
1737 case MPOL_INTERLEAVE:
1738 *mask = mempolicy->v.nodes;
1744 task_unlock(current);
1751 * mempolicy_nodemask_intersects
1753 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1754 * policy. Otherwise, check for intersection between mask and the policy
1755 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1756 * policy, always return true since it may allocate elsewhere on fallback.
1758 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1760 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1761 const nodemask_t *mask)
1763 struct mempolicy *mempolicy;
1769 mempolicy = tsk->mempolicy;
1773 switch (mempolicy->mode) {
1774 case MPOL_PREFERRED:
1776 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1777 * allocate from, they may fallback to other nodes when oom.
1778 * Thus, it's possible for tsk to have allocated memory from
1783 case MPOL_INTERLEAVE:
1784 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1794 /* Allocate a page in interleaved policy.
1795 Own path because it needs to do special accounting. */
1796 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1799 struct zonelist *zl;
1802 zl = node_zonelist(nid, gfp);
1803 page = __alloc_pages(gfp, order, zl);
1804 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1805 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1810 * alloc_pages_vma - Allocate a page for a VMA.
1813 * %GFP_USER user allocation.
1814 * %GFP_KERNEL kernel allocations,
1815 * %GFP_HIGHMEM highmem/user allocations,
1816 * %GFP_FS allocation should not call back into a file system.
1817 * %GFP_ATOMIC don't sleep.
1819 * @order:Order of the GFP allocation.
1820 * @vma: Pointer to VMA or NULL if not available.
1821 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1823 * This function allocates a page from the kernel page pool and applies
1824 * a NUMA policy associated with the VMA or the current process.
1825 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1826 * mm_struct of the VMA to prevent it from going away. Should be used for
1827 * all allocations for pages that will be mapped into
1828 * user space. Returns NULL when no page can be allocated.
1830 * Should be called with the mm_sem of the vma hold.
1833 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1834 unsigned long addr, int node)
1836 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1837 struct zonelist *zl;
1841 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1844 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1846 page = alloc_page_interleave(gfp, order, nid);
1850 zl = policy_zonelist(gfp, pol, node);
1851 if (unlikely(mpol_needs_cond_ref(pol))) {
1853 * slow path: ref counted shared policy
1855 struct page *page = __alloc_pages_nodemask(gfp, order,
1856 zl, policy_nodemask(gfp, pol));
1862 * fast path: default or task policy
1864 page = __alloc_pages_nodemask(gfp, order, zl,
1865 policy_nodemask(gfp, pol));
1871 * alloc_pages_current - Allocate pages.
1874 * %GFP_USER user allocation,
1875 * %GFP_KERNEL kernel allocation,
1876 * %GFP_HIGHMEM highmem allocation,
1877 * %GFP_FS don't call back into a file system.
1878 * %GFP_ATOMIC don't sleep.
1879 * @order: Power of two of allocation size in pages. 0 is a single page.
1881 * Allocate a page from the kernel page pool. When not in
1882 * interrupt context and apply the current process NUMA policy.
1883 * Returns NULL when no page can be allocated.
1885 * Don't call cpuset_update_task_memory_state() unless
1886 * 1) it's ok to take cpuset_sem (can WAIT), and
1887 * 2) allocating for current task (not interrupt).
1889 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1891 struct mempolicy *pol = current->mempolicy;
1894 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1895 pol = &default_policy;
1899 * No reference counting needed for current->mempolicy
1900 * nor system default_policy
1902 if (pol->mode == MPOL_INTERLEAVE)
1903 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1905 page = __alloc_pages_nodemask(gfp, order,
1906 policy_zonelist(gfp, pol, numa_node_id()),
1907 policy_nodemask(gfp, pol));
1911 EXPORT_SYMBOL(alloc_pages_current);
1914 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1915 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1916 * with the mems_allowed returned by cpuset_mems_allowed(). This
1917 * keeps mempolicies cpuset relative after its cpuset moves. See
1918 * further kernel/cpuset.c update_nodemask().
1920 * current's mempolicy may be rebinded by the other task(the task that changes
1921 * cpuset's mems), so we needn't do rebind work for current task.
1924 /* Slow path of a mempolicy duplicate */
1925 struct mempolicy *__mpol_dup(struct mempolicy *old)
1927 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1930 return ERR_PTR(-ENOMEM);
1932 /* task's mempolicy is protected by alloc_lock */
1933 if (old == current->mempolicy) {
1936 task_unlock(current);
1941 if (current_cpuset_is_being_rebound()) {
1942 nodemask_t mems = cpuset_mems_allowed(current);
1943 if (new->flags & MPOL_F_REBINDING)
1944 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1946 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1949 atomic_set(&new->refcnt, 1);
1954 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1955 * eliminate the * MPOL_F_* flags that require conditional ref and
1956 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
1957 * after return. Use the returned value.
1959 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1960 * policy lookup, even if the policy needs/has extra ref on lookup.
1961 * shmem_readahead needs this.
1963 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1964 struct mempolicy *frompol)
1966 if (!mpol_needs_cond_ref(frompol))
1970 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
1971 __mpol_put(frompol);
1975 /* Slow path of a mempolicy comparison */
1976 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1980 if (a->mode != b->mode)
1982 if (a->flags != b->flags)
1984 if (mpol_store_user_nodemask(a))
1985 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
1991 case MPOL_INTERLEAVE:
1992 return nodes_equal(a->v.nodes, b->v.nodes);
1993 case MPOL_PREFERRED:
1994 return a->v.preferred_node == b->v.preferred_node;
2002 * Shared memory backing store policy support.
2004 * Remember policies even when nobody has shared memory mapped.
2005 * The policies are kept in Red-Black tree linked from the inode.
2006 * They are protected by the sp->lock spinlock, which should be held
2007 * for any accesses to the tree.
2010 /* lookup first element intersecting start-end */
2011 /* Caller holds sp->lock */
2012 static struct sp_node *
2013 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2015 struct rb_node *n = sp->root.rb_node;
2018 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2020 if (start >= p->end)
2022 else if (end <= p->start)
2030 struct sp_node *w = NULL;
2031 struct rb_node *prev = rb_prev(n);
2034 w = rb_entry(prev, struct sp_node, nd);
2035 if (w->end <= start)
2039 return rb_entry(n, struct sp_node, nd);
2042 /* Insert a new shared policy into the list. */
2043 /* Caller holds sp->lock */
2044 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2046 struct rb_node **p = &sp->root.rb_node;
2047 struct rb_node *parent = NULL;
2052 nd = rb_entry(parent, struct sp_node, nd);
2053 if (new->start < nd->start)
2055 else if (new->end > nd->end)
2056 p = &(*p)->rb_right;
2060 rb_link_node(&new->nd, parent, p);
2061 rb_insert_color(&new->nd, &sp->root);
2062 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2063 new->policy ? new->policy->mode : 0);
2066 /* Find shared policy intersecting idx */
2068 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2070 struct mempolicy *pol = NULL;
2073 if (!sp->root.rb_node)
2075 spin_lock(&sp->lock);
2076 sn = sp_lookup(sp, idx, idx+1);
2078 mpol_get(sn->policy);
2081 spin_unlock(&sp->lock);
2085 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2087 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2088 rb_erase(&n->nd, &sp->root);
2089 mpol_put(n->policy);
2090 kmem_cache_free(sn_cache, n);
2093 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2094 struct mempolicy *pol)
2096 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2103 pol->flags |= MPOL_F_SHARED; /* for unref */
2108 /* Replace a policy range. */
2109 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2110 unsigned long end, struct sp_node *new)
2112 struct sp_node *n, *new2 = NULL;
2115 spin_lock(&sp->lock);
2116 n = sp_lookup(sp, start, end);
2117 /* Take care of old policies in the same range. */
2118 while (n && n->start < end) {
2119 struct rb_node *next = rb_next(&n->nd);
2120 if (n->start >= start) {
2126 /* Old policy spanning whole new range. */
2129 spin_unlock(&sp->lock);
2130 new2 = sp_alloc(end, n->end, n->policy);
2136 sp_insert(sp, new2);
2144 n = rb_entry(next, struct sp_node, nd);
2148 spin_unlock(&sp->lock);
2150 mpol_put(new2->policy);
2151 kmem_cache_free(sn_cache, new2);
2157 * mpol_shared_policy_init - initialize shared policy for inode
2158 * @sp: pointer to inode shared policy
2159 * @mpol: struct mempolicy to install
2161 * Install non-NULL @mpol in inode's shared policy rb-tree.
2162 * On entry, the current task has a reference on a non-NULL @mpol.
2163 * This must be released on exit.
2164 * This is called at get_inode() calls and we can use GFP_KERNEL.
2166 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2170 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2171 spin_lock_init(&sp->lock);
2174 struct vm_area_struct pvma;
2175 struct mempolicy *new;
2176 NODEMASK_SCRATCH(scratch);
2180 /* contextualize the tmpfs mount point mempolicy */
2181 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2183 goto free_scratch; /* no valid nodemask intersection */
2186 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2187 task_unlock(current);
2191 /* Create pseudo-vma that contains just the policy */
2192 memset(&pvma, 0, sizeof(struct vm_area_struct));
2193 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2194 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2197 mpol_put(new); /* drop initial ref */
2199 NODEMASK_SCRATCH_FREE(scratch);
2201 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2205 int mpol_set_shared_policy(struct shared_policy *info,
2206 struct vm_area_struct *vma, struct mempolicy *npol)
2209 struct sp_node *new = NULL;
2210 unsigned long sz = vma_pages(vma);
2212 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2214 sz, npol ? npol->mode : -1,
2215 npol ? npol->flags : -1,
2216 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2219 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2223 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2225 kmem_cache_free(sn_cache, new);
2229 /* Free a backing policy store on inode delete. */
2230 void mpol_free_shared_policy(struct shared_policy *p)
2233 struct rb_node *next;
2235 if (!p->root.rb_node)
2237 spin_lock(&p->lock);
2238 next = rb_first(&p->root);
2240 n = rb_entry(next, struct sp_node, nd);
2241 next = rb_next(&n->nd);
2242 rb_erase(&n->nd, &p->root);
2243 mpol_put(n->policy);
2244 kmem_cache_free(sn_cache, n);
2246 spin_unlock(&p->lock);
2249 /* assumes fs == KERNEL_DS */
2250 void __init numa_policy_init(void)
2252 nodemask_t interleave_nodes;
2253 unsigned long largest = 0;
2254 int nid, prefer = 0;
2256 policy_cache = kmem_cache_create("numa_policy",
2257 sizeof(struct mempolicy),
2258 0, SLAB_PANIC, NULL);
2260 sn_cache = kmem_cache_create("shared_policy_node",
2261 sizeof(struct sp_node),
2262 0, SLAB_PANIC, NULL);
2265 * Set interleaving policy for system init. Interleaving is only
2266 * enabled across suitably sized nodes (default is >= 16MB), or
2267 * fall back to the largest node if they're all smaller.
2269 nodes_clear(interleave_nodes);
2270 for_each_node_state(nid, N_HIGH_MEMORY) {
2271 unsigned long total_pages = node_present_pages(nid);
2273 /* Preserve the largest node */
2274 if (largest < total_pages) {
2275 largest = total_pages;
2279 /* Interleave this node? */
2280 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2281 node_set(nid, interleave_nodes);
2284 /* All too small, use the largest */
2285 if (unlikely(nodes_empty(interleave_nodes)))
2286 node_set(prefer, interleave_nodes);
2288 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2289 printk("numa_policy_init: interleaving failed\n");
2292 /* Reset policy of current process to default */
2293 void numa_default_policy(void)
2295 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2299 * Parse and format mempolicy from/to strings
2303 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
2304 * Used only for mpol_parse_str() and mpol_to_str()
2306 #define MPOL_LOCAL MPOL_MAX
2307 static const char * const policy_modes[] =
2309 [MPOL_DEFAULT] = "default",
2310 [MPOL_PREFERRED] = "prefer",
2311 [MPOL_BIND] = "bind",
2312 [MPOL_INTERLEAVE] = "interleave",
2313 [MPOL_LOCAL] = "local"
2319 * mpol_parse_str - parse string to mempolicy
2320 * @str: string containing mempolicy to parse
2321 * @mpol: pointer to struct mempolicy pointer, returned on success.
2322 * @no_context: flag whether to "contextualize" the mempolicy
2325 * <mode>[=<flags>][:<nodelist>]
2327 * if @no_context is true, save the input nodemask in w.user_nodemask in
2328 * the returned mempolicy. This will be used to "clone" the mempolicy in
2329 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
2330 * mount option. Note that if 'static' or 'relative' mode flags were
2331 * specified, the input nodemask will already have been saved. Saving
2332 * it again is redundant, but safe.
2334 * On success, returns 0, else 1
2336 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2338 struct mempolicy *new = NULL;
2339 unsigned short mode;
2340 unsigned short uninitialized_var(mode_flags);
2342 char *nodelist = strchr(str, ':');
2343 char *flags = strchr(str, '=');
2347 /* NUL-terminate mode or flags string */
2349 if (nodelist_parse(nodelist, nodes))
2351 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2357 *flags++ = '\0'; /* terminate mode string */
2359 for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2360 if (!strcmp(str, policy_modes[mode])) {
2364 if (mode > MPOL_LOCAL)
2368 case MPOL_PREFERRED:
2370 * Insist on a nodelist of one node only
2373 char *rest = nodelist;
2374 while (isdigit(*rest))
2380 case MPOL_INTERLEAVE:
2382 * Default to online nodes with memory if no nodelist
2385 nodes = node_states[N_HIGH_MEMORY];
2389 * Don't allow a nodelist; mpol_new() checks flags
2393 mode = MPOL_PREFERRED;
2397 * Insist on a empty nodelist
2404 * Insist on a nodelist
2413 * Currently, we only support two mutually exclusive
2416 if (!strcmp(flags, "static"))
2417 mode_flags |= MPOL_F_STATIC_NODES;
2418 else if (!strcmp(flags, "relative"))
2419 mode_flags |= MPOL_F_RELATIVE_NODES;
2424 new = mpol_new(mode, mode_flags, &nodes);
2429 /* save for contextualization */
2430 new->w.user_nodemask = nodes;
2433 NODEMASK_SCRATCH(scratch);
2436 ret = mpol_set_nodemask(new, &nodes, scratch);
2437 task_unlock(current);
2440 NODEMASK_SCRATCH_FREE(scratch);
2449 /* Restore string for error message */
2458 #endif /* CONFIG_TMPFS */
2461 * mpol_to_str - format a mempolicy structure for printing
2462 * @buffer: to contain formatted mempolicy string
2463 * @maxlen: length of @buffer
2464 * @pol: pointer to mempolicy to be formatted
2465 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2467 * Convert a mempolicy into a string.
2468 * Returns the number of characters in buffer (if positive)
2469 * or an error (negative)
2471 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2476 unsigned short mode;
2477 unsigned short flags = pol ? pol->flags : 0;
2480 * Sanity check: room for longest mode, flag and some nodes
2482 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2484 if (!pol || pol == &default_policy)
2485 mode = MPOL_DEFAULT;
2494 case MPOL_PREFERRED:
2496 if (flags & MPOL_F_LOCAL)
2497 mode = MPOL_LOCAL; /* pseudo-policy */
2499 node_set(pol->v.preferred_node, nodes);
2504 case MPOL_INTERLEAVE:
2506 nodes = pol->w.user_nodemask;
2508 nodes = pol->v.nodes;
2515 l = strlen(policy_modes[mode]);
2516 if (buffer + maxlen < p + l + 1)
2519 strcpy(p, policy_modes[mode]);
2522 if (flags & MPOL_MODE_FLAGS) {
2523 if (buffer + maxlen < p + 2)
2528 * Currently, the only defined flags are mutually exclusive
2530 if (flags & MPOL_F_STATIC_NODES)
2531 p += snprintf(p, buffer + maxlen - p, "static");
2532 else if (flags & MPOL_F_RELATIVE_NODES)
2533 p += snprintf(p, buffer + maxlen - p, "relative");
2536 if (!nodes_empty(nodes)) {
2537 if (buffer + maxlen < p + 2)
2540 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);