mm, powerpc: move the RCU page-table freeing into generic code
[pandora-kernel.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67
68 #include "internal.h"
69
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78
79 unsigned long num_physpages;
80 /*
81  * A number of key systems in x86 including ioremap() rely on the assumption
82  * that high_memory defines the upper bound on direct map memory, then end
83  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85  * and ZONE_HIGHMEM.
86  */
87 void * high_memory;
88
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91
92 /*
93  * Randomize the address space (stacks, mmaps, brk, etc.).
94  *
95  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96  *   as ancient (libc5 based) binaries can segfault. )
97  */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100                                         1;
101 #else
102                                         2;
103 #endif
104
105 static int __init disable_randmaps(char *s)
106 {
107         randomize_va_space = 0;
108         return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114
115 /*
116  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117  */
118 static int __init init_zero_pfn(void)
119 {
120         zero_pfn = page_to_pfn(ZERO_PAGE(0));
121         return 0;
122 }
123 core_initcall(init_zero_pfn);
124
125
126 #if defined(SPLIT_RSS_COUNTING)
127
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
129 {
130         int i;
131
132         for (i = 0; i < NR_MM_COUNTERS; i++) {
133                 if (task->rss_stat.count[i]) {
134                         add_mm_counter(mm, i, task->rss_stat.count[i]);
135                         task->rss_stat.count[i] = 0;
136                 }
137         }
138         task->rss_stat.events = 0;
139 }
140
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143         struct task_struct *task = current;
144
145         if (likely(task->mm == mm))
146                 task->rss_stat.count[member] += val;
147         else
148                 add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH  (64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157         if (unlikely(task != current))
158                 return;
159         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160                 __sync_task_rss_stat(task, task->mm);
161 }
162
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
164 {
165         long val = 0;
166
167         /*
168          * Don't use task->mm here...for avoiding to use task_get_mm()..
169          * The caller must guarantee task->mm is not invalid.
170          */
171         val = atomic_long_read(&mm->rss_stat.count[member]);
172         /*
173          * counter is updated in asynchronous manner and may go to minus.
174          * But it's never be expected number for users.
175          */
176         if (val < 0)
177                 return 0;
178         return (unsigned long)val;
179 }
180
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182 {
183         __sync_task_rss_stat(task, mm);
184 }
185 #else
186
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189
190 static void check_sync_rss_stat(struct task_struct *task)
191 {
192 }
193
194 #endif
195
196 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
197
198 /*
199  * See the comment near struct mmu_table_batch.
200  */
201
202 static void tlb_remove_table_smp_sync(void *arg)
203 {
204         /* Simply deliver the interrupt */
205 }
206
207 static void tlb_remove_table_one(void *table)
208 {
209         /*
210          * This isn't an RCU grace period and hence the page-tables cannot be
211          * assumed to be actually RCU-freed.
212          *
213          * It is however sufficient for software page-table walkers that rely on
214          * IRQ disabling. See the comment near struct mmu_table_batch.
215          */
216         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
217         __tlb_remove_table(table);
218 }
219
220 static void tlb_remove_table_rcu(struct rcu_head *head)
221 {
222         struct mmu_table_batch *batch;
223         int i;
224
225         batch = container_of(head, struct mmu_table_batch, rcu);
226
227         for (i = 0; i < batch->nr; i++)
228                 __tlb_remove_table(batch->tables[i]);
229
230         free_page((unsigned long)batch);
231 }
232
233 void tlb_table_flush(struct mmu_gather *tlb)
234 {
235         struct mmu_table_batch **batch = &tlb->batch;
236
237         if (*batch) {
238                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
239                 *batch = NULL;
240         }
241 }
242
243 void tlb_remove_table(struct mmu_gather *tlb, void *table)
244 {
245         struct mmu_table_batch **batch = &tlb->batch;
246
247         tlb->need_flush = 1;
248
249         /*
250          * When there's less then two users of this mm there cannot be a
251          * concurrent page-table walk.
252          */
253         if (atomic_read(&tlb->mm->mm_users) < 2) {
254                 __tlb_remove_table(table);
255                 return;
256         }
257
258         if (*batch == NULL) {
259                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
260                 if (*batch == NULL) {
261                         tlb_remove_table_one(table);
262                         return;
263                 }
264                 (*batch)->nr = 0;
265         }
266         (*batch)->tables[(*batch)->nr++] = table;
267         if ((*batch)->nr == MAX_TABLE_BATCH)
268                 tlb_table_flush(tlb);
269 }
270
271 #endif
272
273 /*
274  * If a p?d_bad entry is found while walking page tables, report
275  * the error, before resetting entry to p?d_none.  Usually (but
276  * very seldom) called out from the p?d_none_or_clear_bad macros.
277  */
278
279 void pgd_clear_bad(pgd_t *pgd)
280 {
281         pgd_ERROR(*pgd);
282         pgd_clear(pgd);
283 }
284
285 void pud_clear_bad(pud_t *pud)
286 {
287         pud_ERROR(*pud);
288         pud_clear(pud);
289 }
290
291 void pmd_clear_bad(pmd_t *pmd)
292 {
293         pmd_ERROR(*pmd);
294         pmd_clear(pmd);
295 }
296
297 /*
298  * Note: this doesn't free the actual pages themselves. That
299  * has been handled earlier when unmapping all the memory regions.
300  */
301 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
302                            unsigned long addr)
303 {
304         pgtable_t token = pmd_pgtable(*pmd);
305         pmd_clear(pmd);
306         pte_free_tlb(tlb, token, addr);
307         tlb->mm->nr_ptes--;
308 }
309
310 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
311                                 unsigned long addr, unsigned long end,
312                                 unsigned long floor, unsigned long ceiling)
313 {
314         pmd_t *pmd;
315         unsigned long next;
316         unsigned long start;
317
318         start = addr;
319         pmd = pmd_offset(pud, addr);
320         do {
321                 next = pmd_addr_end(addr, end);
322                 if (pmd_none_or_clear_bad(pmd))
323                         continue;
324                 free_pte_range(tlb, pmd, addr);
325         } while (pmd++, addr = next, addr != end);
326
327         start &= PUD_MASK;
328         if (start < floor)
329                 return;
330         if (ceiling) {
331                 ceiling &= PUD_MASK;
332                 if (!ceiling)
333                         return;
334         }
335         if (end - 1 > ceiling - 1)
336                 return;
337
338         pmd = pmd_offset(pud, start);
339         pud_clear(pud);
340         pmd_free_tlb(tlb, pmd, start);
341 }
342
343 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
344                                 unsigned long addr, unsigned long end,
345                                 unsigned long floor, unsigned long ceiling)
346 {
347         pud_t *pud;
348         unsigned long next;
349         unsigned long start;
350
351         start = addr;
352         pud = pud_offset(pgd, addr);
353         do {
354                 next = pud_addr_end(addr, end);
355                 if (pud_none_or_clear_bad(pud))
356                         continue;
357                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
358         } while (pud++, addr = next, addr != end);
359
360         start &= PGDIR_MASK;
361         if (start < floor)
362                 return;
363         if (ceiling) {
364                 ceiling &= PGDIR_MASK;
365                 if (!ceiling)
366                         return;
367         }
368         if (end - 1 > ceiling - 1)
369                 return;
370
371         pud = pud_offset(pgd, start);
372         pgd_clear(pgd);
373         pud_free_tlb(tlb, pud, start);
374 }
375
376 /*
377  * This function frees user-level page tables of a process.
378  *
379  * Must be called with pagetable lock held.
380  */
381 void free_pgd_range(struct mmu_gather *tlb,
382                         unsigned long addr, unsigned long end,
383                         unsigned long floor, unsigned long ceiling)
384 {
385         pgd_t *pgd;
386         unsigned long next;
387
388         /*
389          * The next few lines have given us lots of grief...
390          *
391          * Why are we testing PMD* at this top level?  Because often
392          * there will be no work to do at all, and we'd prefer not to
393          * go all the way down to the bottom just to discover that.
394          *
395          * Why all these "- 1"s?  Because 0 represents both the bottom
396          * of the address space and the top of it (using -1 for the
397          * top wouldn't help much: the masks would do the wrong thing).
398          * The rule is that addr 0 and floor 0 refer to the bottom of
399          * the address space, but end 0 and ceiling 0 refer to the top
400          * Comparisons need to use "end - 1" and "ceiling - 1" (though
401          * that end 0 case should be mythical).
402          *
403          * Wherever addr is brought up or ceiling brought down, we must
404          * be careful to reject "the opposite 0" before it confuses the
405          * subsequent tests.  But what about where end is brought down
406          * by PMD_SIZE below? no, end can't go down to 0 there.
407          *
408          * Whereas we round start (addr) and ceiling down, by different
409          * masks at different levels, in order to test whether a table
410          * now has no other vmas using it, so can be freed, we don't
411          * bother to round floor or end up - the tests don't need that.
412          */
413
414         addr &= PMD_MASK;
415         if (addr < floor) {
416                 addr += PMD_SIZE;
417                 if (!addr)
418                         return;
419         }
420         if (ceiling) {
421                 ceiling &= PMD_MASK;
422                 if (!ceiling)
423                         return;
424         }
425         if (end - 1 > ceiling - 1)
426                 end -= PMD_SIZE;
427         if (addr > end - 1)
428                 return;
429
430         pgd = pgd_offset(tlb->mm, addr);
431         do {
432                 next = pgd_addr_end(addr, end);
433                 if (pgd_none_or_clear_bad(pgd))
434                         continue;
435                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
436         } while (pgd++, addr = next, addr != end);
437 }
438
439 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
440                 unsigned long floor, unsigned long ceiling)
441 {
442         while (vma) {
443                 struct vm_area_struct *next = vma->vm_next;
444                 unsigned long addr = vma->vm_start;
445
446                 /*
447                  * Hide vma from rmap and truncate_pagecache before freeing
448                  * pgtables
449                  */
450                 unlink_anon_vmas(vma);
451                 unlink_file_vma(vma);
452
453                 if (is_vm_hugetlb_page(vma)) {
454                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
455                                 floor, next? next->vm_start: ceiling);
456                 } else {
457                         /*
458                          * Optimization: gather nearby vmas into one call down
459                          */
460                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
461                                && !is_vm_hugetlb_page(next)) {
462                                 vma = next;
463                                 next = vma->vm_next;
464                                 unlink_anon_vmas(vma);
465                                 unlink_file_vma(vma);
466                         }
467                         free_pgd_range(tlb, addr, vma->vm_end,
468                                 floor, next? next->vm_start: ceiling);
469                 }
470                 vma = next;
471         }
472 }
473
474 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
475                 pmd_t *pmd, unsigned long address)
476 {
477         pgtable_t new = pte_alloc_one(mm, address);
478         int wait_split_huge_page;
479         if (!new)
480                 return -ENOMEM;
481
482         /*
483          * Ensure all pte setup (eg. pte page lock and page clearing) are
484          * visible before the pte is made visible to other CPUs by being
485          * put into page tables.
486          *
487          * The other side of the story is the pointer chasing in the page
488          * table walking code (when walking the page table without locking;
489          * ie. most of the time). Fortunately, these data accesses consist
490          * of a chain of data-dependent loads, meaning most CPUs (alpha
491          * being the notable exception) will already guarantee loads are
492          * seen in-order. See the alpha page table accessors for the
493          * smp_read_barrier_depends() barriers in page table walking code.
494          */
495         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
496
497         spin_lock(&mm->page_table_lock);
498         wait_split_huge_page = 0;
499         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
500                 mm->nr_ptes++;
501                 pmd_populate(mm, pmd, new);
502                 new = NULL;
503         } else if (unlikely(pmd_trans_splitting(*pmd)))
504                 wait_split_huge_page = 1;
505         spin_unlock(&mm->page_table_lock);
506         if (new)
507                 pte_free(mm, new);
508         if (wait_split_huge_page)
509                 wait_split_huge_page(vma->anon_vma, pmd);
510         return 0;
511 }
512
513 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
514 {
515         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
516         if (!new)
517                 return -ENOMEM;
518
519         smp_wmb(); /* See comment in __pte_alloc */
520
521         spin_lock(&init_mm.page_table_lock);
522         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
523                 pmd_populate_kernel(&init_mm, pmd, new);
524                 new = NULL;
525         } else
526                 VM_BUG_ON(pmd_trans_splitting(*pmd));
527         spin_unlock(&init_mm.page_table_lock);
528         if (new)
529                 pte_free_kernel(&init_mm, new);
530         return 0;
531 }
532
533 static inline void init_rss_vec(int *rss)
534 {
535         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
536 }
537
538 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
539 {
540         int i;
541
542         if (current->mm == mm)
543                 sync_mm_rss(current, mm);
544         for (i = 0; i < NR_MM_COUNTERS; i++)
545                 if (rss[i])
546                         add_mm_counter(mm, i, rss[i]);
547 }
548
549 /*
550  * This function is called to print an error when a bad pte
551  * is found. For example, we might have a PFN-mapped pte in
552  * a region that doesn't allow it.
553  *
554  * The calling function must still handle the error.
555  */
556 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
557                           pte_t pte, struct page *page)
558 {
559         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
560         pud_t *pud = pud_offset(pgd, addr);
561         pmd_t *pmd = pmd_offset(pud, addr);
562         struct address_space *mapping;
563         pgoff_t index;
564         static unsigned long resume;
565         static unsigned long nr_shown;
566         static unsigned long nr_unshown;
567
568         /*
569          * Allow a burst of 60 reports, then keep quiet for that minute;
570          * or allow a steady drip of one report per second.
571          */
572         if (nr_shown == 60) {
573                 if (time_before(jiffies, resume)) {
574                         nr_unshown++;
575                         return;
576                 }
577                 if (nr_unshown) {
578                         printk(KERN_ALERT
579                                 "BUG: Bad page map: %lu messages suppressed\n",
580                                 nr_unshown);
581                         nr_unshown = 0;
582                 }
583                 nr_shown = 0;
584         }
585         if (nr_shown++ == 0)
586                 resume = jiffies + 60 * HZ;
587
588         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
589         index = linear_page_index(vma, addr);
590
591         printk(KERN_ALERT
592                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
593                 current->comm,
594                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
595         if (page)
596                 dump_page(page);
597         printk(KERN_ALERT
598                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
599                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
600         /*
601          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
602          */
603         if (vma->vm_ops)
604                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
605                                 (unsigned long)vma->vm_ops->fault);
606         if (vma->vm_file && vma->vm_file->f_op)
607                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
608                                 (unsigned long)vma->vm_file->f_op->mmap);
609         dump_stack();
610         add_taint(TAINT_BAD_PAGE);
611 }
612
613 static inline int is_cow_mapping(unsigned int flags)
614 {
615         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
616 }
617
618 #ifndef is_zero_pfn
619 static inline int is_zero_pfn(unsigned long pfn)
620 {
621         return pfn == zero_pfn;
622 }
623 #endif
624
625 #ifndef my_zero_pfn
626 static inline unsigned long my_zero_pfn(unsigned long addr)
627 {
628         return zero_pfn;
629 }
630 #endif
631
632 /*
633  * vm_normal_page -- This function gets the "struct page" associated with a pte.
634  *
635  * "Special" mappings do not wish to be associated with a "struct page" (either
636  * it doesn't exist, or it exists but they don't want to touch it). In this
637  * case, NULL is returned here. "Normal" mappings do have a struct page.
638  *
639  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
640  * pte bit, in which case this function is trivial. Secondly, an architecture
641  * may not have a spare pte bit, which requires a more complicated scheme,
642  * described below.
643  *
644  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
645  * special mapping (even if there are underlying and valid "struct pages").
646  * COWed pages of a VM_PFNMAP are always normal.
647  *
648  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
649  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
650  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
651  * mapping will always honor the rule
652  *
653  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
654  *
655  * And for normal mappings this is false.
656  *
657  * This restricts such mappings to be a linear translation from virtual address
658  * to pfn. To get around this restriction, we allow arbitrary mappings so long
659  * as the vma is not a COW mapping; in that case, we know that all ptes are
660  * special (because none can have been COWed).
661  *
662  *
663  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
664  *
665  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
666  * page" backing, however the difference is that _all_ pages with a struct
667  * page (that is, those where pfn_valid is true) are refcounted and considered
668  * normal pages by the VM. The disadvantage is that pages are refcounted
669  * (which can be slower and simply not an option for some PFNMAP users). The
670  * advantage is that we don't have to follow the strict linearity rule of
671  * PFNMAP mappings in order to support COWable mappings.
672  *
673  */
674 #ifdef __HAVE_ARCH_PTE_SPECIAL
675 # define HAVE_PTE_SPECIAL 1
676 #else
677 # define HAVE_PTE_SPECIAL 0
678 #endif
679 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
680                                 pte_t pte)
681 {
682         unsigned long pfn = pte_pfn(pte);
683
684         if (HAVE_PTE_SPECIAL) {
685                 if (likely(!pte_special(pte)))
686                         goto check_pfn;
687                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
688                         return NULL;
689                 if (!is_zero_pfn(pfn))
690                         print_bad_pte(vma, addr, pte, NULL);
691                 return NULL;
692         }
693
694         /* !HAVE_PTE_SPECIAL case follows: */
695
696         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
697                 if (vma->vm_flags & VM_MIXEDMAP) {
698                         if (!pfn_valid(pfn))
699                                 return NULL;
700                         goto out;
701                 } else {
702                         unsigned long off;
703                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
704                         if (pfn == vma->vm_pgoff + off)
705                                 return NULL;
706                         if (!is_cow_mapping(vma->vm_flags))
707                                 return NULL;
708                 }
709         }
710
711         if (is_zero_pfn(pfn))
712                 return NULL;
713 check_pfn:
714         if (unlikely(pfn > highest_memmap_pfn)) {
715                 print_bad_pte(vma, addr, pte, NULL);
716                 return NULL;
717         }
718
719         /*
720          * NOTE! We still have PageReserved() pages in the page tables.
721          * eg. VDSO mappings can cause them to exist.
722          */
723 out:
724         return pfn_to_page(pfn);
725 }
726
727 /*
728  * copy one vm_area from one task to the other. Assumes the page tables
729  * already present in the new task to be cleared in the whole range
730  * covered by this vma.
731  */
732
733 static inline unsigned long
734 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
735                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
736                 unsigned long addr, int *rss)
737 {
738         unsigned long vm_flags = vma->vm_flags;
739         pte_t pte = *src_pte;
740         struct page *page;
741
742         /* pte contains position in swap or file, so copy. */
743         if (unlikely(!pte_present(pte))) {
744                 if (!pte_file(pte)) {
745                         swp_entry_t entry = pte_to_swp_entry(pte);
746
747                         if (swap_duplicate(entry) < 0)
748                                 return entry.val;
749
750                         /* make sure dst_mm is on swapoff's mmlist. */
751                         if (unlikely(list_empty(&dst_mm->mmlist))) {
752                                 spin_lock(&mmlist_lock);
753                                 if (list_empty(&dst_mm->mmlist))
754                                         list_add(&dst_mm->mmlist,
755                                                  &src_mm->mmlist);
756                                 spin_unlock(&mmlist_lock);
757                         }
758                         if (likely(!non_swap_entry(entry)))
759                                 rss[MM_SWAPENTS]++;
760                         else if (is_write_migration_entry(entry) &&
761                                         is_cow_mapping(vm_flags)) {
762                                 /*
763                                  * COW mappings require pages in both parent
764                                  * and child to be set to read.
765                                  */
766                                 make_migration_entry_read(&entry);
767                                 pte = swp_entry_to_pte(entry);
768                                 set_pte_at(src_mm, addr, src_pte, pte);
769                         }
770                 }
771                 goto out_set_pte;
772         }
773
774         /*
775          * If it's a COW mapping, write protect it both
776          * in the parent and the child
777          */
778         if (is_cow_mapping(vm_flags)) {
779                 ptep_set_wrprotect(src_mm, addr, src_pte);
780                 pte = pte_wrprotect(pte);
781         }
782
783         /*
784          * If it's a shared mapping, mark it clean in
785          * the child
786          */
787         if (vm_flags & VM_SHARED)
788                 pte = pte_mkclean(pte);
789         pte = pte_mkold(pte);
790
791         page = vm_normal_page(vma, addr, pte);
792         if (page) {
793                 get_page(page);
794                 page_dup_rmap(page);
795                 if (PageAnon(page))
796                         rss[MM_ANONPAGES]++;
797                 else
798                         rss[MM_FILEPAGES]++;
799         }
800
801 out_set_pte:
802         set_pte_at(dst_mm, addr, dst_pte, pte);
803         return 0;
804 }
805
806 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
807                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
808                    unsigned long addr, unsigned long end)
809 {
810         pte_t *orig_src_pte, *orig_dst_pte;
811         pte_t *src_pte, *dst_pte;
812         spinlock_t *src_ptl, *dst_ptl;
813         int progress = 0;
814         int rss[NR_MM_COUNTERS];
815         swp_entry_t entry = (swp_entry_t){0};
816
817 again:
818         init_rss_vec(rss);
819
820         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
821         if (!dst_pte)
822                 return -ENOMEM;
823         src_pte = pte_offset_map(src_pmd, addr);
824         src_ptl = pte_lockptr(src_mm, src_pmd);
825         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
826         orig_src_pte = src_pte;
827         orig_dst_pte = dst_pte;
828         arch_enter_lazy_mmu_mode();
829
830         do {
831                 /*
832                  * We are holding two locks at this point - either of them
833                  * could generate latencies in another task on another CPU.
834                  */
835                 if (progress >= 32) {
836                         progress = 0;
837                         if (need_resched() ||
838                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
839                                 break;
840                 }
841                 if (pte_none(*src_pte)) {
842                         progress++;
843                         continue;
844                 }
845                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
846                                                         vma, addr, rss);
847                 if (entry.val)
848                         break;
849                 progress += 8;
850         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
851
852         arch_leave_lazy_mmu_mode();
853         spin_unlock(src_ptl);
854         pte_unmap(orig_src_pte);
855         add_mm_rss_vec(dst_mm, rss);
856         pte_unmap_unlock(orig_dst_pte, dst_ptl);
857         cond_resched();
858
859         if (entry.val) {
860                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
861                         return -ENOMEM;
862                 progress = 0;
863         }
864         if (addr != end)
865                 goto again;
866         return 0;
867 }
868
869 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
870                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
871                 unsigned long addr, unsigned long end)
872 {
873         pmd_t *src_pmd, *dst_pmd;
874         unsigned long next;
875
876         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
877         if (!dst_pmd)
878                 return -ENOMEM;
879         src_pmd = pmd_offset(src_pud, addr);
880         do {
881                 next = pmd_addr_end(addr, end);
882                 if (pmd_trans_huge(*src_pmd)) {
883                         int err;
884                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
885                         err = copy_huge_pmd(dst_mm, src_mm,
886                                             dst_pmd, src_pmd, addr, vma);
887                         if (err == -ENOMEM)
888                                 return -ENOMEM;
889                         if (!err)
890                                 continue;
891                         /* fall through */
892                 }
893                 if (pmd_none_or_clear_bad(src_pmd))
894                         continue;
895                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
896                                                 vma, addr, next))
897                         return -ENOMEM;
898         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
899         return 0;
900 }
901
902 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
903                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
904                 unsigned long addr, unsigned long end)
905 {
906         pud_t *src_pud, *dst_pud;
907         unsigned long next;
908
909         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
910         if (!dst_pud)
911                 return -ENOMEM;
912         src_pud = pud_offset(src_pgd, addr);
913         do {
914                 next = pud_addr_end(addr, end);
915                 if (pud_none_or_clear_bad(src_pud))
916                         continue;
917                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
918                                                 vma, addr, next))
919                         return -ENOMEM;
920         } while (dst_pud++, src_pud++, addr = next, addr != end);
921         return 0;
922 }
923
924 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
925                 struct vm_area_struct *vma)
926 {
927         pgd_t *src_pgd, *dst_pgd;
928         unsigned long next;
929         unsigned long addr = vma->vm_start;
930         unsigned long end = vma->vm_end;
931         int ret;
932
933         /*
934          * Don't copy ptes where a page fault will fill them correctly.
935          * Fork becomes much lighter when there are big shared or private
936          * readonly mappings. The tradeoff is that copy_page_range is more
937          * efficient than faulting.
938          */
939         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
940                 if (!vma->anon_vma)
941                         return 0;
942         }
943
944         if (is_vm_hugetlb_page(vma))
945                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
946
947         if (unlikely(is_pfn_mapping(vma))) {
948                 /*
949                  * We do not free on error cases below as remove_vma
950                  * gets called on error from higher level routine
951                  */
952                 ret = track_pfn_vma_copy(vma);
953                 if (ret)
954                         return ret;
955         }
956
957         /*
958          * We need to invalidate the secondary MMU mappings only when
959          * there could be a permission downgrade on the ptes of the
960          * parent mm. And a permission downgrade will only happen if
961          * is_cow_mapping() returns true.
962          */
963         if (is_cow_mapping(vma->vm_flags))
964                 mmu_notifier_invalidate_range_start(src_mm, addr, end);
965
966         ret = 0;
967         dst_pgd = pgd_offset(dst_mm, addr);
968         src_pgd = pgd_offset(src_mm, addr);
969         do {
970                 next = pgd_addr_end(addr, end);
971                 if (pgd_none_or_clear_bad(src_pgd))
972                         continue;
973                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
974                                             vma, addr, next))) {
975                         ret = -ENOMEM;
976                         break;
977                 }
978         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
979
980         if (is_cow_mapping(vma->vm_flags))
981                 mmu_notifier_invalidate_range_end(src_mm,
982                                                   vma->vm_start, end);
983         return ret;
984 }
985
986 static unsigned long zap_pte_range(struct mmu_gather *tlb,
987                                 struct vm_area_struct *vma, pmd_t *pmd,
988                                 unsigned long addr, unsigned long end,
989                                 long *zap_work, struct zap_details *details)
990 {
991         struct mm_struct *mm = tlb->mm;
992         int force_flush = 0;
993         pte_t *pte;
994         spinlock_t *ptl;
995         int rss[NR_MM_COUNTERS];
996
997         init_rss_vec(rss);
998 again:
999         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1000         arch_enter_lazy_mmu_mode();
1001         do {
1002                 pte_t ptent = *pte;
1003                 if (pte_none(ptent)) {
1004                         (*zap_work)--;
1005                         continue;
1006                 }
1007
1008                 (*zap_work) -= PAGE_SIZE;
1009
1010                 if (pte_present(ptent)) {
1011                         struct page *page;
1012
1013                         page = vm_normal_page(vma, addr, ptent);
1014                         if (unlikely(details) && page) {
1015                                 /*
1016                                  * unmap_shared_mapping_pages() wants to
1017                                  * invalidate cache without truncating:
1018                                  * unmap shared but keep private pages.
1019                                  */
1020                                 if (details->check_mapping &&
1021                                     details->check_mapping != page->mapping)
1022                                         continue;
1023                                 /*
1024                                  * Each page->index must be checked when
1025                                  * invalidating or truncating nonlinear.
1026                                  */
1027                                 if (details->nonlinear_vma &&
1028                                     (page->index < details->first_index ||
1029                                      page->index > details->last_index))
1030                                         continue;
1031                         }
1032                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1033                                                         tlb->fullmm);
1034                         tlb_remove_tlb_entry(tlb, pte, addr);
1035                         if (unlikely(!page))
1036                                 continue;
1037                         if (unlikely(details) && details->nonlinear_vma
1038                             && linear_page_index(details->nonlinear_vma,
1039                                                 addr) != page->index)
1040                                 set_pte_at(mm, addr, pte,
1041                                            pgoff_to_pte(page->index));
1042                         if (PageAnon(page))
1043                                 rss[MM_ANONPAGES]--;
1044                         else {
1045                                 if (pte_dirty(ptent))
1046                                         set_page_dirty(page);
1047                                 if (pte_young(ptent) &&
1048                                     likely(!VM_SequentialReadHint(vma)))
1049                                         mark_page_accessed(page);
1050                                 rss[MM_FILEPAGES]--;
1051                         }
1052                         page_remove_rmap(page);
1053                         if (unlikely(page_mapcount(page) < 0))
1054                                 print_bad_pte(vma, addr, ptent, page);
1055                         force_flush = !__tlb_remove_page(tlb, page);
1056                         if (force_flush)
1057                                 break;
1058                         continue;
1059                 }
1060                 /*
1061                  * If details->check_mapping, we leave swap entries;
1062                  * if details->nonlinear_vma, we leave file entries.
1063                  */
1064                 if (unlikely(details))
1065                         continue;
1066                 if (pte_file(ptent)) {
1067                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1068                                 print_bad_pte(vma, addr, ptent, NULL);
1069                 } else {
1070                         swp_entry_t entry = pte_to_swp_entry(ptent);
1071
1072                         if (!non_swap_entry(entry))
1073                                 rss[MM_SWAPENTS]--;
1074                         if (unlikely(!free_swap_and_cache(entry)))
1075                                 print_bad_pte(vma, addr, ptent, NULL);
1076                 }
1077                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1078         } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
1079
1080         add_mm_rss_vec(mm, rss);
1081         arch_leave_lazy_mmu_mode();
1082         pte_unmap_unlock(pte - 1, ptl);
1083
1084         /*
1085          * mmu_gather ran out of room to batch pages, we break out of
1086          * the PTE lock to avoid doing the potential expensive TLB invalidate
1087          * and page-free while holding it.
1088          */
1089         if (force_flush) {
1090                 force_flush = 0;
1091                 tlb_flush_mmu(tlb);
1092                 if (addr != end)
1093                         goto again;
1094         }
1095
1096         return addr;
1097 }
1098
1099 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1100                                 struct vm_area_struct *vma, pud_t *pud,
1101                                 unsigned long addr, unsigned long end,
1102                                 long *zap_work, struct zap_details *details)
1103 {
1104         pmd_t *pmd;
1105         unsigned long next;
1106
1107         pmd = pmd_offset(pud, addr);
1108         do {
1109                 next = pmd_addr_end(addr, end);
1110                 if (pmd_trans_huge(*pmd)) {
1111                         if (next-addr != HPAGE_PMD_SIZE) {
1112                                 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1113                                 split_huge_page_pmd(vma->vm_mm, pmd);
1114                         } else if (zap_huge_pmd(tlb, vma, pmd)) {
1115                                 (*zap_work)--;
1116                                 continue;
1117                         }
1118                         /* fall through */
1119                 }
1120                 if (pmd_none_or_clear_bad(pmd)) {
1121                         (*zap_work)--;
1122                         continue;
1123                 }
1124                 next = zap_pte_range(tlb, vma, pmd, addr, next,
1125                                                 zap_work, details);
1126         } while (pmd++, addr = next, (addr != end && *zap_work > 0));
1127
1128         return addr;
1129 }
1130
1131 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1132                                 struct vm_area_struct *vma, pgd_t *pgd,
1133                                 unsigned long addr, unsigned long end,
1134                                 long *zap_work, struct zap_details *details)
1135 {
1136         pud_t *pud;
1137         unsigned long next;
1138
1139         pud = pud_offset(pgd, addr);
1140         do {
1141                 next = pud_addr_end(addr, end);
1142                 if (pud_none_or_clear_bad(pud)) {
1143                         (*zap_work)--;
1144                         continue;
1145                 }
1146                 next = zap_pmd_range(tlb, vma, pud, addr, next,
1147                                                 zap_work, details);
1148         } while (pud++, addr = next, (addr != end && *zap_work > 0));
1149
1150         return addr;
1151 }
1152
1153 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1154                                 struct vm_area_struct *vma,
1155                                 unsigned long addr, unsigned long end,
1156                                 long *zap_work, struct zap_details *details)
1157 {
1158         pgd_t *pgd;
1159         unsigned long next;
1160
1161         if (details && !details->check_mapping && !details->nonlinear_vma)
1162                 details = NULL;
1163
1164         BUG_ON(addr >= end);
1165         mem_cgroup_uncharge_start();
1166         tlb_start_vma(tlb, vma);
1167         pgd = pgd_offset(vma->vm_mm, addr);
1168         do {
1169                 next = pgd_addr_end(addr, end);
1170                 if (pgd_none_or_clear_bad(pgd)) {
1171                         (*zap_work)--;
1172                         continue;
1173                 }
1174                 next = zap_pud_range(tlb, vma, pgd, addr, next,
1175                                                 zap_work, details);
1176         } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1177         tlb_end_vma(tlb, vma);
1178         mem_cgroup_uncharge_end();
1179
1180         return addr;
1181 }
1182
1183 #ifdef CONFIG_PREEMPT
1184 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1185 #else
1186 /* No preempt: go for improved straight-line efficiency */
1187 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1188 #endif
1189
1190 /**
1191  * unmap_vmas - unmap a range of memory covered by a list of vma's
1192  * @tlbp: address of the caller's struct mmu_gather
1193  * @vma: the starting vma
1194  * @start_addr: virtual address at which to start unmapping
1195  * @end_addr: virtual address at which to end unmapping
1196  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1197  * @details: details of nonlinear truncation or shared cache invalidation
1198  *
1199  * Returns the end address of the unmapping (restart addr if interrupted).
1200  *
1201  * Unmap all pages in the vma list.
1202  *
1203  * We aim to not hold locks for too long (for scheduling latency reasons).
1204  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
1205  * return the ending mmu_gather to the caller.
1206  *
1207  * Only addresses between `start' and `end' will be unmapped.
1208  *
1209  * The VMA list must be sorted in ascending virtual address order.
1210  *
1211  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1212  * range after unmap_vmas() returns.  So the only responsibility here is to
1213  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1214  * drops the lock and schedules.
1215  */
1216 unsigned long unmap_vmas(struct mmu_gather *tlb,
1217                 struct vm_area_struct *vma, unsigned long start_addr,
1218                 unsigned long end_addr, unsigned long *nr_accounted,
1219                 struct zap_details *details)
1220 {
1221         long zap_work = ZAP_BLOCK_SIZE;
1222         unsigned long start = start_addr;
1223         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1224         struct mm_struct *mm = vma->vm_mm;
1225
1226         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1227         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1228                 unsigned long end;
1229
1230                 start = max(vma->vm_start, start_addr);
1231                 if (start >= vma->vm_end)
1232                         continue;
1233                 end = min(vma->vm_end, end_addr);
1234                 if (end <= vma->vm_start)
1235                         continue;
1236
1237                 if (vma->vm_flags & VM_ACCOUNT)
1238                         *nr_accounted += (end - start) >> PAGE_SHIFT;
1239
1240                 if (unlikely(is_pfn_mapping(vma)))
1241                         untrack_pfn_vma(vma, 0, 0);
1242
1243                 while (start != end) {
1244                         if (unlikely(is_vm_hugetlb_page(vma))) {
1245                                 /*
1246                                  * It is undesirable to test vma->vm_file as it
1247                                  * should be non-null for valid hugetlb area.
1248                                  * However, vm_file will be NULL in the error
1249                                  * cleanup path of do_mmap_pgoff. When
1250                                  * hugetlbfs ->mmap method fails,
1251                                  * do_mmap_pgoff() nullifies vma->vm_file
1252                                  * before calling this function to clean up.
1253                                  * Since no pte has actually been setup, it is
1254                                  * safe to do nothing in this case.
1255                                  */
1256                                 if (vma->vm_file) {
1257                                         unmap_hugepage_range(vma, start, end, NULL);
1258                                         zap_work -= (end - start) /
1259                                         pages_per_huge_page(hstate_vma(vma));
1260                                 }
1261
1262                                 start = end;
1263                         } else
1264                                 start = unmap_page_range(tlb, vma,
1265                                                 start, end, &zap_work, details);
1266
1267                         if (zap_work > 0) {
1268                                 BUG_ON(start != end);
1269                                 break;
1270                         }
1271
1272                         if (need_resched() ||
1273                                 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1274                                 if (i_mmap_lock)
1275                                         goto out;
1276                                 cond_resched();
1277                         }
1278
1279                         zap_work = ZAP_BLOCK_SIZE;
1280                 }
1281         }
1282 out:
1283         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1284         return start;   /* which is now the end (or restart) address */
1285 }
1286
1287 /**
1288  * zap_page_range - remove user pages in a given range
1289  * @vma: vm_area_struct holding the applicable pages
1290  * @address: starting address of pages to zap
1291  * @size: number of bytes to zap
1292  * @details: details of nonlinear truncation or shared cache invalidation
1293  */
1294 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1295                 unsigned long size, struct zap_details *details)
1296 {
1297         struct mm_struct *mm = vma->vm_mm;
1298         struct mmu_gather tlb;
1299         unsigned long end = address + size;
1300         unsigned long nr_accounted = 0;
1301
1302         lru_add_drain();
1303         tlb_gather_mmu(&tlb, mm, 0);
1304         update_hiwater_rss(mm);
1305         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1306         tlb_finish_mmu(&tlb, address, end);
1307         return end;
1308 }
1309
1310 /**
1311  * zap_vma_ptes - remove ptes mapping the vma
1312  * @vma: vm_area_struct holding ptes to be zapped
1313  * @address: starting address of pages to zap
1314  * @size: number of bytes to zap
1315  *
1316  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1317  *
1318  * The entire address range must be fully contained within the vma.
1319  *
1320  * Returns 0 if successful.
1321  */
1322 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1323                 unsigned long size)
1324 {
1325         if (address < vma->vm_start || address + size > vma->vm_end ||
1326                         !(vma->vm_flags & VM_PFNMAP))
1327                 return -1;
1328         zap_page_range(vma, address, size, NULL);
1329         return 0;
1330 }
1331 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1332
1333 /**
1334  * follow_page - look up a page descriptor from a user-virtual address
1335  * @vma: vm_area_struct mapping @address
1336  * @address: virtual address to look up
1337  * @flags: flags modifying lookup behaviour
1338  *
1339  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1340  *
1341  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1342  * an error pointer if there is a mapping to something not represented
1343  * by a page descriptor (see also vm_normal_page()).
1344  */
1345 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1346                         unsigned int flags)
1347 {
1348         pgd_t *pgd;
1349         pud_t *pud;
1350         pmd_t *pmd;
1351         pte_t *ptep, pte;
1352         spinlock_t *ptl;
1353         struct page *page;
1354         struct mm_struct *mm = vma->vm_mm;
1355
1356         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1357         if (!IS_ERR(page)) {
1358                 BUG_ON(flags & FOLL_GET);
1359                 goto out;
1360         }
1361
1362         page = NULL;
1363         pgd = pgd_offset(mm, address);
1364         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1365                 goto no_page_table;
1366
1367         pud = pud_offset(pgd, address);
1368         if (pud_none(*pud))
1369                 goto no_page_table;
1370         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1371                 BUG_ON(flags & FOLL_GET);
1372                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1373                 goto out;
1374         }
1375         if (unlikely(pud_bad(*pud)))
1376                 goto no_page_table;
1377
1378         pmd = pmd_offset(pud, address);
1379         if (pmd_none(*pmd))
1380                 goto no_page_table;
1381         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1382                 BUG_ON(flags & FOLL_GET);
1383                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1384                 goto out;
1385         }
1386         if (pmd_trans_huge(*pmd)) {
1387                 if (flags & FOLL_SPLIT) {
1388                         split_huge_page_pmd(mm, pmd);
1389                         goto split_fallthrough;
1390                 }
1391                 spin_lock(&mm->page_table_lock);
1392                 if (likely(pmd_trans_huge(*pmd))) {
1393                         if (unlikely(pmd_trans_splitting(*pmd))) {
1394                                 spin_unlock(&mm->page_table_lock);
1395                                 wait_split_huge_page(vma->anon_vma, pmd);
1396                         } else {
1397                                 page = follow_trans_huge_pmd(mm, address,
1398                                                              pmd, flags);
1399                                 spin_unlock(&mm->page_table_lock);
1400                                 goto out;
1401                         }
1402                 } else
1403                         spin_unlock(&mm->page_table_lock);
1404                 /* fall through */
1405         }
1406 split_fallthrough:
1407         if (unlikely(pmd_bad(*pmd)))
1408                 goto no_page_table;
1409
1410         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1411
1412         pte = *ptep;
1413         if (!pte_present(pte))
1414                 goto no_page;
1415         if ((flags & FOLL_WRITE) && !pte_write(pte))
1416                 goto unlock;
1417
1418         page = vm_normal_page(vma, address, pte);
1419         if (unlikely(!page)) {
1420                 if ((flags & FOLL_DUMP) ||
1421                     !is_zero_pfn(pte_pfn(pte)))
1422                         goto bad_page;
1423                 page = pte_page(pte);
1424         }
1425
1426         if (flags & FOLL_GET)
1427                 get_page(page);
1428         if (flags & FOLL_TOUCH) {
1429                 if ((flags & FOLL_WRITE) &&
1430                     !pte_dirty(pte) && !PageDirty(page))
1431                         set_page_dirty(page);
1432                 /*
1433                  * pte_mkyoung() would be more correct here, but atomic care
1434                  * is needed to avoid losing the dirty bit: it is easier to use
1435                  * mark_page_accessed().
1436                  */
1437                 mark_page_accessed(page);
1438         }
1439         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1440                 /*
1441                  * The preliminary mapping check is mainly to avoid the
1442                  * pointless overhead of lock_page on the ZERO_PAGE
1443                  * which might bounce very badly if there is contention.
1444                  *
1445                  * If the page is already locked, we don't need to
1446                  * handle it now - vmscan will handle it later if and
1447                  * when it attempts to reclaim the page.
1448                  */
1449                 if (page->mapping && trylock_page(page)) {
1450                         lru_add_drain();  /* push cached pages to LRU */
1451                         /*
1452                          * Because we lock page here and migration is
1453                          * blocked by the pte's page reference, we need
1454                          * only check for file-cache page truncation.
1455                          */
1456                         if (page->mapping)
1457                                 mlock_vma_page(page);
1458                         unlock_page(page);
1459                 }
1460         }
1461 unlock:
1462         pte_unmap_unlock(ptep, ptl);
1463 out:
1464         return page;
1465
1466 bad_page:
1467         pte_unmap_unlock(ptep, ptl);
1468         return ERR_PTR(-EFAULT);
1469
1470 no_page:
1471         pte_unmap_unlock(ptep, ptl);
1472         if (!pte_none(pte))
1473                 return page;
1474
1475 no_page_table:
1476         /*
1477          * When core dumping an enormous anonymous area that nobody
1478          * has touched so far, we don't want to allocate unnecessary pages or
1479          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1480          * then get_dump_page() will return NULL to leave a hole in the dump.
1481          * But we can only make this optimization where a hole would surely
1482          * be zero-filled if handle_mm_fault() actually did handle it.
1483          */
1484         if ((flags & FOLL_DUMP) &&
1485             (!vma->vm_ops || !vma->vm_ops->fault))
1486                 return ERR_PTR(-EFAULT);
1487         return page;
1488 }
1489
1490 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1491 {
1492         return stack_guard_page_start(vma, addr) ||
1493                stack_guard_page_end(vma, addr+PAGE_SIZE);
1494 }
1495
1496 /**
1497  * __get_user_pages() - pin user pages in memory
1498  * @tsk:        task_struct of target task
1499  * @mm:         mm_struct of target mm
1500  * @start:      starting user address
1501  * @nr_pages:   number of pages from start to pin
1502  * @gup_flags:  flags modifying pin behaviour
1503  * @pages:      array that receives pointers to the pages pinned.
1504  *              Should be at least nr_pages long. Or NULL, if caller
1505  *              only intends to ensure the pages are faulted in.
1506  * @vmas:       array of pointers to vmas corresponding to each page.
1507  *              Or NULL if the caller does not require them.
1508  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1509  *
1510  * Returns number of pages pinned. This may be fewer than the number
1511  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1512  * were pinned, returns -errno. Each page returned must be released
1513  * with a put_page() call when it is finished with. vmas will only
1514  * remain valid while mmap_sem is held.
1515  *
1516  * Must be called with mmap_sem held for read or write.
1517  *
1518  * __get_user_pages walks a process's page tables and takes a reference to
1519  * each struct page that each user address corresponds to at a given
1520  * instant. That is, it takes the page that would be accessed if a user
1521  * thread accesses the given user virtual address at that instant.
1522  *
1523  * This does not guarantee that the page exists in the user mappings when
1524  * __get_user_pages returns, and there may even be a completely different
1525  * page there in some cases (eg. if mmapped pagecache has been invalidated
1526  * and subsequently re faulted). However it does guarantee that the page
1527  * won't be freed completely. And mostly callers simply care that the page
1528  * contains data that was valid *at some point in time*. Typically, an IO
1529  * or similar operation cannot guarantee anything stronger anyway because
1530  * locks can't be held over the syscall boundary.
1531  *
1532  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1533  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1534  * appropriate) must be called after the page is finished with, and
1535  * before put_page is called.
1536  *
1537  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1538  * or mmap_sem contention, and if waiting is needed to pin all pages,
1539  * *@nonblocking will be set to 0.
1540  *
1541  * In most cases, get_user_pages or get_user_pages_fast should be used
1542  * instead of __get_user_pages. __get_user_pages should be used only if
1543  * you need some special @gup_flags.
1544  */
1545 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1546                      unsigned long start, int nr_pages, unsigned int gup_flags,
1547                      struct page **pages, struct vm_area_struct **vmas,
1548                      int *nonblocking)
1549 {
1550         int i;
1551         unsigned long vm_flags;
1552
1553         if (nr_pages <= 0)
1554                 return 0;
1555
1556         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1557
1558         /* 
1559          * Require read or write permissions.
1560          * If FOLL_FORCE is set, we only require the "MAY" flags.
1561          */
1562         vm_flags  = (gup_flags & FOLL_WRITE) ?
1563                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1564         vm_flags &= (gup_flags & FOLL_FORCE) ?
1565                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1566         i = 0;
1567
1568         do {
1569                 struct vm_area_struct *vma;
1570
1571                 vma = find_extend_vma(mm, start);
1572                 if (!vma && in_gate_area(mm, start)) {
1573                         unsigned long pg = start & PAGE_MASK;
1574                         pgd_t *pgd;
1575                         pud_t *pud;
1576                         pmd_t *pmd;
1577                         pte_t *pte;
1578
1579                         /* user gate pages are read-only */
1580                         if (gup_flags & FOLL_WRITE)
1581                                 return i ? : -EFAULT;
1582                         if (pg > TASK_SIZE)
1583                                 pgd = pgd_offset_k(pg);
1584                         else
1585                                 pgd = pgd_offset_gate(mm, pg);
1586                         BUG_ON(pgd_none(*pgd));
1587                         pud = pud_offset(pgd, pg);
1588                         BUG_ON(pud_none(*pud));
1589                         pmd = pmd_offset(pud, pg);
1590                         if (pmd_none(*pmd))
1591                                 return i ? : -EFAULT;
1592                         VM_BUG_ON(pmd_trans_huge(*pmd));
1593                         pte = pte_offset_map(pmd, pg);
1594                         if (pte_none(*pte)) {
1595                                 pte_unmap(pte);
1596                                 return i ? : -EFAULT;
1597                         }
1598                         vma = get_gate_vma(mm);
1599                         if (pages) {
1600                                 struct page *page;
1601
1602                                 page = vm_normal_page(vma, start, *pte);
1603                                 if (!page) {
1604                                         if (!(gup_flags & FOLL_DUMP) &&
1605                                              is_zero_pfn(pte_pfn(*pte)))
1606                                                 page = pte_page(*pte);
1607                                         else {
1608                                                 pte_unmap(pte);
1609                                                 return i ? : -EFAULT;
1610                                         }
1611                                 }
1612                                 pages[i] = page;
1613                                 get_page(page);
1614                         }
1615                         pte_unmap(pte);
1616                         goto next_page;
1617                 }
1618
1619                 if (!vma ||
1620                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1621                     !(vm_flags & vma->vm_flags))
1622                         return i ? : -EFAULT;
1623
1624                 if (is_vm_hugetlb_page(vma)) {
1625                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1626                                         &start, &nr_pages, i, gup_flags);
1627                         continue;
1628                 }
1629
1630                 do {
1631                         struct page *page;
1632                         unsigned int foll_flags = gup_flags;
1633
1634                         /*
1635                          * If we have a pending SIGKILL, don't keep faulting
1636                          * pages and potentially allocating memory.
1637                          */
1638                         if (unlikely(fatal_signal_pending(current)))
1639                                 return i ? i : -ERESTARTSYS;
1640
1641                         cond_resched();
1642                         while (!(page = follow_page(vma, start, foll_flags))) {
1643                                 int ret;
1644                                 unsigned int fault_flags = 0;
1645
1646                                 /* For mlock, just skip the stack guard page. */
1647                                 if (foll_flags & FOLL_MLOCK) {
1648                                         if (stack_guard_page(vma, start))
1649                                                 goto next_page;
1650                                 }
1651                                 if (foll_flags & FOLL_WRITE)
1652                                         fault_flags |= FAULT_FLAG_WRITE;
1653                                 if (nonblocking)
1654                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1655                                 if (foll_flags & FOLL_NOWAIT)
1656                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1657
1658                                 ret = handle_mm_fault(mm, vma, start,
1659                                                         fault_flags);
1660
1661                                 if (ret & VM_FAULT_ERROR) {
1662                                         if (ret & VM_FAULT_OOM)
1663                                                 return i ? i : -ENOMEM;
1664                                         if (ret & (VM_FAULT_HWPOISON |
1665                                                    VM_FAULT_HWPOISON_LARGE)) {
1666                                                 if (i)
1667                                                         return i;
1668                                                 else if (gup_flags & FOLL_HWPOISON)
1669                                                         return -EHWPOISON;
1670                                                 else
1671                                                         return -EFAULT;
1672                                         }
1673                                         if (ret & VM_FAULT_SIGBUS)
1674                                                 return i ? i : -EFAULT;
1675                                         BUG();
1676                                 }
1677
1678                                 if (tsk) {
1679                                         if (ret & VM_FAULT_MAJOR)
1680                                                 tsk->maj_flt++;
1681                                         else
1682                                                 tsk->min_flt++;
1683                                 }
1684
1685                                 if (ret & VM_FAULT_RETRY) {
1686                                         if (nonblocking)
1687                                                 *nonblocking = 0;
1688                                         return i;
1689                                 }
1690
1691                                 /*
1692                                  * The VM_FAULT_WRITE bit tells us that
1693                                  * do_wp_page has broken COW when necessary,
1694                                  * even if maybe_mkwrite decided not to set
1695                                  * pte_write. We can thus safely do subsequent
1696                                  * page lookups as if they were reads. But only
1697                                  * do so when looping for pte_write is futile:
1698                                  * in some cases userspace may also be wanting
1699                                  * to write to the gotten user page, which a
1700                                  * read fault here might prevent (a readonly
1701                                  * page might get reCOWed by userspace write).
1702                                  */
1703                                 if ((ret & VM_FAULT_WRITE) &&
1704                                     !(vma->vm_flags & VM_WRITE))
1705                                         foll_flags &= ~FOLL_WRITE;
1706
1707                                 cond_resched();
1708                         }
1709                         if (IS_ERR(page))
1710                                 return i ? i : PTR_ERR(page);
1711                         if (pages) {
1712                                 pages[i] = page;
1713
1714                                 flush_anon_page(vma, page, start);
1715                                 flush_dcache_page(page);
1716                         }
1717 next_page:
1718                         if (vmas)
1719                                 vmas[i] = vma;
1720                         i++;
1721                         start += PAGE_SIZE;
1722                         nr_pages--;
1723                 } while (nr_pages && start < vma->vm_end);
1724         } while (nr_pages);
1725         return i;
1726 }
1727 EXPORT_SYMBOL(__get_user_pages);
1728
1729 /**
1730  * get_user_pages() - pin user pages in memory
1731  * @tsk:        the task_struct to use for page fault accounting, or
1732  *              NULL if faults are not to be recorded.
1733  * @mm:         mm_struct of target mm
1734  * @start:      starting user address
1735  * @nr_pages:   number of pages from start to pin
1736  * @write:      whether pages will be written to by the caller
1737  * @force:      whether to force write access even if user mapping is
1738  *              readonly. This will result in the page being COWed even
1739  *              in MAP_SHARED mappings. You do not want this.
1740  * @pages:      array that receives pointers to the pages pinned.
1741  *              Should be at least nr_pages long. Or NULL, if caller
1742  *              only intends to ensure the pages are faulted in.
1743  * @vmas:       array of pointers to vmas corresponding to each page.
1744  *              Or NULL if the caller does not require them.
1745  *
1746  * Returns number of pages pinned. This may be fewer than the number
1747  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1748  * were pinned, returns -errno. Each page returned must be released
1749  * with a put_page() call when it is finished with. vmas will only
1750  * remain valid while mmap_sem is held.
1751  *
1752  * Must be called with mmap_sem held for read or write.
1753  *
1754  * get_user_pages walks a process's page tables and takes a reference to
1755  * each struct page that each user address corresponds to at a given
1756  * instant. That is, it takes the page that would be accessed if a user
1757  * thread accesses the given user virtual address at that instant.
1758  *
1759  * This does not guarantee that the page exists in the user mappings when
1760  * get_user_pages returns, and there may even be a completely different
1761  * page there in some cases (eg. if mmapped pagecache has been invalidated
1762  * and subsequently re faulted). However it does guarantee that the page
1763  * won't be freed completely. And mostly callers simply care that the page
1764  * contains data that was valid *at some point in time*. Typically, an IO
1765  * or similar operation cannot guarantee anything stronger anyway because
1766  * locks can't be held over the syscall boundary.
1767  *
1768  * If write=0, the page must not be written to. If the page is written to,
1769  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1770  * after the page is finished with, and before put_page is called.
1771  *
1772  * get_user_pages is typically used for fewer-copy IO operations, to get a
1773  * handle on the memory by some means other than accesses via the user virtual
1774  * addresses. The pages may be submitted for DMA to devices or accessed via
1775  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1776  * use the correct cache flushing APIs.
1777  *
1778  * See also get_user_pages_fast, for performance critical applications.
1779  */
1780 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1781                 unsigned long start, int nr_pages, int write, int force,
1782                 struct page **pages, struct vm_area_struct **vmas)
1783 {
1784         int flags = FOLL_TOUCH;
1785
1786         if (pages)
1787                 flags |= FOLL_GET;
1788         if (write)
1789                 flags |= FOLL_WRITE;
1790         if (force)
1791                 flags |= FOLL_FORCE;
1792
1793         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1794                                 NULL);
1795 }
1796 EXPORT_SYMBOL(get_user_pages);
1797
1798 /**
1799  * get_dump_page() - pin user page in memory while writing it to core dump
1800  * @addr: user address
1801  *
1802  * Returns struct page pointer of user page pinned for dump,
1803  * to be freed afterwards by page_cache_release() or put_page().
1804  *
1805  * Returns NULL on any kind of failure - a hole must then be inserted into
1806  * the corefile, to preserve alignment with its headers; and also returns
1807  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1808  * allowing a hole to be left in the corefile to save diskspace.
1809  *
1810  * Called without mmap_sem, but after all other threads have been killed.
1811  */
1812 #ifdef CONFIG_ELF_CORE
1813 struct page *get_dump_page(unsigned long addr)
1814 {
1815         struct vm_area_struct *vma;
1816         struct page *page;
1817
1818         if (__get_user_pages(current, current->mm, addr, 1,
1819                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1820                              NULL) < 1)
1821                 return NULL;
1822         flush_cache_page(vma, addr, page_to_pfn(page));
1823         return page;
1824 }
1825 #endif /* CONFIG_ELF_CORE */
1826
1827 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1828                         spinlock_t **ptl)
1829 {
1830         pgd_t * pgd = pgd_offset(mm, addr);
1831         pud_t * pud = pud_alloc(mm, pgd, addr);
1832         if (pud) {
1833                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1834                 if (pmd) {
1835                         VM_BUG_ON(pmd_trans_huge(*pmd));
1836                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1837                 }
1838         }
1839         return NULL;
1840 }
1841
1842 /*
1843  * This is the old fallback for page remapping.
1844  *
1845  * For historical reasons, it only allows reserved pages. Only
1846  * old drivers should use this, and they needed to mark their
1847  * pages reserved for the old functions anyway.
1848  */
1849 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1850                         struct page *page, pgprot_t prot)
1851 {
1852         struct mm_struct *mm = vma->vm_mm;
1853         int retval;
1854         pte_t *pte;
1855         spinlock_t *ptl;
1856
1857         retval = -EINVAL;
1858         if (PageAnon(page))
1859                 goto out;
1860         retval = -ENOMEM;
1861         flush_dcache_page(page);
1862         pte = get_locked_pte(mm, addr, &ptl);
1863         if (!pte)
1864                 goto out;
1865         retval = -EBUSY;
1866         if (!pte_none(*pte))
1867                 goto out_unlock;
1868
1869         /* Ok, finally just insert the thing.. */
1870         get_page(page);
1871         inc_mm_counter_fast(mm, MM_FILEPAGES);
1872         page_add_file_rmap(page);
1873         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1874
1875         retval = 0;
1876         pte_unmap_unlock(pte, ptl);
1877         return retval;
1878 out_unlock:
1879         pte_unmap_unlock(pte, ptl);
1880 out:
1881         return retval;
1882 }
1883
1884 /**
1885  * vm_insert_page - insert single page into user vma
1886  * @vma: user vma to map to
1887  * @addr: target user address of this page
1888  * @page: source kernel page
1889  *
1890  * This allows drivers to insert individual pages they've allocated
1891  * into a user vma.
1892  *
1893  * The page has to be a nice clean _individual_ kernel allocation.
1894  * If you allocate a compound page, you need to have marked it as
1895  * such (__GFP_COMP), or manually just split the page up yourself
1896  * (see split_page()).
1897  *
1898  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1899  * took an arbitrary page protection parameter. This doesn't allow
1900  * that. Your vma protection will have to be set up correctly, which
1901  * means that if you want a shared writable mapping, you'd better
1902  * ask for a shared writable mapping!
1903  *
1904  * The page does not need to be reserved.
1905  */
1906 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1907                         struct page *page)
1908 {
1909         if (addr < vma->vm_start || addr >= vma->vm_end)
1910                 return -EFAULT;
1911         if (!page_count(page))
1912                 return -EINVAL;
1913         vma->vm_flags |= VM_INSERTPAGE;
1914         return insert_page(vma, addr, page, vma->vm_page_prot);
1915 }
1916 EXPORT_SYMBOL(vm_insert_page);
1917
1918 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1919                         unsigned long pfn, pgprot_t prot)
1920 {
1921         struct mm_struct *mm = vma->vm_mm;
1922         int retval;
1923         pte_t *pte, entry;
1924         spinlock_t *ptl;
1925
1926         retval = -ENOMEM;
1927         pte = get_locked_pte(mm, addr, &ptl);
1928         if (!pte)
1929                 goto out;
1930         retval = -EBUSY;
1931         if (!pte_none(*pte))
1932                 goto out_unlock;
1933
1934         /* Ok, finally just insert the thing.. */
1935         entry = pte_mkspecial(pfn_pte(pfn, prot));
1936         set_pte_at(mm, addr, pte, entry);
1937         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1938
1939         retval = 0;
1940 out_unlock:
1941         pte_unmap_unlock(pte, ptl);
1942 out:
1943         return retval;
1944 }
1945
1946 /**
1947  * vm_insert_pfn - insert single pfn into user vma
1948  * @vma: user vma to map to
1949  * @addr: target user address of this page
1950  * @pfn: source kernel pfn
1951  *
1952  * Similar to vm_inert_page, this allows drivers to insert individual pages
1953  * they've allocated into a user vma. Same comments apply.
1954  *
1955  * This function should only be called from a vm_ops->fault handler, and
1956  * in that case the handler should return NULL.
1957  *
1958  * vma cannot be a COW mapping.
1959  *
1960  * As this is called only for pages that do not currently exist, we
1961  * do not need to flush old virtual caches or the TLB.
1962  */
1963 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1964                         unsigned long pfn)
1965 {
1966         int ret;
1967         pgprot_t pgprot = vma->vm_page_prot;
1968         /*
1969          * Technically, architectures with pte_special can avoid all these
1970          * restrictions (same for remap_pfn_range).  However we would like
1971          * consistency in testing and feature parity among all, so we should
1972          * try to keep these invariants in place for everybody.
1973          */
1974         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1975         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1976                                                 (VM_PFNMAP|VM_MIXEDMAP));
1977         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1978         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1979
1980         if (addr < vma->vm_start || addr >= vma->vm_end)
1981                 return -EFAULT;
1982         if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1983                 return -EINVAL;
1984
1985         ret = insert_pfn(vma, addr, pfn, pgprot);
1986
1987         if (ret)
1988                 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1989
1990         return ret;
1991 }
1992 EXPORT_SYMBOL(vm_insert_pfn);
1993
1994 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1995                         unsigned long pfn)
1996 {
1997         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1998
1999         if (addr < vma->vm_start || addr >= vma->vm_end)
2000                 return -EFAULT;
2001
2002         /*
2003          * If we don't have pte special, then we have to use the pfn_valid()
2004          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2005          * refcount the page if pfn_valid is true (hence insert_page rather
2006          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2007          * without pte special, it would there be refcounted as a normal page.
2008          */
2009         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2010                 struct page *page;
2011
2012                 page = pfn_to_page(pfn);
2013                 return insert_page(vma, addr, page, vma->vm_page_prot);
2014         }
2015         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2016 }
2017 EXPORT_SYMBOL(vm_insert_mixed);
2018
2019 /*
2020  * maps a range of physical memory into the requested pages. the old
2021  * mappings are removed. any references to nonexistent pages results
2022  * in null mappings (currently treated as "copy-on-access")
2023  */
2024 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2025                         unsigned long addr, unsigned long end,
2026                         unsigned long pfn, pgprot_t prot)
2027 {
2028         pte_t *pte;
2029         spinlock_t *ptl;
2030
2031         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2032         if (!pte)
2033                 return -ENOMEM;
2034         arch_enter_lazy_mmu_mode();
2035         do {
2036                 BUG_ON(!pte_none(*pte));
2037                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2038                 pfn++;
2039         } while (pte++, addr += PAGE_SIZE, addr != end);
2040         arch_leave_lazy_mmu_mode();
2041         pte_unmap_unlock(pte - 1, ptl);
2042         return 0;
2043 }
2044
2045 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2046                         unsigned long addr, unsigned long end,
2047                         unsigned long pfn, pgprot_t prot)
2048 {
2049         pmd_t *pmd;
2050         unsigned long next;
2051
2052         pfn -= addr >> PAGE_SHIFT;
2053         pmd = pmd_alloc(mm, pud, addr);
2054         if (!pmd)
2055                 return -ENOMEM;
2056         VM_BUG_ON(pmd_trans_huge(*pmd));
2057         do {
2058                 next = pmd_addr_end(addr, end);
2059                 if (remap_pte_range(mm, pmd, addr, next,
2060                                 pfn + (addr >> PAGE_SHIFT), prot))
2061                         return -ENOMEM;
2062         } while (pmd++, addr = next, addr != end);
2063         return 0;
2064 }
2065
2066 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2067                         unsigned long addr, unsigned long end,
2068                         unsigned long pfn, pgprot_t prot)
2069 {
2070         pud_t *pud;
2071         unsigned long next;
2072
2073         pfn -= addr >> PAGE_SHIFT;
2074         pud = pud_alloc(mm, pgd, addr);
2075         if (!pud)
2076                 return -ENOMEM;
2077         do {
2078                 next = pud_addr_end(addr, end);
2079                 if (remap_pmd_range(mm, pud, addr, next,
2080                                 pfn + (addr >> PAGE_SHIFT), prot))
2081                         return -ENOMEM;
2082         } while (pud++, addr = next, addr != end);
2083         return 0;
2084 }
2085
2086 /**
2087  * remap_pfn_range - remap kernel memory to userspace
2088  * @vma: user vma to map to
2089  * @addr: target user address to start at
2090  * @pfn: physical address of kernel memory
2091  * @size: size of map area
2092  * @prot: page protection flags for this mapping
2093  *
2094  *  Note: this is only safe if the mm semaphore is held when called.
2095  */
2096 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2097                     unsigned long pfn, unsigned long size, pgprot_t prot)
2098 {
2099         pgd_t *pgd;
2100         unsigned long next;
2101         unsigned long end = addr + PAGE_ALIGN(size);
2102         struct mm_struct *mm = vma->vm_mm;
2103         int err;
2104
2105         /*
2106          * Physically remapped pages are special. Tell the
2107          * rest of the world about it:
2108          *   VM_IO tells people not to look at these pages
2109          *      (accesses can have side effects).
2110          *   VM_RESERVED is specified all over the place, because
2111          *      in 2.4 it kept swapout's vma scan off this vma; but
2112          *      in 2.6 the LRU scan won't even find its pages, so this
2113          *      flag means no more than count its pages in reserved_vm,
2114          *      and omit it from core dump, even when VM_IO turned off.
2115          *   VM_PFNMAP tells the core MM that the base pages are just
2116          *      raw PFN mappings, and do not have a "struct page" associated
2117          *      with them.
2118          *
2119          * There's a horrible special case to handle copy-on-write
2120          * behaviour that some programs depend on. We mark the "original"
2121          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2122          */
2123         if (addr == vma->vm_start && end == vma->vm_end) {
2124                 vma->vm_pgoff = pfn;
2125                 vma->vm_flags |= VM_PFN_AT_MMAP;
2126         } else if (is_cow_mapping(vma->vm_flags))
2127                 return -EINVAL;
2128
2129         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2130
2131         err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2132         if (err) {
2133                 /*
2134                  * To indicate that track_pfn related cleanup is not
2135                  * needed from higher level routine calling unmap_vmas
2136                  */
2137                 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2138                 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2139                 return -EINVAL;
2140         }
2141
2142         BUG_ON(addr >= end);
2143         pfn -= addr >> PAGE_SHIFT;
2144         pgd = pgd_offset(mm, addr);
2145         flush_cache_range(vma, addr, end);
2146         do {
2147                 next = pgd_addr_end(addr, end);
2148                 err = remap_pud_range(mm, pgd, addr, next,
2149                                 pfn + (addr >> PAGE_SHIFT), prot);
2150                 if (err)
2151                         break;
2152         } while (pgd++, addr = next, addr != end);
2153
2154         if (err)
2155                 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2156
2157         return err;
2158 }
2159 EXPORT_SYMBOL(remap_pfn_range);
2160
2161 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2162                                      unsigned long addr, unsigned long end,
2163                                      pte_fn_t fn, void *data)
2164 {
2165         pte_t *pte;
2166         int err;
2167         pgtable_t token;
2168         spinlock_t *uninitialized_var(ptl);
2169
2170         pte = (mm == &init_mm) ?
2171                 pte_alloc_kernel(pmd, addr) :
2172                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2173         if (!pte)
2174                 return -ENOMEM;
2175
2176         BUG_ON(pmd_huge(*pmd));
2177
2178         arch_enter_lazy_mmu_mode();
2179
2180         token = pmd_pgtable(*pmd);
2181
2182         do {
2183                 err = fn(pte++, token, addr, data);
2184                 if (err)
2185                         break;
2186         } while (addr += PAGE_SIZE, addr != end);
2187
2188         arch_leave_lazy_mmu_mode();
2189
2190         if (mm != &init_mm)
2191                 pte_unmap_unlock(pte-1, ptl);
2192         return err;
2193 }
2194
2195 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2196                                      unsigned long addr, unsigned long end,
2197                                      pte_fn_t fn, void *data)
2198 {
2199         pmd_t *pmd;
2200         unsigned long next;
2201         int err;
2202
2203         BUG_ON(pud_huge(*pud));
2204
2205         pmd = pmd_alloc(mm, pud, addr);
2206         if (!pmd)
2207                 return -ENOMEM;
2208         do {
2209                 next = pmd_addr_end(addr, end);
2210                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2211                 if (err)
2212                         break;
2213         } while (pmd++, addr = next, addr != end);
2214         return err;
2215 }
2216
2217 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2218                                      unsigned long addr, unsigned long end,
2219                                      pte_fn_t fn, void *data)
2220 {
2221         pud_t *pud;
2222         unsigned long next;
2223         int err;
2224
2225         pud = pud_alloc(mm, pgd, addr);
2226         if (!pud)
2227                 return -ENOMEM;
2228         do {
2229                 next = pud_addr_end(addr, end);
2230                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2231                 if (err)
2232                         break;
2233         } while (pud++, addr = next, addr != end);
2234         return err;
2235 }
2236
2237 /*
2238  * Scan a region of virtual memory, filling in page tables as necessary
2239  * and calling a provided function on each leaf page table.
2240  */
2241 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2242                         unsigned long size, pte_fn_t fn, void *data)
2243 {
2244         pgd_t *pgd;
2245         unsigned long next;
2246         unsigned long end = addr + size;
2247         int err;
2248
2249         BUG_ON(addr >= end);
2250         pgd = pgd_offset(mm, addr);
2251         do {
2252                 next = pgd_addr_end(addr, end);
2253                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2254                 if (err)
2255                         break;
2256         } while (pgd++, addr = next, addr != end);
2257
2258         return err;
2259 }
2260 EXPORT_SYMBOL_GPL(apply_to_page_range);
2261
2262 /*
2263  * handle_pte_fault chooses page fault handler according to an entry
2264  * which was read non-atomically.  Before making any commitment, on
2265  * those architectures or configurations (e.g. i386 with PAE) which
2266  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2267  * must check under lock before unmapping the pte and proceeding
2268  * (but do_wp_page is only called after already making such a check;
2269  * and do_anonymous_page can safely check later on).
2270  */
2271 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2272                                 pte_t *page_table, pte_t orig_pte)
2273 {
2274         int same = 1;
2275 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2276         if (sizeof(pte_t) > sizeof(unsigned long)) {
2277                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2278                 spin_lock(ptl);
2279                 same = pte_same(*page_table, orig_pte);
2280                 spin_unlock(ptl);
2281         }
2282 #endif
2283         pte_unmap(page_table);
2284         return same;
2285 }
2286
2287 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2288 {
2289         /*
2290          * If the source page was a PFN mapping, we don't have
2291          * a "struct page" for it. We do a best-effort copy by
2292          * just copying from the original user address. If that
2293          * fails, we just zero-fill it. Live with it.
2294          */
2295         if (unlikely(!src)) {
2296                 void *kaddr = kmap_atomic(dst, KM_USER0);
2297                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2298
2299                 /*
2300                  * This really shouldn't fail, because the page is there
2301                  * in the page tables. But it might just be unreadable,
2302                  * in which case we just give up and fill the result with
2303                  * zeroes.
2304                  */
2305                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2306                         clear_page(kaddr);
2307                 kunmap_atomic(kaddr, KM_USER0);
2308                 flush_dcache_page(dst);
2309         } else
2310                 copy_user_highpage(dst, src, va, vma);
2311 }
2312
2313 /*
2314  * This routine handles present pages, when users try to write
2315  * to a shared page. It is done by copying the page to a new address
2316  * and decrementing the shared-page counter for the old page.
2317  *
2318  * Note that this routine assumes that the protection checks have been
2319  * done by the caller (the low-level page fault routine in most cases).
2320  * Thus we can safely just mark it writable once we've done any necessary
2321  * COW.
2322  *
2323  * We also mark the page dirty at this point even though the page will
2324  * change only once the write actually happens. This avoids a few races,
2325  * and potentially makes it more efficient.
2326  *
2327  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2328  * but allow concurrent faults), with pte both mapped and locked.
2329  * We return with mmap_sem still held, but pte unmapped and unlocked.
2330  */
2331 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2332                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2333                 spinlock_t *ptl, pte_t orig_pte)
2334         __releases(ptl)
2335 {
2336         struct page *old_page, *new_page;
2337         pte_t entry;
2338         int ret = 0;
2339         int page_mkwrite = 0;
2340         struct page *dirty_page = NULL;
2341
2342         old_page = vm_normal_page(vma, address, orig_pte);
2343         if (!old_page) {
2344                 /*
2345                  * VM_MIXEDMAP !pfn_valid() case
2346                  *
2347                  * We should not cow pages in a shared writeable mapping.
2348                  * Just mark the pages writable as we can't do any dirty
2349                  * accounting on raw pfn maps.
2350                  */
2351                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2352                                      (VM_WRITE|VM_SHARED))
2353                         goto reuse;
2354                 goto gotten;
2355         }
2356
2357         /*
2358          * Take out anonymous pages first, anonymous shared vmas are
2359          * not dirty accountable.
2360          */
2361         if (PageAnon(old_page) && !PageKsm(old_page)) {
2362                 if (!trylock_page(old_page)) {
2363                         page_cache_get(old_page);
2364                         pte_unmap_unlock(page_table, ptl);
2365                         lock_page(old_page);
2366                         page_table = pte_offset_map_lock(mm, pmd, address,
2367                                                          &ptl);
2368                         if (!pte_same(*page_table, orig_pte)) {
2369                                 unlock_page(old_page);
2370                                 goto unlock;
2371                         }
2372                         page_cache_release(old_page);
2373                 }
2374                 if (reuse_swap_page(old_page)) {
2375                         /*
2376                          * The page is all ours.  Move it to our anon_vma so
2377                          * the rmap code will not search our parent or siblings.
2378                          * Protected against the rmap code by the page lock.
2379                          */
2380                         page_move_anon_rmap(old_page, vma, address);
2381                         unlock_page(old_page);
2382                         goto reuse;
2383                 }
2384                 unlock_page(old_page);
2385         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2386                                         (VM_WRITE|VM_SHARED))) {
2387                 /*
2388                  * Only catch write-faults on shared writable pages,
2389                  * read-only shared pages can get COWed by
2390                  * get_user_pages(.write=1, .force=1).
2391                  */
2392                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2393                         struct vm_fault vmf;
2394                         int tmp;
2395
2396                         vmf.virtual_address = (void __user *)(address &
2397                                                                 PAGE_MASK);
2398                         vmf.pgoff = old_page->index;
2399                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2400                         vmf.page = old_page;
2401
2402                         /*
2403                          * Notify the address space that the page is about to
2404                          * become writable so that it can prohibit this or wait
2405                          * for the page to get into an appropriate state.
2406                          *
2407                          * We do this without the lock held, so that it can
2408                          * sleep if it needs to.
2409                          */
2410                         page_cache_get(old_page);
2411                         pte_unmap_unlock(page_table, ptl);
2412
2413                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2414                         if (unlikely(tmp &
2415                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2416                                 ret = tmp;
2417                                 goto unwritable_page;
2418                         }
2419                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2420                                 lock_page(old_page);
2421                                 if (!old_page->mapping) {
2422                                         ret = 0; /* retry the fault */
2423                                         unlock_page(old_page);
2424                                         goto unwritable_page;
2425                                 }
2426                         } else
2427                                 VM_BUG_ON(!PageLocked(old_page));
2428
2429                         /*
2430                          * Since we dropped the lock we need to revalidate
2431                          * the PTE as someone else may have changed it.  If
2432                          * they did, we just return, as we can count on the
2433                          * MMU to tell us if they didn't also make it writable.
2434                          */
2435                         page_table = pte_offset_map_lock(mm, pmd, address,
2436                                                          &ptl);
2437                         if (!pte_same(*page_table, orig_pte)) {
2438                                 unlock_page(old_page);
2439                                 goto unlock;
2440                         }
2441
2442                         page_mkwrite = 1;
2443                 }
2444                 dirty_page = old_page;
2445                 get_page(dirty_page);
2446
2447 reuse:
2448                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2449                 entry = pte_mkyoung(orig_pte);
2450                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2451                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2452                         update_mmu_cache(vma, address, page_table);
2453                 pte_unmap_unlock(page_table, ptl);
2454                 ret |= VM_FAULT_WRITE;
2455
2456                 if (!dirty_page)
2457                         return ret;
2458
2459                 /*
2460                  * Yes, Virginia, this is actually required to prevent a race
2461                  * with clear_page_dirty_for_io() from clearing the page dirty
2462                  * bit after it clear all dirty ptes, but before a racing
2463                  * do_wp_page installs a dirty pte.
2464                  *
2465                  * __do_fault is protected similarly.
2466                  */
2467                 if (!page_mkwrite) {
2468                         wait_on_page_locked(dirty_page);
2469                         set_page_dirty_balance(dirty_page, page_mkwrite);
2470                 }
2471                 put_page(dirty_page);
2472                 if (page_mkwrite) {
2473                         struct address_space *mapping = dirty_page->mapping;
2474
2475                         set_page_dirty(dirty_page);
2476                         unlock_page(dirty_page);
2477                         page_cache_release(dirty_page);
2478                         if (mapping)    {
2479                                 /*
2480                                  * Some device drivers do not set page.mapping
2481                                  * but still dirty their pages
2482                                  */
2483                                 balance_dirty_pages_ratelimited(mapping);
2484                         }
2485                 }
2486
2487                 /* file_update_time outside page_lock */
2488                 if (vma->vm_file)
2489                         file_update_time(vma->vm_file);
2490
2491                 return ret;
2492         }
2493
2494         /*
2495          * Ok, we need to copy. Oh, well..
2496          */
2497         page_cache_get(old_page);
2498 gotten:
2499         pte_unmap_unlock(page_table, ptl);
2500
2501         if (unlikely(anon_vma_prepare(vma)))
2502                 goto oom;
2503
2504         if (is_zero_pfn(pte_pfn(orig_pte))) {
2505                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2506                 if (!new_page)
2507                         goto oom;
2508         } else {
2509                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2510                 if (!new_page)
2511                         goto oom;
2512                 cow_user_page(new_page, old_page, address, vma);
2513         }
2514         __SetPageUptodate(new_page);
2515
2516         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2517                 goto oom_free_new;
2518
2519         /*
2520          * Re-check the pte - we dropped the lock
2521          */
2522         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2523         if (likely(pte_same(*page_table, orig_pte))) {
2524                 if (old_page) {
2525                         if (!PageAnon(old_page)) {
2526                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2527                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2528                         }
2529                 } else
2530                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2531                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2532                 entry = mk_pte(new_page, vma->vm_page_prot);
2533                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2534                 /*
2535                  * Clear the pte entry and flush it first, before updating the
2536                  * pte with the new entry. This will avoid a race condition
2537                  * seen in the presence of one thread doing SMC and another
2538                  * thread doing COW.
2539                  */
2540                 ptep_clear_flush(vma, address, page_table);
2541                 page_add_new_anon_rmap(new_page, vma, address);
2542                 /*
2543                  * We call the notify macro here because, when using secondary
2544                  * mmu page tables (such as kvm shadow page tables), we want the
2545                  * new page to be mapped directly into the secondary page table.
2546                  */
2547                 set_pte_at_notify(mm, address, page_table, entry);
2548                 update_mmu_cache(vma, address, page_table);
2549                 if (old_page) {
2550                         /*
2551                          * Only after switching the pte to the new page may
2552                          * we remove the mapcount here. Otherwise another
2553                          * process may come and find the rmap count decremented
2554                          * before the pte is switched to the new page, and
2555                          * "reuse" the old page writing into it while our pte
2556                          * here still points into it and can be read by other
2557                          * threads.
2558                          *
2559                          * The critical issue is to order this
2560                          * page_remove_rmap with the ptp_clear_flush above.
2561                          * Those stores are ordered by (if nothing else,)
2562                          * the barrier present in the atomic_add_negative
2563                          * in page_remove_rmap.
2564                          *
2565                          * Then the TLB flush in ptep_clear_flush ensures that
2566                          * no process can access the old page before the
2567                          * decremented mapcount is visible. And the old page
2568                          * cannot be reused until after the decremented
2569                          * mapcount is visible. So transitively, TLBs to
2570                          * old page will be flushed before it can be reused.
2571                          */
2572                         page_remove_rmap(old_page);
2573                 }
2574
2575                 /* Free the old page.. */
2576                 new_page = old_page;
2577                 ret |= VM_FAULT_WRITE;
2578         } else
2579                 mem_cgroup_uncharge_page(new_page);
2580
2581         if (new_page)
2582                 page_cache_release(new_page);
2583 unlock:
2584         pte_unmap_unlock(page_table, ptl);
2585         if (old_page) {
2586                 /*
2587                  * Don't let another task, with possibly unlocked vma,
2588                  * keep the mlocked page.
2589                  */
2590                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2591                         lock_page(old_page);    /* LRU manipulation */
2592                         munlock_vma_page(old_page);
2593                         unlock_page(old_page);
2594                 }
2595                 page_cache_release(old_page);
2596         }
2597         return ret;
2598 oom_free_new:
2599         page_cache_release(new_page);
2600 oom:
2601         if (old_page) {
2602                 if (page_mkwrite) {
2603                         unlock_page(old_page);
2604                         page_cache_release(old_page);
2605                 }
2606                 page_cache_release(old_page);
2607         }
2608         return VM_FAULT_OOM;
2609
2610 unwritable_page:
2611         page_cache_release(old_page);
2612         return ret;
2613 }
2614
2615 /*
2616  * Helper functions for unmap_mapping_range().
2617  *
2618  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2619  *
2620  * We have to restart searching the prio_tree whenever we drop the lock,
2621  * since the iterator is only valid while the lock is held, and anyway
2622  * a later vma might be split and reinserted earlier while lock dropped.
2623  *
2624  * The list of nonlinear vmas could be handled more efficiently, using
2625  * a placeholder, but handle it in the same way until a need is shown.
2626  * It is important to search the prio_tree before nonlinear list: a vma
2627  * may become nonlinear and be shifted from prio_tree to nonlinear list
2628  * while the lock is dropped; but never shifted from list to prio_tree.
2629  *
2630  * In order to make forward progress despite restarting the search,
2631  * vm_truncate_count is used to mark a vma as now dealt with, so we can
2632  * quickly skip it next time around.  Since the prio_tree search only
2633  * shows us those vmas affected by unmapping the range in question, we
2634  * can't efficiently keep all vmas in step with mapping->truncate_count:
2635  * so instead reset them all whenever it wraps back to 0 (then go to 1).
2636  * mapping->truncate_count and vma->vm_truncate_count are protected by
2637  * i_mmap_lock.
2638  *
2639  * In order to make forward progress despite repeatedly restarting some
2640  * large vma, note the restart_addr from unmap_vmas when it breaks out:
2641  * and restart from that address when we reach that vma again.  It might
2642  * have been split or merged, shrunk or extended, but never shifted: so
2643  * restart_addr remains valid so long as it remains in the vma's range.
2644  * unmap_mapping_range forces truncate_count to leap over page-aligned
2645  * values so we can save vma's restart_addr in its truncate_count field.
2646  */
2647 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2648
2649 static void reset_vma_truncate_counts(struct address_space *mapping)
2650 {
2651         struct vm_area_struct *vma;
2652         struct prio_tree_iter iter;
2653
2654         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2655                 vma->vm_truncate_count = 0;
2656         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2657                 vma->vm_truncate_count = 0;
2658 }
2659
2660 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2661                 unsigned long start_addr, unsigned long end_addr,
2662                 struct zap_details *details)
2663 {
2664         unsigned long restart_addr;
2665         int need_break;
2666
2667         /*
2668          * files that support invalidating or truncating portions of the
2669          * file from under mmaped areas must have their ->fault function
2670          * return a locked page (and set VM_FAULT_LOCKED in the return).
2671          * This provides synchronisation against concurrent unmapping here.
2672          */
2673
2674 again:
2675         restart_addr = vma->vm_truncate_count;
2676         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2677                 start_addr = restart_addr;
2678                 if (start_addr >= end_addr) {
2679                         /* Top of vma has been split off since last time */
2680                         vma->vm_truncate_count = details->truncate_count;
2681                         return 0;
2682                 }
2683         }
2684
2685         restart_addr = zap_page_range(vma, start_addr,
2686                                         end_addr - start_addr, details);
2687         need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2688
2689         if (restart_addr >= end_addr) {
2690                 /* We have now completed this vma: mark it so */
2691                 vma->vm_truncate_count = details->truncate_count;
2692                 if (!need_break)
2693                         return 0;
2694         } else {
2695                 /* Note restart_addr in vma's truncate_count field */
2696                 vma->vm_truncate_count = restart_addr;
2697                 if (!need_break)
2698                         goto again;
2699         }
2700
2701         spin_unlock(details->i_mmap_lock);
2702         cond_resched();
2703         spin_lock(details->i_mmap_lock);
2704         return -EINTR;
2705 }
2706
2707 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2708                                             struct zap_details *details)
2709 {
2710         struct vm_area_struct *vma;
2711         struct prio_tree_iter iter;
2712         pgoff_t vba, vea, zba, zea;
2713
2714 restart:
2715         vma_prio_tree_foreach(vma, &iter, root,
2716                         details->first_index, details->last_index) {
2717                 /* Skip quickly over those we have already dealt with */
2718                 if (vma->vm_truncate_count == details->truncate_count)
2719                         continue;
2720
2721                 vba = vma->vm_pgoff;
2722                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2723                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2724                 zba = details->first_index;
2725                 if (zba < vba)
2726                         zba = vba;
2727                 zea = details->last_index;
2728                 if (zea > vea)
2729                         zea = vea;
2730
2731                 if (unmap_mapping_range_vma(vma,
2732                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2733                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2734                                 details) < 0)
2735                         goto restart;
2736         }
2737 }
2738
2739 static inline void unmap_mapping_range_list(struct list_head *head,
2740                                             struct zap_details *details)
2741 {
2742         struct vm_area_struct *vma;
2743
2744         /*
2745          * In nonlinear VMAs there is no correspondence between virtual address
2746          * offset and file offset.  So we must perform an exhaustive search
2747          * across *all* the pages in each nonlinear VMA, not just the pages
2748          * whose virtual address lies outside the file truncation point.
2749          */
2750 restart:
2751         list_for_each_entry(vma, head, shared.vm_set.list) {
2752                 /* Skip quickly over those we have already dealt with */
2753                 if (vma->vm_truncate_count == details->truncate_count)
2754                         continue;
2755                 details->nonlinear_vma = vma;
2756                 if (unmap_mapping_range_vma(vma, vma->vm_start,
2757                                         vma->vm_end, details) < 0)
2758                         goto restart;
2759         }
2760 }
2761
2762 /**
2763  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2764  * @mapping: the address space containing mmaps to be unmapped.
2765  * @holebegin: byte in first page to unmap, relative to the start of
2766  * the underlying file.  This will be rounded down to a PAGE_SIZE
2767  * boundary.  Note that this is different from truncate_pagecache(), which
2768  * must keep the partial page.  In contrast, we must get rid of
2769  * partial pages.
2770  * @holelen: size of prospective hole in bytes.  This will be rounded
2771  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2772  * end of the file.
2773  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2774  * but 0 when invalidating pagecache, don't throw away private data.
2775  */
2776 void unmap_mapping_range(struct address_space *mapping,
2777                 loff_t const holebegin, loff_t const holelen, int even_cows)
2778 {
2779         struct zap_details details;
2780         pgoff_t hba = holebegin >> PAGE_SHIFT;
2781         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2782
2783         /* Check for overflow. */
2784         if (sizeof(holelen) > sizeof(hlen)) {
2785                 long long holeend =
2786                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2787                 if (holeend & ~(long long)ULONG_MAX)
2788                         hlen = ULONG_MAX - hba + 1;
2789         }
2790
2791         details.check_mapping = even_cows? NULL: mapping;
2792         details.nonlinear_vma = NULL;
2793         details.first_index = hba;
2794         details.last_index = hba + hlen - 1;
2795         if (details.last_index < details.first_index)
2796                 details.last_index = ULONG_MAX;
2797         details.i_mmap_lock = &mapping->i_mmap_lock;
2798
2799         mutex_lock(&mapping->unmap_mutex);
2800         spin_lock(&mapping->i_mmap_lock);
2801
2802         /* Protect against endless unmapping loops */
2803         mapping->truncate_count++;
2804         if (unlikely(is_restart_addr(mapping->truncate_count))) {
2805                 if (mapping->truncate_count == 0)
2806                         reset_vma_truncate_counts(mapping);
2807                 mapping->truncate_count++;
2808         }
2809         details.truncate_count = mapping->truncate_count;
2810
2811         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2812                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2813         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2814                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2815         spin_unlock(&mapping->i_mmap_lock);
2816         mutex_unlock(&mapping->unmap_mutex);
2817 }
2818 EXPORT_SYMBOL(unmap_mapping_range);
2819
2820 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2821 {
2822         struct address_space *mapping = inode->i_mapping;
2823
2824         /*
2825          * If the underlying filesystem is not going to provide
2826          * a way to truncate a range of blocks (punch a hole) -
2827          * we should return failure right now.
2828          */
2829         if (!inode->i_op->truncate_range)
2830                 return -ENOSYS;
2831
2832         mutex_lock(&inode->i_mutex);
2833         down_write(&inode->i_alloc_sem);
2834         unmap_mapping_range(mapping, offset, (end - offset), 1);
2835         truncate_inode_pages_range(mapping, offset, end);
2836         unmap_mapping_range(mapping, offset, (end - offset), 1);
2837         inode->i_op->truncate_range(inode, offset, end);
2838         up_write(&inode->i_alloc_sem);
2839         mutex_unlock(&inode->i_mutex);
2840
2841         return 0;
2842 }
2843
2844 /*
2845  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2846  * but allow concurrent faults), and pte mapped but not yet locked.
2847  * We return with mmap_sem still held, but pte unmapped and unlocked.
2848  */
2849 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2850                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2851                 unsigned int flags, pte_t orig_pte)
2852 {
2853         spinlock_t *ptl;
2854         struct page *page, *swapcache = NULL;
2855         swp_entry_t entry;
2856         pte_t pte;
2857         int locked;
2858         struct mem_cgroup *ptr;
2859         int exclusive = 0;
2860         int ret = 0;
2861
2862         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2863                 goto out;
2864
2865         entry = pte_to_swp_entry(orig_pte);
2866         if (unlikely(non_swap_entry(entry))) {
2867                 if (is_migration_entry(entry)) {
2868                         migration_entry_wait(mm, pmd, address);
2869                 } else if (is_hwpoison_entry(entry)) {
2870                         ret = VM_FAULT_HWPOISON;
2871                 } else {
2872                         print_bad_pte(vma, address, orig_pte, NULL);
2873                         ret = VM_FAULT_SIGBUS;
2874                 }
2875                 goto out;
2876         }
2877         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2878         page = lookup_swap_cache(entry);
2879         if (!page) {
2880                 grab_swap_token(mm); /* Contend for token _before_ read-in */
2881                 page = swapin_readahead(entry,
2882                                         GFP_HIGHUSER_MOVABLE, vma, address);
2883                 if (!page) {
2884                         /*
2885                          * Back out if somebody else faulted in this pte
2886                          * while we released the pte lock.
2887                          */
2888                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2889                         if (likely(pte_same(*page_table, orig_pte)))
2890                                 ret = VM_FAULT_OOM;
2891                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2892                         goto unlock;
2893                 }
2894
2895                 /* Had to read the page from swap area: Major fault */
2896                 ret = VM_FAULT_MAJOR;
2897                 count_vm_event(PGMAJFAULT);
2898         } else if (PageHWPoison(page)) {
2899                 /*
2900                  * hwpoisoned dirty swapcache pages are kept for killing
2901                  * owner processes (which may be unknown at hwpoison time)
2902                  */
2903                 ret = VM_FAULT_HWPOISON;
2904                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2905                 goto out_release;
2906         }
2907
2908         locked = lock_page_or_retry(page, mm, flags);
2909         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2910         if (!locked) {
2911                 ret |= VM_FAULT_RETRY;
2912                 goto out_release;
2913         }
2914
2915         /*
2916          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2917          * release the swapcache from under us.  The page pin, and pte_same
2918          * test below, are not enough to exclude that.  Even if it is still
2919          * swapcache, we need to check that the page's swap has not changed.
2920          */
2921         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2922                 goto out_page;
2923
2924         if (ksm_might_need_to_copy(page, vma, address)) {
2925                 swapcache = page;
2926                 page = ksm_does_need_to_copy(page, vma, address);
2927
2928                 if (unlikely(!page)) {
2929                         ret = VM_FAULT_OOM;
2930                         page = swapcache;
2931                         swapcache = NULL;
2932                         goto out_page;
2933                 }
2934         }
2935
2936         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2937                 ret = VM_FAULT_OOM;
2938                 goto out_page;
2939         }
2940
2941         /*
2942          * Back out if somebody else already faulted in this pte.
2943          */
2944         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2945         if (unlikely(!pte_same(*page_table, orig_pte)))
2946                 goto out_nomap;
2947
2948         if (unlikely(!PageUptodate(page))) {
2949                 ret = VM_FAULT_SIGBUS;
2950                 goto out_nomap;
2951         }
2952
2953         /*
2954          * The page isn't present yet, go ahead with the fault.
2955          *
2956          * Be careful about the sequence of operations here.
2957          * To get its accounting right, reuse_swap_page() must be called
2958          * while the page is counted on swap but not yet in mapcount i.e.
2959          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2960          * must be called after the swap_free(), or it will never succeed.
2961          * Because delete_from_swap_page() may be called by reuse_swap_page(),
2962          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2963          * in page->private. In this case, a record in swap_cgroup  is silently
2964          * discarded at swap_free().
2965          */
2966
2967         inc_mm_counter_fast(mm, MM_ANONPAGES);
2968         dec_mm_counter_fast(mm, MM_SWAPENTS);
2969         pte = mk_pte(page, vma->vm_page_prot);
2970         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2971                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2972                 flags &= ~FAULT_FLAG_WRITE;
2973                 ret |= VM_FAULT_WRITE;
2974                 exclusive = 1;
2975         }
2976         flush_icache_page(vma, page);
2977         set_pte_at(mm, address, page_table, pte);
2978         do_page_add_anon_rmap(page, vma, address, exclusive);
2979         /* It's better to call commit-charge after rmap is established */
2980         mem_cgroup_commit_charge_swapin(page, ptr);
2981
2982         swap_free(entry);
2983         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2984                 try_to_free_swap(page);
2985         unlock_page(page);
2986         if (swapcache) {
2987                 /*
2988                  * Hold the lock to avoid the swap entry to be reused
2989                  * until we take the PT lock for the pte_same() check
2990                  * (to avoid false positives from pte_same). For
2991                  * further safety release the lock after the swap_free
2992                  * so that the swap count won't change under a
2993                  * parallel locked swapcache.
2994                  */
2995                 unlock_page(swapcache);
2996                 page_cache_release(swapcache);
2997         }
2998
2999         if (flags & FAULT_FLAG_WRITE) {
3000                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3001                 if (ret & VM_FAULT_ERROR)
3002                         ret &= VM_FAULT_ERROR;
3003                 goto out;
3004         }
3005
3006         /* No need to invalidate - it was non-present before */
3007         update_mmu_cache(vma, address, page_table);
3008 unlock:
3009         pte_unmap_unlock(page_table, ptl);
3010 out:
3011         return ret;
3012 out_nomap:
3013         mem_cgroup_cancel_charge_swapin(ptr);
3014         pte_unmap_unlock(page_table, ptl);
3015 out_page:
3016         unlock_page(page);
3017 out_release:
3018         page_cache_release(page);
3019         if (swapcache) {
3020                 unlock_page(swapcache);
3021                 page_cache_release(swapcache);
3022         }
3023         return ret;
3024 }
3025
3026 /*
3027  * This is like a special single-page "expand_{down|up}wards()",
3028  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3029  * doesn't hit another vma.
3030  */
3031 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3032 {
3033         address &= PAGE_MASK;
3034         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3035                 struct vm_area_struct *prev = vma->vm_prev;
3036
3037                 /*
3038                  * Is there a mapping abutting this one below?
3039                  *
3040                  * That's only ok if it's the same stack mapping
3041                  * that has gotten split..
3042                  */
3043                 if (prev && prev->vm_end == address)
3044                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3045
3046                 expand_downwards(vma, address - PAGE_SIZE);
3047         }
3048         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3049                 struct vm_area_struct *next = vma->vm_next;
3050
3051                 /* As VM_GROWSDOWN but s/below/above/ */
3052                 if (next && next->vm_start == address + PAGE_SIZE)
3053                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3054
3055                 expand_upwards(vma, address + PAGE_SIZE);
3056         }
3057         return 0;
3058 }
3059
3060 /*
3061  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3062  * but allow concurrent faults), and pte mapped but not yet locked.
3063  * We return with mmap_sem still held, but pte unmapped and unlocked.
3064  */
3065 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3066                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3067                 unsigned int flags)
3068 {
3069         struct page *page;
3070         spinlock_t *ptl;
3071         pte_t entry;
3072
3073         pte_unmap(page_table);
3074
3075         /* Check if we need to add a guard page to the stack */
3076         if (check_stack_guard_page(vma, address) < 0)
3077                 return VM_FAULT_SIGBUS;
3078
3079         /* Use the zero-page for reads */
3080         if (!(flags & FAULT_FLAG_WRITE)) {
3081                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3082                                                 vma->vm_page_prot));
3083                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3084                 if (!pte_none(*page_table))
3085                         goto unlock;
3086                 goto setpte;
3087         }
3088
3089         /* Allocate our own private page. */
3090         if (unlikely(anon_vma_prepare(vma)))
3091                 goto oom;
3092         page = alloc_zeroed_user_highpage_movable(vma, address);
3093         if (!page)
3094                 goto oom;
3095         __SetPageUptodate(page);
3096
3097         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3098                 goto oom_free_page;
3099
3100         entry = mk_pte(page, vma->vm_page_prot);
3101         if (vma->vm_flags & VM_WRITE)
3102                 entry = pte_mkwrite(pte_mkdirty(entry));
3103
3104         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3105         if (!pte_none(*page_table))
3106                 goto release;
3107
3108         inc_mm_counter_fast(mm, MM_ANONPAGES);
3109         page_add_new_anon_rmap(page, vma, address);
3110 setpte:
3111         set_pte_at(mm, address, page_table, entry);
3112
3113         /* No need to invalidate - it was non-present before */
3114         update_mmu_cache(vma, address, page_table);
3115 unlock:
3116         pte_unmap_unlock(page_table, ptl);
3117         return 0;
3118 release:
3119         mem_cgroup_uncharge_page(page);
3120         page_cache_release(page);
3121         goto unlock;
3122 oom_free_page:
3123         page_cache_release(page);
3124 oom:
3125         return VM_FAULT_OOM;
3126 }
3127
3128 /*
3129  * __do_fault() tries to create a new page mapping. It aggressively
3130  * tries to share with existing pages, but makes a separate copy if
3131  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3132  * the next page fault.
3133  *
3134  * As this is called only for pages that do not currently exist, we
3135  * do not need to flush old virtual caches or the TLB.
3136  *
3137  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3138  * but allow concurrent faults), and pte neither mapped nor locked.
3139  * We return with mmap_sem still held, but pte unmapped and unlocked.
3140  */
3141 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3142                 unsigned long address, pmd_t *pmd,
3143                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3144 {
3145         pte_t *page_table;
3146         spinlock_t *ptl;
3147         struct page *page;
3148         pte_t entry;
3149         int anon = 0;
3150         int charged = 0;
3151         struct page *dirty_page = NULL;
3152         struct vm_fault vmf;
3153         int ret;
3154         int page_mkwrite = 0;
3155
3156         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3157         vmf.pgoff = pgoff;
3158         vmf.flags = flags;
3159         vmf.page = NULL;
3160
3161         ret = vma->vm_ops->fault(vma, &vmf);
3162         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3163                             VM_FAULT_RETRY)))
3164                 return ret;
3165
3166         if (unlikely(PageHWPoison(vmf.page))) {
3167                 if (ret & VM_FAULT_LOCKED)
3168                         unlock_page(vmf.page);
3169                 return VM_FAULT_HWPOISON;
3170         }
3171
3172         /*
3173          * For consistency in subsequent calls, make the faulted page always
3174          * locked.
3175          */
3176         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3177                 lock_page(vmf.page);
3178         else
3179                 VM_BUG_ON(!PageLocked(vmf.page));
3180
3181         /*
3182          * Should we do an early C-O-W break?
3183          */
3184         page = vmf.page;
3185         if (flags & FAULT_FLAG_WRITE) {
3186                 if (!(vma->vm_flags & VM_SHARED)) {
3187                         anon = 1;
3188                         if (unlikely(anon_vma_prepare(vma))) {
3189                                 ret = VM_FAULT_OOM;
3190                                 goto out;
3191                         }
3192                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
3193                                                 vma, address);
3194                         if (!page) {
3195                                 ret = VM_FAULT_OOM;
3196                                 goto out;
3197                         }
3198                         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
3199                                 ret = VM_FAULT_OOM;
3200                                 page_cache_release(page);
3201                                 goto out;
3202                         }
3203                         charged = 1;
3204                         copy_user_highpage(page, vmf.page, address, vma);
3205                         __SetPageUptodate(page);
3206                 } else {
3207                         /*
3208                          * If the page will be shareable, see if the backing
3209                          * address space wants to know that the page is about
3210                          * to become writable
3211                          */
3212                         if (vma->vm_ops->page_mkwrite) {
3213                                 int tmp;
3214
3215                                 unlock_page(page);
3216                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3217                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3218                                 if (unlikely(tmp &
3219                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3220                                         ret = tmp;
3221                                         goto unwritable_page;
3222                                 }
3223                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3224                                         lock_page(page);
3225                                         if (!page->mapping) {
3226                                                 ret = 0; /* retry the fault */
3227                                                 unlock_page(page);
3228                                                 goto unwritable_page;
3229                                         }
3230                                 } else
3231                                         VM_BUG_ON(!PageLocked(page));
3232                                 page_mkwrite = 1;
3233                         }
3234                 }
3235
3236         }
3237
3238         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3239
3240         /*
3241          * This silly early PAGE_DIRTY setting removes a race
3242          * due to the bad i386 page protection. But it's valid
3243          * for other architectures too.
3244          *
3245          * Note that if FAULT_FLAG_WRITE is set, we either now have
3246          * an exclusive copy of the page, or this is a shared mapping,
3247          * so we can make it writable and dirty to avoid having to
3248          * handle that later.
3249          */
3250         /* Only go through if we didn't race with anybody else... */
3251         if (likely(pte_same(*page_table, orig_pte))) {
3252                 flush_icache_page(vma, page);
3253                 entry = mk_pte(page, vma->vm_page_prot);
3254                 if (flags & FAULT_FLAG_WRITE)
3255                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3256                 if (anon) {
3257                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3258                         page_add_new_anon_rmap(page, vma, address);
3259                 } else {
3260                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3261                         page_add_file_rmap(page);
3262                         if (flags & FAULT_FLAG_WRITE) {
3263                                 dirty_page = page;
3264                                 get_page(dirty_page);
3265                         }
3266                 }
3267                 set_pte_at(mm, address, page_table, entry);
3268
3269                 /* no need to invalidate: a not-present page won't be cached */
3270                 update_mmu_cache(vma, address, page_table);
3271         } else {
3272                 if (charged)
3273                         mem_cgroup_uncharge_page(page);
3274                 if (anon)
3275                         page_cache_release(page);
3276                 else
3277                         anon = 1; /* no anon but release faulted_page */
3278         }
3279
3280         pte_unmap_unlock(page_table, ptl);
3281
3282 out:
3283         if (dirty_page) {
3284                 struct address_space *mapping = page->mapping;
3285
3286                 if (set_page_dirty(dirty_page))
3287                         page_mkwrite = 1;
3288                 unlock_page(dirty_page);
3289                 put_page(dirty_page);
3290                 if (page_mkwrite && mapping) {
3291                         /*
3292                          * Some device drivers do not set page.mapping but still
3293                          * dirty their pages
3294                          */
3295                         balance_dirty_pages_ratelimited(mapping);
3296                 }
3297
3298                 /* file_update_time outside page_lock */
3299                 if (vma->vm_file)
3300                         file_update_time(vma->vm_file);
3301         } else {
3302                 unlock_page(vmf.page);
3303                 if (anon)
3304                         page_cache_release(vmf.page);
3305         }
3306
3307         return ret;
3308
3309 unwritable_page:
3310         page_cache_release(page);
3311         return ret;
3312 }
3313
3314 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3315                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3316                 unsigned int flags, pte_t orig_pte)
3317 {
3318         pgoff_t pgoff = (((address & PAGE_MASK)
3319                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3320
3321         pte_unmap(page_table);
3322         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3323 }
3324
3325 /*
3326  * Fault of a previously existing named mapping. Repopulate the pte
3327  * from the encoded file_pte if possible. This enables swappable
3328  * nonlinear vmas.
3329  *
3330  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3331  * but allow concurrent faults), and pte mapped but not yet locked.
3332  * We return with mmap_sem still held, but pte unmapped and unlocked.
3333  */
3334 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3335                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3336                 unsigned int flags, pte_t orig_pte)
3337 {
3338         pgoff_t pgoff;
3339
3340         flags |= FAULT_FLAG_NONLINEAR;
3341
3342         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3343                 return 0;
3344
3345         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3346                 /*
3347                  * Page table corrupted: show pte and kill process.
3348                  */
3349                 print_bad_pte(vma, address, orig_pte, NULL);
3350                 return VM_FAULT_SIGBUS;
3351         }
3352
3353         pgoff = pte_to_pgoff(orig_pte);
3354         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3355 }
3356
3357 /*
3358  * These routines also need to handle stuff like marking pages dirty
3359  * and/or accessed for architectures that don't do it in hardware (most
3360  * RISC architectures).  The early dirtying is also good on the i386.
3361  *
3362  * There is also a hook called "update_mmu_cache()" that architectures
3363  * with external mmu caches can use to update those (ie the Sparc or
3364  * PowerPC hashed page tables that act as extended TLBs).
3365  *
3366  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3367  * but allow concurrent faults), and pte mapped but not yet locked.
3368  * We return with mmap_sem still held, but pte unmapped and unlocked.
3369  */
3370 int handle_pte_fault(struct mm_struct *mm,
3371                      struct vm_area_struct *vma, unsigned long address,
3372                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3373 {
3374         pte_t entry;
3375         spinlock_t *ptl;
3376
3377         entry = *pte;
3378         if (!pte_present(entry)) {
3379                 if (pte_none(entry)) {
3380                         if (vma->vm_ops) {
3381                                 if (likely(vma->vm_ops->fault))
3382                                         return do_linear_fault(mm, vma, address,
3383                                                 pte, pmd, flags, entry);
3384                         }
3385                         return do_anonymous_page(mm, vma, address,
3386                                                  pte, pmd, flags);
3387                 }
3388                 if (pte_file(entry))
3389                         return do_nonlinear_fault(mm, vma, address,
3390                                         pte, pmd, flags, entry);
3391                 return do_swap_page(mm, vma, address,
3392                                         pte, pmd, flags, entry);
3393         }
3394
3395         ptl = pte_lockptr(mm, pmd);
3396         spin_lock(ptl);
3397         if (unlikely(!pte_same(*pte, entry)))
3398                 goto unlock;
3399         if (flags & FAULT_FLAG_WRITE) {
3400                 if (!pte_write(entry))
3401                         return do_wp_page(mm, vma, address,
3402                                         pte, pmd, ptl, entry);
3403                 entry = pte_mkdirty(entry);
3404         }
3405         entry = pte_mkyoung(entry);
3406         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3407                 update_mmu_cache(vma, address, pte);
3408         } else {
3409                 /*
3410                  * This is needed only for protection faults but the arch code
3411                  * is not yet telling us if this is a protection fault or not.
3412                  * This still avoids useless tlb flushes for .text page faults
3413                  * with threads.
3414                  */
3415                 if (flags & FAULT_FLAG_WRITE)
3416                         flush_tlb_fix_spurious_fault(vma, address);
3417         }
3418 unlock:
3419         pte_unmap_unlock(pte, ptl);
3420         return 0;
3421 }
3422
3423 /*
3424  * By the time we get here, we already hold the mm semaphore
3425  */
3426 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3427                 unsigned long address, unsigned int flags)
3428 {
3429         pgd_t *pgd;
3430         pud_t *pud;
3431         pmd_t *pmd;
3432         pte_t *pte;
3433
3434         __set_current_state(TASK_RUNNING);
3435
3436         count_vm_event(PGFAULT);
3437
3438         /* do counter updates before entering really critical section. */
3439         check_sync_rss_stat(current);
3440
3441         if (unlikely(is_vm_hugetlb_page(vma)))
3442                 return hugetlb_fault(mm, vma, address, flags);
3443
3444         pgd = pgd_offset(mm, address);
3445         pud = pud_alloc(mm, pgd, address);
3446         if (!pud)
3447                 return VM_FAULT_OOM;
3448         pmd = pmd_alloc(mm, pud, address);
3449         if (!pmd)
3450                 return VM_FAULT_OOM;
3451         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3452                 if (!vma->vm_ops)
3453                         return do_huge_pmd_anonymous_page(mm, vma, address,
3454                                                           pmd, flags);
3455         } else {
3456                 pmd_t orig_pmd = *pmd;
3457                 barrier();
3458                 if (pmd_trans_huge(orig_pmd)) {
3459                         if (flags & FAULT_FLAG_WRITE &&
3460                             !pmd_write(orig_pmd) &&
3461                             !pmd_trans_splitting(orig_pmd))
3462                                 return do_huge_pmd_wp_page(mm, vma, address,
3463                                                            pmd, orig_pmd);
3464                         return 0;
3465                 }
3466         }
3467
3468         /*
3469          * Use __pte_alloc instead of pte_alloc_map, because we can't
3470          * run pte_offset_map on the pmd, if an huge pmd could
3471          * materialize from under us from a different thread.
3472          */
3473         if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3474                 return VM_FAULT_OOM;
3475         /* if an huge pmd materialized from under us just retry later */
3476         if (unlikely(pmd_trans_huge(*pmd)))
3477                 return 0;
3478         /*
3479          * A regular pmd is established and it can't morph into a huge pmd
3480          * from under us anymore at this point because we hold the mmap_sem
3481          * read mode and khugepaged takes it in write mode. So now it's
3482          * safe to run pte_offset_map().
3483          */
3484         pte = pte_offset_map(pmd, address);
3485
3486         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3487 }
3488
3489 #ifndef __PAGETABLE_PUD_FOLDED
3490 /*
3491  * Allocate page upper directory.
3492  * We've already handled the fast-path in-line.
3493  */
3494 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3495 {
3496         pud_t *new = pud_alloc_one(mm, address);
3497         if (!new)
3498                 return -ENOMEM;
3499
3500         smp_wmb(); /* See comment in __pte_alloc */
3501
3502         spin_lock(&mm->page_table_lock);
3503         if (pgd_present(*pgd))          /* Another has populated it */
3504                 pud_free(mm, new);
3505         else
3506                 pgd_populate(mm, pgd, new);
3507         spin_unlock(&mm->page_table_lock);
3508         return 0;
3509 }
3510 #endif /* __PAGETABLE_PUD_FOLDED */
3511
3512 #ifndef __PAGETABLE_PMD_FOLDED
3513 /*
3514  * Allocate page middle directory.
3515  * We've already handled the fast-path in-line.
3516  */
3517 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3518 {
3519         pmd_t *new = pmd_alloc_one(mm, address);
3520         if (!new)
3521                 return -ENOMEM;
3522
3523         smp_wmb(); /* See comment in __pte_alloc */
3524
3525         spin_lock(&mm->page_table_lock);
3526 #ifndef __ARCH_HAS_4LEVEL_HACK
3527         if (pud_present(*pud))          /* Another has populated it */
3528                 pmd_free(mm, new);
3529         else
3530                 pud_populate(mm, pud, new);
3531 #else
3532         if (pgd_present(*pud))          /* Another has populated it */
3533                 pmd_free(mm, new);
3534         else
3535                 pgd_populate(mm, pud, new);
3536 #endif /* __ARCH_HAS_4LEVEL_HACK */
3537         spin_unlock(&mm->page_table_lock);
3538         return 0;
3539 }
3540 #endif /* __PAGETABLE_PMD_FOLDED */
3541
3542 int make_pages_present(unsigned long addr, unsigned long end)
3543 {
3544         int ret, len, write;
3545         struct vm_area_struct * vma;
3546
3547         vma = find_vma(current->mm, addr);
3548         if (!vma)
3549                 return -ENOMEM;
3550         /*
3551          * We want to touch writable mappings with a write fault in order
3552          * to break COW, except for shared mappings because these don't COW
3553          * and we would not want to dirty them for nothing.
3554          */
3555         write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3556         BUG_ON(addr >= end);
3557         BUG_ON(end > vma->vm_end);
3558         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3559         ret = get_user_pages(current, current->mm, addr,
3560                         len, write, 0, NULL, NULL);
3561         if (ret < 0)
3562                 return ret;
3563         return ret == len ? 0 : -EFAULT;
3564 }
3565
3566 #if !defined(__HAVE_ARCH_GATE_AREA)
3567
3568 #if defined(AT_SYSINFO_EHDR)
3569 static struct vm_area_struct gate_vma;
3570
3571 static int __init gate_vma_init(void)
3572 {
3573         gate_vma.vm_mm = NULL;
3574         gate_vma.vm_start = FIXADDR_USER_START;
3575         gate_vma.vm_end = FIXADDR_USER_END;
3576         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3577         gate_vma.vm_page_prot = __P101;
3578         /*
3579          * Make sure the vDSO gets into every core dump.
3580          * Dumping its contents makes post-mortem fully interpretable later
3581          * without matching up the same kernel and hardware config to see
3582          * what PC values meant.
3583          */
3584         gate_vma.vm_flags |= VM_ALWAYSDUMP;
3585         return 0;
3586 }
3587 __initcall(gate_vma_init);
3588 #endif
3589
3590 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3591 {
3592 #ifdef AT_SYSINFO_EHDR
3593         return &gate_vma;
3594 #else
3595         return NULL;
3596 #endif
3597 }
3598
3599 int in_gate_area_no_mm(unsigned long addr)
3600 {
3601 #ifdef AT_SYSINFO_EHDR
3602         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3603                 return 1;
3604 #endif
3605         return 0;
3606 }
3607
3608 #endif  /* __HAVE_ARCH_GATE_AREA */
3609
3610 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3611                 pte_t **ptepp, spinlock_t **ptlp)
3612 {
3613         pgd_t *pgd;
3614         pud_t *pud;
3615         pmd_t *pmd;
3616         pte_t *ptep;
3617
3618         pgd = pgd_offset(mm, address);
3619         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3620                 goto out;
3621
3622         pud = pud_offset(pgd, address);
3623         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3624                 goto out;
3625
3626         pmd = pmd_offset(pud, address);
3627         VM_BUG_ON(pmd_trans_huge(*pmd));
3628         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3629                 goto out;
3630
3631         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3632         if (pmd_huge(*pmd))
3633                 goto out;
3634
3635         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3636         if (!ptep)
3637                 goto out;
3638         if (!pte_present(*ptep))
3639                 goto unlock;
3640         *ptepp = ptep;
3641         return 0;
3642 unlock:
3643         pte_unmap_unlock(ptep, *ptlp);
3644 out:
3645         return -EINVAL;
3646 }
3647
3648 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3649                              pte_t **ptepp, spinlock_t **ptlp)
3650 {
3651         int res;
3652
3653         /* (void) is needed to make gcc happy */
3654         (void) __cond_lock(*ptlp,
3655                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3656         return res;
3657 }
3658
3659 /**
3660  * follow_pfn - look up PFN at a user virtual address
3661  * @vma: memory mapping
3662  * @address: user virtual address
3663  * @pfn: location to store found PFN
3664  *
3665  * Only IO mappings and raw PFN mappings are allowed.
3666  *
3667  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3668  */
3669 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3670         unsigned long *pfn)
3671 {
3672         int ret = -EINVAL;
3673         spinlock_t *ptl;
3674         pte_t *ptep;
3675
3676         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3677                 return ret;
3678
3679         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3680         if (ret)
3681                 return ret;
3682         *pfn = pte_pfn(*ptep);
3683         pte_unmap_unlock(ptep, ptl);
3684         return 0;
3685 }
3686 EXPORT_SYMBOL(follow_pfn);
3687
3688 #ifdef CONFIG_HAVE_IOREMAP_PROT
3689 int follow_phys(struct vm_area_struct *vma,
3690                 unsigned long address, unsigned int flags,
3691                 unsigned long *prot, resource_size_t *phys)
3692 {
3693         int ret = -EINVAL;
3694         pte_t *ptep, pte;
3695         spinlock_t *ptl;
3696
3697         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3698                 goto out;
3699
3700         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3701                 goto out;
3702         pte = *ptep;
3703
3704         if ((flags & FOLL_WRITE) && !pte_write(pte))
3705                 goto unlock;
3706
3707         *prot = pgprot_val(pte_pgprot(pte));
3708         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3709
3710         ret = 0;
3711 unlock:
3712         pte_unmap_unlock(ptep, ptl);
3713 out:
3714         return ret;
3715 }
3716
3717 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3718                         void *buf, int len, int write)
3719 {
3720         resource_size_t phys_addr;
3721         unsigned long prot = 0;
3722         void __iomem *maddr;
3723         int offset = addr & (PAGE_SIZE-1);
3724
3725         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3726                 return -EINVAL;
3727
3728         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3729         if (write)
3730                 memcpy_toio(maddr + offset, buf, len);
3731         else
3732                 memcpy_fromio(buf, maddr + offset, len);
3733         iounmap(maddr);
3734
3735         return len;
3736 }
3737 #endif
3738
3739 /*
3740  * Access another process' address space as given in mm.  If non-NULL, use the
3741  * given task for page fault accounting.
3742  */
3743 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3744                 unsigned long addr, void *buf, int len, int write)
3745 {
3746         struct vm_area_struct *vma;
3747         void *old_buf = buf;
3748
3749         down_read(&mm->mmap_sem);
3750         /* ignore errors, just check how much was successfully transferred */
3751         while (len) {
3752                 int bytes, ret, offset;
3753                 void *maddr;
3754                 struct page *page = NULL;
3755
3756                 ret = get_user_pages(tsk, mm, addr, 1,
3757                                 write, 1, &page, &vma);
3758                 if (ret <= 0) {
3759                         /*
3760                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3761                          * we can access using slightly different code.
3762                          */
3763 #ifdef CONFIG_HAVE_IOREMAP_PROT
3764                         vma = find_vma(mm, addr);
3765                         if (!vma || vma->vm_start > addr)
3766                                 break;
3767                         if (vma->vm_ops && vma->vm_ops->access)
3768                                 ret = vma->vm_ops->access(vma, addr, buf,
3769                                                           len, write);
3770                         if (ret <= 0)
3771 #endif
3772                                 break;
3773                         bytes = ret;
3774                 } else {
3775                         bytes = len;
3776                         offset = addr & (PAGE_SIZE-1);
3777                         if (bytes > PAGE_SIZE-offset)
3778                                 bytes = PAGE_SIZE-offset;
3779
3780                         maddr = kmap(page);
3781                         if (write) {
3782                                 copy_to_user_page(vma, page, addr,
3783                                                   maddr + offset, buf, bytes);
3784                                 set_page_dirty_lock(page);
3785                         } else {
3786                                 copy_from_user_page(vma, page, addr,
3787                                                     buf, maddr + offset, bytes);
3788                         }
3789                         kunmap(page);
3790                         page_cache_release(page);
3791                 }
3792                 len -= bytes;
3793                 buf += bytes;
3794                 addr += bytes;
3795         }
3796         up_read(&mm->mmap_sem);
3797
3798         return buf - old_buf;
3799 }
3800
3801 /**
3802  * access_remote_vm - access another process' address space
3803  * @mm:         the mm_struct of the target address space
3804  * @addr:       start address to access
3805  * @buf:        source or destination buffer
3806  * @len:        number of bytes to transfer
3807  * @write:      whether the access is a write
3808  *
3809  * The caller must hold a reference on @mm.
3810  */
3811 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3812                 void *buf, int len, int write)
3813 {
3814         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3815 }
3816
3817 /*
3818  * Access another process' address space.
3819  * Source/target buffer must be kernel space,
3820  * Do not walk the page table directly, use get_user_pages
3821  */
3822 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3823                 void *buf, int len, int write)
3824 {
3825         struct mm_struct *mm;
3826         int ret;
3827
3828         mm = get_task_mm(tsk);
3829         if (!mm)
3830                 return 0;
3831
3832         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3833         mmput(mm);
3834
3835         return ret;
3836 }
3837
3838 /*
3839  * Print the name of a VMA.
3840  */
3841 void print_vma_addr(char *prefix, unsigned long ip)
3842 {
3843         struct mm_struct *mm = current->mm;
3844         struct vm_area_struct *vma;
3845
3846         /*
3847          * Do not print if we are in atomic
3848          * contexts (in exception stacks, etc.):
3849          */
3850         if (preempt_count())
3851                 return;
3852
3853         down_read(&mm->mmap_sem);
3854         vma = find_vma(mm, ip);
3855         if (vma && vma->vm_file) {
3856                 struct file *f = vma->vm_file;
3857                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3858                 if (buf) {
3859                         char *p, *s;
3860
3861                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3862                         if (IS_ERR(p))
3863                                 p = "?";
3864                         s = strrchr(p, '/');
3865                         if (s)
3866                                 p = s+1;
3867                         printk("%s%s[%lx+%lx]", prefix, p,
3868                                         vma->vm_start,
3869                                         vma->vm_end - vma->vm_start);
3870                         free_page((unsigned long)buf);
3871                 }
3872         }
3873         up_read(&current->mm->mmap_sem);
3874 }
3875
3876 #ifdef CONFIG_PROVE_LOCKING
3877 void might_fault(void)
3878 {
3879         /*
3880          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3881          * holding the mmap_sem, this is safe because kernel memory doesn't
3882          * get paged out, therefore we'll never actually fault, and the
3883          * below annotations will generate false positives.
3884          */
3885         if (segment_eq(get_fs(), KERNEL_DS))
3886                 return;
3887
3888         might_sleep();
3889         /*
3890          * it would be nicer only to annotate paths which are not under
3891          * pagefault_disable, however that requires a larger audit and
3892          * providing helpers like get_user_atomic.
3893          */
3894         if (!in_atomic() && current->mm)
3895                 might_lock_read(&current->mm->mmap_sem);
3896 }
3897 EXPORT_SYMBOL(might_fault);
3898 #endif
3899
3900 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3901 static void clear_gigantic_page(struct page *page,
3902                                 unsigned long addr,
3903                                 unsigned int pages_per_huge_page)
3904 {
3905         int i;
3906         struct page *p = page;
3907
3908         might_sleep();
3909         for (i = 0; i < pages_per_huge_page;
3910              i++, p = mem_map_next(p, page, i)) {
3911                 cond_resched();
3912                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3913         }
3914 }
3915 void clear_huge_page(struct page *page,
3916                      unsigned long addr, unsigned int pages_per_huge_page)
3917 {
3918         int i;
3919
3920         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3921                 clear_gigantic_page(page, addr, pages_per_huge_page);
3922                 return;
3923         }
3924
3925         might_sleep();
3926         for (i = 0; i < pages_per_huge_page; i++) {
3927                 cond_resched();
3928                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3929         }
3930 }
3931
3932 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3933                                     unsigned long addr,
3934                                     struct vm_area_struct *vma,
3935                                     unsigned int pages_per_huge_page)
3936 {
3937         int i;
3938         struct page *dst_base = dst;
3939         struct page *src_base = src;
3940
3941         for (i = 0; i < pages_per_huge_page; ) {
3942                 cond_resched();
3943                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3944
3945                 i++;
3946                 dst = mem_map_next(dst, dst_base, i);
3947                 src = mem_map_next(src, src_base, i);
3948         }
3949 }
3950
3951 void copy_user_huge_page(struct page *dst, struct page *src,
3952                          unsigned long addr, struct vm_area_struct *vma,
3953                          unsigned int pages_per_huge_page)
3954 {
3955         int i;
3956
3957         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3958                 copy_user_gigantic_page(dst, src, addr, vma,
3959                                         pages_per_huge_page);
3960                 return;
3961         }
3962
3963         might_sleep();
3964         for (i = 0; i < pages_per_huge_page; i++) {
3965                 cond_resched();
3966                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3967         }
3968 }
3969 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */