[PATCH] mm: copy_pte_range progress fix
[pandora-kernel.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
51
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
54 #include <asm/tlb.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
57
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
64 struct page *mem_map;
65
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
68 #endif
69
70 unsigned long num_physpages;
71 /*
72  * A number of key systems in x86 including ioremap() rely on the assumption
73  * that high_memory defines the upper bound on direct map memory, then end
74  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
75  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76  * and ZONE_HIGHMEM.
77  */
78 void * high_memory;
79 unsigned long vmalloc_earlyreserve;
80
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85 /*
86  * If a p?d_bad entry is found while walking page tables, report
87  * the error, before resetting entry to p?d_none.  Usually (but
88  * very seldom) called out from the p?d_none_or_clear_bad macros.
89  */
90
91 void pgd_clear_bad(pgd_t *pgd)
92 {
93         pgd_ERROR(*pgd);
94         pgd_clear(pgd);
95 }
96
97 void pud_clear_bad(pud_t *pud)
98 {
99         pud_ERROR(*pud);
100         pud_clear(pud);
101 }
102
103 void pmd_clear_bad(pmd_t *pmd)
104 {
105         pmd_ERROR(*pmd);
106         pmd_clear(pmd);
107 }
108
109 /*
110  * Note: this doesn't free the actual pages themselves. That
111  * has been handled earlier when unmapping all the memory regions.
112  */
113 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
114 {
115         struct page *page = pmd_page(*pmd);
116         pmd_clear(pmd);
117         pte_free_tlb(tlb, page);
118         dec_page_state(nr_page_table_pages);
119         tlb->mm->nr_ptes--;
120 }
121
122 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123                                 unsigned long addr, unsigned long end,
124                                 unsigned long floor, unsigned long ceiling)
125 {
126         pmd_t *pmd;
127         unsigned long next;
128         unsigned long start;
129
130         start = addr;
131         pmd = pmd_offset(pud, addr);
132         do {
133                 next = pmd_addr_end(addr, end);
134                 if (pmd_none_or_clear_bad(pmd))
135                         continue;
136                 free_pte_range(tlb, pmd);
137         } while (pmd++, addr = next, addr != end);
138
139         start &= PUD_MASK;
140         if (start < floor)
141                 return;
142         if (ceiling) {
143                 ceiling &= PUD_MASK;
144                 if (!ceiling)
145                         return;
146         }
147         if (end - 1 > ceiling - 1)
148                 return;
149
150         pmd = pmd_offset(pud, start);
151         pud_clear(pud);
152         pmd_free_tlb(tlb, pmd);
153 }
154
155 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156                                 unsigned long addr, unsigned long end,
157                                 unsigned long floor, unsigned long ceiling)
158 {
159         pud_t *pud;
160         unsigned long next;
161         unsigned long start;
162
163         start = addr;
164         pud = pud_offset(pgd, addr);
165         do {
166                 next = pud_addr_end(addr, end);
167                 if (pud_none_or_clear_bad(pud))
168                         continue;
169                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
170         } while (pud++, addr = next, addr != end);
171
172         start &= PGDIR_MASK;
173         if (start < floor)
174                 return;
175         if (ceiling) {
176                 ceiling &= PGDIR_MASK;
177                 if (!ceiling)
178                         return;
179         }
180         if (end - 1 > ceiling - 1)
181                 return;
182
183         pud = pud_offset(pgd, start);
184         pgd_clear(pgd);
185         pud_free_tlb(tlb, pud);
186 }
187
188 /*
189  * This function frees user-level page tables of a process.
190  *
191  * Must be called with pagetable lock held.
192  */
193 void free_pgd_range(struct mmu_gather **tlb,
194                         unsigned long addr, unsigned long end,
195                         unsigned long floor, unsigned long ceiling)
196 {
197         pgd_t *pgd;
198         unsigned long next;
199         unsigned long start;
200
201         /*
202          * The next few lines have given us lots of grief...
203          *
204          * Why are we testing PMD* at this top level?  Because often
205          * there will be no work to do at all, and we'd prefer not to
206          * go all the way down to the bottom just to discover that.
207          *
208          * Why all these "- 1"s?  Because 0 represents both the bottom
209          * of the address space and the top of it (using -1 for the
210          * top wouldn't help much: the masks would do the wrong thing).
211          * The rule is that addr 0 and floor 0 refer to the bottom of
212          * the address space, but end 0 and ceiling 0 refer to the top
213          * Comparisons need to use "end - 1" and "ceiling - 1" (though
214          * that end 0 case should be mythical).
215          *
216          * Wherever addr is brought up or ceiling brought down, we must
217          * be careful to reject "the opposite 0" before it confuses the
218          * subsequent tests.  But what about where end is brought down
219          * by PMD_SIZE below? no, end can't go down to 0 there.
220          *
221          * Whereas we round start (addr) and ceiling down, by different
222          * masks at different levels, in order to test whether a table
223          * now has no other vmas using it, so can be freed, we don't
224          * bother to round floor or end up - the tests don't need that.
225          */
226
227         addr &= PMD_MASK;
228         if (addr < floor) {
229                 addr += PMD_SIZE;
230                 if (!addr)
231                         return;
232         }
233         if (ceiling) {
234                 ceiling &= PMD_MASK;
235                 if (!ceiling)
236                         return;
237         }
238         if (end - 1 > ceiling - 1)
239                 end -= PMD_SIZE;
240         if (addr > end - 1)
241                 return;
242
243         start = addr;
244         pgd = pgd_offset((*tlb)->mm, addr);
245         do {
246                 next = pgd_addr_end(addr, end);
247                 if (pgd_none_or_clear_bad(pgd))
248                         continue;
249                 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
250         } while (pgd++, addr = next, addr != end);
251
252         if (!tlb_is_full_mm(*tlb))
253                 flush_tlb_pgtables((*tlb)->mm, start, end);
254 }
255
256 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
257                 unsigned long floor, unsigned long ceiling)
258 {
259         while (vma) {
260                 struct vm_area_struct *next = vma->vm_next;
261                 unsigned long addr = vma->vm_start;
262
263                 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
264                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
265                                 floor, next? next->vm_start: ceiling);
266                 } else {
267                         /*
268                          * Optimization: gather nearby vmas into one call down
269                          */
270                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
271                           && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
272                                                         HPAGE_SIZE)) {
273                                 vma = next;
274                                 next = vma->vm_next;
275                         }
276                         free_pgd_range(tlb, addr, vma->vm_end,
277                                 floor, next? next->vm_start: ceiling);
278                 }
279                 vma = next;
280         }
281 }
282
283 pte_t fastcall *pte_alloc_map(struct mm_struct *mm, pmd_t *pmd,
284                                 unsigned long address)
285 {
286         if (!pmd_present(*pmd)) {
287                 struct page *new;
288
289                 spin_unlock(&mm->page_table_lock);
290                 new = pte_alloc_one(mm, address);
291                 spin_lock(&mm->page_table_lock);
292                 if (!new)
293                         return NULL;
294                 /*
295                  * Because we dropped the lock, we should re-check the
296                  * entry, as somebody else could have populated it..
297                  */
298                 if (pmd_present(*pmd)) {
299                         pte_free(new);
300                         goto out;
301                 }
302                 mm->nr_ptes++;
303                 inc_page_state(nr_page_table_pages);
304                 pmd_populate(mm, pmd, new);
305         }
306 out:
307         return pte_offset_map(pmd, address);
308 }
309
310 pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
311 {
312         if (!pmd_present(*pmd)) {
313                 pte_t *new;
314
315                 spin_unlock(&mm->page_table_lock);
316                 new = pte_alloc_one_kernel(mm, address);
317                 spin_lock(&mm->page_table_lock);
318                 if (!new)
319                         return NULL;
320
321                 /*
322                  * Because we dropped the lock, we should re-check the
323                  * entry, as somebody else could have populated it..
324                  */
325                 if (pmd_present(*pmd)) {
326                         pte_free_kernel(new);
327                         goto out;
328                 }
329                 pmd_populate_kernel(mm, pmd, new);
330         }
331 out:
332         return pte_offset_kernel(pmd, address);
333 }
334
335 /*
336  * copy one vm_area from one task to the other. Assumes the page tables
337  * already present in the new task to be cleared in the whole range
338  * covered by this vma.
339  *
340  * dst->page_table_lock is held on entry and exit,
341  * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
342  */
343
344 static inline void
345 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
346                 pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags,
347                 unsigned long addr)
348 {
349         pte_t pte = *src_pte;
350         struct page *page;
351         unsigned long pfn;
352
353         /* pte contains position in swap or file, so copy. */
354         if (unlikely(!pte_present(pte))) {
355                 if (!pte_file(pte)) {
356                         swap_duplicate(pte_to_swp_entry(pte));
357                         /* make sure dst_mm is on swapoff's mmlist. */
358                         if (unlikely(list_empty(&dst_mm->mmlist))) {
359                                 spin_lock(&mmlist_lock);
360                                 list_add(&dst_mm->mmlist, &src_mm->mmlist);
361                                 spin_unlock(&mmlist_lock);
362                         }
363                 }
364                 set_pte_at(dst_mm, addr, dst_pte, pte);
365                 return;
366         }
367
368         pfn = pte_pfn(pte);
369         /* the pte points outside of valid memory, the
370          * mapping is assumed to be good, meaningful
371          * and not mapped via rmap - duplicate the
372          * mapping as is.
373          */
374         page = NULL;
375         if (pfn_valid(pfn))
376                 page = pfn_to_page(pfn);
377
378         if (!page || PageReserved(page)) {
379                 set_pte_at(dst_mm, addr, dst_pte, pte);
380                 return;
381         }
382
383         /*
384          * If it's a COW mapping, write protect it both
385          * in the parent and the child
386          */
387         if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
388                 ptep_set_wrprotect(src_mm, addr, src_pte);
389                 pte = *src_pte;
390         }
391
392         /*
393          * If it's a shared mapping, mark it clean in
394          * the child
395          */
396         if (vm_flags & VM_SHARED)
397                 pte = pte_mkclean(pte);
398         pte = pte_mkold(pte);
399         get_page(page);
400         inc_mm_counter(dst_mm, rss);
401         if (PageAnon(page))
402                 inc_mm_counter(dst_mm, anon_rss);
403         set_pte_at(dst_mm, addr, dst_pte, pte);
404         page_dup_rmap(page);
405 }
406
407 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
408                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
409                 unsigned long addr, unsigned long end)
410 {
411         pte_t *src_pte, *dst_pte;
412         unsigned long vm_flags = vma->vm_flags;
413         int progress = 0;
414
415 again:
416         dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
417         if (!dst_pte)
418                 return -ENOMEM;
419         src_pte = pte_offset_map_nested(src_pmd, addr);
420
421         spin_lock(&src_mm->page_table_lock);
422         do {
423                 /*
424                  * We are holding two locks at this point - either of them
425                  * could generate latencies in another task on another CPU.
426                  */
427                 if (progress >= 32) {
428                         progress = 0;
429                         if (need_resched() ||
430                             need_lockbreak(&src_mm->page_table_lock) ||
431                             need_lockbreak(&dst_mm->page_table_lock))
432                                 break;
433                 }
434                 if (pte_none(*src_pte)) {
435                         progress++;
436                         continue;
437                 }
438                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr);
439                 progress += 8;
440         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
441         spin_unlock(&src_mm->page_table_lock);
442
443         pte_unmap_nested(src_pte - 1);
444         pte_unmap(dst_pte - 1);
445         cond_resched_lock(&dst_mm->page_table_lock);
446         if (addr != end)
447                 goto again;
448         return 0;
449 }
450
451 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
452                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
453                 unsigned long addr, unsigned long end)
454 {
455         pmd_t *src_pmd, *dst_pmd;
456         unsigned long next;
457
458         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
459         if (!dst_pmd)
460                 return -ENOMEM;
461         src_pmd = pmd_offset(src_pud, addr);
462         do {
463                 next = pmd_addr_end(addr, end);
464                 if (pmd_none_or_clear_bad(src_pmd))
465                         continue;
466                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
467                                                 vma, addr, next))
468                         return -ENOMEM;
469         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
470         return 0;
471 }
472
473 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
474                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
475                 unsigned long addr, unsigned long end)
476 {
477         pud_t *src_pud, *dst_pud;
478         unsigned long next;
479
480         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
481         if (!dst_pud)
482                 return -ENOMEM;
483         src_pud = pud_offset(src_pgd, addr);
484         do {
485                 next = pud_addr_end(addr, end);
486                 if (pud_none_or_clear_bad(src_pud))
487                         continue;
488                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
489                                                 vma, addr, next))
490                         return -ENOMEM;
491         } while (dst_pud++, src_pud++, addr = next, addr != end);
492         return 0;
493 }
494
495 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
496                 struct vm_area_struct *vma)
497 {
498         pgd_t *src_pgd, *dst_pgd;
499         unsigned long next;
500         unsigned long addr = vma->vm_start;
501         unsigned long end = vma->vm_end;
502
503         /*
504          * Don't copy ptes where a page fault will fill them correctly.
505          * Fork becomes much lighter when there are big shared or private
506          * readonly mappings. The tradeoff is that copy_page_range is more
507          * efficient than faulting.
508          */
509         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
510                 if (!vma->anon_vma)
511                         return 0;
512         }
513
514         if (is_vm_hugetlb_page(vma))
515                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
516
517         dst_pgd = pgd_offset(dst_mm, addr);
518         src_pgd = pgd_offset(src_mm, addr);
519         do {
520                 next = pgd_addr_end(addr, end);
521                 if (pgd_none_or_clear_bad(src_pgd))
522                         continue;
523                 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
524                                                 vma, addr, next))
525                         return -ENOMEM;
526         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
527         return 0;
528 }
529
530 static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
531                                 unsigned long addr, unsigned long end,
532                                 struct zap_details *details)
533 {
534         pte_t *pte;
535
536         pte = pte_offset_map(pmd, addr);
537         do {
538                 pte_t ptent = *pte;
539                 if (pte_none(ptent))
540                         continue;
541                 if (pte_present(ptent)) {
542                         struct page *page = NULL;
543                         unsigned long pfn = pte_pfn(ptent);
544                         if (pfn_valid(pfn)) {
545                                 page = pfn_to_page(pfn);
546                                 if (PageReserved(page))
547                                         page = NULL;
548                         }
549                         if (unlikely(details) && page) {
550                                 /*
551                                  * unmap_shared_mapping_pages() wants to
552                                  * invalidate cache without truncating:
553                                  * unmap shared but keep private pages.
554                                  */
555                                 if (details->check_mapping &&
556                                     details->check_mapping != page->mapping)
557                                         continue;
558                                 /*
559                                  * Each page->index must be checked when
560                                  * invalidating or truncating nonlinear.
561                                  */
562                                 if (details->nonlinear_vma &&
563                                     (page->index < details->first_index ||
564                                      page->index > details->last_index))
565                                         continue;
566                         }
567                         ptent = ptep_get_and_clear_full(tlb->mm, addr, pte,
568                                                         tlb->fullmm);
569                         tlb_remove_tlb_entry(tlb, pte, addr);
570                         if (unlikely(!page))
571                                 continue;
572                         if (unlikely(details) && details->nonlinear_vma
573                             && linear_page_index(details->nonlinear_vma,
574                                                 addr) != page->index)
575                                 set_pte_at(tlb->mm, addr, pte,
576                                            pgoff_to_pte(page->index));
577                         if (pte_dirty(ptent))
578                                 set_page_dirty(page);
579                         if (PageAnon(page))
580                                 dec_mm_counter(tlb->mm, anon_rss);
581                         else if (pte_young(ptent))
582                                 mark_page_accessed(page);
583                         tlb->freed++;
584                         page_remove_rmap(page);
585                         tlb_remove_page(tlb, page);
586                         continue;
587                 }
588                 /*
589                  * If details->check_mapping, we leave swap entries;
590                  * if details->nonlinear_vma, we leave file entries.
591                  */
592                 if (unlikely(details))
593                         continue;
594                 if (!pte_file(ptent))
595                         free_swap_and_cache(pte_to_swp_entry(ptent));
596                 pte_clear_full(tlb->mm, addr, pte, tlb->fullmm);
597         } while (pte++, addr += PAGE_SIZE, addr != end);
598         pte_unmap(pte - 1);
599 }
600
601 static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud,
602                                 unsigned long addr, unsigned long end,
603                                 struct zap_details *details)
604 {
605         pmd_t *pmd;
606         unsigned long next;
607
608         pmd = pmd_offset(pud, addr);
609         do {
610                 next = pmd_addr_end(addr, end);
611                 if (pmd_none_or_clear_bad(pmd))
612                         continue;
613                 zap_pte_range(tlb, pmd, addr, next, details);
614         } while (pmd++, addr = next, addr != end);
615 }
616
617 static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
618                                 unsigned long addr, unsigned long end,
619                                 struct zap_details *details)
620 {
621         pud_t *pud;
622         unsigned long next;
623
624         pud = pud_offset(pgd, addr);
625         do {
626                 next = pud_addr_end(addr, end);
627                 if (pud_none_or_clear_bad(pud))
628                         continue;
629                 zap_pmd_range(tlb, pud, addr, next, details);
630         } while (pud++, addr = next, addr != end);
631 }
632
633 static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
634                                 unsigned long addr, unsigned long end,
635                                 struct zap_details *details)
636 {
637         pgd_t *pgd;
638         unsigned long next;
639
640         if (details && !details->check_mapping && !details->nonlinear_vma)
641                 details = NULL;
642
643         BUG_ON(addr >= end);
644         tlb_start_vma(tlb, vma);
645         pgd = pgd_offset(vma->vm_mm, addr);
646         do {
647                 next = pgd_addr_end(addr, end);
648                 if (pgd_none_or_clear_bad(pgd))
649                         continue;
650                 zap_pud_range(tlb, pgd, addr, next, details);
651         } while (pgd++, addr = next, addr != end);
652         tlb_end_vma(tlb, vma);
653 }
654
655 #ifdef CONFIG_PREEMPT
656 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
657 #else
658 /* No preempt: go for improved straight-line efficiency */
659 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
660 #endif
661
662 /**
663  * unmap_vmas - unmap a range of memory covered by a list of vma's
664  * @tlbp: address of the caller's struct mmu_gather
665  * @mm: the controlling mm_struct
666  * @vma: the starting vma
667  * @start_addr: virtual address at which to start unmapping
668  * @end_addr: virtual address at which to end unmapping
669  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
670  * @details: details of nonlinear truncation or shared cache invalidation
671  *
672  * Returns the end address of the unmapping (restart addr if interrupted).
673  *
674  * Unmap all pages in the vma list.  Called under page_table_lock.
675  *
676  * We aim to not hold page_table_lock for too long (for scheduling latency
677  * reasons).  So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
678  * return the ending mmu_gather to the caller.
679  *
680  * Only addresses between `start' and `end' will be unmapped.
681  *
682  * The VMA list must be sorted in ascending virtual address order.
683  *
684  * unmap_vmas() assumes that the caller will flush the whole unmapped address
685  * range after unmap_vmas() returns.  So the only responsibility here is to
686  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
687  * drops the lock and schedules.
688  */
689 unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
690                 struct vm_area_struct *vma, unsigned long start_addr,
691                 unsigned long end_addr, unsigned long *nr_accounted,
692                 struct zap_details *details)
693 {
694         unsigned long zap_bytes = ZAP_BLOCK_SIZE;
695         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
696         int tlb_start_valid = 0;
697         unsigned long start = start_addr;
698         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
699         int fullmm = tlb_is_full_mm(*tlbp);
700
701         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
702                 unsigned long end;
703
704                 start = max(vma->vm_start, start_addr);
705                 if (start >= vma->vm_end)
706                         continue;
707                 end = min(vma->vm_end, end_addr);
708                 if (end <= vma->vm_start)
709                         continue;
710
711                 if (vma->vm_flags & VM_ACCOUNT)
712                         *nr_accounted += (end - start) >> PAGE_SHIFT;
713
714                 while (start != end) {
715                         unsigned long block;
716
717                         if (!tlb_start_valid) {
718                                 tlb_start = start;
719                                 tlb_start_valid = 1;
720                         }
721
722                         if (is_vm_hugetlb_page(vma)) {
723                                 block = end - start;
724                                 unmap_hugepage_range(vma, start, end);
725                         } else {
726                                 block = min(zap_bytes, end - start);
727                                 unmap_page_range(*tlbp, vma, start,
728                                                 start + block, details);
729                         }
730
731                         start += block;
732                         zap_bytes -= block;
733                         if ((long)zap_bytes > 0)
734                                 continue;
735
736                         tlb_finish_mmu(*tlbp, tlb_start, start);
737
738                         if (need_resched() ||
739                                 need_lockbreak(&mm->page_table_lock) ||
740                                 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
741                                 if (i_mmap_lock) {
742                                         /* must reset count of rss freed */
743                                         *tlbp = tlb_gather_mmu(mm, fullmm);
744                                         goto out;
745                                 }
746                                 spin_unlock(&mm->page_table_lock);
747                                 cond_resched();
748                                 spin_lock(&mm->page_table_lock);
749                         }
750
751                         *tlbp = tlb_gather_mmu(mm, fullmm);
752                         tlb_start_valid = 0;
753                         zap_bytes = ZAP_BLOCK_SIZE;
754                 }
755         }
756 out:
757         return start;   /* which is now the end (or restart) address */
758 }
759
760 /**
761  * zap_page_range - remove user pages in a given range
762  * @vma: vm_area_struct holding the applicable pages
763  * @address: starting address of pages to zap
764  * @size: number of bytes to zap
765  * @details: details of nonlinear truncation or shared cache invalidation
766  */
767 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
768                 unsigned long size, struct zap_details *details)
769 {
770         struct mm_struct *mm = vma->vm_mm;
771         struct mmu_gather *tlb;
772         unsigned long end = address + size;
773         unsigned long nr_accounted = 0;
774
775         if (is_vm_hugetlb_page(vma)) {
776                 zap_hugepage_range(vma, address, size);
777                 return end;
778         }
779
780         lru_add_drain();
781         spin_lock(&mm->page_table_lock);
782         tlb = tlb_gather_mmu(mm, 0);
783         end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
784         tlb_finish_mmu(tlb, address, end);
785         spin_unlock(&mm->page_table_lock);
786         return end;
787 }
788
789 /*
790  * Do a quick page-table lookup for a single page.
791  * mm->page_table_lock must be held.
792  */
793 static struct page *__follow_page(struct mm_struct *mm, unsigned long address,
794                         int read, int write, int accessed)
795 {
796         pgd_t *pgd;
797         pud_t *pud;
798         pmd_t *pmd;
799         pte_t *ptep, pte;
800         unsigned long pfn;
801         struct page *page;
802
803         page = follow_huge_addr(mm, address, write);
804         if (! IS_ERR(page))
805                 return page;
806
807         pgd = pgd_offset(mm, address);
808         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
809                 goto out;
810
811         pud = pud_offset(pgd, address);
812         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
813                 goto out;
814         
815         pmd = pmd_offset(pud, address);
816         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
817                 goto out;
818         if (pmd_huge(*pmd))
819                 return follow_huge_pmd(mm, address, pmd, write);
820
821         ptep = pte_offset_map(pmd, address);
822         if (!ptep)
823                 goto out;
824
825         pte = *ptep;
826         pte_unmap(ptep);
827         if (pte_present(pte)) {
828                 if (write && !pte_write(pte))
829                         goto out;
830                 if (read && !pte_read(pte))
831                         goto out;
832                 pfn = pte_pfn(pte);
833                 if (pfn_valid(pfn)) {
834                         page = pfn_to_page(pfn);
835                         if (accessed) {
836                                 if (write && !pte_dirty(pte) &&!PageDirty(page))
837                                         set_page_dirty(page);
838                                 mark_page_accessed(page);
839                         }
840                         return page;
841                 }
842         }
843
844 out:
845         return NULL;
846 }
847
848 inline struct page *
849 follow_page(struct mm_struct *mm, unsigned long address, int write)
850 {
851         return __follow_page(mm, address, 0, write, 1);
852 }
853
854 /*
855  * check_user_page_readable() can be called frm niterrupt context by oprofile,
856  * so we need to avoid taking any non-irq-safe locks
857  */
858 int check_user_page_readable(struct mm_struct *mm, unsigned long address)
859 {
860         return __follow_page(mm, address, 1, 0, 0) != NULL;
861 }
862 EXPORT_SYMBOL(check_user_page_readable);
863
864 static inline int
865 untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
866                          unsigned long address)
867 {
868         pgd_t *pgd;
869         pud_t *pud;
870         pmd_t *pmd;
871
872         /* Check if the vma is for an anonymous mapping. */
873         if (vma->vm_ops && vma->vm_ops->nopage)
874                 return 0;
875
876         /* Check if page directory entry exists. */
877         pgd = pgd_offset(mm, address);
878         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
879                 return 1;
880
881         pud = pud_offset(pgd, address);
882         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
883                 return 1;
884
885         /* Check if page middle directory entry exists. */
886         pmd = pmd_offset(pud, address);
887         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
888                 return 1;
889
890         /* There is a pte slot for 'address' in 'mm'. */
891         return 0;
892 }
893
894 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
895                 unsigned long start, int len, int write, int force,
896                 struct page **pages, struct vm_area_struct **vmas)
897 {
898         int i;
899         unsigned int flags;
900
901         /* 
902          * Require read or write permissions.
903          * If 'force' is set, we only require the "MAY" flags.
904          */
905         flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
906         flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
907         i = 0;
908
909         do {
910                 struct vm_area_struct * vma;
911
912                 vma = find_extend_vma(mm, start);
913                 if (!vma && in_gate_area(tsk, start)) {
914                         unsigned long pg = start & PAGE_MASK;
915                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
916                         pgd_t *pgd;
917                         pud_t *pud;
918                         pmd_t *pmd;
919                         pte_t *pte;
920                         if (write) /* user gate pages are read-only */
921                                 return i ? : -EFAULT;
922                         if (pg > TASK_SIZE)
923                                 pgd = pgd_offset_k(pg);
924                         else
925                                 pgd = pgd_offset_gate(mm, pg);
926                         BUG_ON(pgd_none(*pgd));
927                         pud = pud_offset(pgd, pg);
928                         BUG_ON(pud_none(*pud));
929                         pmd = pmd_offset(pud, pg);
930                         if (pmd_none(*pmd))
931                                 return i ? : -EFAULT;
932                         pte = pte_offset_map(pmd, pg);
933                         if (pte_none(*pte)) {
934                                 pte_unmap(pte);
935                                 return i ? : -EFAULT;
936                         }
937                         if (pages) {
938                                 pages[i] = pte_page(*pte);
939                                 get_page(pages[i]);
940                         }
941                         pte_unmap(pte);
942                         if (vmas)
943                                 vmas[i] = gate_vma;
944                         i++;
945                         start += PAGE_SIZE;
946                         len--;
947                         continue;
948                 }
949
950                 if (!vma || (vma->vm_flags & VM_IO)
951                                 || !(flags & vma->vm_flags))
952                         return i ? : -EFAULT;
953
954                 if (is_vm_hugetlb_page(vma)) {
955                         i = follow_hugetlb_page(mm, vma, pages, vmas,
956                                                 &start, &len, i);
957                         continue;
958                 }
959                 spin_lock(&mm->page_table_lock);
960                 do {
961                         int write_access = write;
962                         struct page *page;
963
964                         cond_resched_lock(&mm->page_table_lock);
965                         while (!(page = follow_page(mm, start, write_access))) {
966                                 int ret;
967
968                                 /*
969                                  * Shortcut for anonymous pages. We don't want
970                                  * to force the creation of pages tables for
971                                  * insanely big anonymously mapped areas that
972                                  * nobody touched so far. This is important
973                                  * for doing a core dump for these mappings.
974                                  */
975                                 if (!write && untouched_anonymous_page(mm,vma,start)) {
976                                         page = ZERO_PAGE(start);
977                                         break;
978                                 }
979                                 spin_unlock(&mm->page_table_lock);
980                                 ret = __handle_mm_fault(mm, vma, start, write_access);
981
982                                 /*
983                                  * The VM_FAULT_WRITE bit tells us that do_wp_page has
984                                  * broken COW when necessary, even if maybe_mkwrite
985                                  * decided not to set pte_write. We can thus safely do
986                                  * subsequent page lookups as if they were reads.
987                                  */
988                                 if (ret & VM_FAULT_WRITE)
989                                         write_access = 0;
990                                 
991                                 switch (ret & ~VM_FAULT_WRITE) {
992                                 case VM_FAULT_MINOR:
993                                         tsk->min_flt++;
994                                         break;
995                                 case VM_FAULT_MAJOR:
996                                         tsk->maj_flt++;
997                                         break;
998                                 case VM_FAULT_SIGBUS:
999                                         return i ? i : -EFAULT;
1000                                 case VM_FAULT_OOM:
1001                                         return i ? i : -ENOMEM;
1002                                 default:
1003                                         BUG();
1004                                 }
1005                                 spin_lock(&mm->page_table_lock);
1006                         }
1007                         if (pages) {
1008                                 pages[i] = page;
1009                                 flush_dcache_page(page);
1010                                 if (!PageReserved(page))
1011                                         page_cache_get(page);
1012                         }
1013                         if (vmas)
1014                                 vmas[i] = vma;
1015                         i++;
1016                         start += PAGE_SIZE;
1017                         len--;
1018                 } while (len && start < vma->vm_end);
1019                 spin_unlock(&mm->page_table_lock);
1020         } while (len);
1021         return i;
1022 }
1023 EXPORT_SYMBOL(get_user_pages);
1024
1025 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1026                         unsigned long addr, unsigned long end, pgprot_t prot)
1027 {
1028         pte_t *pte;
1029
1030         pte = pte_alloc_map(mm, pmd, addr);
1031         if (!pte)
1032                 return -ENOMEM;
1033         do {
1034                 pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot));
1035                 BUG_ON(!pte_none(*pte));
1036                 set_pte_at(mm, addr, pte, zero_pte);
1037         } while (pte++, addr += PAGE_SIZE, addr != end);
1038         pte_unmap(pte - 1);
1039         return 0;
1040 }
1041
1042 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1043                         unsigned long addr, unsigned long end, pgprot_t prot)
1044 {
1045         pmd_t *pmd;
1046         unsigned long next;
1047
1048         pmd = pmd_alloc(mm, pud, addr);
1049         if (!pmd)
1050                 return -ENOMEM;
1051         do {
1052                 next = pmd_addr_end(addr, end);
1053                 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1054                         return -ENOMEM;
1055         } while (pmd++, addr = next, addr != end);
1056         return 0;
1057 }
1058
1059 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1060                         unsigned long addr, unsigned long end, pgprot_t prot)
1061 {
1062         pud_t *pud;
1063         unsigned long next;
1064
1065         pud = pud_alloc(mm, pgd, addr);
1066         if (!pud)
1067                 return -ENOMEM;
1068         do {
1069                 next = pud_addr_end(addr, end);
1070                 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1071                         return -ENOMEM;
1072         } while (pud++, addr = next, addr != end);
1073         return 0;
1074 }
1075
1076 int zeromap_page_range(struct vm_area_struct *vma,
1077                         unsigned long addr, unsigned long size, pgprot_t prot)
1078 {
1079         pgd_t *pgd;
1080         unsigned long next;
1081         unsigned long end = addr + size;
1082         struct mm_struct *mm = vma->vm_mm;
1083         int err;
1084
1085         BUG_ON(addr >= end);
1086         pgd = pgd_offset(mm, addr);
1087         flush_cache_range(vma, addr, end);
1088         spin_lock(&mm->page_table_lock);
1089         do {
1090                 next = pgd_addr_end(addr, end);
1091                 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1092                 if (err)
1093                         break;
1094         } while (pgd++, addr = next, addr != end);
1095         spin_unlock(&mm->page_table_lock);
1096         return err;
1097 }
1098
1099 /*
1100  * maps a range of physical memory into the requested pages. the old
1101  * mappings are removed. any references to nonexistent pages results
1102  * in null mappings (currently treated as "copy-on-access")
1103  */
1104 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1105                         unsigned long addr, unsigned long end,
1106                         unsigned long pfn, pgprot_t prot)
1107 {
1108         pte_t *pte;
1109
1110         pte = pte_alloc_map(mm, pmd, addr);
1111         if (!pte)
1112                 return -ENOMEM;
1113         do {
1114                 BUG_ON(!pte_none(*pte));
1115                 if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn)))
1116                         set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1117                 pfn++;
1118         } while (pte++, addr += PAGE_SIZE, addr != end);
1119         pte_unmap(pte - 1);
1120         return 0;
1121 }
1122
1123 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1124                         unsigned long addr, unsigned long end,
1125                         unsigned long pfn, pgprot_t prot)
1126 {
1127         pmd_t *pmd;
1128         unsigned long next;
1129
1130         pfn -= addr >> PAGE_SHIFT;
1131         pmd = pmd_alloc(mm, pud, addr);
1132         if (!pmd)
1133                 return -ENOMEM;
1134         do {
1135                 next = pmd_addr_end(addr, end);
1136                 if (remap_pte_range(mm, pmd, addr, next,
1137                                 pfn + (addr >> PAGE_SHIFT), prot))
1138                         return -ENOMEM;
1139         } while (pmd++, addr = next, addr != end);
1140         return 0;
1141 }
1142
1143 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1144                         unsigned long addr, unsigned long end,
1145                         unsigned long pfn, pgprot_t prot)
1146 {
1147         pud_t *pud;
1148         unsigned long next;
1149
1150         pfn -= addr >> PAGE_SHIFT;
1151         pud = pud_alloc(mm, pgd, addr);
1152         if (!pud)
1153                 return -ENOMEM;
1154         do {
1155                 next = pud_addr_end(addr, end);
1156                 if (remap_pmd_range(mm, pud, addr, next,
1157                                 pfn + (addr >> PAGE_SHIFT), prot))
1158                         return -ENOMEM;
1159         } while (pud++, addr = next, addr != end);
1160         return 0;
1161 }
1162
1163 /*  Note: this is only safe if the mm semaphore is held when called. */
1164 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1165                     unsigned long pfn, unsigned long size, pgprot_t prot)
1166 {
1167         pgd_t *pgd;
1168         unsigned long next;
1169         unsigned long end = addr + PAGE_ALIGN(size);
1170         struct mm_struct *mm = vma->vm_mm;
1171         int err;
1172
1173         /*
1174          * Physically remapped pages are special. Tell the
1175          * rest of the world about it:
1176          *   VM_IO tells people not to look at these pages
1177          *      (accesses can have side effects).
1178          *   VM_RESERVED tells swapout not to try to touch
1179          *      this region.
1180          */
1181         vma->vm_flags |= VM_IO | VM_RESERVED;
1182
1183         BUG_ON(addr >= end);
1184         pfn -= addr >> PAGE_SHIFT;
1185         pgd = pgd_offset(mm, addr);
1186         flush_cache_range(vma, addr, end);
1187         spin_lock(&mm->page_table_lock);
1188         do {
1189                 next = pgd_addr_end(addr, end);
1190                 err = remap_pud_range(mm, pgd, addr, next,
1191                                 pfn + (addr >> PAGE_SHIFT), prot);
1192                 if (err)
1193                         break;
1194         } while (pgd++, addr = next, addr != end);
1195         spin_unlock(&mm->page_table_lock);
1196         return err;
1197 }
1198 EXPORT_SYMBOL(remap_pfn_range);
1199
1200 /*
1201  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1202  * servicing faults for write access.  In the normal case, do always want
1203  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1204  * that do not have writing enabled, when used by access_process_vm.
1205  */
1206 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1207 {
1208         if (likely(vma->vm_flags & VM_WRITE))
1209                 pte = pte_mkwrite(pte);
1210         return pte;
1211 }
1212
1213 /*
1214  * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock
1215  */
1216 static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address, 
1217                 pte_t *page_table)
1218 {
1219         pte_t entry;
1220
1221         entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)),
1222                               vma);
1223         ptep_establish(vma, address, page_table, entry);
1224         update_mmu_cache(vma, address, entry);
1225         lazy_mmu_prot_update(entry);
1226 }
1227
1228 /*
1229  * This routine handles present pages, when users try to write
1230  * to a shared page. It is done by copying the page to a new address
1231  * and decrementing the shared-page counter for the old page.
1232  *
1233  * Goto-purists beware: the only reason for goto's here is that it results
1234  * in better assembly code.. The "default" path will see no jumps at all.
1235  *
1236  * Note that this routine assumes that the protection checks have been
1237  * done by the caller (the low-level page fault routine in most cases).
1238  * Thus we can safely just mark it writable once we've done any necessary
1239  * COW.
1240  *
1241  * We also mark the page dirty at this point even though the page will
1242  * change only once the write actually happens. This avoids a few races,
1243  * and potentially makes it more efficient.
1244  *
1245  * We hold the mm semaphore and the page_table_lock on entry and exit
1246  * with the page_table_lock released.
1247  */
1248 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma,
1249         unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte)
1250 {
1251         struct page *old_page, *new_page;
1252         unsigned long pfn = pte_pfn(pte);
1253         pte_t entry;
1254         int ret;
1255
1256         if (unlikely(!pfn_valid(pfn))) {
1257                 /*
1258                  * This should really halt the system so it can be debugged or
1259                  * at least the kernel stops what it's doing before it corrupts
1260                  * data, but for the moment just pretend this is OOM.
1261                  */
1262                 pte_unmap(page_table);
1263                 printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n",
1264                                 address);
1265                 spin_unlock(&mm->page_table_lock);
1266                 return VM_FAULT_OOM;
1267         }
1268         old_page = pfn_to_page(pfn);
1269
1270         if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1271                 int reuse = can_share_swap_page(old_page);
1272                 unlock_page(old_page);
1273                 if (reuse) {
1274                         flush_cache_page(vma, address, pfn);
1275                         entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)),
1276                                               vma);
1277                         ptep_set_access_flags(vma, address, page_table, entry, 1);
1278                         update_mmu_cache(vma, address, entry);
1279                         lazy_mmu_prot_update(entry);
1280                         pte_unmap(page_table);
1281                         spin_unlock(&mm->page_table_lock);
1282                         return VM_FAULT_MINOR|VM_FAULT_WRITE;
1283                 }
1284         }
1285         pte_unmap(page_table);
1286
1287         /*
1288          * Ok, we need to copy. Oh, well..
1289          */
1290         if (!PageReserved(old_page))
1291                 page_cache_get(old_page);
1292         spin_unlock(&mm->page_table_lock);
1293
1294         if (unlikely(anon_vma_prepare(vma)))
1295                 goto no_new_page;
1296         if (old_page == ZERO_PAGE(address)) {
1297                 new_page = alloc_zeroed_user_highpage(vma, address);
1298                 if (!new_page)
1299                         goto no_new_page;
1300         } else {
1301                 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1302                 if (!new_page)
1303                         goto no_new_page;
1304                 copy_user_highpage(new_page, old_page, address);
1305         }
1306         /*
1307          * Re-check the pte - we dropped the lock
1308          */
1309         ret = VM_FAULT_MINOR;
1310         spin_lock(&mm->page_table_lock);
1311         page_table = pte_offset_map(pmd, address);
1312         if (likely(pte_same(*page_table, pte))) {
1313                 if (PageAnon(old_page))
1314                         dec_mm_counter(mm, anon_rss);
1315                 if (PageReserved(old_page))
1316                         inc_mm_counter(mm, rss);
1317                 else
1318                         page_remove_rmap(old_page);
1319                 flush_cache_page(vma, address, pfn);
1320                 break_cow(vma, new_page, address, page_table);
1321                 lru_cache_add_active(new_page);
1322                 page_add_anon_rmap(new_page, vma, address);
1323
1324                 /* Free the old page.. */
1325                 new_page = old_page;
1326                 ret |= VM_FAULT_WRITE;
1327         }
1328         pte_unmap(page_table);
1329         page_cache_release(new_page);
1330         page_cache_release(old_page);
1331         spin_unlock(&mm->page_table_lock);
1332         return ret;
1333
1334 no_new_page:
1335         page_cache_release(old_page);
1336         return VM_FAULT_OOM;
1337 }
1338
1339 /*
1340  * Helper functions for unmap_mapping_range().
1341  *
1342  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1343  *
1344  * We have to restart searching the prio_tree whenever we drop the lock,
1345  * since the iterator is only valid while the lock is held, and anyway
1346  * a later vma might be split and reinserted earlier while lock dropped.
1347  *
1348  * The list of nonlinear vmas could be handled more efficiently, using
1349  * a placeholder, but handle it in the same way until a need is shown.
1350  * It is important to search the prio_tree before nonlinear list: a vma
1351  * may become nonlinear and be shifted from prio_tree to nonlinear list
1352  * while the lock is dropped; but never shifted from list to prio_tree.
1353  *
1354  * In order to make forward progress despite restarting the search,
1355  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1356  * quickly skip it next time around.  Since the prio_tree search only
1357  * shows us those vmas affected by unmapping the range in question, we
1358  * can't efficiently keep all vmas in step with mapping->truncate_count:
1359  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1360  * mapping->truncate_count and vma->vm_truncate_count are protected by
1361  * i_mmap_lock.
1362  *
1363  * In order to make forward progress despite repeatedly restarting some
1364  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1365  * and restart from that address when we reach that vma again.  It might
1366  * have been split or merged, shrunk or extended, but never shifted: so
1367  * restart_addr remains valid so long as it remains in the vma's range.
1368  * unmap_mapping_range forces truncate_count to leap over page-aligned
1369  * values so we can save vma's restart_addr in its truncate_count field.
1370  */
1371 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1372
1373 static void reset_vma_truncate_counts(struct address_space *mapping)
1374 {
1375         struct vm_area_struct *vma;
1376         struct prio_tree_iter iter;
1377
1378         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1379                 vma->vm_truncate_count = 0;
1380         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1381                 vma->vm_truncate_count = 0;
1382 }
1383
1384 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1385                 unsigned long start_addr, unsigned long end_addr,
1386                 struct zap_details *details)
1387 {
1388         unsigned long restart_addr;
1389         int need_break;
1390
1391 again:
1392         restart_addr = vma->vm_truncate_count;
1393         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1394                 start_addr = restart_addr;
1395                 if (start_addr >= end_addr) {
1396                         /* Top of vma has been split off since last time */
1397                         vma->vm_truncate_count = details->truncate_count;
1398                         return 0;
1399                 }
1400         }
1401
1402         restart_addr = zap_page_range(vma, start_addr,
1403                                         end_addr - start_addr, details);
1404
1405         /*
1406          * We cannot rely on the break test in unmap_vmas:
1407          * on the one hand, we don't want to restart our loop
1408          * just because that broke out for the page_table_lock;
1409          * on the other hand, it does no test when vma is small.
1410          */
1411         need_break = need_resched() ||
1412                         need_lockbreak(details->i_mmap_lock);
1413
1414         if (restart_addr >= end_addr) {
1415                 /* We have now completed this vma: mark it so */
1416                 vma->vm_truncate_count = details->truncate_count;
1417                 if (!need_break)
1418                         return 0;
1419         } else {
1420                 /* Note restart_addr in vma's truncate_count field */
1421                 vma->vm_truncate_count = restart_addr;
1422                 if (!need_break)
1423                         goto again;
1424         }
1425
1426         spin_unlock(details->i_mmap_lock);
1427         cond_resched();
1428         spin_lock(details->i_mmap_lock);
1429         return -EINTR;
1430 }
1431
1432 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1433                                             struct zap_details *details)
1434 {
1435         struct vm_area_struct *vma;
1436         struct prio_tree_iter iter;
1437         pgoff_t vba, vea, zba, zea;
1438
1439 restart:
1440         vma_prio_tree_foreach(vma, &iter, root,
1441                         details->first_index, details->last_index) {
1442                 /* Skip quickly over those we have already dealt with */
1443                 if (vma->vm_truncate_count == details->truncate_count)
1444                         continue;
1445
1446                 vba = vma->vm_pgoff;
1447                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1448                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1449                 zba = details->first_index;
1450                 if (zba < vba)
1451                         zba = vba;
1452                 zea = details->last_index;
1453                 if (zea > vea)
1454                         zea = vea;
1455
1456                 if (unmap_mapping_range_vma(vma,
1457                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1458                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1459                                 details) < 0)
1460                         goto restart;
1461         }
1462 }
1463
1464 static inline void unmap_mapping_range_list(struct list_head *head,
1465                                             struct zap_details *details)
1466 {
1467         struct vm_area_struct *vma;
1468
1469         /*
1470          * In nonlinear VMAs there is no correspondence between virtual address
1471          * offset and file offset.  So we must perform an exhaustive search
1472          * across *all* the pages in each nonlinear VMA, not just the pages
1473          * whose virtual address lies outside the file truncation point.
1474          */
1475 restart:
1476         list_for_each_entry(vma, head, shared.vm_set.list) {
1477                 /* Skip quickly over those we have already dealt with */
1478                 if (vma->vm_truncate_count == details->truncate_count)
1479                         continue;
1480                 details->nonlinear_vma = vma;
1481                 if (unmap_mapping_range_vma(vma, vma->vm_start,
1482                                         vma->vm_end, details) < 0)
1483                         goto restart;
1484         }
1485 }
1486
1487 /**
1488  * unmap_mapping_range - unmap the portion of all mmaps
1489  * in the specified address_space corresponding to the specified
1490  * page range in the underlying file.
1491  * @mapping: the address space containing mmaps to be unmapped.
1492  * @holebegin: byte in first page to unmap, relative to the start of
1493  * the underlying file.  This will be rounded down to a PAGE_SIZE
1494  * boundary.  Note that this is different from vmtruncate(), which
1495  * must keep the partial page.  In contrast, we must get rid of
1496  * partial pages.
1497  * @holelen: size of prospective hole in bytes.  This will be rounded
1498  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1499  * end of the file.
1500  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1501  * but 0 when invalidating pagecache, don't throw away private data.
1502  */
1503 void unmap_mapping_range(struct address_space *mapping,
1504                 loff_t const holebegin, loff_t const holelen, int even_cows)
1505 {
1506         struct zap_details details;
1507         pgoff_t hba = holebegin >> PAGE_SHIFT;
1508         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1509
1510         /* Check for overflow. */
1511         if (sizeof(holelen) > sizeof(hlen)) {
1512                 long long holeend =
1513                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1514                 if (holeend & ~(long long)ULONG_MAX)
1515                         hlen = ULONG_MAX - hba + 1;
1516         }
1517
1518         details.check_mapping = even_cows? NULL: mapping;
1519         details.nonlinear_vma = NULL;
1520         details.first_index = hba;
1521         details.last_index = hba + hlen - 1;
1522         if (details.last_index < details.first_index)
1523                 details.last_index = ULONG_MAX;
1524         details.i_mmap_lock = &mapping->i_mmap_lock;
1525
1526         spin_lock(&mapping->i_mmap_lock);
1527
1528         /* serialize i_size write against truncate_count write */
1529         smp_wmb();
1530         /* Protect against page faults, and endless unmapping loops */
1531         mapping->truncate_count++;
1532         /*
1533          * For archs where spin_lock has inclusive semantics like ia64
1534          * this smp_mb() will prevent to read pagetable contents
1535          * before the truncate_count increment is visible to
1536          * other cpus.
1537          */
1538         smp_mb();
1539         if (unlikely(is_restart_addr(mapping->truncate_count))) {
1540                 if (mapping->truncate_count == 0)
1541                         reset_vma_truncate_counts(mapping);
1542                 mapping->truncate_count++;
1543         }
1544         details.truncate_count = mapping->truncate_count;
1545
1546         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1547                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1548         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1549                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1550         spin_unlock(&mapping->i_mmap_lock);
1551 }
1552 EXPORT_SYMBOL(unmap_mapping_range);
1553
1554 /*
1555  * Handle all mappings that got truncated by a "truncate()"
1556  * system call.
1557  *
1558  * NOTE! We have to be ready to update the memory sharing
1559  * between the file and the memory map for a potential last
1560  * incomplete page.  Ugly, but necessary.
1561  */
1562 int vmtruncate(struct inode * inode, loff_t offset)
1563 {
1564         struct address_space *mapping = inode->i_mapping;
1565         unsigned long limit;
1566
1567         if (inode->i_size < offset)
1568                 goto do_expand;
1569         /*
1570          * truncation of in-use swapfiles is disallowed - it would cause
1571          * subsequent swapout to scribble on the now-freed blocks.
1572          */
1573         if (IS_SWAPFILE(inode))
1574                 goto out_busy;
1575         i_size_write(inode, offset);
1576         unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1577         truncate_inode_pages(mapping, offset);
1578         goto out_truncate;
1579
1580 do_expand:
1581         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1582         if (limit != RLIM_INFINITY && offset > limit)
1583                 goto out_sig;
1584         if (offset > inode->i_sb->s_maxbytes)
1585                 goto out_big;
1586         i_size_write(inode, offset);
1587
1588 out_truncate:
1589         if (inode->i_op && inode->i_op->truncate)
1590                 inode->i_op->truncate(inode);
1591         return 0;
1592 out_sig:
1593         send_sig(SIGXFSZ, current, 0);
1594 out_big:
1595         return -EFBIG;
1596 out_busy:
1597         return -ETXTBSY;
1598 }
1599
1600 EXPORT_SYMBOL(vmtruncate);
1601
1602 /* 
1603  * Primitive swap readahead code. We simply read an aligned block of
1604  * (1 << page_cluster) entries in the swap area. This method is chosen
1605  * because it doesn't cost us any seek time.  We also make sure to queue
1606  * the 'original' request together with the readahead ones...  
1607  *
1608  * This has been extended to use the NUMA policies from the mm triggering
1609  * the readahead.
1610  *
1611  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1612  */
1613 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1614 {
1615 #ifdef CONFIG_NUMA
1616         struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1617 #endif
1618         int i, num;
1619         struct page *new_page;
1620         unsigned long offset;
1621
1622         /*
1623          * Get the number of handles we should do readahead io to.
1624          */
1625         num = valid_swaphandles(entry, &offset);
1626         for (i = 0; i < num; offset++, i++) {
1627                 /* Ok, do the async read-ahead now */
1628                 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1629                                                            offset), vma, addr);
1630                 if (!new_page)
1631                         break;
1632                 page_cache_release(new_page);
1633 #ifdef CONFIG_NUMA
1634                 /*
1635                  * Find the next applicable VMA for the NUMA policy.
1636                  */
1637                 addr += PAGE_SIZE;
1638                 if (addr == 0)
1639                         vma = NULL;
1640                 if (vma) {
1641                         if (addr >= vma->vm_end) {
1642                                 vma = next_vma;
1643                                 next_vma = vma ? vma->vm_next : NULL;
1644                         }
1645                         if (vma && addr < vma->vm_start)
1646                                 vma = NULL;
1647                 } else {
1648                         if (next_vma && addr >= next_vma->vm_start) {
1649                                 vma = next_vma;
1650                                 next_vma = vma->vm_next;
1651                         }
1652                 }
1653 #endif
1654         }
1655         lru_add_drain();        /* Push any new pages onto the LRU now */
1656 }
1657
1658 /*
1659  * We hold the mm semaphore and the page_table_lock on entry and
1660  * should release the pagetable lock on exit..
1661  */
1662 static int do_swap_page(struct mm_struct * mm,
1663         struct vm_area_struct * vma, unsigned long address,
1664         pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access)
1665 {
1666         struct page *page;
1667         swp_entry_t entry = pte_to_swp_entry(orig_pte);
1668         pte_t pte;
1669         int ret = VM_FAULT_MINOR;
1670
1671         pte_unmap(page_table);
1672         spin_unlock(&mm->page_table_lock);
1673         page = lookup_swap_cache(entry);
1674         if (!page) {
1675                 swapin_readahead(entry, address, vma);
1676                 page = read_swap_cache_async(entry, vma, address);
1677                 if (!page) {
1678                         /*
1679                          * Back out if somebody else faulted in this pte while
1680                          * we released the page table lock.
1681                          */
1682                         spin_lock(&mm->page_table_lock);
1683                         page_table = pte_offset_map(pmd, address);
1684                         if (likely(pte_same(*page_table, orig_pte)))
1685                                 ret = VM_FAULT_OOM;
1686                         else
1687                                 ret = VM_FAULT_MINOR;
1688                         pte_unmap(page_table);
1689                         spin_unlock(&mm->page_table_lock);
1690                         goto out;
1691                 }
1692
1693                 /* Had to read the page from swap area: Major fault */
1694                 ret = VM_FAULT_MAJOR;
1695                 inc_page_state(pgmajfault);
1696                 grab_swap_token();
1697         }
1698
1699         mark_page_accessed(page);
1700         lock_page(page);
1701
1702         /*
1703          * Back out if somebody else faulted in this pte while we
1704          * released the page table lock.
1705          */
1706         spin_lock(&mm->page_table_lock);
1707         page_table = pte_offset_map(pmd, address);
1708         if (unlikely(!pte_same(*page_table, orig_pte))) {
1709                 ret = VM_FAULT_MINOR;
1710                 goto out_nomap;
1711         }
1712
1713         if (unlikely(!PageUptodate(page))) {
1714                 ret = VM_FAULT_SIGBUS;
1715                 goto out_nomap;
1716         }
1717
1718         /* The page isn't present yet, go ahead with the fault. */
1719
1720         inc_mm_counter(mm, rss);
1721         pte = mk_pte(page, vma->vm_page_prot);
1722         if (write_access && can_share_swap_page(page)) {
1723                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1724                 write_access = 0;
1725         }
1726
1727         flush_icache_page(vma, page);
1728         set_pte_at(mm, address, page_table, pte);
1729         page_add_anon_rmap(page, vma, address);
1730
1731         swap_free(entry);
1732         if (vm_swap_full())
1733                 remove_exclusive_swap_page(page);
1734         unlock_page(page);
1735
1736         if (write_access) {
1737                 if (do_wp_page(mm, vma, address,
1738                                 page_table, pmd, pte) == VM_FAULT_OOM)
1739                         ret = VM_FAULT_OOM;
1740                 goto out;
1741         }
1742
1743         /* No need to invalidate - it was non-present before */
1744         update_mmu_cache(vma, address, pte);
1745         lazy_mmu_prot_update(pte);
1746         pte_unmap(page_table);
1747         spin_unlock(&mm->page_table_lock);
1748 out:
1749         return ret;
1750 out_nomap:
1751         pte_unmap(page_table);
1752         spin_unlock(&mm->page_table_lock);
1753         unlock_page(page);
1754         page_cache_release(page);
1755         goto out;
1756 }
1757
1758 /*
1759  * We are called with the MM semaphore and page_table_lock
1760  * spinlock held to protect against concurrent faults in
1761  * multithreaded programs. 
1762  */
1763 static int
1764 do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1765                 pte_t *page_table, pmd_t *pmd, int write_access,
1766                 unsigned long addr)
1767 {
1768         pte_t entry;
1769         struct page * page = ZERO_PAGE(addr);
1770
1771         /* Read-only mapping of ZERO_PAGE. */
1772         entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));
1773
1774         /* ..except if it's a write access */
1775         if (write_access) {
1776                 /* Allocate our own private page. */
1777                 pte_unmap(page_table);
1778                 spin_unlock(&mm->page_table_lock);
1779
1780                 if (unlikely(anon_vma_prepare(vma)))
1781                         goto no_mem;
1782                 page = alloc_zeroed_user_highpage(vma, addr);
1783                 if (!page)
1784                         goto no_mem;
1785
1786                 spin_lock(&mm->page_table_lock);
1787                 page_table = pte_offset_map(pmd, addr);
1788
1789                 if (!pte_none(*page_table)) {
1790                         pte_unmap(page_table);
1791                         page_cache_release(page);
1792                         spin_unlock(&mm->page_table_lock);
1793                         goto out;
1794                 }
1795                 inc_mm_counter(mm, rss);
1796                 entry = maybe_mkwrite(pte_mkdirty(mk_pte(page,
1797                                                          vma->vm_page_prot)),
1798                                       vma);
1799                 lru_cache_add_active(page);
1800                 SetPageReferenced(page);
1801                 page_add_anon_rmap(page, vma, addr);
1802         }
1803
1804         set_pte_at(mm, addr, page_table, entry);
1805         pte_unmap(page_table);
1806
1807         /* No need to invalidate - it was non-present before */
1808         update_mmu_cache(vma, addr, entry);
1809         lazy_mmu_prot_update(entry);
1810         spin_unlock(&mm->page_table_lock);
1811 out:
1812         return VM_FAULT_MINOR;
1813 no_mem:
1814         return VM_FAULT_OOM;
1815 }
1816
1817 /*
1818  * do_no_page() tries to create a new page mapping. It aggressively
1819  * tries to share with existing pages, but makes a separate copy if
1820  * the "write_access" parameter is true in order to avoid the next
1821  * page fault.
1822  *
1823  * As this is called only for pages that do not currently exist, we
1824  * do not need to flush old virtual caches or the TLB.
1825  *
1826  * This is called with the MM semaphore held and the page table
1827  * spinlock held. Exit with the spinlock released.
1828  */
1829 static int
1830 do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1831         unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd)
1832 {
1833         struct page * new_page;
1834         struct address_space *mapping = NULL;
1835         pte_t entry;
1836         unsigned int sequence = 0;
1837         int ret = VM_FAULT_MINOR;
1838         int anon = 0;
1839
1840         if (!vma->vm_ops || !vma->vm_ops->nopage)
1841                 return do_anonymous_page(mm, vma, page_table,
1842                                         pmd, write_access, address);
1843         pte_unmap(page_table);
1844         spin_unlock(&mm->page_table_lock);
1845
1846         if (vma->vm_file) {
1847                 mapping = vma->vm_file->f_mapping;
1848                 sequence = mapping->truncate_count;
1849                 smp_rmb(); /* serializes i_size against truncate_count */
1850         }
1851 retry:
1852         cond_resched();
1853         new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1854         /*
1855          * No smp_rmb is needed here as long as there's a full
1856          * spin_lock/unlock sequence inside the ->nopage callback
1857          * (for the pagecache lookup) that acts as an implicit
1858          * smp_mb() and prevents the i_size read to happen
1859          * after the next truncate_count read.
1860          */
1861
1862         /* no page was available -- either SIGBUS or OOM */
1863         if (new_page == NOPAGE_SIGBUS)
1864                 return VM_FAULT_SIGBUS;
1865         if (new_page == NOPAGE_OOM)
1866                 return VM_FAULT_OOM;
1867
1868         /*
1869          * Should we do an early C-O-W break?
1870          */
1871         if (write_access && !(vma->vm_flags & VM_SHARED)) {
1872                 struct page *page;
1873
1874                 if (unlikely(anon_vma_prepare(vma)))
1875                         goto oom;
1876                 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1877                 if (!page)
1878                         goto oom;
1879                 copy_user_highpage(page, new_page, address);
1880                 page_cache_release(new_page);
1881                 new_page = page;
1882                 anon = 1;
1883         }
1884
1885         spin_lock(&mm->page_table_lock);
1886         /*
1887          * For a file-backed vma, someone could have truncated or otherwise
1888          * invalidated this page.  If unmap_mapping_range got called,
1889          * retry getting the page.
1890          */
1891         if (mapping && unlikely(sequence != mapping->truncate_count)) {
1892                 sequence = mapping->truncate_count;
1893                 spin_unlock(&mm->page_table_lock);
1894                 page_cache_release(new_page);
1895                 goto retry;
1896         }
1897         page_table = pte_offset_map(pmd, address);
1898
1899         /*
1900          * This silly early PAGE_DIRTY setting removes a race
1901          * due to the bad i386 page protection. But it's valid
1902          * for other architectures too.
1903          *
1904          * Note that if write_access is true, we either now have
1905          * an exclusive copy of the page, or this is a shared mapping,
1906          * so we can make it writable and dirty to avoid having to
1907          * handle that later.
1908          */
1909         /* Only go through if we didn't race with anybody else... */
1910         if (pte_none(*page_table)) {
1911                 if (!PageReserved(new_page))
1912                         inc_mm_counter(mm, rss);
1913
1914                 flush_icache_page(vma, new_page);
1915                 entry = mk_pte(new_page, vma->vm_page_prot);
1916                 if (write_access)
1917                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1918                 set_pte_at(mm, address, page_table, entry);
1919                 if (anon) {
1920                         lru_cache_add_active(new_page);
1921                         page_add_anon_rmap(new_page, vma, address);
1922                 } else
1923                         page_add_file_rmap(new_page);
1924                 pte_unmap(page_table);
1925         } else {
1926                 /* One of our sibling threads was faster, back out. */
1927                 pte_unmap(page_table);
1928                 page_cache_release(new_page);
1929                 spin_unlock(&mm->page_table_lock);
1930                 goto out;
1931         }
1932
1933         /* no need to invalidate: a not-present page shouldn't be cached */
1934         update_mmu_cache(vma, address, entry);
1935         lazy_mmu_prot_update(entry);
1936         spin_unlock(&mm->page_table_lock);
1937 out:
1938         return ret;
1939 oom:
1940         page_cache_release(new_page);
1941         ret = VM_FAULT_OOM;
1942         goto out;
1943 }
1944
1945 /*
1946  * Fault of a previously existing named mapping. Repopulate the pte
1947  * from the encoded file_pte if possible. This enables swappable
1948  * nonlinear vmas.
1949  */
1950 static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma,
1951         unsigned long address, int write_access, pte_t *pte, pmd_t *pmd)
1952 {
1953         unsigned long pgoff;
1954         int err;
1955
1956         BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage);
1957         /*
1958          * Fall back to the linear mapping if the fs does not support
1959          * ->populate:
1960          */
1961         if (!vma->vm_ops->populate ||
1962                         (write_access && !(vma->vm_flags & VM_SHARED))) {
1963                 pte_clear(mm, address, pte);
1964                 return do_no_page(mm, vma, address, write_access, pte, pmd);
1965         }
1966
1967         pgoff = pte_to_pgoff(*pte);
1968
1969         pte_unmap(pte);
1970         spin_unlock(&mm->page_table_lock);
1971
1972         err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0);
1973         if (err == -ENOMEM)
1974                 return VM_FAULT_OOM;
1975         if (err)
1976                 return VM_FAULT_SIGBUS;
1977         return VM_FAULT_MAJOR;
1978 }
1979
1980 /*
1981  * These routines also need to handle stuff like marking pages dirty
1982  * and/or accessed for architectures that don't do it in hardware (most
1983  * RISC architectures).  The early dirtying is also good on the i386.
1984  *
1985  * There is also a hook called "update_mmu_cache()" that architectures
1986  * with external mmu caches can use to update those (ie the Sparc or
1987  * PowerPC hashed page tables that act as extended TLBs).
1988  *
1989  * Note the "page_table_lock". It is to protect against kswapd removing
1990  * pages from under us. Note that kswapd only ever _removes_ pages, never
1991  * adds them. As such, once we have noticed that the page is not present,
1992  * we can drop the lock early.
1993  *
1994  * The adding of pages is protected by the MM semaphore (which we hold),
1995  * so we don't need to worry about a page being suddenly been added into
1996  * our VM.
1997  *
1998  * We enter with the pagetable spinlock held, we are supposed to
1999  * release it when done.
2000  */
2001 static inline int handle_pte_fault(struct mm_struct *mm,
2002         struct vm_area_struct * vma, unsigned long address,
2003         int write_access, pte_t *pte, pmd_t *pmd)
2004 {
2005         pte_t entry;
2006
2007         entry = *pte;
2008         if (!pte_present(entry)) {
2009                 /*
2010                  * If it truly wasn't present, we know that kswapd
2011                  * and the PTE updates will not touch it later. So
2012                  * drop the lock.
2013                  */
2014                 if (pte_none(entry))
2015                         return do_no_page(mm, vma, address, write_access, pte, pmd);
2016                 if (pte_file(entry))
2017                         return do_file_page(mm, vma, address, write_access, pte, pmd);
2018                 return do_swap_page(mm, vma, address, pte, pmd, entry, write_access);
2019         }
2020
2021         if (write_access) {
2022                 if (!pte_write(entry))
2023                         return do_wp_page(mm, vma, address, pte, pmd, entry);
2024                 entry = pte_mkdirty(entry);
2025         }
2026         entry = pte_mkyoung(entry);
2027         ptep_set_access_flags(vma, address, pte, entry, write_access);
2028         update_mmu_cache(vma, address, entry);
2029         lazy_mmu_prot_update(entry);
2030         pte_unmap(pte);
2031         spin_unlock(&mm->page_table_lock);
2032         return VM_FAULT_MINOR;
2033 }
2034
2035 /*
2036  * By the time we get here, we already hold the mm semaphore
2037  */
2038 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
2039                 unsigned long address, int write_access)
2040 {
2041         pgd_t *pgd;
2042         pud_t *pud;
2043         pmd_t *pmd;
2044         pte_t *pte;
2045
2046         __set_current_state(TASK_RUNNING);
2047
2048         inc_page_state(pgfault);
2049
2050         if (unlikely(is_vm_hugetlb_page(vma)))
2051                 return hugetlb_fault(mm, vma, address, write_access);
2052
2053         /*
2054          * We need the page table lock to synchronize with kswapd
2055          * and the SMP-safe atomic PTE updates.
2056          */
2057         pgd = pgd_offset(mm, address);
2058         spin_lock(&mm->page_table_lock);
2059
2060         pud = pud_alloc(mm, pgd, address);
2061         if (!pud)
2062                 goto oom;
2063
2064         pmd = pmd_alloc(mm, pud, address);
2065         if (!pmd)
2066                 goto oom;
2067
2068         pte = pte_alloc_map(mm, pmd, address);
2069         if (!pte)
2070                 goto oom;
2071         
2072         return handle_pte_fault(mm, vma, address, write_access, pte, pmd);
2073
2074  oom:
2075         spin_unlock(&mm->page_table_lock);
2076         return VM_FAULT_OOM;
2077 }
2078
2079 #ifndef __PAGETABLE_PUD_FOLDED
2080 /*
2081  * Allocate page upper directory.
2082  *
2083  * We've already handled the fast-path in-line, and we own the
2084  * page table lock.
2085  */
2086 pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2087 {
2088         pud_t *new;
2089
2090         spin_unlock(&mm->page_table_lock);
2091         new = pud_alloc_one(mm, address);
2092         spin_lock(&mm->page_table_lock);
2093         if (!new)
2094                 return NULL;
2095
2096         /*
2097          * Because we dropped the lock, we should re-check the
2098          * entry, as somebody else could have populated it..
2099          */
2100         if (pgd_present(*pgd)) {
2101                 pud_free(new);
2102                 goto out;
2103         }
2104         pgd_populate(mm, pgd, new);
2105  out:
2106         return pud_offset(pgd, address);
2107 }
2108 #endif /* __PAGETABLE_PUD_FOLDED */
2109
2110 #ifndef __PAGETABLE_PMD_FOLDED
2111 /*
2112  * Allocate page middle directory.
2113  *
2114  * We've already handled the fast-path in-line, and we own the
2115  * page table lock.
2116  */
2117 pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2118 {
2119         pmd_t *new;
2120
2121         spin_unlock(&mm->page_table_lock);
2122         new = pmd_alloc_one(mm, address);
2123         spin_lock(&mm->page_table_lock);
2124         if (!new)
2125                 return NULL;
2126
2127         /*
2128          * Because we dropped the lock, we should re-check the
2129          * entry, as somebody else could have populated it..
2130          */
2131 #ifndef __ARCH_HAS_4LEVEL_HACK
2132         if (pud_present(*pud)) {
2133                 pmd_free(new);
2134                 goto out;
2135         }
2136         pud_populate(mm, pud, new);
2137 #else
2138         if (pgd_present(*pud)) {
2139                 pmd_free(new);
2140                 goto out;
2141         }
2142         pgd_populate(mm, pud, new);
2143 #endif /* __ARCH_HAS_4LEVEL_HACK */
2144
2145  out:
2146         return pmd_offset(pud, address);
2147 }
2148 #endif /* __PAGETABLE_PMD_FOLDED */
2149
2150 int make_pages_present(unsigned long addr, unsigned long end)
2151 {
2152         int ret, len, write;
2153         struct vm_area_struct * vma;
2154
2155         vma = find_vma(current->mm, addr);
2156         if (!vma)
2157                 return -1;
2158         write = (vma->vm_flags & VM_WRITE) != 0;
2159         if (addr >= end)
2160                 BUG();
2161         if (end > vma->vm_end)
2162                 BUG();
2163         len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2164         ret = get_user_pages(current, current->mm, addr,
2165                         len, write, 0, NULL, NULL);
2166         if (ret < 0)
2167                 return ret;
2168         return ret == len ? 0 : -1;
2169 }
2170
2171 /* 
2172  * Map a vmalloc()-space virtual address to the physical page.
2173  */
2174 struct page * vmalloc_to_page(void * vmalloc_addr)
2175 {
2176         unsigned long addr = (unsigned long) vmalloc_addr;
2177         struct page *page = NULL;
2178         pgd_t *pgd = pgd_offset_k(addr);
2179         pud_t *pud;
2180         pmd_t *pmd;
2181         pte_t *ptep, pte;
2182   
2183         if (!pgd_none(*pgd)) {
2184                 pud = pud_offset(pgd, addr);
2185                 if (!pud_none(*pud)) {
2186                         pmd = pmd_offset(pud, addr);
2187                         if (!pmd_none(*pmd)) {
2188                                 ptep = pte_offset_map(pmd, addr);
2189                                 pte = *ptep;
2190                                 if (pte_present(pte))
2191                                         page = pte_page(pte);
2192                                 pte_unmap(ptep);
2193                         }
2194                 }
2195         }
2196         return page;
2197 }
2198
2199 EXPORT_SYMBOL(vmalloc_to_page);
2200
2201 /*
2202  * Map a vmalloc()-space virtual address to the physical page frame number.
2203  */
2204 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2205 {
2206         return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2207 }
2208
2209 EXPORT_SYMBOL(vmalloc_to_pfn);
2210
2211 /*
2212  * update_mem_hiwater
2213  *      - update per process rss and vm high water data
2214  */
2215 void update_mem_hiwater(struct task_struct *tsk)
2216 {
2217         if (tsk->mm) {
2218                 unsigned long rss = get_mm_counter(tsk->mm, rss);
2219
2220                 if (tsk->mm->hiwater_rss < rss)
2221                         tsk->mm->hiwater_rss = rss;
2222                 if (tsk->mm->hiwater_vm < tsk->mm->total_vm)
2223                         tsk->mm->hiwater_vm = tsk->mm->total_vm;
2224         }
2225 }
2226
2227 #if !defined(__HAVE_ARCH_GATE_AREA)
2228
2229 #if defined(AT_SYSINFO_EHDR)
2230 static struct vm_area_struct gate_vma;
2231
2232 static int __init gate_vma_init(void)
2233 {
2234         gate_vma.vm_mm = NULL;
2235         gate_vma.vm_start = FIXADDR_USER_START;
2236         gate_vma.vm_end = FIXADDR_USER_END;
2237         gate_vma.vm_page_prot = PAGE_READONLY;
2238         gate_vma.vm_flags = 0;
2239         return 0;
2240 }
2241 __initcall(gate_vma_init);
2242 #endif
2243
2244 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2245 {
2246 #ifdef AT_SYSINFO_EHDR
2247         return &gate_vma;
2248 #else
2249         return NULL;
2250 #endif
2251 }
2252
2253 int in_gate_area_no_task(unsigned long addr)
2254 {
2255 #ifdef AT_SYSINFO_EHDR
2256         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2257                 return 1;
2258 #endif
2259         return 0;
2260 }
2261
2262 #endif  /* __HAVE_ARCH_GATE_AREA */