pandora: defconfig: update
[pandora-kernel.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <linux/io.h>
29
30 #include <linux/hugetlb.h>
31 #include <linux/node.h>
32 #include "internal.h"
33
34 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
35 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
36 unsigned long hugepages_treat_as_movable;
37
38 static int max_hstate;
39 unsigned int default_hstate_idx;
40 struct hstate hstates[HUGE_MAX_HSTATE];
41
42 __initdata LIST_HEAD(huge_boot_pages);
43
44 /* for command line parsing */
45 static struct hstate * __initdata parsed_hstate;
46 static unsigned long __initdata default_hstate_max_huge_pages;
47 static unsigned long __initdata default_hstate_size;
48
49 #define for_each_hstate(h) \
50         for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
51
52 /*
53  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
54  */
55 static DEFINE_SPINLOCK(hugetlb_lock);
56
57 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
58 {
59         bool free = (spool->count == 0) && (spool->used_hpages == 0);
60
61         spin_unlock(&spool->lock);
62
63         /* If no pages are used, and no other handles to the subpool
64          * remain, free the subpool the subpool remain */
65         if (free)
66                 kfree(spool);
67 }
68
69 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
70 {
71         struct hugepage_subpool *spool;
72
73         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
74         if (!spool)
75                 return NULL;
76
77         spin_lock_init(&spool->lock);
78         spool->count = 1;
79         spool->max_hpages = nr_blocks;
80         spool->used_hpages = 0;
81
82         return spool;
83 }
84
85 void hugepage_put_subpool(struct hugepage_subpool *spool)
86 {
87         spin_lock(&spool->lock);
88         BUG_ON(!spool->count);
89         spool->count--;
90         unlock_or_release_subpool(spool);
91 }
92
93 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
94                                       long delta)
95 {
96         int ret = 0;
97
98         if (!spool)
99                 return 0;
100
101         spin_lock(&spool->lock);
102         if ((spool->used_hpages + delta) <= spool->max_hpages) {
103                 spool->used_hpages += delta;
104         } else {
105                 ret = -ENOMEM;
106         }
107         spin_unlock(&spool->lock);
108
109         return ret;
110 }
111
112 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
113                                        long delta)
114 {
115         if (!spool)
116                 return;
117
118         spin_lock(&spool->lock);
119         spool->used_hpages -= delta;
120         /* If hugetlbfs_put_super couldn't free spool due to
121         * an outstanding quota reference, free it now. */
122         unlock_or_release_subpool(spool);
123 }
124
125 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
126 {
127         return HUGETLBFS_SB(inode->i_sb)->spool;
128 }
129
130 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
131 {
132         return subpool_inode(vma->vm_file->f_dentry->d_inode);
133 }
134
135 /*
136  * Region tracking -- allows tracking of reservations and instantiated pages
137  *                    across the pages in a mapping.
138  *
139  * The region data structures are protected by a combination of the mmap_sem
140  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
141  * must either hold the mmap_sem for write, or the mmap_sem for read and
142  * the hugetlb_instantiation mutex:
143  *
144  *      down_write(&mm->mmap_sem);
145  * or
146  *      down_read(&mm->mmap_sem);
147  *      mutex_lock(&hugetlb_instantiation_mutex);
148  */
149 struct file_region {
150         struct list_head link;
151         long from;
152         long to;
153 };
154
155 static long region_add(struct list_head *head, long f, long t)
156 {
157         struct file_region *rg, *nrg, *trg;
158
159         /* Locate the region we are either in or before. */
160         list_for_each_entry(rg, head, link)
161                 if (f <= rg->to)
162                         break;
163
164         /* Round our left edge to the current segment if it encloses us. */
165         if (f > rg->from)
166                 f = rg->from;
167
168         /* Check for and consume any regions we now overlap with. */
169         nrg = rg;
170         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
171                 if (&rg->link == head)
172                         break;
173                 if (rg->from > t)
174                         break;
175
176                 /* If this area reaches higher then extend our area to
177                  * include it completely.  If this is not the first area
178                  * which we intend to reuse, free it. */
179                 if (rg->to > t)
180                         t = rg->to;
181                 if (rg != nrg) {
182                         list_del(&rg->link);
183                         kfree(rg);
184                 }
185         }
186         nrg->from = f;
187         nrg->to = t;
188         return 0;
189 }
190
191 static long region_chg(struct list_head *head, long f, long t)
192 {
193         struct file_region *rg, *nrg;
194         long chg = 0;
195
196         /* Locate the region we are before or in. */
197         list_for_each_entry(rg, head, link)
198                 if (f <= rg->to)
199                         break;
200
201         /* If we are below the current region then a new region is required.
202          * Subtle, allocate a new region at the position but make it zero
203          * size such that we can guarantee to record the reservation. */
204         if (&rg->link == head || t < rg->from) {
205                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
206                 if (!nrg)
207                         return -ENOMEM;
208                 nrg->from = f;
209                 nrg->to   = f;
210                 INIT_LIST_HEAD(&nrg->link);
211                 list_add(&nrg->link, rg->link.prev);
212
213                 return t - f;
214         }
215
216         /* Round our left edge to the current segment if it encloses us. */
217         if (f > rg->from)
218                 f = rg->from;
219         chg = t - f;
220
221         /* Check for and consume any regions we now overlap with. */
222         list_for_each_entry(rg, rg->link.prev, link) {
223                 if (&rg->link == head)
224                         break;
225                 if (rg->from > t)
226                         return chg;
227
228                 /* We overlap with this area, if it extends further than
229                  * us then we must extend ourselves.  Account for its
230                  * existing reservation. */
231                 if (rg->to > t) {
232                         chg += rg->to - t;
233                         t = rg->to;
234                 }
235                 chg -= rg->to - rg->from;
236         }
237         return chg;
238 }
239
240 static long region_truncate(struct list_head *head, long end)
241 {
242         struct file_region *rg, *trg;
243         long chg = 0;
244
245         /* Locate the region we are either in or before. */
246         list_for_each_entry(rg, head, link)
247                 if (end <= rg->to)
248                         break;
249         if (&rg->link == head)
250                 return 0;
251
252         /* If we are in the middle of a region then adjust it. */
253         if (end > rg->from) {
254                 chg = rg->to - end;
255                 rg->to = end;
256                 rg = list_entry(rg->link.next, typeof(*rg), link);
257         }
258
259         /* Drop any remaining regions. */
260         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
261                 if (&rg->link == head)
262                         break;
263                 chg += rg->to - rg->from;
264                 list_del(&rg->link);
265                 kfree(rg);
266         }
267         return chg;
268 }
269
270 static long region_count(struct list_head *head, long f, long t)
271 {
272         struct file_region *rg;
273         long chg = 0;
274
275         /* Locate each segment we overlap with, and count that overlap. */
276         list_for_each_entry(rg, head, link) {
277                 int seg_from;
278                 int seg_to;
279
280                 if (rg->to <= f)
281                         continue;
282                 if (rg->from >= t)
283                         break;
284
285                 seg_from = max(rg->from, f);
286                 seg_to = min(rg->to, t);
287
288                 chg += seg_to - seg_from;
289         }
290
291         return chg;
292 }
293
294 /*
295  * Convert the address within this vma to the page offset within
296  * the mapping, in pagecache page units; huge pages here.
297  */
298 static pgoff_t vma_hugecache_offset(struct hstate *h,
299                         struct vm_area_struct *vma, unsigned long address)
300 {
301         return ((address - vma->vm_start) >> huge_page_shift(h)) +
302                         (vma->vm_pgoff >> huge_page_order(h));
303 }
304
305 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
306                                      unsigned long address)
307 {
308         return vma_hugecache_offset(hstate_vma(vma), vma, address);
309 }
310
311 /*
312  * Return the size of the pages allocated when backing a VMA. In the majority
313  * cases this will be same size as used by the page table entries.
314  */
315 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
316 {
317         struct hstate *hstate;
318
319         if (!is_vm_hugetlb_page(vma))
320                 return PAGE_SIZE;
321
322         hstate = hstate_vma(vma);
323
324         return 1UL << (hstate->order + PAGE_SHIFT);
325 }
326 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
327
328 /*
329  * Return the page size being used by the MMU to back a VMA. In the majority
330  * of cases, the page size used by the kernel matches the MMU size. On
331  * architectures where it differs, an architecture-specific version of this
332  * function is required.
333  */
334 #ifndef vma_mmu_pagesize
335 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
336 {
337         return vma_kernel_pagesize(vma);
338 }
339 #endif
340
341 /*
342  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
343  * bits of the reservation map pointer, which are always clear due to
344  * alignment.
345  */
346 #define HPAGE_RESV_OWNER    (1UL << 0)
347 #define HPAGE_RESV_UNMAPPED (1UL << 1)
348 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
349
350 /*
351  * These helpers are used to track how many pages are reserved for
352  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
353  * is guaranteed to have their future faults succeed.
354  *
355  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
356  * the reserve counters are updated with the hugetlb_lock held. It is safe
357  * to reset the VMA at fork() time as it is not in use yet and there is no
358  * chance of the global counters getting corrupted as a result of the values.
359  *
360  * The private mapping reservation is represented in a subtly different
361  * manner to a shared mapping.  A shared mapping has a region map associated
362  * with the underlying file, this region map represents the backing file
363  * pages which have ever had a reservation assigned which this persists even
364  * after the page is instantiated.  A private mapping has a region map
365  * associated with the original mmap which is attached to all VMAs which
366  * reference it, this region map represents those offsets which have consumed
367  * reservation ie. where pages have been instantiated.
368  */
369 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
370 {
371         return (unsigned long)vma->vm_private_data;
372 }
373
374 static void set_vma_private_data(struct vm_area_struct *vma,
375                                                         unsigned long value)
376 {
377         vma->vm_private_data = (void *)value;
378 }
379
380 struct resv_map {
381         struct kref refs;
382         struct list_head regions;
383 };
384
385 static struct resv_map *resv_map_alloc(void)
386 {
387         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
388         if (!resv_map)
389                 return NULL;
390
391         kref_init(&resv_map->refs);
392         INIT_LIST_HEAD(&resv_map->regions);
393
394         return resv_map;
395 }
396
397 static void resv_map_release(struct kref *ref)
398 {
399         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
400
401         /* Clear out any active regions before we release the map. */
402         region_truncate(&resv_map->regions, 0);
403         kfree(resv_map);
404 }
405
406 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
407 {
408         VM_BUG_ON(!is_vm_hugetlb_page(vma));
409         if (!(vma->vm_flags & VM_MAYSHARE))
410                 return (struct resv_map *)(get_vma_private_data(vma) &
411                                                         ~HPAGE_RESV_MASK);
412         return NULL;
413 }
414
415 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
416 {
417         VM_BUG_ON(!is_vm_hugetlb_page(vma));
418         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
419
420         set_vma_private_data(vma, (get_vma_private_data(vma) &
421                                 HPAGE_RESV_MASK) | (unsigned long)map);
422 }
423
424 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
425 {
426         VM_BUG_ON(!is_vm_hugetlb_page(vma));
427         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
428
429         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
430 }
431
432 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
433 {
434         VM_BUG_ON(!is_vm_hugetlb_page(vma));
435
436         return (get_vma_private_data(vma) & flag) != 0;
437 }
438
439 /* Decrement the reserved pages in the hugepage pool by one */
440 static void decrement_hugepage_resv_vma(struct hstate *h,
441                         struct vm_area_struct *vma)
442 {
443         if (vma->vm_flags & VM_NORESERVE)
444                 return;
445
446         if (vma->vm_flags & VM_MAYSHARE) {
447                 /* Shared mappings always use reserves */
448                 h->resv_huge_pages--;
449         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
450                 /*
451                  * Only the process that called mmap() has reserves for
452                  * private mappings.
453                  */
454                 h->resv_huge_pages--;
455         }
456 }
457
458 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
459 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
460 {
461         VM_BUG_ON(!is_vm_hugetlb_page(vma));
462         if (!(vma->vm_flags & VM_MAYSHARE))
463                 vma->vm_private_data = (void *)0;
464 }
465
466 /* Returns true if the VMA has associated reserve pages */
467 static int vma_has_reserves(struct vm_area_struct *vma)
468 {
469         if (vma->vm_flags & VM_MAYSHARE)
470                 return 1;
471         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
472                 return 1;
473         return 0;
474 }
475
476 static void copy_gigantic_page(struct page *dst, struct page *src)
477 {
478         int i;
479         struct hstate *h = page_hstate(src);
480         struct page *dst_base = dst;
481         struct page *src_base = src;
482
483         for (i = 0; i < pages_per_huge_page(h); ) {
484                 cond_resched();
485                 copy_highpage(dst, src);
486
487                 i++;
488                 dst = mem_map_next(dst, dst_base, i);
489                 src = mem_map_next(src, src_base, i);
490         }
491 }
492
493 void copy_huge_page(struct page *dst, struct page *src)
494 {
495         int i;
496         struct hstate *h = page_hstate(src);
497
498         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
499                 copy_gigantic_page(dst, src);
500                 return;
501         }
502
503         might_sleep();
504         for (i = 0; i < pages_per_huge_page(h); i++) {
505                 cond_resched();
506                 copy_highpage(dst + i, src + i);
507         }
508 }
509
510 static void enqueue_huge_page(struct hstate *h, struct page *page)
511 {
512         int nid = page_to_nid(page);
513         list_add(&page->lru, &h->hugepage_freelists[nid]);
514         h->free_huge_pages++;
515         h->free_huge_pages_node[nid]++;
516 }
517
518 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
519 {
520         struct page *page;
521
522         if (list_empty(&h->hugepage_freelists[nid]))
523                 return NULL;
524         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
525         list_del(&page->lru);
526         set_page_refcounted(page);
527         h->free_huge_pages--;
528         h->free_huge_pages_node[nid]--;
529         return page;
530 }
531
532 static struct page *dequeue_huge_page_vma(struct hstate *h,
533                                 struct vm_area_struct *vma,
534                                 unsigned long address, int avoid_reserve)
535 {
536         struct page *page = NULL;
537         struct mempolicy *mpol;
538         nodemask_t *nodemask;
539         struct zonelist *zonelist;
540         struct zone *zone;
541         struct zoneref *z;
542         unsigned int cpuset_mems_cookie;
543
544 retry_cpuset:
545         cpuset_mems_cookie = get_mems_allowed();
546         zonelist = huge_zonelist(vma, address,
547                                         htlb_alloc_mask, &mpol, &nodemask);
548         /*
549          * A child process with MAP_PRIVATE mappings created by their parent
550          * have no page reserves. This check ensures that reservations are
551          * not "stolen". The child may still get SIGKILLed
552          */
553         if (!vma_has_reserves(vma) &&
554                         h->free_huge_pages - h->resv_huge_pages == 0)
555                 goto err;
556
557         /* If reserves cannot be used, ensure enough pages are in the pool */
558         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
559                 goto err;
560
561         for_each_zone_zonelist_nodemask(zone, z, zonelist,
562                                                 MAX_NR_ZONES - 1, nodemask) {
563                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
564                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
565                         if (page) {
566                                 if (!avoid_reserve)
567                                         decrement_hugepage_resv_vma(h, vma);
568                                 break;
569                         }
570                 }
571         }
572
573         mpol_cond_put(mpol);
574         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
575                 goto retry_cpuset;
576         return page;
577
578 err:
579         mpol_cond_put(mpol);
580         return NULL;
581 }
582
583 static void update_and_free_page(struct hstate *h, struct page *page)
584 {
585         int i;
586
587         VM_BUG_ON(h->order >= MAX_ORDER);
588
589         h->nr_huge_pages--;
590         h->nr_huge_pages_node[page_to_nid(page)]--;
591         for (i = 0; i < pages_per_huge_page(h); i++) {
592                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
593                                 1 << PG_referenced | 1 << PG_dirty |
594                                 1 << PG_active | 1 << PG_reserved |
595                                 1 << PG_private | 1 << PG_writeback);
596         }
597         set_compound_page_dtor(page, NULL);
598         set_page_refcounted(page);
599         arch_release_hugepage(page);
600         __free_pages(page, huge_page_order(h));
601 }
602
603 struct hstate *size_to_hstate(unsigned long size)
604 {
605         struct hstate *h;
606
607         for_each_hstate(h) {
608                 if (huge_page_size(h) == size)
609                         return h;
610         }
611         return NULL;
612 }
613
614 static void free_huge_page(struct page *page)
615 {
616         /*
617          * Can't pass hstate in here because it is called from the
618          * compound page destructor.
619          */
620         struct hstate *h = page_hstate(page);
621         int nid = page_to_nid(page);
622         struct hugepage_subpool *spool =
623                 (struct hugepage_subpool *)page_private(page);
624
625         set_page_private(page, 0);
626         page->mapping = NULL;
627         BUG_ON(page_count(page));
628         BUG_ON(page_mapcount(page));
629         INIT_LIST_HEAD(&page->lru);
630
631         spin_lock(&hugetlb_lock);
632         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
633                 update_and_free_page(h, page);
634                 h->surplus_huge_pages--;
635                 h->surplus_huge_pages_node[nid]--;
636         } else {
637                 arch_clear_hugepage_flags(page);
638                 enqueue_huge_page(h, page);
639         }
640         spin_unlock(&hugetlb_lock);
641         hugepage_subpool_put_pages(spool, 1);
642 }
643
644 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
645 {
646         set_compound_page_dtor(page, free_huge_page);
647         spin_lock(&hugetlb_lock);
648         h->nr_huge_pages++;
649         h->nr_huge_pages_node[nid]++;
650         spin_unlock(&hugetlb_lock);
651         put_page(page); /* free it into the hugepage allocator */
652 }
653
654 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
655 {
656         int i;
657         int nr_pages = 1 << order;
658         struct page *p = page + 1;
659
660         /* we rely on prep_new_huge_page to set the destructor */
661         set_compound_order(page, order);
662         __SetPageHead(page);
663         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
664                 __SetPageTail(p);
665                 set_page_count(p, 0);
666                 p->first_page = page;
667         }
668 }
669
670 int PageHuge(struct page *page)
671 {
672         compound_page_dtor *dtor;
673
674         if (!PageCompound(page))
675                 return 0;
676
677         page = compound_head(page);
678         dtor = get_compound_page_dtor(page);
679
680         return dtor == free_huge_page;
681 }
682 EXPORT_SYMBOL_GPL(PageHuge);
683
684 /*
685  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
686  * normal or transparent huge pages.
687  */
688 int PageHeadHuge(struct page *page_head)
689 {
690         compound_page_dtor *dtor;
691
692         if (!PageHead(page_head))
693                 return 0;
694
695         dtor = get_compound_page_dtor(page_head);
696
697         return dtor == free_huge_page;
698 }
699 EXPORT_SYMBOL_GPL(PageHeadHuge);
700
701 pgoff_t __basepage_index(struct page *page)
702 {
703         struct page *page_head = compound_head(page);
704         pgoff_t index = page_index(page_head);
705         unsigned long compound_idx;
706
707         if (!PageHuge(page_head))
708                 return page_index(page);
709
710         if (compound_order(page_head) >= MAX_ORDER)
711                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
712         else
713                 compound_idx = page - page_head;
714
715         return (index << compound_order(page_head)) + compound_idx;
716 }
717
718 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
719 {
720         struct page *page;
721
722         if (h->order >= MAX_ORDER)
723                 return NULL;
724
725         page = alloc_pages_exact_node(nid,
726                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
727                                                 __GFP_REPEAT|__GFP_NOWARN,
728                 huge_page_order(h));
729         if (page) {
730                 if (arch_prepare_hugepage(page)) {
731                         __free_pages(page, huge_page_order(h));
732                         return NULL;
733                 }
734                 prep_new_huge_page(h, page, nid);
735         }
736
737         return page;
738 }
739
740 /*
741  * common helper functions for hstate_next_node_to_{alloc|free}.
742  * We may have allocated or freed a huge page based on a different
743  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
744  * be outside of *nodes_allowed.  Ensure that we use an allowed
745  * node for alloc or free.
746  */
747 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
748 {
749         nid = next_node(nid, *nodes_allowed);
750         if (nid == MAX_NUMNODES)
751                 nid = first_node(*nodes_allowed);
752         VM_BUG_ON(nid >= MAX_NUMNODES);
753
754         return nid;
755 }
756
757 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
758 {
759         if (!node_isset(nid, *nodes_allowed))
760                 nid = next_node_allowed(nid, nodes_allowed);
761         return nid;
762 }
763
764 /*
765  * returns the previously saved node ["this node"] from which to
766  * allocate a persistent huge page for the pool and advance the
767  * next node from which to allocate, handling wrap at end of node
768  * mask.
769  */
770 static int hstate_next_node_to_alloc(struct hstate *h,
771                                         nodemask_t *nodes_allowed)
772 {
773         int nid;
774
775         VM_BUG_ON(!nodes_allowed);
776
777         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
778         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
779
780         return nid;
781 }
782
783 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
784 {
785         struct page *page;
786         int start_nid;
787         int next_nid;
788         int ret = 0;
789
790         start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
791         next_nid = start_nid;
792
793         do {
794                 page = alloc_fresh_huge_page_node(h, next_nid);
795                 if (page) {
796                         ret = 1;
797                         break;
798                 }
799                 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
800         } while (next_nid != start_nid);
801
802         if (ret)
803                 count_vm_event(HTLB_BUDDY_PGALLOC);
804         else
805                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
806
807         return ret;
808 }
809
810 /*
811  * helper for free_pool_huge_page() - return the previously saved
812  * node ["this node"] from which to free a huge page.  Advance the
813  * next node id whether or not we find a free huge page to free so
814  * that the next attempt to free addresses the next node.
815  */
816 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
817 {
818         int nid;
819
820         VM_BUG_ON(!nodes_allowed);
821
822         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
823         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
824
825         return nid;
826 }
827
828 /*
829  * Free huge page from pool from next node to free.
830  * Attempt to keep persistent huge pages more or less
831  * balanced over allowed nodes.
832  * Called with hugetlb_lock locked.
833  */
834 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
835                                                          bool acct_surplus)
836 {
837         int start_nid;
838         int next_nid;
839         int ret = 0;
840
841         start_nid = hstate_next_node_to_free(h, nodes_allowed);
842         next_nid = start_nid;
843
844         do {
845                 /*
846                  * If we're returning unused surplus pages, only examine
847                  * nodes with surplus pages.
848                  */
849                 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
850                     !list_empty(&h->hugepage_freelists[next_nid])) {
851                         struct page *page =
852                                 list_entry(h->hugepage_freelists[next_nid].next,
853                                           struct page, lru);
854                         list_del(&page->lru);
855                         h->free_huge_pages--;
856                         h->free_huge_pages_node[next_nid]--;
857                         if (acct_surplus) {
858                                 h->surplus_huge_pages--;
859                                 h->surplus_huge_pages_node[next_nid]--;
860                         }
861                         update_and_free_page(h, page);
862                         ret = 1;
863                         break;
864                 }
865                 next_nid = hstate_next_node_to_free(h, nodes_allowed);
866         } while (next_nid != start_nid);
867
868         return ret;
869 }
870
871 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
872 {
873         struct page *page;
874         unsigned int r_nid;
875
876         if (h->order >= MAX_ORDER)
877                 return NULL;
878
879         /*
880          * Assume we will successfully allocate the surplus page to
881          * prevent racing processes from causing the surplus to exceed
882          * overcommit
883          *
884          * This however introduces a different race, where a process B
885          * tries to grow the static hugepage pool while alloc_pages() is
886          * called by process A. B will only examine the per-node
887          * counters in determining if surplus huge pages can be
888          * converted to normal huge pages in adjust_pool_surplus(). A
889          * won't be able to increment the per-node counter, until the
890          * lock is dropped by B, but B doesn't drop hugetlb_lock until
891          * no more huge pages can be converted from surplus to normal
892          * state (and doesn't try to convert again). Thus, we have a
893          * case where a surplus huge page exists, the pool is grown, and
894          * the surplus huge page still exists after, even though it
895          * should just have been converted to a normal huge page. This
896          * does not leak memory, though, as the hugepage will be freed
897          * once it is out of use. It also does not allow the counters to
898          * go out of whack in adjust_pool_surplus() as we don't modify
899          * the node values until we've gotten the hugepage and only the
900          * per-node value is checked there.
901          */
902         spin_lock(&hugetlb_lock);
903         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
904                 spin_unlock(&hugetlb_lock);
905                 return NULL;
906         } else {
907                 h->nr_huge_pages++;
908                 h->surplus_huge_pages++;
909         }
910         spin_unlock(&hugetlb_lock);
911
912         if (nid == NUMA_NO_NODE)
913                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
914                                    __GFP_REPEAT|__GFP_NOWARN,
915                                    huge_page_order(h));
916         else
917                 page = alloc_pages_exact_node(nid,
918                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
919                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
920
921         if (page && arch_prepare_hugepage(page)) {
922                 __free_pages(page, huge_page_order(h));
923                 return NULL;
924         }
925
926         spin_lock(&hugetlb_lock);
927         if (page) {
928                 r_nid = page_to_nid(page);
929                 set_compound_page_dtor(page, free_huge_page);
930                 /*
931                  * We incremented the global counters already
932                  */
933                 h->nr_huge_pages_node[r_nid]++;
934                 h->surplus_huge_pages_node[r_nid]++;
935                 __count_vm_event(HTLB_BUDDY_PGALLOC);
936         } else {
937                 h->nr_huge_pages--;
938                 h->surplus_huge_pages--;
939                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
940         }
941         spin_unlock(&hugetlb_lock);
942
943         return page;
944 }
945
946 /*
947  * This allocation function is useful in the context where vma is irrelevant.
948  * E.g. soft-offlining uses this function because it only cares physical
949  * address of error page.
950  */
951 struct page *alloc_huge_page_node(struct hstate *h, int nid)
952 {
953         struct page *page;
954
955         spin_lock(&hugetlb_lock);
956         page = dequeue_huge_page_node(h, nid);
957         spin_unlock(&hugetlb_lock);
958
959         if (!page)
960                 page = alloc_buddy_huge_page(h, nid);
961
962         return page;
963 }
964
965 /*
966  * Increase the hugetlb pool such that it can accommodate a reservation
967  * of size 'delta'.
968  */
969 static int gather_surplus_pages(struct hstate *h, int delta)
970 {
971         struct list_head surplus_list;
972         struct page *page, *tmp;
973         int ret, i;
974         int needed, allocated;
975
976         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
977         if (needed <= 0) {
978                 h->resv_huge_pages += delta;
979                 return 0;
980         }
981
982         allocated = 0;
983         INIT_LIST_HEAD(&surplus_list);
984
985         ret = -ENOMEM;
986 retry:
987         spin_unlock(&hugetlb_lock);
988         for (i = 0; i < needed; i++) {
989                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
990                 if (!page)
991                         /*
992                          * We were not able to allocate enough pages to
993                          * satisfy the entire reservation so we free what
994                          * we've allocated so far.
995                          */
996                         goto free;
997
998                 list_add(&page->lru, &surplus_list);
999         }
1000         allocated += needed;
1001
1002         /*
1003          * After retaking hugetlb_lock, we need to recalculate 'needed'
1004          * because either resv_huge_pages or free_huge_pages may have changed.
1005          */
1006         spin_lock(&hugetlb_lock);
1007         needed = (h->resv_huge_pages + delta) -
1008                         (h->free_huge_pages + allocated);
1009         if (needed > 0)
1010                 goto retry;
1011
1012         /*
1013          * The surplus_list now contains _at_least_ the number of extra pages
1014          * needed to accommodate the reservation.  Add the appropriate number
1015          * of pages to the hugetlb pool and free the extras back to the buddy
1016          * allocator.  Commit the entire reservation here to prevent another
1017          * process from stealing the pages as they are added to the pool but
1018          * before they are reserved.
1019          */
1020         needed += allocated;
1021         h->resv_huge_pages += delta;
1022         ret = 0;
1023
1024         /* Free the needed pages to the hugetlb pool */
1025         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1026                 if ((--needed) < 0)
1027                         break;
1028                 list_del(&page->lru);
1029                 /*
1030                  * This page is now managed by the hugetlb allocator and has
1031                  * no users -- drop the buddy allocator's reference.
1032                  */
1033                 put_page_testzero(page);
1034                 VM_BUG_ON(page_count(page));
1035                 enqueue_huge_page(h, page);
1036         }
1037         spin_unlock(&hugetlb_lock);
1038
1039         /* Free unnecessary surplus pages to the buddy allocator */
1040 free:
1041         if (!list_empty(&surplus_list)) {
1042                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1043                         list_del(&page->lru);
1044                         put_page(page);
1045                 }
1046         }
1047         spin_lock(&hugetlb_lock);
1048
1049         return ret;
1050 }
1051
1052 /*
1053  * When releasing a hugetlb pool reservation, any surplus pages that were
1054  * allocated to satisfy the reservation must be explicitly freed if they were
1055  * never used.
1056  * Called with hugetlb_lock held.
1057  */
1058 static void return_unused_surplus_pages(struct hstate *h,
1059                                         unsigned long unused_resv_pages)
1060 {
1061         unsigned long nr_pages;
1062
1063         /* Uncommit the reservation */
1064         h->resv_huge_pages -= unused_resv_pages;
1065
1066         /* Cannot return gigantic pages currently */
1067         if (h->order >= MAX_ORDER)
1068                 return;
1069
1070         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1071
1072         /*
1073          * We want to release as many surplus pages as possible, spread
1074          * evenly across all nodes with memory. Iterate across these nodes
1075          * until we can no longer free unreserved surplus pages. This occurs
1076          * when the nodes with surplus pages have no free pages.
1077          * free_pool_huge_page() will balance the the freed pages across the
1078          * on-line nodes with memory and will handle the hstate accounting.
1079          */
1080         while (nr_pages--) {
1081                 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1082                         break;
1083                 cond_resched_lock(&hugetlb_lock);
1084         }
1085 }
1086
1087 /*
1088  * Determine if the huge page at addr within the vma has an associated
1089  * reservation.  Where it does not we will need to logically increase
1090  * reservation and actually increase subpool usage before an allocation
1091  * can occur.  Where any new reservation would be required the
1092  * reservation change is prepared, but not committed.  Once the page
1093  * has been allocated from the subpool and instantiated the change should
1094  * be committed via vma_commit_reservation.  No action is required on
1095  * failure.
1096  */
1097 static long vma_needs_reservation(struct hstate *h,
1098                         struct vm_area_struct *vma, unsigned long addr)
1099 {
1100         struct address_space *mapping = vma->vm_file->f_mapping;
1101         struct inode *inode = mapping->host;
1102
1103         if (vma->vm_flags & VM_MAYSHARE) {
1104                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1105                 return region_chg(&inode->i_mapping->private_list,
1106                                                         idx, idx + 1);
1107
1108         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1109                 return 1;
1110
1111         } else  {
1112                 long err;
1113                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1114                 struct resv_map *reservations = vma_resv_map(vma);
1115
1116                 err = region_chg(&reservations->regions, idx, idx + 1);
1117                 if (err < 0)
1118                         return err;
1119                 return 0;
1120         }
1121 }
1122 static void vma_commit_reservation(struct hstate *h,
1123                         struct vm_area_struct *vma, unsigned long addr)
1124 {
1125         struct address_space *mapping = vma->vm_file->f_mapping;
1126         struct inode *inode = mapping->host;
1127
1128         if (vma->vm_flags & VM_MAYSHARE) {
1129                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1130                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1131
1132         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1133                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1134                 struct resv_map *reservations = vma_resv_map(vma);
1135
1136                 /* Mark this page used in the map. */
1137                 region_add(&reservations->regions, idx, idx + 1);
1138         }
1139 }
1140
1141 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1142                                     unsigned long addr, int avoid_reserve)
1143 {
1144         struct hugepage_subpool *spool = subpool_vma(vma);
1145         struct hstate *h = hstate_vma(vma);
1146         struct page *page;
1147         long chg;
1148
1149         /*
1150          * Processes that did not create the mapping will have no
1151          * reserves and will not have accounted against subpool
1152          * limit. Check that the subpool limit can be made before
1153          * satisfying the allocation MAP_NORESERVE mappings may also
1154          * need pages and subpool limit allocated allocated if no reserve
1155          * mapping overlaps.
1156          */
1157         chg = vma_needs_reservation(h, vma, addr);
1158         if (chg < 0)
1159                 return ERR_PTR(-VM_FAULT_OOM);
1160         if (chg)
1161                 if (hugepage_subpool_get_pages(spool, chg))
1162                         return ERR_PTR(-VM_FAULT_SIGBUS);
1163
1164         spin_lock(&hugetlb_lock);
1165         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1166         spin_unlock(&hugetlb_lock);
1167
1168         if (!page) {
1169                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1170                 if (!page) {
1171                         hugepage_subpool_put_pages(spool, chg);
1172                         return ERR_PTR(-VM_FAULT_SIGBUS);
1173                 }
1174         }
1175
1176         set_page_private(page, (unsigned long)spool);
1177
1178         vma_commit_reservation(h, vma, addr);
1179
1180         return page;
1181 }
1182
1183 int __weak alloc_bootmem_huge_page(struct hstate *h)
1184 {
1185         struct huge_bootmem_page *m;
1186         int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1187
1188         while (nr_nodes) {
1189                 void *addr;
1190
1191                 addr = __alloc_bootmem_node_nopanic(
1192                                 NODE_DATA(hstate_next_node_to_alloc(h,
1193                                                 &node_states[N_HIGH_MEMORY])),
1194                                 huge_page_size(h), huge_page_size(h), 0);
1195
1196                 if (addr) {
1197                         /*
1198                          * Use the beginning of the huge page to store the
1199                          * huge_bootmem_page struct (until gather_bootmem
1200                          * puts them into the mem_map).
1201                          */
1202                         m = addr;
1203                         goto found;
1204                 }
1205                 nr_nodes--;
1206         }
1207         return 0;
1208
1209 found:
1210         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1211         /* Put them into a private list first because mem_map is not up yet */
1212         list_add(&m->list, &huge_boot_pages);
1213         m->hstate = h;
1214         return 1;
1215 }
1216
1217 static void prep_compound_huge_page(struct page *page, int order)
1218 {
1219         if (unlikely(order > (MAX_ORDER - 1)))
1220                 prep_compound_gigantic_page(page, order);
1221         else
1222                 prep_compound_page(page, order);
1223 }
1224
1225 /* Put bootmem huge pages into the standard lists after mem_map is up */
1226 static void __init gather_bootmem_prealloc(void)
1227 {
1228         struct huge_bootmem_page *m;
1229
1230         list_for_each_entry(m, &huge_boot_pages, list) {
1231                 struct hstate *h = m->hstate;
1232                 struct page *page;
1233
1234 #ifdef CONFIG_HIGHMEM
1235                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1236                 free_bootmem_late((unsigned long)m,
1237                                   sizeof(struct huge_bootmem_page));
1238 #else
1239                 page = virt_to_page(m);
1240 #endif
1241                 __ClearPageReserved(page);
1242                 WARN_ON(page_count(page) != 1);
1243                 prep_compound_huge_page(page, h->order);
1244                 prep_new_huge_page(h, page, page_to_nid(page));
1245                 /*
1246                  * If we had gigantic hugepages allocated at boot time, we need
1247                  * to restore the 'stolen' pages to totalram_pages in order to
1248                  * fix confusing memory reports from free(1) and another
1249                  * side-effects, like CommitLimit going negative.
1250                  */
1251                 if (h->order > (MAX_ORDER - 1))
1252                         totalram_pages += 1 << h->order;
1253         }
1254 }
1255
1256 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1257 {
1258         unsigned long i;
1259
1260         for (i = 0; i < h->max_huge_pages; ++i) {
1261                 if (h->order >= MAX_ORDER) {
1262                         if (!alloc_bootmem_huge_page(h))
1263                                 break;
1264                 } else if (!alloc_fresh_huge_page(h,
1265                                          &node_states[N_HIGH_MEMORY]))
1266                         break;
1267         }
1268         h->max_huge_pages = i;
1269 }
1270
1271 static void __init hugetlb_init_hstates(void)
1272 {
1273         struct hstate *h;
1274
1275         for_each_hstate(h) {
1276                 /* oversize hugepages were init'ed in early boot */
1277                 if (h->order < MAX_ORDER)
1278                         hugetlb_hstate_alloc_pages(h);
1279         }
1280 }
1281
1282 static char * __init memfmt(char *buf, unsigned long n)
1283 {
1284         if (n >= (1UL << 30))
1285                 sprintf(buf, "%lu GB", n >> 30);
1286         else if (n >= (1UL << 20))
1287                 sprintf(buf, "%lu MB", n >> 20);
1288         else
1289                 sprintf(buf, "%lu KB", n >> 10);
1290         return buf;
1291 }
1292
1293 static void __init report_hugepages(void)
1294 {
1295         struct hstate *h;
1296
1297         for_each_hstate(h) {
1298                 char buf[32];
1299                 printk(KERN_INFO "HugeTLB registered %s page size, "
1300                                  "pre-allocated %ld pages\n",
1301                         memfmt(buf, huge_page_size(h)),
1302                         h->free_huge_pages);
1303         }
1304 }
1305
1306 #ifdef CONFIG_HIGHMEM
1307 static void try_to_free_low(struct hstate *h, unsigned long count,
1308                                                 nodemask_t *nodes_allowed)
1309 {
1310         int i;
1311
1312         if (h->order >= MAX_ORDER)
1313                 return;
1314
1315         for_each_node_mask(i, *nodes_allowed) {
1316                 struct page *page, *next;
1317                 struct list_head *freel = &h->hugepage_freelists[i];
1318                 list_for_each_entry_safe(page, next, freel, lru) {
1319                         if (count >= h->nr_huge_pages)
1320                                 return;
1321                         if (PageHighMem(page))
1322                                 continue;
1323                         list_del(&page->lru);
1324                         update_and_free_page(h, page);
1325                         h->free_huge_pages--;
1326                         h->free_huge_pages_node[page_to_nid(page)]--;
1327                 }
1328         }
1329 }
1330 #else
1331 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1332                                                 nodemask_t *nodes_allowed)
1333 {
1334 }
1335 #endif
1336
1337 /*
1338  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1339  * balanced by operating on them in a round-robin fashion.
1340  * Returns 1 if an adjustment was made.
1341  */
1342 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1343                                 int delta)
1344 {
1345         int start_nid, next_nid;
1346         int ret = 0;
1347
1348         VM_BUG_ON(delta != -1 && delta != 1);
1349
1350         if (delta < 0)
1351                 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1352         else
1353                 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1354         next_nid = start_nid;
1355
1356         do {
1357                 int nid = next_nid;
1358                 if (delta < 0)  {
1359                         /*
1360                          * To shrink on this node, there must be a surplus page
1361                          */
1362                         if (!h->surplus_huge_pages_node[nid]) {
1363                                 next_nid = hstate_next_node_to_alloc(h,
1364                                                                 nodes_allowed);
1365                                 continue;
1366                         }
1367                 }
1368                 if (delta > 0) {
1369                         /*
1370                          * Surplus cannot exceed the total number of pages
1371                          */
1372                         if (h->surplus_huge_pages_node[nid] >=
1373                                                 h->nr_huge_pages_node[nid]) {
1374                                 next_nid = hstate_next_node_to_free(h,
1375                                                                 nodes_allowed);
1376                                 continue;
1377                         }
1378                 }
1379
1380                 h->surplus_huge_pages += delta;
1381                 h->surplus_huge_pages_node[nid] += delta;
1382                 ret = 1;
1383                 break;
1384         } while (next_nid != start_nid);
1385
1386         return ret;
1387 }
1388
1389 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1390 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1391                                                 nodemask_t *nodes_allowed)
1392 {
1393         unsigned long min_count, ret;
1394
1395         if (h->order >= MAX_ORDER)
1396                 return h->max_huge_pages;
1397
1398         /*
1399          * Increase the pool size
1400          * First take pages out of surplus state.  Then make up the
1401          * remaining difference by allocating fresh huge pages.
1402          *
1403          * We might race with alloc_buddy_huge_page() here and be unable
1404          * to convert a surplus huge page to a normal huge page. That is
1405          * not critical, though, it just means the overall size of the
1406          * pool might be one hugepage larger than it needs to be, but
1407          * within all the constraints specified by the sysctls.
1408          */
1409         spin_lock(&hugetlb_lock);
1410         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1411                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1412                         break;
1413         }
1414
1415         while (count > persistent_huge_pages(h)) {
1416                 /*
1417                  * If this allocation races such that we no longer need the
1418                  * page, free_huge_page will handle it by freeing the page
1419                  * and reducing the surplus.
1420                  */
1421                 spin_unlock(&hugetlb_lock);
1422
1423                 /* yield cpu to avoid soft lockup */
1424                 cond_resched();
1425
1426                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1427                 spin_lock(&hugetlb_lock);
1428                 if (!ret)
1429                         goto out;
1430
1431                 /* Bail for signals. Probably ctrl-c from user */
1432                 if (signal_pending(current))
1433                         goto out;
1434         }
1435
1436         /*
1437          * Decrease the pool size
1438          * First return free pages to the buddy allocator (being careful
1439          * to keep enough around to satisfy reservations).  Then place
1440          * pages into surplus state as needed so the pool will shrink
1441          * to the desired size as pages become free.
1442          *
1443          * By placing pages into the surplus state independent of the
1444          * overcommit value, we are allowing the surplus pool size to
1445          * exceed overcommit. There are few sane options here. Since
1446          * alloc_buddy_huge_page() is checking the global counter,
1447          * though, we'll note that we're not allowed to exceed surplus
1448          * and won't grow the pool anywhere else. Not until one of the
1449          * sysctls are changed, or the surplus pages go out of use.
1450          */
1451         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1452         min_count = max(count, min_count);
1453         try_to_free_low(h, min_count, nodes_allowed);
1454         while (min_count < persistent_huge_pages(h)) {
1455                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1456                         break;
1457                 cond_resched_lock(&hugetlb_lock);
1458         }
1459         while (count < persistent_huge_pages(h)) {
1460                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1461                         break;
1462         }
1463 out:
1464         ret = persistent_huge_pages(h);
1465         spin_unlock(&hugetlb_lock);
1466         return ret;
1467 }
1468
1469 #define HSTATE_ATTR_RO(_name) \
1470         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1471
1472 #define HSTATE_ATTR(_name) \
1473         static struct kobj_attribute _name##_attr = \
1474                 __ATTR(_name, 0644, _name##_show, _name##_store)
1475
1476 static struct kobject *hugepages_kobj;
1477 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1478
1479 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1480
1481 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1482 {
1483         int i;
1484
1485         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1486                 if (hstate_kobjs[i] == kobj) {
1487                         if (nidp)
1488                                 *nidp = NUMA_NO_NODE;
1489                         return &hstates[i];
1490                 }
1491
1492         return kobj_to_node_hstate(kobj, nidp);
1493 }
1494
1495 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1496                                         struct kobj_attribute *attr, char *buf)
1497 {
1498         struct hstate *h;
1499         unsigned long nr_huge_pages;
1500         int nid;
1501
1502         h = kobj_to_hstate(kobj, &nid);
1503         if (nid == NUMA_NO_NODE)
1504                 nr_huge_pages = h->nr_huge_pages;
1505         else
1506                 nr_huge_pages = h->nr_huge_pages_node[nid];
1507
1508         return sprintf(buf, "%lu\n", nr_huge_pages);
1509 }
1510
1511 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1512                         struct kobject *kobj, struct kobj_attribute *attr,
1513                         const char *buf, size_t len)
1514 {
1515         int err;
1516         int nid;
1517         unsigned long count;
1518         struct hstate *h;
1519         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1520
1521         err = strict_strtoul(buf, 10, &count);
1522         if (err)
1523                 goto out;
1524
1525         h = kobj_to_hstate(kobj, &nid);
1526         if (h->order >= MAX_ORDER) {
1527                 err = -EINVAL;
1528                 goto out;
1529         }
1530
1531         if (nid == NUMA_NO_NODE) {
1532                 /*
1533                  * global hstate attribute
1534                  */
1535                 if (!(obey_mempolicy &&
1536                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1537                         NODEMASK_FREE(nodes_allowed);
1538                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1539                 }
1540         } else if (nodes_allowed) {
1541                 /*
1542                  * per node hstate attribute: adjust count to global,
1543                  * but restrict alloc/free to the specified node.
1544                  */
1545                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1546                 init_nodemask_of_node(nodes_allowed, nid);
1547         } else
1548                 nodes_allowed = &node_states[N_HIGH_MEMORY];
1549
1550         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1551
1552         if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1553                 NODEMASK_FREE(nodes_allowed);
1554
1555         return len;
1556 out:
1557         NODEMASK_FREE(nodes_allowed);
1558         return err;
1559 }
1560
1561 static ssize_t nr_hugepages_show(struct kobject *kobj,
1562                                        struct kobj_attribute *attr, char *buf)
1563 {
1564         return nr_hugepages_show_common(kobj, attr, buf);
1565 }
1566
1567 static ssize_t nr_hugepages_store(struct kobject *kobj,
1568                struct kobj_attribute *attr, const char *buf, size_t len)
1569 {
1570         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1571 }
1572 HSTATE_ATTR(nr_hugepages);
1573
1574 #ifdef CONFIG_NUMA
1575
1576 /*
1577  * hstate attribute for optionally mempolicy-based constraint on persistent
1578  * huge page alloc/free.
1579  */
1580 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1581                                        struct kobj_attribute *attr, char *buf)
1582 {
1583         return nr_hugepages_show_common(kobj, attr, buf);
1584 }
1585
1586 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1587                struct kobj_attribute *attr, const char *buf, size_t len)
1588 {
1589         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1590 }
1591 HSTATE_ATTR(nr_hugepages_mempolicy);
1592 #endif
1593
1594
1595 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1596                                         struct kobj_attribute *attr, char *buf)
1597 {
1598         struct hstate *h = kobj_to_hstate(kobj, NULL);
1599         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1600 }
1601
1602 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1603                 struct kobj_attribute *attr, const char *buf, size_t count)
1604 {
1605         int err;
1606         unsigned long input;
1607         struct hstate *h = kobj_to_hstate(kobj, NULL);
1608
1609         if (h->order >= MAX_ORDER)
1610                 return -EINVAL;
1611
1612         err = strict_strtoul(buf, 10, &input);
1613         if (err)
1614                 return err;
1615
1616         spin_lock(&hugetlb_lock);
1617         h->nr_overcommit_huge_pages = input;
1618         spin_unlock(&hugetlb_lock);
1619
1620         return count;
1621 }
1622 HSTATE_ATTR(nr_overcommit_hugepages);
1623
1624 static ssize_t free_hugepages_show(struct kobject *kobj,
1625                                         struct kobj_attribute *attr, char *buf)
1626 {
1627         struct hstate *h;
1628         unsigned long free_huge_pages;
1629         int nid;
1630
1631         h = kobj_to_hstate(kobj, &nid);
1632         if (nid == NUMA_NO_NODE)
1633                 free_huge_pages = h->free_huge_pages;
1634         else
1635                 free_huge_pages = h->free_huge_pages_node[nid];
1636
1637         return sprintf(buf, "%lu\n", free_huge_pages);
1638 }
1639 HSTATE_ATTR_RO(free_hugepages);
1640
1641 static ssize_t resv_hugepages_show(struct kobject *kobj,
1642                                         struct kobj_attribute *attr, char *buf)
1643 {
1644         struct hstate *h = kobj_to_hstate(kobj, NULL);
1645         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1646 }
1647 HSTATE_ATTR_RO(resv_hugepages);
1648
1649 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1650                                         struct kobj_attribute *attr, char *buf)
1651 {
1652         struct hstate *h;
1653         unsigned long surplus_huge_pages;
1654         int nid;
1655
1656         h = kobj_to_hstate(kobj, &nid);
1657         if (nid == NUMA_NO_NODE)
1658                 surplus_huge_pages = h->surplus_huge_pages;
1659         else
1660                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1661
1662         return sprintf(buf, "%lu\n", surplus_huge_pages);
1663 }
1664 HSTATE_ATTR_RO(surplus_hugepages);
1665
1666 static struct attribute *hstate_attrs[] = {
1667         &nr_hugepages_attr.attr,
1668         &nr_overcommit_hugepages_attr.attr,
1669         &free_hugepages_attr.attr,
1670         &resv_hugepages_attr.attr,
1671         &surplus_hugepages_attr.attr,
1672 #ifdef CONFIG_NUMA
1673         &nr_hugepages_mempolicy_attr.attr,
1674 #endif
1675         NULL,
1676 };
1677
1678 static struct attribute_group hstate_attr_group = {
1679         .attrs = hstate_attrs,
1680 };
1681
1682 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1683                                     struct kobject **hstate_kobjs,
1684                                     struct attribute_group *hstate_attr_group)
1685 {
1686         int retval;
1687         int hi = h - hstates;
1688
1689         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1690         if (!hstate_kobjs[hi])
1691                 return -ENOMEM;
1692
1693         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1694         if (retval)
1695                 kobject_put(hstate_kobjs[hi]);
1696
1697         return retval;
1698 }
1699
1700 static void __init hugetlb_sysfs_init(void)
1701 {
1702         struct hstate *h;
1703         int err;
1704
1705         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1706         if (!hugepages_kobj)
1707                 return;
1708
1709         for_each_hstate(h) {
1710                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1711                                          hstate_kobjs, &hstate_attr_group);
1712                 if (err)
1713                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1714                                                                 h->name);
1715         }
1716 }
1717
1718 #ifdef CONFIG_NUMA
1719
1720 /*
1721  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1722  * with node devices in node_devices[] using a parallel array.  The array
1723  * index of a node device or _hstate == node id.
1724  * This is here to avoid any static dependency of the node device driver, in
1725  * the base kernel, on the hugetlb module.
1726  */
1727 struct node_hstate {
1728         struct kobject          *hugepages_kobj;
1729         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1730 };
1731 struct node_hstate node_hstates[MAX_NUMNODES];
1732
1733 /*
1734  * A subset of global hstate attributes for node devices
1735  */
1736 static struct attribute *per_node_hstate_attrs[] = {
1737         &nr_hugepages_attr.attr,
1738         &free_hugepages_attr.attr,
1739         &surplus_hugepages_attr.attr,
1740         NULL,
1741 };
1742
1743 static struct attribute_group per_node_hstate_attr_group = {
1744         .attrs = per_node_hstate_attrs,
1745 };
1746
1747 /*
1748  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1749  * Returns node id via non-NULL nidp.
1750  */
1751 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1752 {
1753         int nid;
1754
1755         for (nid = 0; nid < nr_node_ids; nid++) {
1756                 struct node_hstate *nhs = &node_hstates[nid];
1757                 int i;
1758                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1759                         if (nhs->hstate_kobjs[i] == kobj) {
1760                                 if (nidp)
1761                                         *nidp = nid;
1762                                 return &hstates[i];
1763                         }
1764         }
1765
1766         BUG();
1767         return NULL;
1768 }
1769
1770 /*
1771  * Unregister hstate attributes from a single node device.
1772  * No-op if no hstate attributes attached.
1773  */
1774 void hugetlb_unregister_node(struct node *node)
1775 {
1776         struct hstate *h;
1777         struct node_hstate *nhs = &node_hstates[node->dev.id];
1778
1779         if (!nhs->hugepages_kobj)
1780                 return;         /* no hstate attributes */
1781
1782         for_each_hstate(h)
1783                 if (nhs->hstate_kobjs[h - hstates]) {
1784                         kobject_put(nhs->hstate_kobjs[h - hstates]);
1785                         nhs->hstate_kobjs[h - hstates] = NULL;
1786                 }
1787
1788         kobject_put(nhs->hugepages_kobj);
1789         nhs->hugepages_kobj = NULL;
1790 }
1791
1792 /*
1793  * hugetlb module exit:  unregister hstate attributes from node devices
1794  * that have them.
1795  */
1796 static void hugetlb_unregister_all_nodes(void)
1797 {
1798         int nid;
1799
1800         /*
1801          * disable node device registrations.
1802          */
1803         register_hugetlbfs_with_node(NULL, NULL);
1804
1805         /*
1806          * remove hstate attributes from any nodes that have them.
1807          */
1808         for (nid = 0; nid < nr_node_ids; nid++)
1809                 hugetlb_unregister_node(&node_devices[nid]);
1810 }
1811
1812 /*
1813  * Register hstate attributes for a single node device.
1814  * No-op if attributes already registered.
1815  */
1816 void hugetlb_register_node(struct node *node)
1817 {
1818         struct hstate *h;
1819         struct node_hstate *nhs = &node_hstates[node->dev.id];
1820         int err;
1821
1822         if (nhs->hugepages_kobj)
1823                 return;         /* already allocated */
1824
1825         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1826                                                         &node->dev.kobj);
1827         if (!nhs->hugepages_kobj)
1828                 return;
1829
1830         for_each_hstate(h) {
1831                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1832                                                 nhs->hstate_kobjs,
1833                                                 &per_node_hstate_attr_group);
1834                 if (err) {
1835                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1836                                         " for node %d\n",
1837                                                 h->name, node->dev.id);
1838                         hugetlb_unregister_node(node);
1839                         break;
1840                 }
1841         }
1842 }
1843
1844 /*
1845  * hugetlb init time:  register hstate attributes for all registered node
1846  * devices of nodes that have memory.  All on-line nodes should have
1847  * registered their associated device by this time.
1848  */
1849 static void hugetlb_register_all_nodes(void)
1850 {
1851         int nid;
1852
1853         for_each_node_state(nid, N_HIGH_MEMORY) {
1854                 struct node *node = &node_devices[nid];
1855                 if (node->dev.id == nid)
1856                         hugetlb_register_node(node);
1857         }
1858
1859         /*
1860          * Let the node device driver know we're here so it can
1861          * [un]register hstate attributes on node hotplug.
1862          */
1863         register_hugetlbfs_with_node(hugetlb_register_node,
1864                                      hugetlb_unregister_node);
1865 }
1866 #else   /* !CONFIG_NUMA */
1867
1868 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1869 {
1870         BUG();
1871         if (nidp)
1872                 *nidp = -1;
1873         return NULL;
1874 }
1875
1876 static void hugetlb_unregister_all_nodes(void) { }
1877
1878 static void hugetlb_register_all_nodes(void) { }
1879
1880 #endif
1881
1882 static void __exit hugetlb_exit(void)
1883 {
1884         struct hstate *h;
1885
1886         hugetlb_unregister_all_nodes();
1887
1888         for_each_hstate(h) {
1889                 kobject_put(hstate_kobjs[h - hstates]);
1890         }
1891
1892         kobject_put(hugepages_kobj);
1893 }
1894 module_exit(hugetlb_exit);
1895
1896 static int __init hugetlb_init(void)
1897 {
1898         if (!hugepages_supported())
1899                 return 0;
1900
1901         if (!size_to_hstate(default_hstate_size)) {
1902                 default_hstate_size = HPAGE_SIZE;
1903                 if (!size_to_hstate(default_hstate_size))
1904                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1905         }
1906         default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1907         if (default_hstate_max_huge_pages)
1908                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1909
1910         hugetlb_init_hstates();
1911
1912         gather_bootmem_prealloc();
1913
1914         report_hugepages();
1915
1916         hugetlb_sysfs_init();
1917
1918         hugetlb_register_all_nodes();
1919
1920         return 0;
1921 }
1922 module_init(hugetlb_init);
1923
1924 /* Should be called on processing a hugepagesz=... option */
1925 void __init hugetlb_add_hstate(unsigned order)
1926 {
1927         struct hstate *h;
1928         unsigned long i;
1929
1930         if (size_to_hstate(PAGE_SIZE << order)) {
1931                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1932                 return;
1933         }
1934         BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1935         BUG_ON(order == 0);
1936         h = &hstates[max_hstate++];
1937         h->order = order;
1938         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1939         h->nr_huge_pages = 0;
1940         h->free_huge_pages = 0;
1941         for (i = 0; i < MAX_NUMNODES; ++i)
1942                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1943         h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1944         h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1945         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1946                                         huge_page_size(h)/1024);
1947
1948         parsed_hstate = h;
1949 }
1950
1951 static int __init hugetlb_nrpages_setup(char *s)
1952 {
1953         unsigned long *mhp;
1954         static unsigned long *last_mhp;
1955
1956         /*
1957          * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1958          * so this hugepages= parameter goes to the "default hstate".
1959          */
1960         if (!max_hstate)
1961                 mhp = &default_hstate_max_huge_pages;
1962         else
1963                 mhp = &parsed_hstate->max_huge_pages;
1964
1965         if (mhp == last_mhp) {
1966                 printk(KERN_WARNING "hugepages= specified twice without "
1967                         "interleaving hugepagesz=, ignoring\n");
1968                 return 1;
1969         }
1970
1971         if (sscanf(s, "%lu", mhp) <= 0)
1972                 *mhp = 0;
1973
1974         /*
1975          * Global state is always initialized later in hugetlb_init.
1976          * But we need to allocate >= MAX_ORDER hstates here early to still
1977          * use the bootmem allocator.
1978          */
1979         if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1980                 hugetlb_hstate_alloc_pages(parsed_hstate);
1981
1982         last_mhp = mhp;
1983
1984         return 1;
1985 }
1986 __setup("hugepages=", hugetlb_nrpages_setup);
1987
1988 static int __init hugetlb_default_setup(char *s)
1989 {
1990         default_hstate_size = memparse(s, &s);
1991         return 1;
1992 }
1993 __setup("default_hugepagesz=", hugetlb_default_setup);
1994
1995 static unsigned int cpuset_mems_nr(unsigned int *array)
1996 {
1997         int node;
1998         unsigned int nr = 0;
1999
2000         for_each_node_mask(node, cpuset_current_mems_allowed)
2001                 nr += array[node];
2002
2003         return nr;
2004 }
2005
2006 #ifdef CONFIG_SYSCTL
2007 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2008                          struct ctl_table *table, int write,
2009                          void __user *buffer, size_t *length, loff_t *ppos)
2010 {
2011         struct hstate *h = &default_hstate;
2012         unsigned long tmp;
2013         int ret;
2014
2015         if (!hugepages_supported())
2016                 return -ENOTSUPP;
2017
2018         tmp = h->max_huge_pages;
2019
2020         if (write && h->order >= MAX_ORDER)
2021                 return -EINVAL;
2022
2023         table->data = &tmp;
2024         table->maxlen = sizeof(unsigned long);
2025         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2026         if (ret)
2027                 goto out;
2028
2029         if (write) {
2030                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2031                                                 GFP_KERNEL | __GFP_NORETRY);
2032                 if (!(obey_mempolicy &&
2033                                init_nodemask_of_mempolicy(nodes_allowed))) {
2034                         NODEMASK_FREE(nodes_allowed);
2035                         nodes_allowed = &node_states[N_HIGH_MEMORY];
2036                 }
2037                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2038
2039                 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2040                         NODEMASK_FREE(nodes_allowed);
2041         }
2042 out:
2043         return ret;
2044 }
2045
2046 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2047                           void __user *buffer, size_t *length, loff_t *ppos)
2048 {
2049
2050         return hugetlb_sysctl_handler_common(false, table, write,
2051                                                         buffer, length, ppos);
2052 }
2053
2054 #ifdef CONFIG_NUMA
2055 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2056                           void __user *buffer, size_t *length, loff_t *ppos)
2057 {
2058         return hugetlb_sysctl_handler_common(true, table, write,
2059                                                         buffer, length, ppos);
2060 }
2061 #endif /* CONFIG_NUMA */
2062
2063 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2064                         void __user *buffer,
2065                         size_t *length, loff_t *ppos)
2066 {
2067         proc_dointvec(table, write, buffer, length, ppos);
2068         if (hugepages_treat_as_movable)
2069                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2070         else
2071                 htlb_alloc_mask = GFP_HIGHUSER;
2072         return 0;
2073 }
2074
2075 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2076                         void __user *buffer,
2077                         size_t *length, loff_t *ppos)
2078 {
2079         struct hstate *h = &default_hstate;
2080         unsigned long tmp;
2081         int ret;
2082
2083         if (!hugepages_supported())
2084                 return -ENOTSUPP;
2085
2086         tmp = h->nr_overcommit_huge_pages;
2087
2088         if (write && h->order >= MAX_ORDER)
2089                 return -EINVAL;
2090
2091         table->data = &tmp;
2092         table->maxlen = sizeof(unsigned long);
2093         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2094         if (ret)
2095                 goto out;
2096
2097         if (write) {
2098                 spin_lock(&hugetlb_lock);
2099                 h->nr_overcommit_huge_pages = tmp;
2100                 spin_unlock(&hugetlb_lock);
2101         }
2102 out:
2103         return ret;
2104 }
2105
2106 #endif /* CONFIG_SYSCTL */
2107
2108 void hugetlb_report_meminfo(struct seq_file *m)
2109 {
2110         struct hstate *h = &default_hstate;
2111         if (!hugepages_supported())
2112                 return;
2113         seq_printf(m,
2114                         "HugePages_Total:   %5lu\n"
2115                         "HugePages_Free:    %5lu\n"
2116                         "HugePages_Rsvd:    %5lu\n"
2117                         "HugePages_Surp:    %5lu\n"
2118                         "Hugepagesize:   %8lu kB\n",
2119                         h->nr_huge_pages,
2120                         h->free_huge_pages,
2121                         h->resv_huge_pages,
2122                         h->surplus_huge_pages,
2123                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2124 }
2125
2126 int hugetlb_report_node_meminfo(int nid, char *buf)
2127 {
2128         struct hstate *h = &default_hstate;
2129         if (!hugepages_supported())
2130                 return 0;
2131         return sprintf(buf,
2132                 "Node %d HugePages_Total: %5u\n"
2133                 "Node %d HugePages_Free:  %5u\n"
2134                 "Node %d HugePages_Surp:  %5u\n",
2135                 nid, h->nr_huge_pages_node[nid],
2136                 nid, h->free_huge_pages_node[nid],
2137                 nid, h->surplus_huge_pages_node[nid]);
2138 }
2139
2140 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2141 unsigned long hugetlb_total_pages(void)
2142 {
2143         struct hstate *h;
2144         unsigned long nr_total_pages = 0;
2145
2146         for_each_hstate(h)
2147                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2148         return nr_total_pages;
2149 }
2150
2151 static int hugetlb_acct_memory(struct hstate *h, long delta)
2152 {
2153         int ret = -ENOMEM;
2154
2155         spin_lock(&hugetlb_lock);
2156         /*
2157          * When cpuset is configured, it breaks the strict hugetlb page
2158          * reservation as the accounting is done on a global variable. Such
2159          * reservation is completely rubbish in the presence of cpuset because
2160          * the reservation is not checked against page availability for the
2161          * current cpuset. Application can still potentially OOM'ed by kernel
2162          * with lack of free htlb page in cpuset that the task is in.
2163          * Attempt to enforce strict accounting with cpuset is almost
2164          * impossible (or too ugly) because cpuset is too fluid that
2165          * task or memory node can be dynamically moved between cpusets.
2166          *
2167          * The change of semantics for shared hugetlb mapping with cpuset is
2168          * undesirable. However, in order to preserve some of the semantics,
2169          * we fall back to check against current free page availability as
2170          * a best attempt and hopefully to minimize the impact of changing
2171          * semantics that cpuset has.
2172          */
2173         if (delta > 0) {
2174                 if (gather_surplus_pages(h, delta) < 0)
2175                         goto out;
2176
2177                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2178                         return_unused_surplus_pages(h, delta);
2179                         goto out;
2180                 }
2181         }
2182
2183         ret = 0;
2184         if (delta < 0)
2185                 return_unused_surplus_pages(h, (unsigned long) -delta);
2186
2187 out:
2188         spin_unlock(&hugetlb_lock);
2189         return ret;
2190 }
2191
2192 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2193 {
2194         struct resv_map *reservations = vma_resv_map(vma);
2195
2196         /*
2197          * This new VMA should share its siblings reservation map if present.
2198          * The VMA will only ever have a valid reservation map pointer where
2199          * it is being copied for another still existing VMA.  As that VMA
2200          * has a reference to the reservation map it cannot disappear until
2201          * after this open call completes.  It is therefore safe to take a
2202          * new reference here without additional locking.
2203          */
2204         if (reservations)
2205                 kref_get(&reservations->refs);
2206 }
2207
2208 static void resv_map_put(struct vm_area_struct *vma)
2209 {
2210         struct resv_map *reservations = vma_resv_map(vma);
2211
2212         if (!reservations)
2213                 return;
2214         kref_put(&reservations->refs, resv_map_release);
2215 }
2216
2217 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2218 {
2219         struct hstate *h = hstate_vma(vma);
2220         struct resv_map *reservations = vma_resv_map(vma);
2221         struct hugepage_subpool *spool = subpool_vma(vma);
2222         unsigned long reserve;
2223         unsigned long start;
2224         unsigned long end;
2225
2226         if (reservations) {
2227                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2228                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2229
2230                 reserve = (end - start) -
2231                         region_count(&reservations->regions, start, end);
2232
2233                 resv_map_put(vma);
2234
2235                 if (reserve) {
2236                         hugetlb_acct_memory(h, -reserve);
2237                         hugepage_subpool_put_pages(spool, reserve);
2238                 }
2239         }
2240 }
2241
2242 /*
2243  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2244  * handle_mm_fault() to try to instantiate regular-sized pages in the
2245  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2246  * this far.
2247  */
2248 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2249 {
2250         BUG();
2251         return 0;
2252 }
2253
2254 const struct vm_operations_struct hugetlb_vm_ops = {
2255         .fault = hugetlb_vm_op_fault,
2256         .open = hugetlb_vm_op_open,
2257         .close = hugetlb_vm_op_close,
2258 };
2259
2260 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2261                                 int writable)
2262 {
2263         pte_t entry;
2264
2265         if (writable) {
2266                 entry =
2267                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2268         } else {
2269                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2270         }
2271         entry = pte_mkyoung(entry);
2272         entry = pte_mkhuge(entry);
2273
2274         return entry;
2275 }
2276
2277 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2278                                    unsigned long address, pte_t *ptep)
2279 {
2280         pte_t entry;
2281
2282         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2283         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2284                 update_mmu_cache(vma, address, ptep);
2285 }
2286
2287 static int is_hugetlb_entry_migration(pte_t pte)
2288 {
2289         swp_entry_t swp;
2290
2291         if (huge_pte_none(pte) || pte_present(pte))
2292                 return 0;
2293         swp = pte_to_swp_entry(pte);
2294         if (non_swap_entry(swp) && is_migration_entry(swp))
2295                 return 1;
2296         else
2297                 return 0;
2298 }
2299
2300 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2301 {
2302         swp_entry_t swp;
2303
2304         if (huge_pte_none(pte) || pte_present(pte))
2305                 return 0;
2306         swp = pte_to_swp_entry(pte);
2307         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2308                 return 1;
2309         else
2310                 return 0;
2311 }
2312
2313 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2314                             struct vm_area_struct *vma)
2315 {
2316         pte_t *src_pte, *dst_pte, entry;
2317         struct page *ptepage;
2318         unsigned long addr;
2319         int cow;
2320         struct hstate *h = hstate_vma(vma);
2321         unsigned long sz = huge_page_size(h);
2322
2323         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2324
2325         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2326                 src_pte = huge_pte_offset(src, addr);
2327                 if (!src_pte)
2328                         continue;
2329                 dst_pte = huge_pte_alloc(dst, addr, sz);
2330                 if (!dst_pte)
2331                         goto nomem;
2332
2333                 /* If the pagetables are shared don't copy or take references */
2334                 if (dst_pte == src_pte)
2335                         continue;
2336
2337                 spin_lock(&dst->page_table_lock);
2338                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2339                 entry = huge_ptep_get(src_pte);
2340                 if (huge_pte_none(entry)) { /* skip none entry */
2341                         ;
2342                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2343                                     is_hugetlb_entry_hwpoisoned(entry))) {
2344                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
2345
2346                         if (is_write_migration_entry(swp_entry) && cow) {
2347                                 /*
2348                                  * COW mappings require pages in both
2349                                  * parent and child to be set to read.
2350                                  */
2351                                 make_migration_entry_read(&swp_entry);
2352                                 entry = swp_entry_to_pte(swp_entry);
2353                                 set_huge_pte_at(src, addr, src_pte, entry);
2354                         }
2355                         set_huge_pte_at(dst, addr, dst_pte, entry);
2356                 } else {
2357                         if (cow)
2358                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2359                         entry = huge_ptep_get(src_pte);
2360                         ptepage = pte_page(entry);
2361                         get_page(ptepage);
2362                         page_dup_rmap(ptepage);
2363                         set_huge_pte_at(dst, addr, dst_pte, entry);
2364                 }
2365                 spin_unlock(&src->page_table_lock);
2366                 spin_unlock(&dst->page_table_lock);
2367         }
2368         return 0;
2369
2370 nomem:
2371         return -ENOMEM;
2372 }
2373
2374 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2375                             unsigned long end, struct page *ref_page)
2376 {
2377         struct mm_struct *mm = vma->vm_mm;
2378         unsigned long address;
2379         pte_t *ptep;
2380         pte_t pte;
2381         struct page *page;
2382         struct page *tmp;
2383         struct hstate *h = hstate_vma(vma);
2384         unsigned long sz = huge_page_size(h);
2385
2386         /*
2387          * A page gathering list, protected by per file i_mmap_mutex. The
2388          * lock is used to avoid list corruption from multiple unmapping
2389          * of the same page since we are using page->lru.
2390          */
2391         LIST_HEAD(page_list);
2392
2393         WARN_ON(!is_vm_hugetlb_page(vma));
2394         BUG_ON(start & ~huge_page_mask(h));
2395         BUG_ON(end & ~huge_page_mask(h));
2396
2397         mmu_notifier_invalidate_range_start(mm, start, end);
2398         spin_lock(&mm->page_table_lock);
2399         for (address = start; address < end; address += sz) {
2400                 ptep = huge_pte_offset(mm, address);
2401                 if (!ptep)
2402                         continue;
2403
2404                 if (huge_pmd_unshare(mm, &address, ptep))
2405                         continue;
2406
2407                 /*
2408                  * If a reference page is supplied, it is because a specific
2409                  * page is being unmapped, not a range. Ensure the page we
2410                  * are about to unmap is the actual page of interest.
2411                  */
2412                 if (ref_page) {
2413                         pte = huge_ptep_get(ptep);
2414                         if (huge_pte_none(pte))
2415                                 continue;
2416                         page = pte_page(pte);
2417                         if (page != ref_page)
2418                                 continue;
2419
2420                         /*
2421                          * Mark the VMA as having unmapped its page so that
2422                          * future faults in this VMA will fail rather than
2423                          * looking like data was lost
2424                          */
2425                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2426                 }
2427
2428                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2429                 if (huge_pte_none(pte))
2430                         continue;
2431
2432                 /*
2433                  * Migrating hugepage or HWPoisoned hugepage is already
2434                  * unmapped and its refcount is dropped
2435                  */
2436                 if (unlikely(!pte_present(pte)))
2437                         continue;
2438
2439                 page = pte_page(pte);
2440                 if (pte_dirty(pte))
2441                         set_page_dirty(page);
2442                 list_add(&page->lru, &page_list);
2443         }
2444         spin_unlock(&mm->page_table_lock);
2445         flush_tlb_range(vma, start, end);
2446         mmu_notifier_invalidate_range_end(mm, start, end);
2447         list_for_each_entry_safe(page, tmp, &page_list, lru) {
2448                 page_remove_rmap(page);
2449                 list_del(&page->lru);
2450                 put_page(page);
2451         }
2452 }
2453
2454 void __unmap_hugepage_range_final(struct vm_area_struct *vma,
2455                           unsigned long start, unsigned long end,
2456                           struct page *ref_page)
2457 {
2458         __unmap_hugepage_range(vma, start, end, ref_page);
2459
2460         /*
2461          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2462          * test will fail on a vma being torn down, and not grab a page table
2463          * on its way out.  We're lucky that the flag has such an appropriate
2464          * name, and can in fact be safely cleared here. We could clear it
2465          * before the __unmap_hugepage_range above, but all that's necessary
2466          * is to clear it before releasing the i_mmap_mutex. This works
2467          * because in the context this is called, the VMA is about to be
2468          * destroyed and the i_mmap_mutex is held.
2469          */
2470         vma->vm_flags &= ~VM_MAYSHARE;
2471 }
2472
2473 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2474                           unsigned long end, struct page *ref_page)
2475 {
2476         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2477         __unmap_hugepage_range(vma, start, end, ref_page);
2478         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2479 }
2480
2481 /*
2482  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2483  * mappping it owns the reserve page for. The intention is to unmap the page
2484  * from other VMAs and let the children be SIGKILLed if they are faulting the
2485  * same region.
2486  */
2487 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2488                                 struct page *page, unsigned long address)
2489 {
2490         struct hstate *h = hstate_vma(vma);
2491         struct vm_area_struct *iter_vma;
2492         struct address_space *mapping;
2493         struct prio_tree_iter iter;
2494         pgoff_t pgoff;
2495
2496         /*
2497          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2498          * from page cache lookup which is in HPAGE_SIZE units.
2499          */
2500         address = address & huge_page_mask(h);
2501         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2502                         vma->vm_pgoff;
2503         mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2504
2505         /*
2506          * Take the mapping lock for the duration of the table walk. As
2507          * this mapping should be shared between all the VMAs,
2508          * __unmap_hugepage_range() is called as the lock is already held
2509          */
2510         mutex_lock(&mapping->i_mmap_mutex);
2511         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2512                 /* Do not unmap the current VMA */
2513                 if (iter_vma == vma)
2514                         continue;
2515
2516                 /*
2517                  * Shared VMAs have their own reserves and do not affect
2518                  * MAP_PRIVATE accounting but it is possible that a shared
2519                  * VMA is using the same page so check and skip such VMAs.
2520                  */
2521                 if (iter_vma->vm_flags & VM_MAYSHARE)
2522                         continue;
2523
2524                 /*
2525                  * Unmap the page from other VMAs without their own reserves.
2526                  * They get marked to be SIGKILLed if they fault in these
2527                  * areas. This is because a future no-page fault on this VMA
2528                  * could insert a zeroed page instead of the data existing
2529                  * from the time of fork. This would look like data corruption
2530                  */
2531                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2532                         __unmap_hugepage_range(iter_vma,
2533                                 address, address + huge_page_size(h),
2534                                 page);
2535         }
2536         mutex_unlock(&mapping->i_mmap_mutex);
2537
2538         return 1;
2539 }
2540
2541 /*
2542  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2543  */
2544 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2545                         unsigned long address, pte_t *ptep, pte_t pte,
2546                         struct page *pagecache_page)
2547 {
2548         struct hstate *h = hstate_vma(vma);
2549         struct page *old_page, *new_page;
2550         int avoidcopy;
2551         int outside_reserve = 0;
2552
2553         old_page = pte_page(pte);
2554
2555 retry_avoidcopy:
2556         /* If no-one else is actually using this page, avoid the copy
2557          * and just make the page writable */
2558         avoidcopy = (page_mapcount(old_page) == 1);
2559         if (avoidcopy) {
2560                 if (PageAnon(old_page))
2561                         page_move_anon_rmap(old_page, vma, address);
2562                 set_huge_ptep_writable(vma, address, ptep);
2563                 return 0;
2564         }
2565
2566         /*
2567          * If the process that created a MAP_PRIVATE mapping is about to
2568          * perform a COW due to a shared page count, attempt to satisfy
2569          * the allocation without using the existing reserves. The pagecache
2570          * page is used to determine if the reserve at this address was
2571          * consumed or not. If reserves were used, a partial faulted mapping
2572          * at the time of fork() could consume its reserves on COW instead
2573          * of the full address range.
2574          */
2575         if (!(vma->vm_flags & VM_MAYSHARE) &&
2576                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2577                         old_page != pagecache_page)
2578                 outside_reserve = 1;
2579
2580         page_cache_get(old_page);
2581
2582         /* Drop page_table_lock as buddy allocator may be called */
2583         spin_unlock(&mm->page_table_lock);
2584         new_page = alloc_huge_page(vma, address, outside_reserve);
2585
2586         if (IS_ERR(new_page)) {
2587                 page_cache_release(old_page);
2588
2589                 /*
2590                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2591                  * it is due to references held by a child and an insufficient
2592                  * huge page pool. To guarantee the original mappers
2593                  * reliability, unmap the page from child processes. The child
2594                  * may get SIGKILLed if it later faults.
2595                  */
2596                 if (outside_reserve) {
2597                         BUG_ON(huge_pte_none(pte));
2598                         if (unmap_ref_private(mm, vma, old_page, address)) {
2599                                 BUG_ON(huge_pte_none(pte));
2600                                 spin_lock(&mm->page_table_lock);
2601                                 goto retry_avoidcopy;
2602                         }
2603                         WARN_ON_ONCE(1);
2604                 }
2605
2606                 /* Caller expects lock to be held */
2607                 spin_lock(&mm->page_table_lock);
2608                 return -PTR_ERR(new_page);
2609         }
2610
2611         /*
2612          * When the original hugepage is shared one, it does not have
2613          * anon_vma prepared.
2614          */
2615         if (unlikely(anon_vma_prepare(vma))) {
2616                 page_cache_release(new_page);
2617                 page_cache_release(old_page);
2618                 /* Caller expects lock to be held */
2619                 spin_lock(&mm->page_table_lock);
2620                 return VM_FAULT_OOM;
2621         }
2622
2623         copy_user_huge_page(new_page, old_page, address, vma,
2624                             pages_per_huge_page(h));
2625         __SetPageUptodate(new_page);
2626
2627         /*
2628          * Retake the page_table_lock to check for racing updates
2629          * before the page tables are altered
2630          */
2631         spin_lock(&mm->page_table_lock);
2632         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2633         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2634                 /* Break COW */
2635                 mmu_notifier_invalidate_range_start(mm,
2636                         address & huge_page_mask(h),
2637                         (address & huge_page_mask(h)) + huge_page_size(h));
2638                 huge_ptep_clear_flush(vma, address, ptep);
2639                 set_huge_pte_at(mm, address, ptep,
2640                                 make_huge_pte(vma, new_page, 1));
2641                 page_remove_rmap(old_page);
2642                 hugepage_add_new_anon_rmap(new_page, vma, address);
2643                 /* Make the old page be freed below */
2644                 new_page = old_page;
2645                 mmu_notifier_invalidate_range_end(mm,
2646                         address & huge_page_mask(h),
2647                         (address & huge_page_mask(h)) + huge_page_size(h));
2648         }
2649         page_cache_release(new_page);
2650         page_cache_release(old_page);
2651         return 0;
2652 }
2653
2654 /* Return the pagecache page at a given address within a VMA */
2655 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2656                         struct vm_area_struct *vma, unsigned long address)
2657 {
2658         struct address_space *mapping;
2659         pgoff_t idx;
2660
2661         mapping = vma->vm_file->f_mapping;
2662         idx = vma_hugecache_offset(h, vma, address);
2663
2664         return find_lock_page(mapping, idx);
2665 }
2666
2667 /*
2668  * Return whether there is a pagecache page to back given address within VMA.
2669  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2670  */
2671 static bool hugetlbfs_pagecache_present(struct hstate *h,
2672                         struct vm_area_struct *vma, unsigned long address)
2673 {
2674         struct address_space *mapping;
2675         pgoff_t idx;
2676         struct page *page;
2677
2678         mapping = vma->vm_file->f_mapping;
2679         idx = vma_hugecache_offset(h, vma, address);
2680
2681         page = find_get_page(mapping, idx);
2682         if (page)
2683                 put_page(page);
2684         return page != NULL;
2685 }
2686
2687 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2688                         unsigned long address, pte_t *ptep, unsigned int flags)
2689 {
2690         struct hstate *h = hstate_vma(vma);
2691         int ret = VM_FAULT_SIGBUS;
2692         pgoff_t idx;
2693         unsigned long size;
2694         struct page *page;
2695         struct address_space *mapping;
2696         pte_t new_pte;
2697
2698         /*
2699          * Currently, we are forced to kill the process in the event the
2700          * original mapper has unmapped pages from the child due to a failed
2701          * COW. Warn that such a situation has occurred as it may not be obvious
2702          */
2703         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2704                 printk(KERN_WARNING
2705                         "PID %d killed due to inadequate hugepage pool\n",
2706                         current->pid);
2707                 return ret;
2708         }
2709
2710         mapping = vma->vm_file->f_mapping;
2711         idx = vma_hugecache_offset(h, vma, address);
2712
2713         /*
2714          * Use page lock to guard against racing truncation
2715          * before we get page_table_lock.
2716          */
2717 retry:
2718         page = find_lock_page(mapping, idx);
2719         if (!page) {
2720                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2721                 if (idx >= size)
2722                         goto out;
2723                 page = alloc_huge_page(vma, address, 0);
2724                 if (IS_ERR(page)) {
2725                         ret = -PTR_ERR(page);
2726                         goto out;
2727                 }
2728                 clear_huge_page(page, address, pages_per_huge_page(h));
2729                 __SetPageUptodate(page);
2730
2731                 if (vma->vm_flags & VM_MAYSHARE) {
2732                         int err;
2733                         struct inode *inode = mapping->host;
2734
2735                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2736                         if (err) {
2737                                 put_page(page);
2738                                 if (err == -EEXIST)
2739                                         goto retry;
2740                                 goto out;
2741                         }
2742
2743                         spin_lock(&inode->i_lock);
2744                         inode->i_blocks += blocks_per_huge_page(h);
2745                         spin_unlock(&inode->i_lock);
2746                         page_dup_rmap(page);
2747                 } else {
2748                         lock_page(page);
2749                         if (unlikely(anon_vma_prepare(vma))) {
2750                                 ret = VM_FAULT_OOM;
2751                                 goto backout_unlocked;
2752                         }
2753                         hugepage_add_new_anon_rmap(page, vma, address);
2754                 }
2755         } else {
2756                 /*
2757                  * If memory error occurs between mmap() and fault, some process
2758                  * don't have hwpoisoned swap entry for errored virtual address.
2759                  * So we need to block hugepage fault by PG_hwpoison bit check.
2760                  */
2761                 if (unlikely(PageHWPoison(page))) {
2762                         ret = VM_FAULT_HWPOISON |
2763                               VM_FAULT_SET_HINDEX(h - hstates);
2764                         goto backout_unlocked;
2765                 }
2766                 page_dup_rmap(page);
2767         }
2768
2769         /*
2770          * If we are going to COW a private mapping later, we examine the
2771          * pending reservations for this page now. This will ensure that
2772          * any allocations necessary to record that reservation occur outside
2773          * the spinlock.
2774          */
2775         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2776                 if (vma_needs_reservation(h, vma, address) < 0) {
2777                         ret = VM_FAULT_OOM;
2778                         goto backout_unlocked;
2779                 }
2780
2781         spin_lock(&mm->page_table_lock);
2782         size = i_size_read(mapping->host) >> huge_page_shift(h);
2783         if (idx >= size)
2784                 goto backout;
2785
2786         ret = 0;
2787         if (!huge_pte_none(huge_ptep_get(ptep)))
2788                 goto backout;
2789
2790         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2791                                 && (vma->vm_flags & VM_SHARED)));
2792         set_huge_pte_at(mm, address, ptep, new_pte);
2793
2794         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2795                 /* Optimization, do the COW without a second fault */
2796                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2797         }
2798
2799         spin_unlock(&mm->page_table_lock);
2800         unlock_page(page);
2801 out:
2802         return ret;
2803
2804 backout:
2805         spin_unlock(&mm->page_table_lock);
2806 backout_unlocked:
2807         unlock_page(page);
2808         put_page(page);
2809         goto out;
2810 }
2811
2812 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2813                         unsigned long address, unsigned int flags)
2814 {
2815         pte_t *ptep;
2816         pte_t entry;
2817         int ret;
2818         struct page *page = NULL;
2819         struct page *pagecache_page = NULL;
2820         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2821         struct hstate *h = hstate_vma(vma);
2822         int need_wait_lock = 0;
2823
2824         ptep = huge_pte_offset(mm, address);
2825         if (ptep) {
2826                 entry = huge_ptep_get(ptep);
2827                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2828                         migration_entry_wait_huge(mm, ptep);
2829                         return 0;
2830                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2831                         return VM_FAULT_HWPOISON_LARGE |
2832                                VM_FAULT_SET_HINDEX(h - hstates);
2833         } else {
2834                 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2835                 if (!ptep)
2836                         return VM_FAULT_OOM;
2837         }
2838
2839         /*
2840          * Serialize hugepage allocation and instantiation, so that we don't
2841          * get spurious allocation failures if two CPUs race to instantiate
2842          * the same page in the page cache.
2843          */
2844         mutex_lock(&hugetlb_instantiation_mutex);
2845         entry = huge_ptep_get(ptep);
2846         if (huge_pte_none(entry)) {
2847                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2848                 goto out_mutex;
2849         }
2850
2851         ret = 0;
2852
2853         /*
2854          * entry could be a migration/hwpoison entry at this point, so this
2855          * check prevents the kernel from going below assuming that we have
2856          * a active hugepage in pagecache. This goto expects the 2nd page fault,
2857          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
2858          * handle it.
2859          */
2860         if (!pte_present(entry))
2861                 goto out_mutex;
2862
2863         /*
2864          * If we are going to COW the mapping later, we examine the pending
2865          * reservations for this page now. This will ensure that any
2866          * allocations necessary to record that reservation occur outside the
2867          * spinlock. For private mappings, we also lookup the pagecache
2868          * page now as it is used to determine if a reservation has been
2869          * consumed.
2870          */
2871         if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2872                 if (vma_needs_reservation(h, vma, address) < 0) {
2873                         ret = VM_FAULT_OOM;
2874                         goto out_mutex;
2875                 }
2876
2877                 if (!(vma->vm_flags & VM_MAYSHARE))
2878                         pagecache_page = hugetlbfs_pagecache_page(h,
2879                                                                 vma, address);
2880         }
2881
2882         spin_lock(&mm->page_table_lock);
2883         /* Check for a racing update before calling hugetlb_cow */
2884         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2885                 goto out_page_table_lock;
2886
2887         /*
2888          * hugetlb_cow() requires page locks of pte_page(entry) and
2889          * pagecache_page, so here we need take the former one
2890          * when page != pagecache_page or !pagecache_page.
2891          */
2892         page = pte_page(entry);
2893         if (page != pagecache_page)
2894                 if (!trylock_page(page)) {
2895                         need_wait_lock = 1;
2896                         goto out_page_table_lock;
2897                 }
2898
2899         get_page(page);
2900
2901         if (flags & FAULT_FLAG_WRITE) {
2902                 if (!pte_write(entry)) {
2903                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2904                                                         pagecache_page);
2905                         goto out_put_page;
2906                 }
2907                 entry = pte_mkdirty(entry);
2908         }
2909         entry = pte_mkyoung(entry);
2910         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2911                                                 flags & FAULT_FLAG_WRITE))
2912                 update_mmu_cache(vma, address, ptep);
2913 out_put_page:
2914         if (page != pagecache_page)
2915                 unlock_page(page);
2916         put_page(page);
2917 out_page_table_lock:
2918         spin_unlock(&mm->page_table_lock);
2919
2920         if (pagecache_page) {
2921                 unlock_page(pagecache_page);
2922                 put_page(pagecache_page);
2923         }
2924 out_mutex:
2925         mutex_unlock(&hugetlb_instantiation_mutex);
2926
2927         /*
2928          * Generally it's safe to hold refcount during waiting page lock. But
2929          * here we just wait to defer the next page fault to avoid busy loop and
2930          * the page is not used after unlocked before returning from the current
2931          * page fault. So we are safe from accessing freed page, even if we wait
2932          * here without taking refcount.
2933          */
2934         if (need_wait_lock)
2935                 wait_on_page_locked(page);
2936         return ret;
2937 }
2938
2939 /* Can be overriden by architectures */
2940 __attribute__((weak)) struct page *
2941 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2942                pud_t *pud, int write)
2943 {
2944         BUG();
2945         return NULL;
2946 }
2947
2948 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2949                         struct page **pages, struct vm_area_struct **vmas,
2950                         unsigned long *position, int *length, int i,
2951                         unsigned int flags)
2952 {
2953         unsigned long pfn_offset;
2954         unsigned long vaddr = *position;
2955         int remainder = *length;
2956         struct hstate *h = hstate_vma(vma);
2957
2958         spin_lock(&mm->page_table_lock);
2959         while (vaddr < vma->vm_end && remainder) {
2960                 pte_t *pte;
2961                 int absent;
2962                 struct page *page;
2963
2964                 /*
2965                  * Some archs (sparc64, sh*) have multiple pte_ts to
2966                  * each hugepage.  We have to make sure we get the
2967                  * first, for the page indexing below to work.
2968                  */
2969                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2970                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2971
2972                 /*
2973                  * When coredumping, it suits get_dump_page if we just return
2974                  * an error where there's an empty slot with no huge pagecache
2975                  * to back it.  This way, we avoid allocating a hugepage, and
2976                  * the sparse dumpfile avoids allocating disk blocks, but its
2977                  * huge holes still show up with zeroes where they need to be.
2978                  */
2979                 if (absent && (flags & FOLL_DUMP) &&
2980                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2981                         remainder = 0;
2982                         break;
2983                 }
2984
2985                 /*
2986                  * We need call hugetlb_fault for both hugepages under migration
2987                  * (in which case hugetlb_fault waits for the migration,) and
2988                  * hwpoisoned hugepages (in which case we need to prevent the
2989                  * caller from accessing to them.) In order to do this, we use
2990                  * here is_swap_pte instead of is_hugetlb_entry_migration and
2991                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2992                  * both cases, and because we can't follow correct pages
2993                  * directly from any kind of swap entries.
2994                  */
2995                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2996                     ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2997                         int ret;
2998
2999                         spin_unlock(&mm->page_table_lock);
3000                         ret = hugetlb_fault(mm, vma, vaddr,
3001                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3002                         spin_lock(&mm->page_table_lock);
3003                         if (!(ret & VM_FAULT_ERROR))
3004                                 continue;
3005
3006                         remainder = 0;
3007                         break;
3008                 }
3009
3010                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3011                 page = pte_page(huge_ptep_get(pte));
3012 same_page:
3013                 if (pages) {
3014                         pages[i] = mem_map_offset(page, pfn_offset);
3015                         get_page(pages[i]);
3016                 }
3017
3018                 if (vmas)
3019                         vmas[i] = vma;
3020
3021                 vaddr += PAGE_SIZE;
3022                 ++pfn_offset;
3023                 --remainder;
3024                 ++i;
3025                 if (vaddr < vma->vm_end && remainder &&
3026                                 pfn_offset < pages_per_huge_page(h)) {
3027                         /*
3028                          * We use pfn_offset to avoid touching the pageframes
3029                          * of this compound page.
3030                          */
3031                         goto same_page;
3032                 }
3033         }
3034         spin_unlock(&mm->page_table_lock);
3035         *length = remainder;
3036         *position = vaddr;
3037
3038         return i ? i : -EFAULT;
3039 }
3040
3041 void hugetlb_change_protection(struct vm_area_struct *vma,
3042                 unsigned long address, unsigned long end, pgprot_t newprot)
3043 {
3044         struct mm_struct *mm = vma->vm_mm;
3045         unsigned long start = address;
3046         pte_t *ptep;
3047         pte_t pte;
3048         struct hstate *h = hstate_vma(vma);
3049
3050         BUG_ON(address >= end);
3051         flush_cache_range(vma, address, end);
3052
3053         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3054         spin_lock(&mm->page_table_lock);
3055         for (; address < end; address += huge_page_size(h)) {
3056                 ptep = huge_pte_offset(mm, address);
3057                 if (!ptep)
3058                         continue;
3059                 if (huge_pmd_unshare(mm, &address, ptep))
3060                         continue;
3061                 pte = huge_ptep_get(ptep);
3062                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
3063                         continue;
3064                 if (unlikely(is_hugetlb_entry_migration(pte))) {
3065                         swp_entry_t entry = pte_to_swp_entry(pte);
3066
3067                         if (is_write_migration_entry(entry)) {
3068                                 pte_t newpte;
3069
3070                                 make_migration_entry_read(&entry);
3071                                 newpte = swp_entry_to_pte(entry);
3072                                 set_huge_pte_at(mm, address, ptep, newpte);
3073                         }
3074                         continue;
3075                 }
3076                 if (!huge_pte_none(pte)) {
3077                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3078                         pte = pte_mkhuge(pte_modify(pte, newprot));
3079                         set_huge_pte_at(mm, address, ptep, pte);
3080                 }
3081         }
3082         spin_unlock(&mm->page_table_lock);
3083         /*
3084          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3085          * may have cleared our pud entry and done put_page on the page table:
3086          * once we release i_mmap_mutex, another task can do the final put_page
3087          * and that page table be reused and filled with junk.
3088          */
3089         flush_tlb_range(vma, start, end);
3090         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3091 }
3092
3093 int hugetlb_reserve_pages(struct inode *inode,
3094                                         long from, long to,
3095                                         struct vm_area_struct *vma,
3096                                         vm_flags_t vm_flags)
3097 {
3098         long ret, chg;
3099         struct hstate *h = hstate_inode(inode);
3100         struct hugepage_subpool *spool = subpool_inode(inode);
3101
3102         /* This should never happen */
3103         if (from > to) {
3104 #ifdef CONFIG_DEBUG_VM
3105                 WARN(1, "%s called with a negative range\n", __func__);
3106 #endif
3107                 return -EINVAL;
3108         }
3109
3110         /*
3111          * Only apply hugepage reservation if asked. At fault time, an
3112          * attempt will be made for VM_NORESERVE to allocate a page
3113          * without using reserves
3114          */
3115         if (vm_flags & VM_NORESERVE)
3116                 return 0;
3117
3118         /*
3119          * Shared mappings base their reservation on the number of pages that
3120          * are already allocated on behalf of the file. Private mappings need
3121          * to reserve the full area even if read-only as mprotect() may be
3122          * called to make the mapping read-write. Assume !vma is a shm mapping
3123          */
3124         if (!vma || vma->vm_flags & VM_MAYSHARE)
3125                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3126         else {
3127                 struct resv_map *resv_map = resv_map_alloc();
3128                 if (!resv_map)
3129                         return -ENOMEM;
3130
3131                 chg = to - from;
3132
3133                 set_vma_resv_map(vma, resv_map);
3134                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3135         }
3136
3137         if (chg < 0) {
3138                 ret = chg;
3139                 goto out_err;
3140         }
3141
3142         /* There must be enough pages in the subpool for the mapping */
3143         if (hugepage_subpool_get_pages(spool, chg)) {
3144                 ret = -ENOSPC;
3145                 goto out_err;
3146         }
3147
3148         /*
3149          * Check enough hugepages are available for the reservation.
3150          * Hand the pages back to the subpool if there are not
3151          */
3152         ret = hugetlb_acct_memory(h, chg);
3153         if (ret < 0) {
3154                 hugepage_subpool_put_pages(spool, chg);
3155                 goto out_err;
3156         }
3157
3158         /*
3159          * Account for the reservations made. Shared mappings record regions
3160          * that have reservations as they are shared by multiple VMAs.
3161          * When the last VMA disappears, the region map says how much
3162          * the reservation was and the page cache tells how much of
3163          * the reservation was consumed. Private mappings are per-VMA and
3164          * only the consumed reservations are tracked. When the VMA
3165          * disappears, the original reservation is the VMA size and the
3166          * consumed reservations are stored in the map. Hence, nothing
3167          * else has to be done for private mappings here
3168          */
3169         if (!vma || vma->vm_flags & VM_MAYSHARE)
3170                 region_add(&inode->i_mapping->private_list, from, to);
3171         return 0;
3172 out_err:
3173         if (vma)
3174                 resv_map_put(vma);
3175         return ret;
3176 }
3177
3178 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3179 {
3180         struct hstate *h = hstate_inode(inode);
3181         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3182         struct hugepage_subpool *spool = subpool_inode(inode);
3183
3184         spin_lock(&inode->i_lock);
3185         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3186         spin_unlock(&inode->i_lock);
3187
3188         hugepage_subpool_put_pages(spool, (chg - freed));
3189         hugetlb_acct_memory(h, -(chg - freed));
3190 }
3191
3192 #ifdef CONFIG_MEMORY_FAILURE
3193
3194 /* Should be called in hugetlb_lock */
3195 static int is_hugepage_on_freelist(struct page *hpage)
3196 {
3197         struct page *page;
3198         struct page *tmp;
3199         struct hstate *h = page_hstate(hpage);
3200         int nid = page_to_nid(hpage);
3201
3202         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3203                 if (page == hpage)
3204                         return 1;
3205         return 0;
3206 }
3207
3208 /*
3209  * This function is called from memory failure code.
3210  * Assume the caller holds page lock of the head page.
3211  */
3212 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3213 {
3214         struct hstate *h = page_hstate(hpage);
3215         int nid = page_to_nid(hpage);
3216         int ret = -EBUSY;
3217
3218         spin_lock(&hugetlb_lock);
3219         if (is_hugepage_on_freelist(hpage)) {
3220                 list_del(&hpage->lru);
3221                 set_page_refcounted(hpage);
3222                 h->free_huge_pages--;
3223                 h->free_huge_pages_node[nid]--;
3224                 ret = 0;
3225         }
3226         spin_unlock(&hugetlb_lock);
3227         return ret;
3228 }
3229 #endif