hugetlb: move all the in use pages to active list
[pandora-kernel.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlb.h>
28
29 #include <linux/io.h>
30 #include <linux/hugetlb.h>
31 #include <linux/hugetlb_cgroup.h>
32 #include <linux/node.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include "internal.h"
35
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
38 unsigned long hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43
44 __initdata LIST_HEAD(huge_boot_pages);
45
46 /* for command line parsing */
47 static struct hstate * __initdata parsed_hstate;
48 static unsigned long __initdata default_hstate_max_huge_pages;
49 static unsigned long __initdata default_hstate_size;
50
51 /*
52  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53  */
54 DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58         bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60         spin_unlock(&spool->lock);
61
62         /* If no pages are used, and no other handles to the subpool
63          * remain, free the subpool the subpool remain */
64         if (free)
65                 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70         struct hugepage_subpool *spool;
71
72         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73         if (!spool)
74                 return NULL;
75
76         spin_lock_init(&spool->lock);
77         spool->count = 1;
78         spool->max_hpages = nr_blocks;
79         spool->used_hpages = 0;
80
81         return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86         spin_lock(&spool->lock);
87         BUG_ON(!spool->count);
88         spool->count--;
89         unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93                                       long delta)
94 {
95         int ret = 0;
96
97         if (!spool)
98                 return 0;
99
100         spin_lock(&spool->lock);
101         if ((spool->used_hpages + delta) <= spool->max_hpages) {
102                 spool->used_hpages += delta;
103         } else {
104                 ret = -ENOMEM;
105         }
106         spin_unlock(&spool->lock);
107
108         return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112                                        long delta)
113 {
114         if (!spool)
115                 return;
116
117         spin_lock(&spool->lock);
118         spool->used_hpages -= delta;
119         /* If hugetlbfs_put_super couldn't free spool due to
120         * an outstanding quota reference, free it now. */
121         unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126         return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131         return subpool_inode(vma->vm_file->f_dentry->d_inode);
132 }
133
134 /*
135  * Region tracking -- allows tracking of reservations and instantiated pages
136  *                    across the pages in a mapping.
137  *
138  * The region data structures are protected by a combination of the mmap_sem
139  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
140  * must either hold the mmap_sem for write, or the mmap_sem for read and
141  * the hugetlb_instantiation mutex:
142  *
143  *      down_write(&mm->mmap_sem);
144  * or
145  *      down_read(&mm->mmap_sem);
146  *      mutex_lock(&hugetlb_instantiation_mutex);
147  */
148 struct file_region {
149         struct list_head link;
150         long from;
151         long to;
152 };
153
154 static long region_add(struct list_head *head, long f, long t)
155 {
156         struct file_region *rg, *nrg, *trg;
157
158         /* Locate the region we are either in or before. */
159         list_for_each_entry(rg, head, link)
160                 if (f <= rg->to)
161                         break;
162
163         /* Round our left edge to the current segment if it encloses us. */
164         if (f > rg->from)
165                 f = rg->from;
166
167         /* Check for and consume any regions we now overlap with. */
168         nrg = rg;
169         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170                 if (&rg->link == head)
171                         break;
172                 if (rg->from > t)
173                         break;
174
175                 /* If this area reaches higher then extend our area to
176                  * include it completely.  If this is not the first area
177                  * which we intend to reuse, free it. */
178                 if (rg->to > t)
179                         t = rg->to;
180                 if (rg != nrg) {
181                         list_del(&rg->link);
182                         kfree(rg);
183                 }
184         }
185         nrg->from = f;
186         nrg->to = t;
187         return 0;
188 }
189
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192         struct file_region *rg, *nrg;
193         long chg = 0;
194
195         /* Locate the region we are before or in. */
196         list_for_each_entry(rg, head, link)
197                 if (f <= rg->to)
198                         break;
199
200         /* If we are below the current region then a new region is required.
201          * Subtle, allocate a new region at the position but make it zero
202          * size such that we can guarantee to record the reservation. */
203         if (&rg->link == head || t < rg->from) {
204                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205                 if (!nrg)
206                         return -ENOMEM;
207                 nrg->from = f;
208                 nrg->to   = f;
209                 INIT_LIST_HEAD(&nrg->link);
210                 list_add(&nrg->link, rg->link.prev);
211
212                 return t - f;
213         }
214
215         /* Round our left edge to the current segment if it encloses us. */
216         if (f > rg->from)
217                 f = rg->from;
218         chg = t - f;
219
220         /* Check for and consume any regions we now overlap with. */
221         list_for_each_entry(rg, rg->link.prev, link) {
222                 if (&rg->link == head)
223                         break;
224                 if (rg->from > t)
225                         return chg;
226
227                 /* We overlap with this area, if it extends further than
228                  * us then we must extend ourselves.  Account for its
229                  * existing reservation. */
230                 if (rg->to > t) {
231                         chg += rg->to - t;
232                         t = rg->to;
233                 }
234                 chg -= rg->to - rg->from;
235         }
236         return chg;
237 }
238
239 static long region_truncate(struct list_head *head, long end)
240 {
241         struct file_region *rg, *trg;
242         long chg = 0;
243
244         /* Locate the region we are either in or before. */
245         list_for_each_entry(rg, head, link)
246                 if (end <= rg->to)
247                         break;
248         if (&rg->link == head)
249                 return 0;
250
251         /* If we are in the middle of a region then adjust it. */
252         if (end > rg->from) {
253                 chg = rg->to - end;
254                 rg->to = end;
255                 rg = list_entry(rg->link.next, typeof(*rg), link);
256         }
257
258         /* Drop any remaining regions. */
259         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260                 if (&rg->link == head)
261                         break;
262                 chg += rg->to - rg->from;
263                 list_del(&rg->link);
264                 kfree(rg);
265         }
266         return chg;
267 }
268
269 static long region_count(struct list_head *head, long f, long t)
270 {
271         struct file_region *rg;
272         long chg = 0;
273
274         /* Locate each segment we overlap with, and count that overlap. */
275         list_for_each_entry(rg, head, link) {
276                 long seg_from;
277                 long seg_to;
278
279                 if (rg->to <= f)
280                         continue;
281                 if (rg->from >= t)
282                         break;
283
284                 seg_from = max(rg->from, f);
285                 seg_to = min(rg->to, t);
286
287                 chg += seg_to - seg_from;
288         }
289
290         return chg;
291 }
292
293 /*
294  * Convert the address within this vma to the page offset within
295  * the mapping, in pagecache page units; huge pages here.
296  */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298                         struct vm_area_struct *vma, unsigned long address)
299 {
300         return ((address - vma->vm_start) >> huge_page_shift(h)) +
301                         (vma->vm_pgoff >> huge_page_order(h));
302 }
303
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305                                      unsigned long address)
306 {
307         return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309
310 /*
311  * Return the size of the pages allocated when backing a VMA. In the majority
312  * cases this will be same size as used by the page table entries.
313  */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316         struct hstate *hstate;
317
318         if (!is_vm_hugetlb_page(vma))
319                 return PAGE_SIZE;
320
321         hstate = hstate_vma(vma);
322
323         return 1UL << (hstate->order + PAGE_SHIFT);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327 /*
328  * Return the page size being used by the MMU to back a VMA. In the majority
329  * of cases, the page size used by the kernel matches the MMU size. On
330  * architectures where it differs, an architecture-specific version of this
331  * function is required.
332  */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336         return vma_kernel_pagesize(vma);
337 }
338 #endif
339
340 /*
341  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342  * bits of the reservation map pointer, which are always clear due to
343  * alignment.
344  */
345 #define HPAGE_RESV_OWNER    (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349 /*
350  * These helpers are used to track how many pages are reserved for
351  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352  * is guaranteed to have their future faults succeed.
353  *
354  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355  * the reserve counters are updated with the hugetlb_lock held. It is safe
356  * to reset the VMA at fork() time as it is not in use yet and there is no
357  * chance of the global counters getting corrupted as a result of the values.
358  *
359  * The private mapping reservation is represented in a subtly different
360  * manner to a shared mapping.  A shared mapping has a region map associated
361  * with the underlying file, this region map represents the backing file
362  * pages which have ever had a reservation assigned which this persists even
363  * after the page is instantiated.  A private mapping has a region map
364  * associated with the original mmap which is attached to all VMAs which
365  * reference it, this region map represents those offsets which have consumed
366  * reservation ie. where pages have been instantiated.
367  */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370         return (unsigned long)vma->vm_private_data;
371 }
372
373 static void set_vma_private_data(struct vm_area_struct *vma,
374                                                         unsigned long value)
375 {
376         vma->vm_private_data = (void *)value;
377 }
378
379 struct resv_map {
380         struct kref refs;
381         struct list_head regions;
382 };
383
384 static struct resv_map *resv_map_alloc(void)
385 {
386         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387         if (!resv_map)
388                 return NULL;
389
390         kref_init(&resv_map->refs);
391         INIT_LIST_HEAD(&resv_map->regions);
392
393         return resv_map;
394 }
395
396 static void resv_map_release(struct kref *ref)
397 {
398         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400         /* Clear out any active regions before we release the map. */
401         region_truncate(&resv_map->regions, 0);
402         kfree(resv_map);
403 }
404
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407         VM_BUG_ON(!is_vm_hugetlb_page(vma));
408         if (!(vma->vm_flags & VM_MAYSHARE))
409                 return (struct resv_map *)(get_vma_private_data(vma) &
410                                                         ~HPAGE_RESV_MASK);
411         return NULL;
412 }
413
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416         VM_BUG_ON(!is_vm_hugetlb_page(vma));
417         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419         set_vma_private_data(vma, (get_vma_private_data(vma) &
420                                 HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425         VM_BUG_ON(!is_vm_hugetlb_page(vma));
426         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433         VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435         return (get_vma_private_data(vma) & flag) != 0;
436 }
437
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate *h,
440                         struct vm_area_struct *vma)
441 {
442         if (vma->vm_flags & VM_NORESERVE)
443                 return;
444
445         if (vma->vm_flags & VM_MAYSHARE) {
446                 /* Shared mappings always use reserves */
447                 h->resv_huge_pages--;
448         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
449                 /*
450                  * Only the process that called mmap() has reserves for
451                  * private mappings.
452                  */
453                 h->resv_huge_pages--;
454         }
455 }
456
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
459 {
460         VM_BUG_ON(!is_vm_hugetlb_page(vma));
461         if (!(vma->vm_flags & VM_MAYSHARE))
462                 vma->vm_private_data = (void *)0;
463 }
464
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct *vma)
467 {
468         if (vma->vm_flags & VM_MAYSHARE)
469                 return 1;
470         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471                 return 1;
472         return 0;
473 }
474
475 static void copy_gigantic_page(struct page *dst, struct page *src)
476 {
477         int i;
478         struct hstate *h = page_hstate(src);
479         struct page *dst_base = dst;
480         struct page *src_base = src;
481
482         for (i = 0; i < pages_per_huge_page(h); ) {
483                 cond_resched();
484                 copy_highpage(dst, src);
485
486                 i++;
487                 dst = mem_map_next(dst, dst_base, i);
488                 src = mem_map_next(src, src_base, i);
489         }
490 }
491
492 void copy_huge_page(struct page *dst, struct page *src)
493 {
494         int i;
495         struct hstate *h = page_hstate(src);
496
497         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498                 copy_gigantic_page(dst, src);
499                 return;
500         }
501
502         might_sleep();
503         for (i = 0; i < pages_per_huge_page(h); i++) {
504                 cond_resched();
505                 copy_highpage(dst + i, src + i);
506         }
507 }
508
509 static void enqueue_huge_page(struct hstate *h, struct page *page)
510 {
511         int nid = page_to_nid(page);
512         list_move(&page->lru, &h->hugepage_freelists[nid]);
513         h->free_huge_pages++;
514         h->free_huge_pages_node[nid]++;
515 }
516
517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
518 {
519         struct page *page;
520
521         if (list_empty(&h->hugepage_freelists[nid]))
522                 return NULL;
523         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524         list_move(&page->lru, &h->hugepage_activelist);
525         set_page_refcounted(page);
526         h->free_huge_pages--;
527         h->free_huge_pages_node[nid]--;
528         return page;
529 }
530
531 static struct page *dequeue_huge_page_vma(struct hstate *h,
532                                 struct vm_area_struct *vma,
533                                 unsigned long address, int avoid_reserve)
534 {
535         struct page *page = NULL;
536         struct mempolicy *mpol;
537         nodemask_t *nodemask;
538         struct zonelist *zonelist;
539         struct zone *zone;
540         struct zoneref *z;
541         unsigned int cpuset_mems_cookie;
542
543 retry_cpuset:
544         cpuset_mems_cookie = get_mems_allowed();
545         zonelist = huge_zonelist(vma, address,
546                                         htlb_alloc_mask, &mpol, &nodemask);
547         /*
548          * A child process with MAP_PRIVATE mappings created by their parent
549          * have no page reserves. This check ensures that reservations are
550          * not "stolen". The child may still get SIGKILLed
551          */
552         if (!vma_has_reserves(vma) &&
553                         h->free_huge_pages - h->resv_huge_pages == 0)
554                 goto err;
555
556         /* If reserves cannot be used, ensure enough pages are in the pool */
557         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558                 goto err;
559
560         for_each_zone_zonelist_nodemask(zone, z, zonelist,
561                                                 MAX_NR_ZONES - 1, nodemask) {
562                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
564                         if (page) {
565                                 if (!avoid_reserve)
566                                         decrement_hugepage_resv_vma(h, vma);
567                                 break;
568                         }
569                 }
570         }
571
572         mpol_cond_put(mpol);
573         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574                 goto retry_cpuset;
575         return page;
576
577 err:
578         mpol_cond_put(mpol);
579         return NULL;
580 }
581
582 static void update_and_free_page(struct hstate *h, struct page *page)
583 {
584         int i;
585
586         VM_BUG_ON(h->order >= MAX_ORDER);
587
588         h->nr_huge_pages--;
589         h->nr_huge_pages_node[page_to_nid(page)]--;
590         for (i = 0; i < pages_per_huge_page(h); i++) {
591                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
592                                 1 << PG_referenced | 1 << PG_dirty |
593                                 1 << PG_active | 1 << PG_reserved |
594                                 1 << PG_private | 1 << PG_writeback);
595         }
596         VM_BUG_ON(hugetlb_cgroup_from_page(page));
597         set_compound_page_dtor(page, NULL);
598         set_page_refcounted(page);
599         arch_release_hugepage(page);
600         __free_pages(page, huge_page_order(h));
601 }
602
603 struct hstate *size_to_hstate(unsigned long size)
604 {
605         struct hstate *h;
606
607         for_each_hstate(h) {
608                 if (huge_page_size(h) == size)
609                         return h;
610         }
611         return NULL;
612 }
613
614 static void free_huge_page(struct page *page)
615 {
616         /*
617          * Can't pass hstate in here because it is called from the
618          * compound page destructor.
619          */
620         struct hstate *h = page_hstate(page);
621         int nid = page_to_nid(page);
622         struct hugepage_subpool *spool =
623                 (struct hugepage_subpool *)page_private(page);
624
625         set_page_private(page, 0);
626         page->mapping = NULL;
627         BUG_ON(page_count(page));
628         BUG_ON(page_mapcount(page));
629
630         spin_lock(&hugetlb_lock);
631         hugetlb_cgroup_uncharge_page(hstate_index(h),
632                                      pages_per_huge_page(h), page);
633         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
634                 /* remove the page from active list */
635                 list_del(&page->lru);
636                 update_and_free_page(h, page);
637                 h->surplus_huge_pages--;
638                 h->surplus_huge_pages_node[nid]--;
639         } else {
640                 enqueue_huge_page(h, page);
641         }
642         spin_unlock(&hugetlb_lock);
643         hugepage_subpool_put_pages(spool, 1);
644 }
645
646 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
647 {
648         INIT_LIST_HEAD(&page->lru);
649         set_compound_page_dtor(page, free_huge_page);
650         spin_lock(&hugetlb_lock);
651         set_hugetlb_cgroup(page, NULL);
652         h->nr_huge_pages++;
653         h->nr_huge_pages_node[nid]++;
654         spin_unlock(&hugetlb_lock);
655         put_page(page); /* free it into the hugepage allocator */
656 }
657
658 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
659 {
660         int i;
661         int nr_pages = 1 << order;
662         struct page *p = page + 1;
663
664         /* we rely on prep_new_huge_page to set the destructor */
665         set_compound_order(page, order);
666         __SetPageHead(page);
667         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
668                 __SetPageTail(p);
669                 set_page_count(p, 0);
670                 p->first_page = page;
671         }
672 }
673
674 int PageHuge(struct page *page)
675 {
676         compound_page_dtor *dtor;
677
678         if (!PageCompound(page))
679                 return 0;
680
681         page = compound_head(page);
682         dtor = get_compound_page_dtor(page);
683
684         return dtor == free_huge_page;
685 }
686 EXPORT_SYMBOL_GPL(PageHuge);
687
688 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
689 {
690         struct page *page;
691
692         if (h->order >= MAX_ORDER)
693                 return NULL;
694
695         page = alloc_pages_exact_node(nid,
696                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
697                                                 __GFP_REPEAT|__GFP_NOWARN,
698                 huge_page_order(h));
699         if (page) {
700                 if (arch_prepare_hugepage(page)) {
701                         __free_pages(page, huge_page_order(h));
702                         return NULL;
703                 }
704                 prep_new_huge_page(h, page, nid);
705         }
706
707         return page;
708 }
709
710 /*
711  * common helper functions for hstate_next_node_to_{alloc|free}.
712  * We may have allocated or freed a huge page based on a different
713  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
714  * be outside of *nodes_allowed.  Ensure that we use an allowed
715  * node for alloc or free.
716  */
717 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
718 {
719         nid = next_node(nid, *nodes_allowed);
720         if (nid == MAX_NUMNODES)
721                 nid = first_node(*nodes_allowed);
722         VM_BUG_ON(nid >= MAX_NUMNODES);
723
724         return nid;
725 }
726
727 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
728 {
729         if (!node_isset(nid, *nodes_allowed))
730                 nid = next_node_allowed(nid, nodes_allowed);
731         return nid;
732 }
733
734 /*
735  * returns the previously saved node ["this node"] from which to
736  * allocate a persistent huge page for the pool and advance the
737  * next node from which to allocate, handling wrap at end of node
738  * mask.
739  */
740 static int hstate_next_node_to_alloc(struct hstate *h,
741                                         nodemask_t *nodes_allowed)
742 {
743         int nid;
744
745         VM_BUG_ON(!nodes_allowed);
746
747         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
748         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
749
750         return nid;
751 }
752
753 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
754 {
755         struct page *page;
756         int start_nid;
757         int next_nid;
758         int ret = 0;
759
760         start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
761         next_nid = start_nid;
762
763         do {
764                 page = alloc_fresh_huge_page_node(h, next_nid);
765                 if (page) {
766                         ret = 1;
767                         break;
768                 }
769                 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
770         } while (next_nid != start_nid);
771
772         if (ret)
773                 count_vm_event(HTLB_BUDDY_PGALLOC);
774         else
775                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
776
777         return ret;
778 }
779
780 /*
781  * helper for free_pool_huge_page() - return the previously saved
782  * node ["this node"] from which to free a huge page.  Advance the
783  * next node id whether or not we find a free huge page to free so
784  * that the next attempt to free addresses the next node.
785  */
786 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
787 {
788         int nid;
789
790         VM_BUG_ON(!nodes_allowed);
791
792         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
793         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
794
795         return nid;
796 }
797
798 /*
799  * Free huge page from pool from next node to free.
800  * Attempt to keep persistent huge pages more or less
801  * balanced over allowed nodes.
802  * Called with hugetlb_lock locked.
803  */
804 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
805                                                          bool acct_surplus)
806 {
807         int start_nid;
808         int next_nid;
809         int ret = 0;
810
811         start_nid = hstate_next_node_to_free(h, nodes_allowed);
812         next_nid = start_nid;
813
814         do {
815                 /*
816                  * If we're returning unused surplus pages, only examine
817                  * nodes with surplus pages.
818                  */
819                 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
820                     !list_empty(&h->hugepage_freelists[next_nid])) {
821                         struct page *page =
822                                 list_entry(h->hugepage_freelists[next_nid].next,
823                                           struct page, lru);
824                         list_del(&page->lru);
825                         h->free_huge_pages--;
826                         h->free_huge_pages_node[next_nid]--;
827                         if (acct_surplus) {
828                                 h->surplus_huge_pages--;
829                                 h->surplus_huge_pages_node[next_nid]--;
830                         }
831                         update_and_free_page(h, page);
832                         ret = 1;
833                         break;
834                 }
835                 next_nid = hstate_next_node_to_free(h, nodes_allowed);
836         } while (next_nid != start_nid);
837
838         return ret;
839 }
840
841 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
842 {
843         struct page *page;
844         unsigned int r_nid;
845
846         if (h->order >= MAX_ORDER)
847                 return NULL;
848
849         /*
850          * Assume we will successfully allocate the surplus page to
851          * prevent racing processes from causing the surplus to exceed
852          * overcommit
853          *
854          * This however introduces a different race, where a process B
855          * tries to grow the static hugepage pool while alloc_pages() is
856          * called by process A. B will only examine the per-node
857          * counters in determining if surplus huge pages can be
858          * converted to normal huge pages in adjust_pool_surplus(). A
859          * won't be able to increment the per-node counter, until the
860          * lock is dropped by B, but B doesn't drop hugetlb_lock until
861          * no more huge pages can be converted from surplus to normal
862          * state (and doesn't try to convert again). Thus, we have a
863          * case where a surplus huge page exists, the pool is grown, and
864          * the surplus huge page still exists after, even though it
865          * should just have been converted to a normal huge page. This
866          * does not leak memory, though, as the hugepage will be freed
867          * once it is out of use. It also does not allow the counters to
868          * go out of whack in adjust_pool_surplus() as we don't modify
869          * the node values until we've gotten the hugepage and only the
870          * per-node value is checked there.
871          */
872         spin_lock(&hugetlb_lock);
873         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
874                 spin_unlock(&hugetlb_lock);
875                 return NULL;
876         } else {
877                 h->nr_huge_pages++;
878                 h->surplus_huge_pages++;
879         }
880         spin_unlock(&hugetlb_lock);
881
882         if (nid == NUMA_NO_NODE)
883                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
884                                    __GFP_REPEAT|__GFP_NOWARN,
885                                    huge_page_order(h));
886         else
887                 page = alloc_pages_exact_node(nid,
888                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
889                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
890
891         if (page && arch_prepare_hugepage(page)) {
892                 __free_pages(page, huge_page_order(h));
893                 page = NULL;
894         }
895
896         spin_lock(&hugetlb_lock);
897         if (page) {
898                 INIT_LIST_HEAD(&page->lru);
899                 r_nid = page_to_nid(page);
900                 set_compound_page_dtor(page, free_huge_page);
901                 set_hugetlb_cgroup(page, NULL);
902                 /*
903                  * We incremented the global counters already
904                  */
905                 h->nr_huge_pages_node[r_nid]++;
906                 h->surplus_huge_pages_node[r_nid]++;
907                 __count_vm_event(HTLB_BUDDY_PGALLOC);
908         } else {
909                 h->nr_huge_pages--;
910                 h->surplus_huge_pages--;
911                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
912         }
913         spin_unlock(&hugetlb_lock);
914
915         return page;
916 }
917
918 /*
919  * This allocation function is useful in the context where vma is irrelevant.
920  * E.g. soft-offlining uses this function because it only cares physical
921  * address of error page.
922  */
923 struct page *alloc_huge_page_node(struct hstate *h, int nid)
924 {
925         struct page *page;
926
927         spin_lock(&hugetlb_lock);
928         page = dequeue_huge_page_node(h, nid);
929         spin_unlock(&hugetlb_lock);
930
931         if (!page) {
932                 page = alloc_buddy_huge_page(h, nid);
933                 if (page) {
934                         spin_lock(&hugetlb_lock);
935                         list_move(&page->lru, &h->hugepage_activelist);
936                         spin_unlock(&hugetlb_lock);
937                 }
938         }
939
940         return page;
941 }
942
943 /*
944  * Increase the hugetlb pool such that it can accommodate a reservation
945  * of size 'delta'.
946  */
947 static int gather_surplus_pages(struct hstate *h, int delta)
948 {
949         struct list_head surplus_list;
950         struct page *page, *tmp;
951         int ret, i;
952         int needed, allocated;
953         bool alloc_ok = true;
954
955         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
956         if (needed <= 0) {
957                 h->resv_huge_pages += delta;
958                 return 0;
959         }
960
961         allocated = 0;
962         INIT_LIST_HEAD(&surplus_list);
963
964         ret = -ENOMEM;
965 retry:
966         spin_unlock(&hugetlb_lock);
967         for (i = 0; i < needed; i++) {
968                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
969                 if (!page) {
970                         alloc_ok = false;
971                         break;
972                 }
973                 list_add(&page->lru, &surplus_list);
974         }
975         allocated += i;
976
977         /*
978          * After retaking hugetlb_lock, we need to recalculate 'needed'
979          * because either resv_huge_pages or free_huge_pages may have changed.
980          */
981         spin_lock(&hugetlb_lock);
982         needed = (h->resv_huge_pages + delta) -
983                         (h->free_huge_pages + allocated);
984         if (needed > 0) {
985                 if (alloc_ok)
986                         goto retry;
987                 /*
988                  * We were not able to allocate enough pages to
989                  * satisfy the entire reservation so we free what
990                  * we've allocated so far.
991                  */
992                 goto free;
993         }
994         /*
995          * The surplus_list now contains _at_least_ the number of extra pages
996          * needed to accommodate the reservation.  Add the appropriate number
997          * of pages to the hugetlb pool and free the extras back to the buddy
998          * allocator.  Commit the entire reservation here to prevent another
999          * process from stealing the pages as they are added to the pool but
1000          * before they are reserved.
1001          */
1002         needed += allocated;
1003         h->resv_huge_pages += delta;
1004         ret = 0;
1005
1006         /* Free the needed pages to the hugetlb pool */
1007         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1008                 if ((--needed) < 0)
1009                         break;
1010                 /*
1011                  * This page is now managed by the hugetlb allocator and has
1012                  * no users -- drop the buddy allocator's reference.
1013                  */
1014                 put_page_testzero(page);
1015                 VM_BUG_ON(page_count(page));
1016                 enqueue_huge_page(h, page);
1017         }
1018 free:
1019         spin_unlock(&hugetlb_lock);
1020
1021         /* Free unnecessary surplus pages to the buddy allocator */
1022         if (!list_empty(&surplus_list)) {
1023                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1024                         put_page(page);
1025                 }
1026         }
1027         spin_lock(&hugetlb_lock);
1028
1029         return ret;
1030 }
1031
1032 /*
1033  * When releasing a hugetlb pool reservation, any surplus pages that were
1034  * allocated to satisfy the reservation must be explicitly freed if they were
1035  * never used.
1036  * Called with hugetlb_lock held.
1037  */
1038 static void return_unused_surplus_pages(struct hstate *h,
1039                                         unsigned long unused_resv_pages)
1040 {
1041         unsigned long nr_pages;
1042
1043         /* Uncommit the reservation */
1044         h->resv_huge_pages -= unused_resv_pages;
1045
1046         /* Cannot return gigantic pages currently */
1047         if (h->order >= MAX_ORDER)
1048                 return;
1049
1050         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1051
1052         /*
1053          * We want to release as many surplus pages as possible, spread
1054          * evenly across all nodes with memory. Iterate across these nodes
1055          * until we can no longer free unreserved surplus pages. This occurs
1056          * when the nodes with surplus pages have no free pages.
1057          * free_pool_huge_page() will balance the the freed pages across the
1058          * on-line nodes with memory and will handle the hstate accounting.
1059          */
1060         while (nr_pages--) {
1061                 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1062                         break;
1063         }
1064 }
1065
1066 /*
1067  * Determine if the huge page at addr within the vma has an associated
1068  * reservation.  Where it does not we will need to logically increase
1069  * reservation and actually increase subpool usage before an allocation
1070  * can occur.  Where any new reservation would be required the
1071  * reservation change is prepared, but not committed.  Once the page
1072  * has been allocated from the subpool and instantiated the change should
1073  * be committed via vma_commit_reservation.  No action is required on
1074  * failure.
1075  */
1076 static long vma_needs_reservation(struct hstate *h,
1077                         struct vm_area_struct *vma, unsigned long addr)
1078 {
1079         struct address_space *mapping = vma->vm_file->f_mapping;
1080         struct inode *inode = mapping->host;
1081
1082         if (vma->vm_flags & VM_MAYSHARE) {
1083                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1084                 return region_chg(&inode->i_mapping->private_list,
1085                                                         idx, idx + 1);
1086
1087         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1088                 return 1;
1089
1090         } else  {
1091                 long err;
1092                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1093                 struct resv_map *reservations = vma_resv_map(vma);
1094
1095                 err = region_chg(&reservations->regions, idx, idx + 1);
1096                 if (err < 0)
1097                         return err;
1098                 return 0;
1099         }
1100 }
1101 static void vma_commit_reservation(struct hstate *h,
1102                         struct vm_area_struct *vma, unsigned long addr)
1103 {
1104         struct address_space *mapping = vma->vm_file->f_mapping;
1105         struct inode *inode = mapping->host;
1106
1107         if (vma->vm_flags & VM_MAYSHARE) {
1108                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1109                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1110
1111         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1112                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1113                 struct resv_map *reservations = vma_resv_map(vma);
1114
1115                 /* Mark this page used in the map. */
1116                 region_add(&reservations->regions, idx, idx + 1);
1117         }
1118 }
1119
1120 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1121                                     unsigned long addr, int avoid_reserve)
1122 {
1123         struct hugepage_subpool *spool = subpool_vma(vma);
1124         struct hstate *h = hstate_vma(vma);
1125         struct page *page;
1126         long chg;
1127         int ret, idx;
1128         struct hugetlb_cgroup *h_cg;
1129
1130         idx = hstate_index(h);
1131         /*
1132          * Processes that did not create the mapping will have no
1133          * reserves and will not have accounted against subpool
1134          * limit. Check that the subpool limit can be made before
1135          * satisfying the allocation MAP_NORESERVE mappings may also
1136          * need pages and subpool limit allocated allocated if no reserve
1137          * mapping overlaps.
1138          */
1139         chg = vma_needs_reservation(h, vma, addr);
1140         if (chg < 0)
1141                 return ERR_PTR(-ENOMEM);
1142         if (chg)
1143                 if (hugepage_subpool_get_pages(spool, chg))
1144                         return ERR_PTR(-ENOSPC);
1145
1146         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1147         if (ret) {
1148                 hugepage_subpool_put_pages(spool, chg);
1149                 return ERR_PTR(-ENOSPC);
1150         }
1151         spin_lock(&hugetlb_lock);
1152         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1153         spin_unlock(&hugetlb_lock);
1154
1155         if (!page) {
1156                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1157                 if (!page) {
1158                         hugetlb_cgroup_uncharge_cgroup(idx,
1159                                                        pages_per_huge_page(h),
1160                                                        h_cg);
1161                         hugepage_subpool_put_pages(spool, chg);
1162                         return ERR_PTR(-ENOSPC);
1163                 }
1164                 spin_lock(&hugetlb_lock);
1165                 list_move(&page->lru, &h->hugepage_activelist);
1166                 spin_unlock(&hugetlb_lock);
1167         }
1168
1169         set_page_private(page, (unsigned long)spool);
1170
1171         vma_commit_reservation(h, vma, addr);
1172         /* update page cgroup details */
1173         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1174         return page;
1175 }
1176
1177 int __weak alloc_bootmem_huge_page(struct hstate *h)
1178 {
1179         struct huge_bootmem_page *m;
1180         int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1181
1182         while (nr_nodes) {
1183                 void *addr;
1184
1185                 addr = __alloc_bootmem_node_nopanic(
1186                                 NODE_DATA(hstate_next_node_to_alloc(h,
1187                                                 &node_states[N_HIGH_MEMORY])),
1188                                 huge_page_size(h), huge_page_size(h), 0);
1189
1190                 if (addr) {
1191                         /*
1192                          * Use the beginning of the huge page to store the
1193                          * huge_bootmem_page struct (until gather_bootmem
1194                          * puts them into the mem_map).
1195                          */
1196                         m = addr;
1197                         goto found;
1198                 }
1199                 nr_nodes--;
1200         }
1201         return 0;
1202
1203 found:
1204         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1205         /* Put them into a private list first because mem_map is not up yet */
1206         list_add(&m->list, &huge_boot_pages);
1207         m->hstate = h;
1208         return 1;
1209 }
1210
1211 static void prep_compound_huge_page(struct page *page, int order)
1212 {
1213         if (unlikely(order > (MAX_ORDER - 1)))
1214                 prep_compound_gigantic_page(page, order);
1215         else
1216                 prep_compound_page(page, order);
1217 }
1218
1219 /* Put bootmem huge pages into the standard lists after mem_map is up */
1220 static void __init gather_bootmem_prealloc(void)
1221 {
1222         struct huge_bootmem_page *m;
1223
1224         list_for_each_entry(m, &huge_boot_pages, list) {
1225                 struct hstate *h = m->hstate;
1226                 struct page *page;
1227
1228 #ifdef CONFIG_HIGHMEM
1229                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1230                 free_bootmem_late((unsigned long)m,
1231                                   sizeof(struct huge_bootmem_page));
1232 #else
1233                 page = virt_to_page(m);
1234 #endif
1235                 __ClearPageReserved(page);
1236                 WARN_ON(page_count(page) != 1);
1237                 prep_compound_huge_page(page, h->order);
1238                 prep_new_huge_page(h, page, page_to_nid(page));
1239                 /*
1240                  * If we had gigantic hugepages allocated at boot time, we need
1241                  * to restore the 'stolen' pages to totalram_pages in order to
1242                  * fix confusing memory reports from free(1) and another
1243                  * side-effects, like CommitLimit going negative.
1244                  */
1245                 if (h->order > (MAX_ORDER - 1))
1246                         totalram_pages += 1 << h->order;
1247         }
1248 }
1249
1250 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1251 {
1252         unsigned long i;
1253
1254         for (i = 0; i < h->max_huge_pages; ++i) {
1255                 if (h->order >= MAX_ORDER) {
1256                         if (!alloc_bootmem_huge_page(h))
1257                                 break;
1258                 } else if (!alloc_fresh_huge_page(h,
1259                                          &node_states[N_HIGH_MEMORY]))
1260                         break;
1261         }
1262         h->max_huge_pages = i;
1263 }
1264
1265 static void __init hugetlb_init_hstates(void)
1266 {
1267         struct hstate *h;
1268
1269         for_each_hstate(h) {
1270                 /* oversize hugepages were init'ed in early boot */
1271                 if (h->order < MAX_ORDER)
1272                         hugetlb_hstate_alloc_pages(h);
1273         }
1274 }
1275
1276 static char * __init memfmt(char *buf, unsigned long n)
1277 {
1278         if (n >= (1UL << 30))
1279                 sprintf(buf, "%lu GB", n >> 30);
1280         else if (n >= (1UL << 20))
1281                 sprintf(buf, "%lu MB", n >> 20);
1282         else
1283                 sprintf(buf, "%lu KB", n >> 10);
1284         return buf;
1285 }
1286
1287 static void __init report_hugepages(void)
1288 {
1289         struct hstate *h;
1290
1291         for_each_hstate(h) {
1292                 char buf[32];
1293                 printk(KERN_INFO "HugeTLB registered %s page size, "
1294                                  "pre-allocated %ld pages\n",
1295                         memfmt(buf, huge_page_size(h)),
1296                         h->free_huge_pages);
1297         }
1298 }
1299
1300 #ifdef CONFIG_HIGHMEM
1301 static void try_to_free_low(struct hstate *h, unsigned long count,
1302                                                 nodemask_t *nodes_allowed)
1303 {
1304         int i;
1305
1306         if (h->order >= MAX_ORDER)
1307                 return;
1308
1309         for_each_node_mask(i, *nodes_allowed) {
1310                 struct page *page, *next;
1311                 struct list_head *freel = &h->hugepage_freelists[i];
1312                 list_for_each_entry_safe(page, next, freel, lru) {
1313                         if (count >= h->nr_huge_pages)
1314                                 return;
1315                         if (PageHighMem(page))
1316                                 continue;
1317                         list_del(&page->lru);
1318                         update_and_free_page(h, page);
1319                         h->free_huge_pages--;
1320                         h->free_huge_pages_node[page_to_nid(page)]--;
1321                 }
1322         }
1323 }
1324 #else
1325 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1326                                                 nodemask_t *nodes_allowed)
1327 {
1328 }
1329 #endif
1330
1331 /*
1332  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1333  * balanced by operating on them in a round-robin fashion.
1334  * Returns 1 if an adjustment was made.
1335  */
1336 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1337                                 int delta)
1338 {
1339         int start_nid, next_nid;
1340         int ret = 0;
1341
1342         VM_BUG_ON(delta != -1 && delta != 1);
1343
1344         if (delta < 0)
1345                 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1346         else
1347                 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1348         next_nid = start_nid;
1349
1350         do {
1351                 int nid = next_nid;
1352                 if (delta < 0)  {
1353                         /*
1354                          * To shrink on this node, there must be a surplus page
1355                          */
1356                         if (!h->surplus_huge_pages_node[nid]) {
1357                                 next_nid = hstate_next_node_to_alloc(h,
1358                                                                 nodes_allowed);
1359                                 continue;
1360                         }
1361                 }
1362                 if (delta > 0) {
1363                         /*
1364                          * Surplus cannot exceed the total number of pages
1365                          */
1366                         if (h->surplus_huge_pages_node[nid] >=
1367                                                 h->nr_huge_pages_node[nid]) {
1368                                 next_nid = hstate_next_node_to_free(h,
1369                                                                 nodes_allowed);
1370                                 continue;
1371                         }
1372                 }
1373
1374                 h->surplus_huge_pages += delta;
1375                 h->surplus_huge_pages_node[nid] += delta;
1376                 ret = 1;
1377                 break;
1378         } while (next_nid != start_nid);
1379
1380         return ret;
1381 }
1382
1383 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1384 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1385                                                 nodemask_t *nodes_allowed)
1386 {
1387         unsigned long min_count, ret;
1388
1389         if (h->order >= MAX_ORDER)
1390                 return h->max_huge_pages;
1391
1392         /*
1393          * Increase the pool size
1394          * First take pages out of surplus state.  Then make up the
1395          * remaining difference by allocating fresh huge pages.
1396          *
1397          * We might race with alloc_buddy_huge_page() here and be unable
1398          * to convert a surplus huge page to a normal huge page. That is
1399          * not critical, though, it just means the overall size of the
1400          * pool might be one hugepage larger than it needs to be, but
1401          * within all the constraints specified by the sysctls.
1402          */
1403         spin_lock(&hugetlb_lock);
1404         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1405                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1406                         break;
1407         }
1408
1409         while (count > persistent_huge_pages(h)) {
1410                 /*
1411                  * If this allocation races such that we no longer need the
1412                  * page, free_huge_page will handle it by freeing the page
1413                  * and reducing the surplus.
1414                  */
1415                 spin_unlock(&hugetlb_lock);
1416                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1417                 spin_lock(&hugetlb_lock);
1418                 if (!ret)
1419                         goto out;
1420
1421                 /* Bail for signals. Probably ctrl-c from user */
1422                 if (signal_pending(current))
1423                         goto out;
1424         }
1425
1426         /*
1427          * Decrease the pool size
1428          * First return free pages to the buddy allocator (being careful
1429          * to keep enough around to satisfy reservations).  Then place
1430          * pages into surplus state as needed so the pool will shrink
1431          * to the desired size as pages become free.
1432          *
1433          * By placing pages into the surplus state independent of the
1434          * overcommit value, we are allowing the surplus pool size to
1435          * exceed overcommit. There are few sane options here. Since
1436          * alloc_buddy_huge_page() is checking the global counter,
1437          * though, we'll note that we're not allowed to exceed surplus
1438          * and won't grow the pool anywhere else. Not until one of the
1439          * sysctls are changed, or the surplus pages go out of use.
1440          */
1441         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1442         min_count = max(count, min_count);
1443         try_to_free_low(h, min_count, nodes_allowed);
1444         while (min_count < persistent_huge_pages(h)) {
1445                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1446                         break;
1447         }
1448         while (count < persistent_huge_pages(h)) {
1449                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1450                         break;
1451         }
1452 out:
1453         ret = persistent_huge_pages(h);
1454         spin_unlock(&hugetlb_lock);
1455         return ret;
1456 }
1457
1458 #define HSTATE_ATTR_RO(_name) \
1459         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1460
1461 #define HSTATE_ATTR(_name) \
1462         static struct kobj_attribute _name##_attr = \
1463                 __ATTR(_name, 0644, _name##_show, _name##_store)
1464
1465 static struct kobject *hugepages_kobj;
1466 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1467
1468 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1469
1470 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1471 {
1472         int i;
1473
1474         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1475                 if (hstate_kobjs[i] == kobj) {
1476                         if (nidp)
1477                                 *nidp = NUMA_NO_NODE;
1478                         return &hstates[i];
1479                 }
1480
1481         return kobj_to_node_hstate(kobj, nidp);
1482 }
1483
1484 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1485                                         struct kobj_attribute *attr, char *buf)
1486 {
1487         struct hstate *h;
1488         unsigned long nr_huge_pages;
1489         int nid;
1490
1491         h = kobj_to_hstate(kobj, &nid);
1492         if (nid == NUMA_NO_NODE)
1493                 nr_huge_pages = h->nr_huge_pages;
1494         else
1495                 nr_huge_pages = h->nr_huge_pages_node[nid];
1496
1497         return sprintf(buf, "%lu\n", nr_huge_pages);
1498 }
1499
1500 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1501                         struct kobject *kobj, struct kobj_attribute *attr,
1502                         const char *buf, size_t len)
1503 {
1504         int err;
1505         int nid;
1506         unsigned long count;
1507         struct hstate *h;
1508         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1509
1510         err = strict_strtoul(buf, 10, &count);
1511         if (err)
1512                 goto out;
1513
1514         h = kobj_to_hstate(kobj, &nid);
1515         if (h->order >= MAX_ORDER) {
1516                 err = -EINVAL;
1517                 goto out;
1518         }
1519
1520         if (nid == NUMA_NO_NODE) {
1521                 /*
1522                  * global hstate attribute
1523                  */
1524                 if (!(obey_mempolicy &&
1525                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1526                         NODEMASK_FREE(nodes_allowed);
1527                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1528                 }
1529         } else if (nodes_allowed) {
1530                 /*
1531                  * per node hstate attribute: adjust count to global,
1532                  * but restrict alloc/free to the specified node.
1533                  */
1534                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1535                 init_nodemask_of_node(nodes_allowed, nid);
1536         } else
1537                 nodes_allowed = &node_states[N_HIGH_MEMORY];
1538
1539         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1540
1541         if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1542                 NODEMASK_FREE(nodes_allowed);
1543
1544         return len;
1545 out:
1546         NODEMASK_FREE(nodes_allowed);
1547         return err;
1548 }
1549
1550 static ssize_t nr_hugepages_show(struct kobject *kobj,
1551                                        struct kobj_attribute *attr, char *buf)
1552 {
1553         return nr_hugepages_show_common(kobj, attr, buf);
1554 }
1555
1556 static ssize_t nr_hugepages_store(struct kobject *kobj,
1557                struct kobj_attribute *attr, const char *buf, size_t len)
1558 {
1559         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1560 }
1561 HSTATE_ATTR(nr_hugepages);
1562
1563 #ifdef CONFIG_NUMA
1564
1565 /*
1566  * hstate attribute for optionally mempolicy-based constraint on persistent
1567  * huge page alloc/free.
1568  */
1569 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1570                                        struct kobj_attribute *attr, char *buf)
1571 {
1572         return nr_hugepages_show_common(kobj, attr, buf);
1573 }
1574
1575 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1576                struct kobj_attribute *attr, const char *buf, size_t len)
1577 {
1578         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1579 }
1580 HSTATE_ATTR(nr_hugepages_mempolicy);
1581 #endif
1582
1583
1584 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1585                                         struct kobj_attribute *attr, char *buf)
1586 {
1587         struct hstate *h = kobj_to_hstate(kobj, NULL);
1588         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1589 }
1590
1591 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1592                 struct kobj_attribute *attr, const char *buf, size_t count)
1593 {
1594         int err;
1595         unsigned long input;
1596         struct hstate *h = kobj_to_hstate(kobj, NULL);
1597
1598         if (h->order >= MAX_ORDER)
1599                 return -EINVAL;
1600
1601         err = strict_strtoul(buf, 10, &input);
1602         if (err)
1603                 return err;
1604
1605         spin_lock(&hugetlb_lock);
1606         h->nr_overcommit_huge_pages = input;
1607         spin_unlock(&hugetlb_lock);
1608
1609         return count;
1610 }
1611 HSTATE_ATTR(nr_overcommit_hugepages);
1612
1613 static ssize_t free_hugepages_show(struct kobject *kobj,
1614                                         struct kobj_attribute *attr, char *buf)
1615 {
1616         struct hstate *h;
1617         unsigned long free_huge_pages;
1618         int nid;
1619
1620         h = kobj_to_hstate(kobj, &nid);
1621         if (nid == NUMA_NO_NODE)
1622                 free_huge_pages = h->free_huge_pages;
1623         else
1624                 free_huge_pages = h->free_huge_pages_node[nid];
1625
1626         return sprintf(buf, "%lu\n", free_huge_pages);
1627 }
1628 HSTATE_ATTR_RO(free_hugepages);
1629
1630 static ssize_t resv_hugepages_show(struct kobject *kobj,
1631                                         struct kobj_attribute *attr, char *buf)
1632 {
1633         struct hstate *h = kobj_to_hstate(kobj, NULL);
1634         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1635 }
1636 HSTATE_ATTR_RO(resv_hugepages);
1637
1638 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1639                                         struct kobj_attribute *attr, char *buf)
1640 {
1641         struct hstate *h;
1642         unsigned long surplus_huge_pages;
1643         int nid;
1644
1645         h = kobj_to_hstate(kobj, &nid);
1646         if (nid == NUMA_NO_NODE)
1647                 surplus_huge_pages = h->surplus_huge_pages;
1648         else
1649                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1650
1651         return sprintf(buf, "%lu\n", surplus_huge_pages);
1652 }
1653 HSTATE_ATTR_RO(surplus_hugepages);
1654
1655 static struct attribute *hstate_attrs[] = {
1656         &nr_hugepages_attr.attr,
1657         &nr_overcommit_hugepages_attr.attr,
1658         &free_hugepages_attr.attr,
1659         &resv_hugepages_attr.attr,
1660         &surplus_hugepages_attr.attr,
1661 #ifdef CONFIG_NUMA
1662         &nr_hugepages_mempolicy_attr.attr,
1663 #endif
1664         NULL,
1665 };
1666
1667 static struct attribute_group hstate_attr_group = {
1668         .attrs = hstate_attrs,
1669 };
1670
1671 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1672                                     struct kobject **hstate_kobjs,
1673                                     struct attribute_group *hstate_attr_group)
1674 {
1675         int retval;
1676         int hi = hstate_index(h);
1677
1678         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1679         if (!hstate_kobjs[hi])
1680                 return -ENOMEM;
1681
1682         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1683         if (retval)
1684                 kobject_put(hstate_kobjs[hi]);
1685
1686         return retval;
1687 }
1688
1689 static void __init hugetlb_sysfs_init(void)
1690 {
1691         struct hstate *h;
1692         int err;
1693
1694         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1695         if (!hugepages_kobj)
1696                 return;
1697
1698         for_each_hstate(h) {
1699                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1700                                          hstate_kobjs, &hstate_attr_group);
1701                 if (err)
1702                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1703                                                                 h->name);
1704         }
1705 }
1706
1707 #ifdef CONFIG_NUMA
1708
1709 /*
1710  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1711  * with node devices in node_devices[] using a parallel array.  The array
1712  * index of a node device or _hstate == node id.
1713  * This is here to avoid any static dependency of the node device driver, in
1714  * the base kernel, on the hugetlb module.
1715  */
1716 struct node_hstate {
1717         struct kobject          *hugepages_kobj;
1718         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1719 };
1720 struct node_hstate node_hstates[MAX_NUMNODES];
1721
1722 /*
1723  * A subset of global hstate attributes for node devices
1724  */
1725 static struct attribute *per_node_hstate_attrs[] = {
1726         &nr_hugepages_attr.attr,
1727         &free_hugepages_attr.attr,
1728         &surplus_hugepages_attr.attr,
1729         NULL,
1730 };
1731
1732 static struct attribute_group per_node_hstate_attr_group = {
1733         .attrs = per_node_hstate_attrs,
1734 };
1735
1736 /*
1737  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1738  * Returns node id via non-NULL nidp.
1739  */
1740 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1741 {
1742         int nid;
1743
1744         for (nid = 0; nid < nr_node_ids; nid++) {
1745                 struct node_hstate *nhs = &node_hstates[nid];
1746                 int i;
1747                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1748                         if (nhs->hstate_kobjs[i] == kobj) {
1749                                 if (nidp)
1750                                         *nidp = nid;
1751                                 return &hstates[i];
1752                         }
1753         }
1754
1755         BUG();
1756         return NULL;
1757 }
1758
1759 /*
1760  * Unregister hstate attributes from a single node device.
1761  * No-op if no hstate attributes attached.
1762  */
1763 void hugetlb_unregister_node(struct node *node)
1764 {
1765         struct hstate *h;
1766         struct node_hstate *nhs = &node_hstates[node->dev.id];
1767
1768         if (!nhs->hugepages_kobj)
1769                 return;         /* no hstate attributes */
1770
1771         for_each_hstate(h) {
1772                 int idx = hstate_index(h);
1773                 if (nhs->hstate_kobjs[idx]) {
1774                         kobject_put(nhs->hstate_kobjs[idx]);
1775                         nhs->hstate_kobjs[idx] = NULL;
1776                 }
1777         }
1778
1779         kobject_put(nhs->hugepages_kobj);
1780         nhs->hugepages_kobj = NULL;
1781 }
1782
1783 /*
1784  * hugetlb module exit:  unregister hstate attributes from node devices
1785  * that have them.
1786  */
1787 static void hugetlb_unregister_all_nodes(void)
1788 {
1789         int nid;
1790
1791         /*
1792          * disable node device registrations.
1793          */
1794         register_hugetlbfs_with_node(NULL, NULL);
1795
1796         /*
1797          * remove hstate attributes from any nodes that have them.
1798          */
1799         for (nid = 0; nid < nr_node_ids; nid++)
1800                 hugetlb_unregister_node(&node_devices[nid]);
1801 }
1802
1803 /*
1804  * Register hstate attributes for a single node device.
1805  * No-op if attributes already registered.
1806  */
1807 void hugetlb_register_node(struct node *node)
1808 {
1809         struct hstate *h;
1810         struct node_hstate *nhs = &node_hstates[node->dev.id];
1811         int err;
1812
1813         if (nhs->hugepages_kobj)
1814                 return;         /* already allocated */
1815
1816         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1817                                                         &node->dev.kobj);
1818         if (!nhs->hugepages_kobj)
1819                 return;
1820
1821         for_each_hstate(h) {
1822                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1823                                                 nhs->hstate_kobjs,
1824                                                 &per_node_hstate_attr_group);
1825                 if (err) {
1826                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1827                                         " for node %d\n",
1828                                                 h->name, node->dev.id);
1829                         hugetlb_unregister_node(node);
1830                         break;
1831                 }
1832         }
1833 }
1834
1835 /*
1836  * hugetlb init time:  register hstate attributes for all registered node
1837  * devices of nodes that have memory.  All on-line nodes should have
1838  * registered their associated device by this time.
1839  */
1840 static void hugetlb_register_all_nodes(void)
1841 {
1842         int nid;
1843
1844         for_each_node_state(nid, N_HIGH_MEMORY) {
1845                 struct node *node = &node_devices[nid];
1846                 if (node->dev.id == nid)
1847                         hugetlb_register_node(node);
1848         }
1849
1850         /*
1851          * Let the node device driver know we're here so it can
1852          * [un]register hstate attributes on node hotplug.
1853          */
1854         register_hugetlbfs_with_node(hugetlb_register_node,
1855                                      hugetlb_unregister_node);
1856 }
1857 #else   /* !CONFIG_NUMA */
1858
1859 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1860 {
1861         BUG();
1862         if (nidp)
1863                 *nidp = -1;
1864         return NULL;
1865 }
1866
1867 static void hugetlb_unregister_all_nodes(void) { }
1868
1869 static void hugetlb_register_all_nodes(void) { }
1870
1871 #endif
1872
1873 static void __exit hugetlb_exit(void)
1874 {
1875         struct hstate *h;
1876
1877         hugetlb_unregister_all_nodes();
1878
1879         for_each_hstate(h) {
1880                 kobject_put(hstate_kobjs[hstate_index(h)]);
1881         }
1882
1883         kobject_put(hugepages_kobj);
1884 }
1885 module_exit(hugetlb_exit);
1886
1887 static int __init hugetlb_init(void)
1888 {
1889         /* Some platform decide whether they support huge pages at boot
1890          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1891          * there is no such support
1892          */
1893         if (HPAGE_SHIFT == 0)
1894                 return 0;
1895
1896         if (!size_to_hstate(default_hstate_size)) {
1897                 default_hstate_size = HPAGE_SIZE;
1898                 if (!size_to_hstate(default_hstate_size))
1899                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1900         }
1901         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1902         if (default_hstate_max_huge_pages)
1903                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1904
1905         hugetlb_init_hstates();
1906
1907         gather_bootmem_prealloc();
1908
1909         report_hugepages();
1910
1911         hugetlb_sysfs_init();
1912
1913         hugetlb_register_all_nodes();
1914
1915         return 0;
1916 }
1917 module_init(hugetlb_init);
1918
1919 /* Should be called on processing a hugepagesz=... option */
1920 void __init hugetlb_add_hstate(unsigned order)
1921 {
1922         struct hstate *h;
1923         unsigned long i;
1924
1925         if (size_to_hstate(PAGE_SIZE << order)) {
1926                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1927                 return;
1928         }
1929         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1930         BUG_ON(order == 0);
1931         h = &hstates[hugetlb_max_hstate++];
1932         h->order = order;
1933         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1934         h->nr_huge_pages = 0;
1935         h->free_huge_pages = 0;
1936         for (i = 0; i < MAX_NUMNODES; ++i)
1937                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1938         INIT_LIST_HEAD(&h->hugepage_activelist);
1939         h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1940         h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1941         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1942                                         huge_page_size(h)/1024);
1943         /*
1944          * Add cgroup control files only if the huge page consists
1945          * of more than two normal pages. This is because we use
1946          * page[2].lru.next for storing cgoup details.
1947          */
1948         if (order >= HUGETLB_CGROUP_MIN_ORDER)
1949                 hugetlb_cgroup_file_init(hugetlb_max_hstate - 1);
1950
1951         parsed_hstate = h;
1952 }
1953
1954 static int __init hugetlb_nrpages_setup(char *s)
1955 {
1956         unsigned long *mhp;
1957         static unsigned long *last_mhp;
1958
1959         /*
1960          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1961          * so this hugepages= parameter goes to the "default hstate".
1962          */
1963         if (!hugetlb_max_hstate)
1964                 mhp = &default_hstate_max_huge_pages;
1965         else
1966                 mhp = &parsed_hstate->max_huge_pages;
1967
1968         if (mhp == last_mhp) {
1969                 printk(KERN_WARNING "hugepages= specified twice without "
1970                         "interleaving hugepagesz=, ignoring\n");
1971                 return 1;
1972         }
1973
1974         if (sscanf(s, "%lu", mhp) <= 0)
1975                 *mhp = 0;
1976
1977         /*
1978          * Global state is always initialized later in hugetlb_init.
1979          * But we need to allocate >= MAX_ORDER hstates here early to still
1980          * use the bootmem allocator.
1981          */
1982         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1983                 hugetlb_hstate_alloc_pages(parsed_hstate);
1984
1985         last_mhp = mhp;
1986
1987         return 1;
1988 }
1989 __setup("hugepages=", hugetlb_nrpages_setup);
1990
1991 static int __init hugetlb_default_setup(char *s)
1992 {
1993         default_hstate_size = memparse(s, &s);
1994         return 1;
1995 }
1996 __setup("default_hugepagesz=", hugetlb_default_setup);
1997
1998 static unsigned int cpuset_mems_nr(unsigned int *array)
1999 {
2000         int node;
2001         unsigned int nr = 0;
2002
2003         for_each_node_mask(node, cpuset_current_mems_allowed)
2004                 nr += array[node];
2005
2006         return nr;
2007 }
2008
2009 #ifdef CONFIG_SYSCTL
2010 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2011                          struct ctl_table *table, int write,
2012                          void __user *buffer, size_t *length, loff_t *ppos)
2013 {
2014         struct hstate *h = &default_hstate;
2015         unsigned long tmp;
2016         int ret;
2017
2018         tmp = h->max_huge_pages;
2019
2020         if (write && h->order >= MAX_ORDER)
2021                 return -EINVAL;
2022
2023         table->data = &tmp;
2024         table->maxlen = sizeof(unsigned long);
2025         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2026         if (ret)
2027                 goto out;
2028
2029         if (write) {
2030                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2031                                                 GFP_KERNEL | __GFP_NORETRY);
2032                 if (!(obey_mempolicy &&
2033                                init_nodemask_of_mempolicy(nodes_allowed))) {
2034                         NODEMASK_FREE(nodes_allowed);
2035                         nodes_allowed = &node_states[N_HIGH_MEMORY];
2036                 }
2037                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2038
2039                 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2040                         NODEMASK_FREE(nodes_allowed);
2041         }
2042 out:
2043         return ret;
2044 }
2045
2046 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2047                           void __user *buffer, size_t *length, loff_t *ppos)
2048 {
2049
2050         return hugetlb_sysctl_handler_common(false, table, write,
2051                                                         buffer, length, ppos);
2052 }
2053
2054 #ifdef CONFIG_NUMA
2055 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2056                           void __user *buffer, size_t *length, loff_t *ppos)
2057 {
2058         return hugetlb_sysctl_handler_common(true, table, write,
2059                                                         buffer, length, ppos);
2060 }
2061 #endif /* CONFIG_NUMA */
2062
2063 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2064                         void __user *buffer,
2065                         size_t *length, loff_t *ppos)
2066 {
2067         proc_dointvec(table, write, buffer, length, ppos);
2068         if (hugepages_treat_as_movable)
2069                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2070         else
2071                 htlb_alloc_mask = GFP_HIGHUSER;
2072         return 0;
2073 }
2074
2075 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2076                         void __user *buffer,
2077                         size_t *length, loff_t *ppos)
2078 {
2079         struct hstate *h = &default_hstate;
2080         unsigned long tmp;
2081         int ret;
2082
2083         tmp = h->nr_overcommit_huge_pages;
2084
2085         if (write && h->order >= MAX_ORDER)
2086                 return -EINVAL;
2087
2088         table->data = &tmp;
2089         table->maxlen = sizeof(unsigned long);
2090         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2091         if (ret)
2092                 goto out;
2093
2094         if (write) {
2095                 spin_lock(&hugetlb_lock);
2096                 h->nr_overcommit_huge_pages = tmp;
2097                 spin_unlock(&hugetlb_lock);
2098         }
2099 out:
2100         return ret;
2101 }
2102
2103 #endif /* CONFIG_SYSCTL */
2104
2105 void hugetlb_report_meminfo(struct seq_file *m)
2106 {
2107         struct hstate *h = &default_hstate;
2108         seq_printf(m,
2109                         "HugePages_Total:   %5lu\n"
2110                         "HugePages_Free:    %5lu\n"
2111                         "HugePages_Rsvd:    %5lu\n"
2112                         "HugePages_Surp:    %5lu\n"
2113                         "Hugepagesize:   %8lu kB\n",
2114                         h->nr_huge_pages,
2115                         h->free_huge_pages,
2116                         h->resv_huge_pages,
2117                         h->surplus_huge_pages,
2118                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2119 }
2120
2121 int hugetlb_report_node_meminfo(int nid, char *buf)
2122 {
2123         struct hstate *h = &default_hstate;
2124         return sprintf(buf,
2125                 "Node %d HugePages_Total: %5u\n"
2126                 "Node %d HugePages_Free:  %5u\n"
2127                 "Node %d HugePages_Surp:  %5u\n",
2128                 nid, h->nr_huge_pages_node[nid],
2129                 nid, h->free_huge_pages_node[nid],
2130                 nid, h->surplus_huge_pages_node[nid]);
2131 }
2132
2133 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2134 unsigned long hugetlb_total_pages(void)
2135 {
2136         struct hstate *h = &default_hstate;
2137         return h->nr_huge_pages * pages_per_huge_page(h);
2138 }
2139
2140 static int hugetlb_acct_memory(struct hstate *h, long delta)
2141 {
2142         int ret = -ENOMEM;
2143
2144         spin_lock(&hugetlb_lock);
2145         /*
2146          * When cpuset is configured, it breaks the strict hugetlb page
2147          * reservation as the accounting is done on a global variable. Such
2148          * reservation is completely rubbish in the presence of cpuset because
2149          * the reservation is not checked against page availability for the
2150          * current cpuset. Application can still potentially OOM'ed by kernel
2151          * with lack of free htlb page in cpuset that the task is in.
2152          * Attempt to enforce strict accounting with cpuset is almost
2153          * impossible (or too ugly) because cpuset is too fluid that
2154          * task or memory node can be dynamically moved between cpusets.
2155          *
2156          * The change of semantics for shared hugetlb mapping with cpuset is
2157          * undesirable. However, in order to preserve some of the semantics,
2158          * we fall back to check against current free page availability as
2159          * a best attempt and hopefully to minimize the impact of changing
2160          * semantics that cpuset has.
2161          */
2162         if (delta > 0) {
2163                 if (gather_surplus_pages(h, delta) < 0)
2164                         goto out;
2165
2166                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2167                         return_unused_surplus_pages(h, delta);
2168                         goto out;
2169                 }
2170         }
2171
2172         ret = 0;
2173         if (delta < 0)
2174                 return_unused_surplus_pages(h, (unsigned long) -delta);
2175
2176 out:
2177         spin_unlock(&hugetlb_lock);
2178         return ret;
2179 }
2180
2181 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2182 {
2183         struct resv_map *reservations = vma_resv_map(vma);
2184
2185         /*
2186          * This new VMA should share its siblings reservation map if present.
2187          * The VMA will only ever have a valid reservation map pointer where
2188          * it is being copied for another still existing VMA.  As that VMA
2189          * has a reference to the reservation map it cannot disappear until
2190          * after this open call completes.  It is therefore safe to take a
2191          * new reference here without additional locking.
2192          */
2193         if (reservations)
2194                 kref_get(&reservations->refs);
2195 }
2196
2197 static void resv_map_put(struct vm_area_struct *vma)
2198 {
2199         struct resv_map *reservations = vma_resv_map(vma);
2200
2201         if (!reservations)
2202                 return;
2203         kref_put(&reservations->refs, resv_map_release);
2204 }
2205
2206 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2207 {
2208         struct hstate *h = hstate_vma(vma);
2209         struct resv_map *reservations = vma_resv_map(vma);
2210         struct hugepage_subpool *spool = subpool_vma(vma);
2211         unsigned long reserve;
2212         unsigned long start;
2213         unsigned long end;
2214
2215         if (reservations) {
2216                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2217                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2218
2219                 reserve = (end - start) -
2220                         region_count(&reservations->regions, start, end);
2221
2222                 resv_map_put(vma);
2223
2224                 if (reserve) {
2225                         hugetlb_acct_memory(h, -reserve);
2226                         hugepage_subpool_put_pages(spool, reserve);
2227                 }
2228         }
2229 }
2230
2231 /*
2232  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2233  * handle_mm_fault() to try to instantiate regular-sized pages in the
2234  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2235  * this far.
2236  */
2237 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2238 {
2239         BUG();
2240         return 0;
2241 }
2242
2243 const struct vm_operations_struct hugetlb_vm_ops = {
2244         .fault = hugetlb_vm_op_fault,
2245         .open = hugetlb_vm_op_open,
2246         .close = hugetlb_vm_op_close,
2247 };
2248
2249 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2250                                 int writable)
2251 {
2252         pte_t entry;
2253
2254         if (writable) {
2255                 entry =
2256                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2257         } else {
2258                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2259         }
2260         entry = pte_mkyoung(entry);
2261         entry = pte_mkhuge(entry);
2262         entry = arch_make_huge_pte(entry, vma, page, writable);
2263
2264         return entry;
2265 }
2266
2267 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2268                                    unsigned long address, pte_t *ptep)
2269 {
2270         pte_t entry;
2271
2272         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2273         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2274                 update_mmu_cache(vma, address, ptep);
2275 }
2276
2277
2278 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2279                             struct vm_area_struct *vma)
2280 {
2281         pte_t *src_pte, *dst_pte, entry;
2282         struct page *ptepage;
2283         unsigned long addr;
2284         int cow;
2285         struct hstate *h = hstate_vma(vma);
2286         unsigned long sz = huge_page_size(h);
2287
2288         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2289
2290         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2291                 src_pte = huge_pte_offset(src, addr);
2292                 if (!src_pte)
2293                         continue;
2294                 dst_pte = huge_pte_alloc(dst, addr, sz);
2295                 if (!dst_pte)
2296                         goto nomem;
2297
2298                 /* If the pagetables are shared don't copy or take references */
2299                 if (dst_pte == src_pte)
2300                         continue;
2301
2302                 spin_lock(&dst->page_table_lock);
2303                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2304                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2305                         if (cow)
2306                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2307                         entry = huge_ptep_get(src_pte);
2308                         ptepage = pte_page(entry);
2309                         get_page(ptepage);
2310                         page_dup_rmap(ptepage);
2311                         set_huge_pte_at(dst, addr, dst_pte, entry);
2312                 }
2313                 spin_unlock(&src->page_table_lock);
2314                 spin_unlock(&dst->page_table_lock);
2315         }
2316         return 0;
2317
2318 nomem:
2319         return -ENOMEM;
2320 }
2321
2322 static int is_hugetlb_entry_migration(pte_t pte)
2323 {
2324         swp_entry_t swp;
2325
2326         if (huge_pte_none(pte) || pte_present(pte))
2327                 return 0;
2328         swp = pte_to_swp_entry(pte);
2329         if (non_swap_entry(swp) && is_migration_entry(swp))
2330                 return 1;
2331         else
2332                 return 0;
2333 }
2334
2335 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2336 {
2337         swp_entry_t swp;
2338
2339         if (huge_pte_none(pte) || pte_present(pte))
2340                 return 0;
2341         swp = pte_to_swp_entry(pte);
2342         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2343                 return 1;
2344         else
2345                 return 0;
2346 }
2347
2348 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2349                             unsigned long start, unsigned long end,
2350                             struct page *ref_page)
2351 {
2352         int force_flush = 0;
2353         struct mm_struct *mm = vma->vm_mm;
2354         unsigned long address;
2355         pte_t *ptep;
2356         pte_t pte;
2357         struct page *page;
2358         struct hstate *h = hstate_vma(vma);
2359         unsigned long sz = huge_page_size(h);
2360
2361         WARN_ON(!is_vm_hugetlb_page(vma));
2362         BUG_ON(start & ~huge_page_mask(h));
2363         BUG_ON(end & ~huge_page_mask(h));
2364
2365         tlb_start_vma(tlb, vma);
2366         mmu_notifier_invalidate_range_start(mm, start, end);
2367 again:
2368         spin_lock(&mm->page_table_lock);
2369         for (address = start; address < end; address += sz) {
2370                 ptep = huge_pte_offset(mm, address);
2371                 if (!ptep)
2372                         continue;
2373
2374                 if (huge_pmd_unshare(mm, &address, ptep))
2375                         continue;
2376
2377                 pte = huge_ptep_get(ptep);
2378                 if (huge_pte_none(pte))
2379                         continue;
2380
2381                 /*
2382                  * HWPoisoned hugepage is already unmapped and dropped reference
2383                  */
2384                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2385                         continue;
2386
2387                 page = pte_page(pte);
2388                 /*
2389                  * If a reference page is supplied, it is because a specific
2390                  * page is being unmapped, not a range. Ensure the page we
2391                  * are about to unmap is the actual page of interest.
2392                  */
2393                 if (ref_page) {
2394                         if (page != ref_page)
2395                                 continue;
2396
2397                         /*
2398                          * Mark the VMA as having unmapped its page so that
2399                          * future faults in this VMA will fail rather than
2400                          * looking like data was lost
2401                          */
2402                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2403                 }
2404
2405                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2406                 tlb_remove_tlb_entry(tlb, ptep, address);
2407                 if (pte_dirty(pte))
2408                         set_page_dirty(page);
2409
2410                 page_remove_rmap(page);
2411                 force_flush = !__tlb_remove_page(tlb, page);
2412                 if (force_flush)
2413                         break;
2414                 /* Bail out after unmapping reference page if supplied */
2415                 if (ref_page)
2416                         break;
2417         }
2418         spin_unlock(&mm->page_table_lock);
2419         /*
2420          * mmu_gather ran out of room to batch pages, we break out of
2421          * the PTE lock to avoid doing the potential expensive TLB invalidate
2422          * and page-free while holding it.
2423          */
2424         if (force_flush) {
2425                 force_flush = 0;
2426                 tlb_flush_mmu(tlb);
2427                 if (address < end && !ref_page)
2428                         goto again;
2429         }
2430         mmu_notifier_invalidate_range_end(mm, start, end);
2431         tlb_end_vma(tlb, vma);
2432 }
2433
2434 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2435                           unsigned long end, struct page *ref_page)
2436 {
2437         struct mm_struct *mm;
2438         struct mmu_gather tlb;
2439
2440         mm = vma->vm_mm;
2441
2442         tlb_gather_mmu(&tlb, mm, 0);
2443         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2444         tlb_finish_mmu(&tlb, start, end);
2445 }
2446
2447 /*
2448  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2449  * mappping it owns the reserve page for. The intention is to unmap the page
2450  * from other VMAs and let the children be SIGKILLed if they are faulting the
2451  * same region.
2452  */
2453 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2454                                 struct page *page, unsigned long address)
2455 {
2456         struct hstate *h = hstate_vma(vma);
2457         struct vm_area_struct *iter_vma;
2458         struct address_space *mapping;
2459         struct prio_tree_iter iter;
2460         pgoff_t pgoff;
2461
2462         /*
2463          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2464          * from page cache lookup which is in HPAGE_SIZE units.
2465          */
2466         address = address & huge_page_mask(h);
2467         pgoff = vma_hugecache_offset(h, vma, address);
2468         mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2469
2470         /*
2471          * Take the mapping lock for the duration of the table walk. As
2472          * this mapping should be shared between all the VMAs,
2473          * __unmap_hugepage_range() is called as the lock is already held
2474          */
2475         mutex_lock(&mapping->i_mmap_mutex);
2476         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2477                 /* Do not unmap the current VMA */
2478                 if (iter_vma == vma)
2479                         continue;
2480
2481                 /*
2482                  * Unmap the page from other VMAs without their own reserves.
2483                  * They get marked to be SIGKILLed if they fault in these
2484                  * areas. This is because a future no-page fault on this VMA
2485                  * could insert a zeroed page instead of the data existing
2486                  * from the time of fork. This would look like data corruption
2487                  */
2488                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2489                         unmap_hugepage_range(iter_vma, address,
2490                                              address + huge_page_size(h), page);
2491         }
2492         mutex_unlock(&mapping->i_mmap_mutex);
2493
2494         return 1;
2495 }
2496
2497 /*
2498  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2499  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2500  * cannot race with other handlers or page migration.
2501  * Keep the pte_same checks anyway to make transition from the mutex easier.
2502  */
2503 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2504                         unsigned long address, pte_t *ptep, pte_t pte,
2505                         struct page *pagecache_page)
2506 {
2507         struct hstate *h = hstate_vma(vma);
2508         struct page *old_page, *new_page;
2509         int avoidcopy;
2510         int outside_reserve = 0;
2511
2512         old_page = pte_page(pte);
2513
2514 retry_avoidcopy:
2515         /* If no-one else is actually using this page, avoid the copy
2516          * and just make the page writable */
2517         avoidcopy = (page_mapcount(old_page) == 1);
2518         if (avoidcopy) {
2519                 if (PageAnon(old_page))
2520                         page_move_anon_rmap(old_page, vma, address);
2521                 set_huge_ptep_writable(vma, address, ptep);
2522                 return 0;
2523         }
2524
2525         /*
2526          * If the process that created a MAP_PRIVATE mapping is about to
2527          * perform a COW due to a shared page count, attempt to satisfy
2528          * the allocation without using the existing reserves. The pagecache
2529          * page is used to determine if the reserve at this address was
2530          * consumed or not. If reserves were used, a partial faulted mapping
2531          * at the time of fork() could consume its reserves on COW instead
2532          * of the full address range.
2533          */
2534         if (!(vma->vm_flags & VM_MAYSHARE) &&
2535                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2536                         old_page != pagecache_page)
2537                 outside_reserve = 1;
2538
2539         page_cache_get(old_page);
2540
2541         /* Drop page_table_lock as buddy allocator may be called */
2542         spin_unlock(&mm->page_table_lock);
2543         new_page = alloc_huge_page(vma, address, outside_reserve);
2544
2545         if (IS_ERR(new_page)) {
2546                 long err = PTR_ERR(new_page);
2547                 page_cache_release(old_page);
2548
2549                 /*
2550                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2551                  * it is due to references held by a child and an insufficient
2552                  * huge page pool. To guarantee the original mappers
2553                  * reliability, unmap the page from child processes. The child
2554                  * may get SIGKILLed if it later faults.
2555                  */
2556                 if (outside_reserve) {
2557                         BUG_ON(huge_pte_none(pte));
2558                         if (unmap_ref_private(mm, vma, old_page, address)) {
2559                                 BUG_ON(huge_pte_none(pte));
2560                                 spin_lock(&mm->page_table_lock);
2561                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2562                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2563                                         goto retry_avoidcopy;
2564                                 /*
2565                                  * race occurs while re-acquiring page_table_lock, and
2566                                  * our job is done.
2567                                  */
2568                                 return 0;
2569                         }
2570                         WARN_ON_ONCE(1);
2571                 }
2572
2573                 /* Caller expects lock to be held */
2574                 spin_lock(&mm->page_table_lock);
2575                 if (err == -ENOMEM)
2576                         return VM_FAULT_OOM;
2577                 else
2578                         return VM_FAULT_SIGBUS;
2579         }
2580
2581         /*
2582          * When the original hugepage is shared one, it does not have
2583          * anon_vma prepared.
2584          */
2585         if (unlikely(anon_vma_prepare(vma))) {
2586                 page_cache_release(new_page);
2587                 page_cache_release(old_page);
2588                 /* Caller expects lock to be held */
2589                 spin_lock(&mm->page_table_lock);
2590                 return VM_FAULT_OOM;
2591         }
2592
2593         copy_user_huge_page(new_page, old_page, address, vma,
2594                             pages_per_huge_page(h));
2595         __SetPageUptodate(new_page);
2596
2597         /*
2598          * Retake the page_table_lock to check for racing updates
2599          * before the page tables are altered
2600          */
2601         spin_lock(&mm->page_table_lock);
2602         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2603         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2604                 /* Break COW */
2605                 mmu_notifier_invalidate_range_start(mm,
2606                         address & huge_page_mask(h),
2607                         (address & huge_page_mask(h)) + huge_page_size(h));
2608                 huge_ptep_clear_flush(vma, address, ptep);
2609                 set_huge_pte_at(mm, address, ptep,
2610                                 make_huge_pte(vma, new_page, 1));
2611                 page_remove_rmap(old_page);
2612                 hugepage_add_new_anon_rmap(new_page, vma, address);
2613                 /* Make the old page be freed below */
2614                 new_page = old_page;
2615                 mmu_notifier_invalidate_range_end(mm,
2616                         address & huge_page_mask(h),
2617                         (address & huge_page_mask(h)) + huge_page_size(h));
2618         }
2619         page_cache_release(new_page);
2620         page_cache_release(old_page);
2621         return 0;
2622 }
2623
2624 /* Return the pagecache page at a given address within a VMA */
2625 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2626                         struct vm_area_struct *vma, unsigned long address)
2627 {
2628         struct address_space *mapping;
2629         pgoff_t idx;
2630
2631         mapping = vma->vm_file->f_mapping;
2632         idx = vma_hugecache_offset(h, vma, address);
2633
2634         return find_lock_page(mapping, idx);
2635 }
2636
2637 /*
2638  * Return whether there is a pagecache page to back given address within VMA.
2639  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2640  */
2641 static bool hugetlbfs_pagecache_present(struct hstate *h,
2642                         struct vm_area_struct *vma, unsigned long address)
2643 {
2644         struct address_space *mapping;
2645         pgoff_t idx;
2646         struct page *page;
2647
2648         mapping = vma->vm_file->f_mapping;
2649         idx = vma_hugecache_offset(h, vma, address);
2650
2651         page = find_get_page(mapping, idx);
2652         if (page)
2653                 put_page(page);
2654         return page != NULL;
2655 }
2656
2657 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2658                         unsigned long address, pte_t *ptep, unsigned int flags)
2659 {
2660         struct hstate *h = hstate_vma(vma);
2661         int ret = VM_FAULT_SIGBUS;
2662         int anon_rmap = 0;
2663         pgoff_t idx;
2664         unsigned long size;
2665         struct page *page;
2666         struct address_space *mapping;
2667         pte_t new_pte;
2668
2669         /*
2670          * Currently, we are forced to kill the process in the event the
2671          * original mapper has unmapped pages from the child due to a failed
2672          * COW. Warn that such a situation has occurred as it may not be obvious
2673          */
2674         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2675                 printk(KERN_WARNING
2676                         "PID %d killed due to inadequate hugepage pool\n",
2677                         current->pid);
2678                 return ret;
2679         }
2680
2681         mapping = vma->vm_file->f_mapping;
2682         idx = vma_hugecache_offset(h, vma, address);
2683
2684         /*
2685          * Use page lock to guard against racing truncation
2686          * before we get page_table_lock.
2687          */
2688 retry:
2689         page = find_lock_page(mapping, idx);
2690         if (!page) {
2691                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2692                 if (idx >= size)
2693                         goto out;
2694                 page = alloc_huge_page(vma, address, 0);
2695                 if (IS_ERR(page)) {
2696                         ret = PTR_ERR(page);
2697                         if (ret == -ENOMEM)
2698                                 ret = VM_FAULT_OOM;
2699                         else
2700                                 ret = VM_FAULT_SIGBUS;
2701                         goto out;
2702                 }
2703                 clear_huge_page(page, address, pages_per_huge_page(h));
2704                 __SetPageUptodate(page);
2705
2706                 if (vma->vm_flags & VM_MAYSHARE) {
2707                         int err;
2708                         struct inode *inode = mapping->host;
2709
2710                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2711                         if (err) {
2712                                 put_page(page);
2713                                 if (err == -EEXIST)
2714                                         goto retry;
2715                                 goto out;
2716                         }
2717
2718                         spin_lock(&inode->i_lock);
2719                         inode->i_blocks += blocks_per_huge_page(h);
2720                         spin_unlock(&inode->i_lock);
2721                 } else {
2722                         lock_page(page);
2723                         if (unlikely(anon_vma_prepare(vma))) {
2724                                 ret = VM_FAULT_OOM;
2725                                 goto backout_unlocked;
2726                         }
2727                         anon_rmap = 1;
2728                 }
2729         } else {
2730                 /*
2731                  * If memory error occurs between mmap() and fault, some process
2732                  * don't have hwpoisoned swap entry for errored virtual address.
2733                  * So we need to block hugepage fault by PG_hwpoison bit check.
2734                  */
2735                 if (unlikely(PageHWPoison(page))) {
2736                         ret = VM_FAULT_HWPOISON |
2737                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2738                         goto backout_unlocked;
2739                 }
2740         }
2741
2742         /*
2743          * If we are going to COW a private mapping later, we examine the
2744          * pending reservations for this page now. This will ensure that
2745          * any allocations necessary to record that reservation occur outside
2746          * the spinlock.
2747          */
2748         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2749                 if (vma_needs_reservation(h, vma, address) < 0) {
2750                         ret = VM_FAULT_OOM;
2751                         goto backout_unlocked;
2752                 }
2753
2754         spin_lock(&mm->page_table_lock);
2755         size = i_size_read(mapping->host) >> huge_page_shift(h);
2756         if (idx >= size)
2757                 goto backout;
2758
2759         ret = 0;
2760         if (!huge_pte_none(huge_ptep_get(ptep)))
2761                 goto backout;
2762
2763         if (anon_rmap)
2764                 hugepage_add_new_anon_rmap(page, vma, address);
2765         else
2766                 page_dup_rmap(page);
2767         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2768                                 && (vma->vm_flags & VM_SHARED)));
2769         set_huge_pte_at(mm, address, ptep, new_pte);
2770
2771         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2772                 /* Optimization, do the COW without a second fault */
2773                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2774         }
2775
2776         spin_unlock(&mm->page_table_lock);
2777         unlock_page(page);
2778 out:
2779         return ret;
2780
2781 backout:
2782         spin_unlock(&mm->page_table_lock);
2783 backout_unlocked:
2784         unlock_page(page);
2785         put_page(page);
2786         goto out;
2787 }
2788
2789 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2790                         unsigned long address, unsigned int flags)
2791 {
2792         pte_t *ptep;
2793         pte_t entry;
2794         int ret;
2795         struct page *page = NULL;
2796         struct page *pagecache_page = NULL;
2797         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2798         struct hstate *h = hstate_vma(vma);
2799
2800         address &= huge_page_mask(h);
2801
2802         ptep = huge_pte_offset(mm, address);
2803         if (ptep) {
2804                 entry = huge_ptep_get(ptep);
2805                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2806                         migration_entry_wait(mm, (pmd_t *)ptep, address);
2807                         return 0;
2808                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2809                         return VM_FAULT_HWPOISON_LARGE |
2810                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2811         }
2812
2813         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2814         if (!ptep)
2815                 return VM_FAULT_OOM;
2816
2817         /*
2818          * Serialize hugepage allocation and instantiation, so that we don't
2819          * get spurious allocation failures if two CPUs race to instantiate
2820          * the same page in the page cache.
2821          */
2822         mutex_lock(&hugetlb_instantiation_mutex);
2823         entry = huge_ptep_get(ptep);
2824         if (huge_pte_none(entry)) {
2825                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2826                 goto out_mutex;
2827         }
2828
2829         ret = 0;
2830
2831         /*
2832          * If we are going to COW the mapping later, we examine the pending
2833          * reservations for this page now. This will ensure that any
2834          * allocations necessary to record that reservation occur outside the
2835          * spinlock. For private mappings, we also lookup the pagecache
2836          * page now as it is used to determine if a reservation has been
2837          * consumed.
2838          */
2839         if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2840                 if (vma_needs_reservation(h, vma, address) < 0) {
2841                         ret = VM_FAULT_OOM;
2842                         goto out_mutex;
2843                 }
2844
2845                 if (!(vma->vm_flags & VM_MAYSHARE))
2846                         pagecache_page = hugetlbfs_pagecache_page(h,
2847                                                                 vma, address);
2848         }
2849
2850         /*
2851          * hugetlb_cow() requires page locks of pte_page(entry) and
2852          * pagecache_page, so here we need take the former one
2853          * when page != pagecache_page or !pagecache_page.
2854          * Note that locking order is always pagecache_page -> page,
2855          * so no worry about deadlock.
2856          */
2857         page = pte_page(entry);
2858         get_page(page);
2859         if (page != pagecache_page)
2860                 lock_page(page);
2861
2862         spin_lock(&mm->page_table_lock);
2863         /* Check for a racing update before calling hugetlb_cow */
2864         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2865                 goto out_page_table_lock;
2866
2867
2868         if (flags & FAULT_FLAG_WRITE) {
2869                 if (!pte_write(entry)) {
2870                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2871                                                         pagecache_page);
2872                         goto out_page_table_lock;
2873                 }
2874                 entry = pte_mkdirty(entry);
2875         }
2876         entry = pte_mkyoung(entry);
2877         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2878                                                 flags & FAULT_FLAG_WRITE))
2879                 update_mmu_cache(vma, address, ptep);
2880
2881 out_page_table_lock:
2882         spin_unlock(&mm->page_table_lock);
2883
2884         if (pagecache_page) {
2885                 unlock_page(pagecache_page);
2886                 put_page(pagecache_page);
2887         }
2888         if (page != pagecache_page)
2889                 unlock_page(page);
2890         put_page(page);
2891
2892 out_mutex:
2893         mutex_unlock(&hugetlb_instantiation_mutex);
2894
2895         return ret;
2896 }
2897
2898 /* Can be overriden by architectures */
2899 __attribute__((weak)) struct page *
2900 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2901                pud_t *pud, int write)
2902 {
2903         BUG();
2904         return NULL;
2905 }
2906
2907 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2908                         struct page **pages, struct vm_area_struct **vmas,
2909                         unsigned long *position, int *length, int i,
2910                         unsigned int flags)
2911 {
2912         unsigned long pfn_offset;
2913         unsigned long vaddr = *position;
2914         int remainder = *length;
2915         struct hstate *h = hstate_vma(vma);
2916
2917         spin_lock(&mm->page_table_lock);
2918         while (vaddr < vma->vm_end && remainder) {
2919                 pte_t *pte;
2920                 int absent;
2921                 struct page *page;
2922
2923                 /*
2924                  * Some archs (sparc64, sh*) have multiple pte_ts to
2925                  * each hugepage.  We have to make sure we get the
2926                  * first, for the page indexing below to work.
2927                  */
2928                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2929                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2930
2931                 /*
2932                  * When coredumping, it suits get_dump_page if we just return
2933                  * an error where there's an empty slot with no huge pagecache
2934                  * to back it.  This way, we avoid allocating a hugepage, and
2935                  * the sparse dumpfile avoids allocating disk blocks, but its
2936                  * huge holes still show up with zeroes where they need to be.
2937                  */
2938                 if (absent && (flags & FOLL_DUMP) &&
2939                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2940                         remainder = 0;
2941                         break;
2942                 }
2943
2944                 if (absent ||
2945                     ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2946                         int ret;
2947
2948                         spin_unlock(&mm->page_table_lock);
2949                         ret = hugetlb_fault(mm, vma, vaddr,
2950                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2951                         spin_lock(&mm->page_table_lock);
2952                         if (!(ret & VM_FAULT_ERROR))
2953                                 continue;
2954
2955                         remainder = 0;
2956                         break;
2957                 }
2958
2959                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2960                 page = pte_page(huge_ptep_get(pte));
2961 same_page:
2962                 if (pages) {
2963                         pages[i] = mem_map_offset(page, pfn_offset);
2964                         get_page(pages[i]);
2965                 }
2966
2967                 if (vmas)
2968                         vmas[i] = vma;
2969
2970                 vaddr += PAGE_SIZE;
2971                 ++pfn_offset;
2972                 --remainder;
2973                 ++i;
2974                 if (vaddr < vma->vm_end && remainder &&
2975                                 pfn_offset < pages_per_huge_page(h)) {
2976                         /*
2977                          * We use pfn_offset to avoid touching the pageframes
2978                          * of this compound page.
2979                          */
2980                         goto same_page;
2981                 }
2982         }
2983         spin_unlock(&mm->page_table_lock);
2984         *length = remainder;
2985         *position = vaddr;
2986
2987         return i ? i : -EFAULT;
2988 }
2989
2990 void hugetlb_change_protection(struct vm_area_struct *vma,
2991                 unsigned long address, unsigned long end, pgprot_t newprot)
2992 {
2993         struct mm_struct *mm = vma->vm_mm;
2994         unsigned long start = address;
2995         pte_t *ptep;
2996         pte_t pte;
2997         struct hstate *h = hstate_vma(vma);
2998
2999         BUG_ON(address >= end);
3000         flush_cache_range(vma, address, end);
3001
3002         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3003         spin_lock(&mm->page_table_lock);
3004         for (; address < end; address += huge_page_size(h)) {
3005                 ptep = huge_pte_offset(mm, address);
3006                 if (!ptep)
3007                         continue;
3008                 if (huge_pmd_unshare(mm, &address, ptep))
3009                         continue;
3010                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3011                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3012                         pte = pte_mkhuge(pte_modify(pte, newprot));
3013                         set_huge_pte_at(mm, address, ptep, pte);
3014                 }
3015         }
3016         spin_unlock(&mm->page_table_lock);
3017         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3018
3019         flush_tlb_range(vma, start, end);
3020 }
3021
3022 int hugetlb_reserve_pages(struct inode *inode,
3023                                         long from, long to,
3024                                         struct vm_area_struct *vma,
3025                                         vm_flags_t vm_flags)
3026 {
3027         long ret, chg;
3028         struct hstate *h = hstate_inode(inode);
3029         struct hugepage_subpool *spool = subpool_inode(inode);
3030
3031         /*
3032          * Only apply hugepage reservation if asked. At fault time, an
3033          * attempt will be made for VM_NORESERVE to allocate a page
3034          * without using reserves
3035          */
3036         if (vm_flags & VM_NORESERVE)
3037                 return 0;
3038
3039         /*
3040          * Shared mappings base their reservation on the number of pages that
3041          * are already allocated on behalf of the file. Private mappings need
3042          * to reserve the full area even if read-only as mprotect() may be
3043          * called to make the mapping read-write. Assume !vma is a shm mapping
3044          */
3045         if (!vma || vma->vm_flags & VM_MAYSHARE)
3046                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3047         else {
3048                 struct resv_map *resv_map = resv_map_alloc();
3049                 if (!resv_map)
3050                         return -ENOMEM;
3051
3052                 chg = to - from;
3053
3054                 set_vma_resv_map(vma, resv_map);
3055                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3056         }
3057
3058         if (chg < 0) {
3059                 ret = chg;
3060                 goto out_err;
3061         }
3062
3063         /* There must be enough pages in the subpool for the mapping */
3064         if (hugepage_subpool_get_pages(spool, chg)) {
3065                 ret = -ENOSPC;
3066                 goto out_err;
3067         }
3068
3069         /*
3070          * Check enough hugepages are available for the reservation.
3071          * Hand the pages back to the subpool if there are not
3072          */
3073         ret = hugetlb_acct_memory(h, chg);
3074         if (ret < 0) {
3075                 hugepage_subpool_put_pages(spool, chg);
3076                 goto out_err;
3077         }
3078
3079         /*
3080          * Account for the reservations made. Shared mappings record regions
3081          * that have reservations as they are shared by multiple VMAs.
3082          * When the last VMA disappears, the region map says how much
3083          * the reservation was and the page cache tells how much of
3084          * the reservation was consumed. Private mappings are per-VMA and
3085          * only the consumed reservations are tracked. When the VMA
3086          * disappears, the original reservation is the VMA size and the
3087          * consumed reservations are stored in the map. Hence, nothing
3088          * else has to be done for private mappings here
3089          */
3090         if (!vma || vma->vm_flags & VM_MAYSHARE)
3091                 region_add(&inode->i_mapping->private_list, from, to);
3092         return 0;
3093 out_err:
3094         if (vma)
3095                 resv_map_put(vma);
3096         return ret;
3097 }
3098
3099 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3100 {
3101         struct hstate *h = hstate_inode(inode);
3102         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3103         struct hugepage_subpool *spool = subpool_inode(inode);
3104
3105         spin_lock(&inode->i_lock);
3106         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3107         spin_unlock(&inode->i_lock);
3108
3109         hugepage_subpool_put_pages(spool, (chg - freed));
3110         hugetlb_acct_memory(h, -(chg - freed));
3111 }
3112
3113 #ifdef CONFIG_MEMORY_FAILURE
3114
3115 /* Should be called in hugetlb_lock */
3116 static int is_hugepage_on_freelist(struct page *hpage)
3117 {
3118         struct page *page;
3119         struct page *tmp;
3120         struct hstate *h = page_hstate(hpage);
3121         int nid = page_to_nid(hpage);
3122
3123         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3124                 if (page == hpage)
3125                         return 1;
3126         return 0;
3127 }
3128
3129 /*
3130  * This function is called from memory failure code.
3131  * Assume the caller holds page lock of the head page.
3132  */
3133 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3134 {
3135         struct hstate *h = page_hstate(hpage);
3136         int nid = page_to_nid(hpage);
3137         int ret = -EBUSY;
3138
3139         spin_lock(&hugetlb_lock);
3140         if (is_hugepage_on_freelist(hpage)) {
3141                 list_del(&hpage->lru);
3142                 set_page_refcounted(hpage);
3143                 h->free_huge_pages--;
3144                 h->free_huge_pages_node[nid]--;
3145                 ret = 0;
3146         }
3147         spin_unlock(&hugetlb_lock);
3148         return ret;
3149 }
3150 #endif