Merge branch 'stable-3.2' into pandora-3.2
[pandora-kernel.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <linux/io.h>
28
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
32
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
40
41 __initdata LIST_HEAD(huge_boot_pages);
42
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
47
48 #define for_each_hstate(h) \
49         for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50
51 /*
52  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53  */
54 static DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58         bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60         spin_unlock(&spool->lock);
61
62         /* If no pages are used, and no other handles to the subpool
63          * remain, free the subpool the subpool remain */
64         if (free)
65                 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70         struct hugepage_subpool *spool;
71
72         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73         if (!spool)
74                 return NULL;
75
76         spin_lock_init(&spool->lock);
77         spool->count = 1;
78         spool->max_hpages = nr_blocks;
79         spool->used_hpages = 0;
80
81         return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86         spin_lock(&spool->lock);
87         BUG_ON(!spool->count);
88         spool->count--;
89         unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93                                       long delta)
94 {
95         int ret = 0;
96
97         if (!spool)
98                 return 0;
99
100         spin_lock(&spool->lock);
101         if ((spool->used_hpages + delta) <= spool->max_hpages) {
102                 spool->used_hpages += delta;
103         } else {
104                 ret = -ENOMEM;
105         }
106         spin_unlock(&spool->lock);
107
108         return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112                                        long delta)
113 {
114         if (!spool)
115                 return;
116
117         spin_lock(&spool->lock);
118         spool->used_hpages -= delta;
119         /* If hugetlbfs_put_super couldn't free spool due to
120         * an outstanding quota reference, free it now. */
121         unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126         return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131         return subpool_inode(vma->vm_file->f_dentry->d_inode);
132 }
133
134 /*
135  * Region tracking -- allows tracking of reservations and instantiated pages
136  *                    across the pages in a mapping.
137  *
138  * The region data structures are protected by a combination of the mmap_sem
139  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
140  * must either hold the mmap_sem for write, or the mmap_sem for read and
141  * the hugetlb_instantiation mutex:
142  *
143  *      down_write(&mm->mmap_sem);
144  * or
145  *      down_read(&mm->mmap_sem);
146  *      mutex_lock(&hugetlb_instantiation_mutex);
147  */
148 struct file_region {
149         struct list_head link;
150         long from;
151         long to;
152 };
153
154 static long region_add(struct list_head *head, long f, long t)
155 {
156         struct file_region *rg, *nrg, *trg;
157
158         /* Locate the region we are either in or before. */
159         list_for_each_entry(rg, head, link)
160                 if (f <= rg->to)
161                         break;
162
163         /* Round our left edge to the current segment if it encloses us. */
164         if (f > rg->from)
165                 f = rg->from;
166
167         /* Check for and consume any regions we now overlap with. */
168         nrg = rg;
169         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170                 if (&rg->link == head)
171                         break;
172                 if (rg->from > t)
173                         break;
174
175                 /* If this area reaches higher then extend our area to
176                  * include it completely.  If this is not the first area
177                  * which we intend to reuse, free it. */
178                 if (rg->to > t)
179                         t = rg->to;
180                 if (rg != nrg) {
181                         list_del(&rg->link);
182                         kfree(rg);
183                 }
184         }
185         nrg->from = f;
186         nrg->to = t;
187         return 0;
188 }
189
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192         struct file_region *rg, *nrg;
193         long chg = 0;
194
195         /* Locate the region we are before or in. */
196         list_for_each_entry(rg, head, link)
197                 if (f <= rg->to)
198                         break;
199
200         /* If we are below the current region then a new region is required.
201          * Subtle, allocate a new region at the position but make it zero
202          * size such that we can guarantee to record the reservation. */
203         if (&rg->link == head || t < rg->from) {
204                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205                 if (!nrg)
206                         return -ENOMEM;
207                 nrg->from = f;
208                 nrg->to   = f;
209                 INIT_LIST_HEAD(&nrg->link);
210                 list_add(&nrg->link, rg->link.prev);
211
212                 return t - f;
213         }
214
215         /* Round our left edge to the current segment if it encloses us. */
216         if (f > rg->from)
217                 f = rg->from;
218         chg = t - f;
219
220         /* Check for and consume any regions we now overlap with. */
221         list_for_each_entry(rg, rg->link.prev, link) {
222                 if (&rg->link == head)
223                         break;
224                 if (rg->from > t)
225                         return chg;
226
227                 /* We overlap with this area, if it extends further than
228                  * us then we must extend ourselves.  Account for its
229                  * existing reservation. */
230                 if (rg->to > t) {
231                         chg += rg->to - t;
232                         t = rg->to;
233                 }
234                 chg -= rg->to - rg->from;
235         }
236         return chg;
237 }
238
239 static long region_truncate(struct list_head *head, long end)
240 {
241         struct file_region *rg, *trg;
242         long chg = 0;
243
244         /* Locate the region we are either in or before. */
245         list_for_each_entry(rg, head, link)
246                 if (end <= rg->to)
247                         break;
248         if (&rg->link == head)
249                 return 0;
250
251         /* If we are in the middle of a region then adjust it. */
252         if (end > rg->from) {
253                 chg = rg->to - end;
254                 rg->to = end;
255                 rg = list_entry(rg->link.next, typeof(*rg), link);
256         }
257
258         /* Drop any remaining regions. */
259         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260                 if (&rg->link == head)
261                         break;
262                 chg += rg->to - rg->from;
263                 list_del(&rg->link);
264                 kfree(rg);
265         }
266         return chg;
267 }
268
269 static long region_count(struct list_head *head, long f, long t)
270 {
271         struct file_region *rg;
272         long chg = 0;
273
274         /* Locate each segment we overlap with, and count that overlap. */
275         list_for_each_entry(rg, head, link) {
276                 int seg_from;
277                 int seg_to;
278
279                 if (rg->to <= f)
280                         continue;
281                 if (rg->from >= t)
282                         break;
283
284                 seg_from = max(rg->from, f);
285                 seg_to = min(rg->to, t);
286
287                 chg += seg_to - seg_from;
288         }
289
290         return chg;
291 }
292
293 /*
294  * Convert the address within this vma to the page offset within
295  * the mapping, in pagecache page units; huge pages here.
296  */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298                         struct vm_area_struct *vma, unsigned long address)
299 {
300         return ((address - vma->vm_start) >> huge_page_shift(h)) +
301                         (vma->vm_pgoff >> huge_page_order(h));
302 }
303
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305                                      unsigned long address)
306 {
307         return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309
310 /*
311  * Return the size of the pages allocated when backing a VMA. In the majority
312  * cases this will be same size as used by the page table entries.
313  */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316         struct hstate *hstate;
317
318         if (!is_vm_hugetlb_page(vma))
319                 return PAGE_SIZE;
320
321         hstate = hstate_vma(vma);
322
323         return 1UL << (hstate->order + PAGE_SHIFT);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327 /*
328  * Return the page size being used by the MMU to back a VMA. In the majority
329  * of cases, the page size used by the kernel matches the MMU size. On
330  * architectures where it differs, an architecture-specific version of this
331  * function is required.
332  */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336         return vma_kernel_pagesize(vma);
337 }
338 #endif
339
340 /*
341  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342  * bits of the reservation map pointer, which are always clear due to
343  * alignment.
344  */
345 #define HPAGE_RESV_OWNER    (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349 /*
350  * These helpers are used to track how many pages are reserved for
351  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352  * is guaranteed to have their future faults succeed.
353  *
354  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355  * the reserve counters are updated with the hugetlb_lock held. It is safe
356  * to reset the VMA at fork() time as it is not in use yet and there is no
357  * chance of the global counters getting corrupted as a result of the values.
358  *
359  * The private mapping reservation is represented in a subtly different
360  * manner to a shared mapping.  A shared mapping has a region map associated
361  * with the underlying file, this region map represents the backing file
362  * pages which have ever had a reservation assigned which this persists even
363  * after the page is instantiated.  A private mapping has a region map
364  * associated with the original mmap which is attached to all VMAs which
365  * reference it, this region map represents those offsets which have consumed
366  * reservation ie. where pages have been instantiated.
367  */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370         return (unsigned long)vma->vm_private_data;
371 }
372
373 static void set_vma_private_data(struct vm_area_struct *vma,
374                                                         unsigned long value)
375 {
376         vma->vm_private_data = (void *)value;
377 }
378
379 struct resv_map {
380         struct kref refs;
381         struct list_head regions;
382 };
383
384 static struct resv_map *resv_map_alloc(void)
385 {
386         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387         if (!resv_map)
388                 return NULL;
389
390         kref_init(&resv_map->refs);
391         INIT_LIST_HEAD(&resv_map->regions);
392
393         return resv_map;
394 }
395
396 static void resv_map_release(struct kref *ref)
397 {
398         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400         /* Clear out any active regions before we release the map. */
401         region_truncate(&resv_map->regions, 0);
402         kfree(resv_map);
403 }
404
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407         VM_BUG_ON(!is_vm_hugetlb_page(vma));
408         if (!(vma->vm_flags & VM_MAYSHARE))
409                 return (struct resv_map *)(get_vma_private_data(vma) &
410                                                         ~HPAGE_RESV_MASK);
411         return NULL;
412 }
413
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416         VM_BUG_ON(!is_vm_hugetlb_page(vma));
417         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419         set_vma_private_data(vma, (get_vma_private_data(vma) &
420                                 HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425         VM_BUG_ON(!is_vm_hugetlb_page(vma));
426         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433         VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435         return (get_vma_private_data(vma) & flag) != 0;
436 }
437
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate *h,
440                         struct vm_area_struct *vma)
441 {
442         if (vma->vm_flags & VM_NORESERVE)
443                 return;
444
445         if (vma->vm_flags & VM_MAYSHARE) {
446                 /* Shared mappings always use reserves */
447                 h->resv_huge_pages--;
448         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
449                 /*
450                  * Only the process that called mmap() has reserves for
451                  * private mappings.
452                  */
453                 h->resv_huge_pages--;
454         }
455 }
456
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
459 {
460         VM_BUG_ON(!is_vm_hugetlb_page(vma));
461         if (!(vma->vm_flags & VM_MAYSHARE))
462                 vma->vm_private_data = (void *)0;
463 }
464
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct *vma)
467 {
468         if (vma->vm_flags & VM_MAYSHARE)
469                 return 1;
470         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471                 return 1;
472         return 0;
473 }
474
475 static void copy_gigantic_page(struct page *dst, struct page *src)
476 {
477         int i;
478         struct hstate *h = page_hstate(src);
479         struct page *dst_base = dst;
480         struct page *src_base = src;
481
482         for (i = 0; i < pages_per_huge_page(h); ) {
483                 cond_resched();
484                 copy_highpage(dst, src);
485
486                 i++;
487                 dst = mem_map_next(dst, dst_base, i);
488                 src = mem_map_next(src, src_base, i);
489         }
490 }
491
492 void copy_huge_page(struct page *dst, struct page *src)
493 {
494         int i;
495         struct hstate *h = page_hstate(src);
496
497         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498                 copy_gigantic_page(dst, src);
499                 return;
500         }
501
502         might_sleep();
503         for (i = 0; i < pages_per_huge_page(h); i++) {
504                 cond_resched();
505                 copy_highpage(dst + i, src + i);
506         }
507 }
508
509 static void enqueue_huge_page(struct hstate *h, struct page *page)
510 {
511         int nid = page_to_nid(page);
512         list_add(&page->lru, &h->hugepage_freelists[nid]);
513         h->free_huge_pages++;
514         h->free_huge_pages_node[nid]++;
515 }
516
517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
518 {
519         struct page *page;
520
521         if (list_empty(&h->hugepage_freelists[nid]))
522                 return NULL;
523         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524         list_del(&page->lru);
525         set_page_refcounted(page);
526         h->free_huge_pages--;
527         h->free_huge_pages_node[nid]--;
528         return page;
529 }
530
531 static struct page *dequeue_huge_page_vma(struct hstate *h,
532                                 struct vm_area_struct *vma,
533                                 unsigned long address, int avoid_reserve)
534 {
535         struct page *page = NULL;
536         struct mempolicy *mpol;
537         nodemask_t *nodemask;
538         struct zonelist *zonelist;
539         struct zone *zone;
540         struct zoneref *z;
541         unsigned int cpuset_mems_cookie;
542
543 retry_cpuset:
544         cpuset_mems_cookie = get_mems_allowed();
545         zonelist = huge_zonelist(vma, address,
546                                         htlb_alloc_mask, &mpol, &nodemask);
547         /*
548          * A child process with MAP_PRIVATE mappings created by their parent
549          * have no page reserves. This check ensures that reservations are
550          * not "stolen". The child may still get SIGKILLed
551          */
552         if (!vma_has_reserves(vma) &&
553                         h->free_huge_pages - h->resv_huge_pages == 0)
554                 goto err;
555
556         /* If reserves cannot be used, ensure enough pages are in the pool */
557         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558                 goto err;
559
560         for_each_zone_zonelist_nodemask(zone, z, zonelist,
561                                                 MAX_NR_ZONES - 1, nodemask) {
562                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
564                         if (page) {
565                                 if (!avoid_reserve)
566                                         decrement_hugepage_resv_vma(h, vma);
567                                 break;
568                         }
569                 }
570         }
571
572         mpol_cond_put(mpol);
573         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574                 goto retry_cpuset;
575         return page;
576
577 err:
578         mpol_cond_put(mpol);
579         return NULL;
580 }
581
582 static void update_and_free_page(struct hstate *h, struct page *page)
583 {
584         int i;
585
586         VM_BUG_ON(h->order >= MAX_ORDER);
587
588         h->nr_huge_pages--;
589         h->nr_huge_pages_node[page_to_nid(page)]--;
590         for (i = 0; i < pages_per_huge_page(h); i++) {
591                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
592                                 1 << PG_referenced | 1 << PG_dirty |
593                                 1 << PG_active | 1 << PG_reserved |
594                                 1 << PG_private | 1 << PG_writeback);
595         }
596         set_compound_page_dtor(page, NULL);
597         set_page_refcounted(page);
598         arch_release_hugepage(page);
599         __free_pages(page, huge_page_order(h));
600 }
601
602 struct hstate *size_to_hstate(unsigned long size)
603 {
604         struct hstate *h;
605
606         for_each_hstate(h) {
607                 if (huge_page_size(h) == size)
608                         return h;
609         }
610         return NULL;
611 }
612
613 static void free_huge_page(struct page *page)
614 {
615         /*
616          * Can't pass hstate in here because it is called from the
617          * compound page destructor.
618          */
619         struct hstate *h = page_hstate(page);
620         int nid = page_to_nid(page);
621         struct hugepage_subpool *spool =
622                 (struct hugepage_subpool *)page_private(page);
623
624         set_page_private(page, 0);
625         page->mapping = NULL;
626         BUG_ON(page_count(page));
627         BUG_ON(page_mapcount(page));
628         INIT_LIST_HEAD(&page->lru);
629
630         spin_lock(&hugetlb_lock);
631         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
632                 update_and_free_page(h, page);
633                 h->surplus_huge_pages--;
634                 h->surplus_huge_pages_node[nid]--;
635         } else {
636                 arch_clear_hugepage_flags(page);
637                 enqueue_huge_page(h, page);
638         }
639         spin_unlock(&hugetlb_lock);
640         hugepage_subpool_put_pages(spool, 1);
641 }
642
643 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
644 {
645         set_compound_page_dtor(page, free_huge_page);
646         spin_lock(&hugetlb_lock);
647         h->nr_huge_pages++;
648         h->nr_huge_pages_node[nid]++;
649         spin_unlock(&hugetlb_lock);
650         put_page(page); /* free it into the hugepage allocator */
651 }
652
653 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
654 {
655         int i;
656         int nr_pages = 1 << order;
657         struct page *p = page + 1;
658
659         /* we rely on prep_new_huge_page to set the destructor */
660         set_compound_order(page, order);
661         __SetPageHead(page);
662         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
663                 __SetPageTail(p);
664                 set_page_count(p, 0);
665                 p->first_page = page;
666         }
667 }
668
669 int PageHuge(struct page *page)
670 {
671         compound_page_dtor *dtor;
672
673         if (!PageCompound(page))
674                 return 0;
675
676         page = compound_head(page);
677         dtor = get_compound_page_dtor(page);
678
679         return dtor == free_huge_page;
680 }
681 EXPORT_SYMBOL_GPL(PageHuge);
682
683 pgoff_t __basepage_index(struct page *page)
684 {
685         struct page *page_head = compound_head(page);
686         pgoff_t index = page_index(page_head);
687         unsigned long compound_idx;
688
689         if (!PageHuge(page_head))
690                 return page_index(page);
691
692         if (compound_order(page_head) >= MAX_ORDER)
693                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
694         else
695                 compound_idx = page - page_head;
696
697         return (index << compound_order(page_head)) + compound_idx;
698 }
699
700 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
701 {
702         struct page *page;
703
704         if (h->order >= MAX_ORDER)
705                 return NULL;
706
707         page = alloc_pages_exact_node(nid,
708                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
709                                                 __GFP_REPEAT|__GFP_NOWARN,
710                 huge_page_order(h));
711         if (page) {
712                 if (arch_prepare_hugepage(page)) {
713                         __free_pages(page, huge_page_order(h));
714                         return NULL;
715                 }
716                 prep_new_huge_page(h, page, nid);
717         }
718
719         return page;
720 }
721
722 /*
723  * common helper functions for hstate_next_node_to_{alloc|free}.
724  * We may have allocated or freed a huge page based on a different
725  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
726  * be outside of *nodes_allowed.  Ensure that we use an allowed
727  * node for alloc or free.
728  */
729 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
730 {
731         nid = next_node(nid, *nodes_allowed);
732         if (nid == MAX_NUMNODES)
733                 nid = first_node(*nodes_allowed);
734         VM_BUG_ON(nid >= MAX_NUMNODES);
735
736         return nid;
737 }
738
739 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
740 {
741         if (!node_isset(nid, *nodes_allowed))
742                 nid = next_node_allowed(nid, nodes_allowed);
743         return nid;
744 }
745
746 /*
747  * returns the previously saved node ["this node"] from which to
748  * allocate a persistent huge page for the pool and advance the
749  * next node from which to allocate, handling wrap at end of node
750  * mask.
751  */
752 static int hstate_next_node_to_alloc(struct hstate *h,
753                                         nodemask_t *nodes_allowed)
754 {
755         int nid;
756
757         VM_BUG_ON(!nodes_allowed);
758
759         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
760         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
761
762         return nid;
763 }
764
765 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
766 {
767         struct page *page;
768         int start_nid;
769         int next_nid;
770         int ret = 0;
771
772         start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
773         next_nid = start_nid;
774
775         do {
776                 page = alloc_fresh_huge_page_node(h, next_nid);
777                 if (page) {
778                         ret = 1;
779                         break;
780                 }
781                 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
782         } while (next_nid != start_nid);
783
784         if (ret)
785                 count_vm_event(HTLB_BUDDY_PGALLOC);
786         else
787                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
788
789         return ret;
790 }
791
792 /*
793  * helper for free_pool_huge_page() - return the previously saved
794  * node ["this node"] from which to free a huge page.  Advance the
795  * next node id whether or not we find a free huge page to free so
796  * that the next attempt to free addresses the next node.
797  */
798 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
799 {
800         int nid;
801
802         VM_BUG_ON(!nodes_allowed);
803
804         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
805         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
806
807         return nid;
808 }
809
810 /*
811  * Free huge page from pool from next node to free.
812  * Attempt to keep persistent huge pages more or less
813  * balanced over allowed nodes.
814  * Called with hugetlb_lock locked.
815  */
816 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
817                                                          bool acct_surplus)
818 {
819         int start_nid;
820         int next_nid;
821         int ret = 0;
822
823         start_nid = hstate_next_node_to_free(h, nodes_allowed);
824         next_nid = start_nid;
825
826         do {
827                 /*
828                  * If we're returning unused surplus pages, only examine
829                  * nodes with surplus pages.
830                  */
831                 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
832                     !list_empty(&h->hugepage_freelists[next_nid])) {
833                         struct page *page =
834                                 list_entry(h->hugepage_freelists[next_nid].next,
835                                           struct page, lru);
836                         list_del(&page->lru);
837                         h->free_huge_pages--;
838                         h->free_huge_pages_node[next_nid]--;
839                         if (acct_surplus) {
840                                 h->surplus_huge_pages--;
841                                 h->surplus_huge_pages_node[next_nid]--;
842                         }
843                         update_and_free_page(h, page);
844                         ret = 1;
845                         break;
846                 }
847                 next_nid = hstate_next_node_to_free(h, nodes_allowed);
848         } while (next_nid != start_nid);
849
850         return ret;
851 }
852
853 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
854 {
855         struct page *page;
856         unsigned int r_nid;
857
858         if (h->order >= MAX_ORDER)
859                 return NULL;
860
861         /*
862          * Assume we will successfully allocate the surplus page to
863          * prevent racing processes from causing the surplus to exceed
864          * overcommit
865          *
866          * This however introduces a different race, where a process B
867          * tries to grow the static hugepage pool while alloc_pages() is
868          * called by process A. B will only examine the per-node
869          * counters in determining if surplus huge pages can be
870          * converted to normal huge pages in adjust_pool_surplus(). A
871          * won't be able to increment the per-node counter, until the
872          * lock is dropped by B, but B doesn't drop hugetlb_lock until
873          * no more huge pages can be converted from surplus to normal
874          * state (and doesn't try to convert again). Thus, we have a
875          * case where a surplus huge page exists, the pool is grown, and
876          * the surplus huge page still exists after, even though it
877          * should just have been converted to a normal huge page. This
878          * does not leak memory, though, as the hugepage will be freed
879          * once it is out of use. It also does not allow the counters to
880          * go out of whack in adjust_pool_surplus() as we don't modify
881          * the node values until we've gotten the hugepage and only the
882          * per-node value is checked there.
883          */
884         spin_lock(&hugetlb_lock);
885         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
886                 spin_unlock(&hugetlb_lock);
887                 return NULL;
888         } else {
889                 h->nr_huge_pages++;
890                 h->surplus_huge_pages++;
891         }
892         spin_unlock(&hugetlb_lock);
893
894         if (nid == NUMA_NO_NODE)
895                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
896                                    __GFP_REPEAT|__GFP_NOWARN,
897                                    huge_page_order(h));
898         else
899                 page = alloc_pages_exact_node(nid,
900                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
901                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
902
903         if (page && arch_prepare_hugepage(page)) {
904                 __free_pages(page, huge_page_order(h));
905                 return NULL;
906         }
907
908         spin_lock(&hugetlb_lock);
909         if (page) {
910                 r_nid = page_to_nid(page);
911                 set_compound_page_dtor(page, free_huge_page);
912                 /*
913                  * We incremented the global counters already
914                  */
915                 h->nr_huge_pages_node[r_nid]++;
916                 h->surplus_huge_pages_node[r_nid]++;
917                 __count_vm_event(HTLB_BUDDY_PGALLOC);
918         } else {
919                 h->nr_huge_pages--;
920                 h->surplus_huge_pages--;
921                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
922         }
923         spin_unlock(&hugetlb_lock);
924
925         return page;
926 }
927
928 /*
929  * This allocation function is useful in the context where vma is irrelevant.
930  * E.g. soft-offlining uses this function because it only cares physical
931  * address of error page.
932  */
933 struct page *alloc_huge_page_node(struct hstate *h, int nid)
934 {
935         struct page *page;
936
937         spin_lock(&hugetlb_lock);
938         page = dequeue_huge_page_node(h, nid);
939         spin_unlock(&hugetlb_lock);
940
941         if (!page)
942                 page = alloc_buddy_huge_page(h, nid);
943
944         return page;
945 }
946
947 /*
948  * Increase the hugetlb pool such that it can accommodate a reservation
949  * of size 'delta'.
950  */
951 static int gather_surplus_pages(struct hstate *h, int delta)
952 {
953         struct list_head surplus_list;
954         struct page *page, *tmp;
955         int ret, i;
956         int needed, allocated;
957
958         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
959         if (needed <= 0) {
960                 h->resv_huge_pages += delta;
961                 return 0;
962         }
963
964         allocated = 0;
965         INIT_LIST_HEAD(&surplus_list);
966
967         ret = -ENOMEM;
968 retry:
969         spin_unlock(&hugetlb_lock);
970         for (i = 0; i < needed; i++) {
971                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
972                 if (!page)
973                         /*
974                          * We were not able to allocate enough pages to
975                          * satisfy the entire reservation so we free what
976                          * we've allocated so far.
977                          */
978                         goto free;
979
980                 list_add(&page->lru, &surplus_list);
981         }
982         allocated += needed;
983
984         /*
985          * After retaking hugetlb_lock, we need to recalculate 'needed'
986          * because either resv_huge_pages or free_huge_pages may have changed.
987          */
988         spin_lock(&hugetlb_lock);
989         needed = (h->resv_huge_pages + delta) -
990                         (h->free_huge_pages + allocated);
991         if (needed > 0)
992                 goto retry;
993
994         /*
995          * The surplus_list now contains _at_least_ the number of extra pages
996          * needed to accommodate the reservation.  Add the appropriate number
997          * of pages to the hugetlb pool and free the extras back to the buddy
998          * allocator.  Commit the entire reservation here to prevent another
999          * process from stealing the pages as they are added to the pool but
1000          * before they are reserved.
1001          */
1002         needed += allocated;
1003         h->resv_huge_pages += delta;
1004         ret = 0;
1005
1006         /* Free the needed pages to the hugetlb pool */
1007         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1008                 if ((--needed) < 0)
1009                         break;
1010                 list_del(&page->lru);
1011                 /*
1012                  * This page is now managed by the hugetlb allocator and has
1013                  * no users -- drop the buddy allocator's reference.
1014                  */
1015                 put_page_testzero(page);
1016                 VM_BUG_ON(page_count(page));
1017                 enqueue_huge_page(h, page);
1018         }
1019         spin_unlock(&hugetlb_lock);
1020
1021         /* Free unnecessary surplus pages to the buddy allocator */
1022 free:
1023         if (!list_empty(&surplus_list)) {
1024                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1025                         list_del(&page->lru);
1026                         put_page(page);
1027                 }
1028         }
1029         spin_lock(&hugetlb_lock);
1030
1031         return ret;
1032 }
1033
1034 /*
1035  * When releasing a hugetlb pool reservation, any surplus pages that were
1036  * allocated to satisfy the reservation must be explicitly freed if they were
1037  * never used.
1038  * Called with hugetlb_lock held.
1039  */
1040 static void return_unused_surplus_pages(struct hstate *h,
1041                                         unsigned long unused_resv_pages)
1042 {
1043         unsigned long nr_pages;
1044
1045         /* Uncommit the reservation */
1046         h->resv_huge_pages -= unused_resv_pages;
1047
1048         /* Cannot return gigantic pages currently */
1049         if (h->order >= MAX_ORDER)
1050                 return;
1051
1052         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1053
1054         /*
1055          * We want to release as many surplus pages as possible, spread
1056          * evenly across all nodes with memory. Iterate across these nodes
1057          * until we can no longer free unreserved surplus pages. This occurs
1058          * when the nodes with surplus pages have no free pages.
1059          * free_pool_huge_page() will balance the the freed pages across the
1060          * on-line nodes with memory and will handle the hstate accounting.
1061          */
1062         while (nr_pages--) {
1063                 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1064                         break;
1065         }
1066 }
1067
1068 /*
1069  * Determine if the huge page at addr within the vma has an associated
1070  * reservation.  Where it does not we will need to logically increase
1071  * reservation and actually increase subpool usage before an allocation
1072  * can occur.  Where any new reservation would be required the
1073  * reservation change is prepared, but not committed.  Once the page
1074  * has been allocated from the subpool and instantiated the change should
1075  * be committed via vma_commit_reservation.  No action is required on
1076  * failure.
1077  */
1078 static long vma_needs_reservation(struct hstate *h,
1079                         struct vm_area_struct *vma, unsigned long addr)
1080 {
1081         struct address_space *mapping = vma->vm_file->f_mapping;
1082         struct inode *inode = mapping->host;
1083
1084         if (vma->vm_flags & VM_MAYSHARE) {
1085                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1086                 return region_chg(&inode->i_mapping->private_list,
1087                                                         idx, idx + 1);
1088
1089         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1090                 return 1;
1091
1092         } else  {
1093                 long err;
1094                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1095                 struct resv_map *reservations = vma_resv_map(vma);
1096
1097                 err = region_chg(&reservations->regions, idx, idx + 1);
1098                 if (err < 0)
1099                         return err;
1100                 return 0;
1101         }
1102 }
1103 static void vma_commit_reservation(struct hstate *h,
1104                         struct vm_area_struct *vma, unsigned long addr)
1105 {
1106         struct address_space *mapping = vma->vm_file->f_mapping;
1107         struct inode *inode = mapping->host;
1108
1109         if (vma->vm_flags & VM_MAYSHARE) {
1110                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1111                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1112
1113         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1114                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1115                 struct resv_map *reservations = vma_resv_map(vma);
1116
1117                 /* Mark this page used in the map. */
1118                 region_add(&reservations->regions, idx, idx + 1);
1119         }
1120 }
1121
1122 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1123                                     unsigned long addr, int avoid_reserve)
1124 {
1125         struct hugepage_subpool *spool = subpool_vma(vma);
1126         struct hstate *h = hstate_vma(vma);
1127         struct page *page;
1128         long chg;
1129
1130         /*
1131          * Processes that did not create the mapping will have no
1132          * reserves and will not have accounted against subpool
1133          * limit. Check that the subpool limit can be made before
1134          * satisfying the allocation MAP_NORESERVE mappings may also
1135          * need pages and subpool limit allocated allocated if no reserve
1136          * mapping overlaps.
1137          */
1138         chg = vma_needs_reservation(h, vma, addr);
1139         if (chg < 0)
1140                 return ERR_PTR(-VM_FAULT_OOM);
1141         if (chg)
1142                 if (hugepage_subpool_get_pages(spool, chg))
1143                         return ERR_PTR(-VM_FAULT_SIGBUS);
1144
1145         spin_lock(&hugetlb_lock);
1146         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1147         spin_unlock(&hugetlb_lock);
1148
1149         if (!page) {
1150                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1151                 if (!page) {
1152                         hugepage_subpool_put_pages(spool, chg);
1153                         return ERR_PTR(-VM_FAULT_SIGBUS);
1154                 }
1155         }
1156
1157         set_page_private(page, (unsigned long)spool);
1158
1159         vma_commit_reservation(h, vma, addr);
1160
1161         return page;
1162 }
1163
1164 int __weak alloc_bootmem_huge_page(struct hstate *h)
1165 {
1166         struct huge_bootmem_page *m;
1167         int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1168
1169         while (nr_nodes) {
1170                 void *addr;
1171
1172                 addr = __alloc_bootmem_node_nopanic(
1173                                 NODE_DATA(hstate_next_node_to_alloc(h,
1174                                                 &node_states[N_HIGH_MEMORY])),
1175                                 huge_page_size(h), huge_page_size(h), 0);
1176
1177                 if (addr) {
1178                         /*
1179                          * Use the beginning of the huge page to store the
1180                          * huge_bootmem_page struct (until gather_bootmem
1181                          * puts them into the mem_map).
1182                          */
1183                         m = addr;
1184                         goto found;
1185                 }
1186                 nr_nodes--;
1187         }
1188         return 0;
1189
1190 found:
1191         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1192         /* Put them into a private list first because mem_map is not up yet */
1193         list_add(&m->list, &huge_boot_pages);
1194         m->hstate = h;
1195         return 1;
1196 }
1197
1198 static void prep_compound_huge_page(struct page *page, int order)
1199 {
1200         if (unlikely(order > (MAX_ORDER - 1)))
1201                 prep_compound_gigantic_page(page, order);
1202         else
1203                 prep_compound_page(page, order);
1204 }
1205
1206 /* Put bootmem huge pages into the standard lists after mem_map is up */
1207 static void __init gather_bootmem_prealloc(void)
1208 {
1209         struct huge_bootmem_page *m;
1210
1211         list_for_each_entry(m, &huge_boot_pages, list) {
1212                 struct hstate *h = m->hstate;
1213                 struct page *page;
1214
1215 #ifdef CONFIG_HIGHMEM
1216                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1217                 free_bootmem_late((unsigned long)m,
1218                                   sizeof(struct huge_bootmem_page));
1219 #else
1220                 page = virt_to_page(m);
1221 #endif
1222                 __ClearPageReserved(page);
1223                 WARN_ON(page_count(page) != 1);
1224                 prep_compound_huge_page(page, h->order);
1225                 prep_new_huge_page(h, page, page_to_nid(page));
1226                 /*
1227                  * If we had gigantic hugepages allocated at boot time, we need
1228                  * to restore the 'stolen' pages to totalram_pages in order to
1229                  * fix confusing memory reports from free(1) and another
1230                  * side-effects, like CommitLimit going negative.
1231                  */
1232                 if (h->order > (MAX_ORDER - 1))
1233                         totalram_pages += 1 << h->order;
1234         }
1235 }
1236
1237 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1238 {
1239         unsigned long i;
1240
1241         for (i = 0; i < h->max_huge_pages; ++i) {
1242                 if (h->order >= MAX_ORDER) {
1243                         if (!alloc_bootmem_huge_page(h))
1244                                 break;
1245                 } else if (!alloc_fresh_huge_page(h,
1246                                          &node_states[N_HIGH_MEMORY]))
1247                         break;
1248         }
1249         h->max_huge_pages = i;
1250 }
1251
1252 static void __init hugetlb_init_hstates(void)
1253 {
1254         struct hstate *h;
1255
1256         for_each_hstate(h) {
1257                 /* oversize hugepages were init'ed in early boot */
1258                 if (h->order < MAX_ORDER)
1259                         hugetlb_hstate_alloc_pages(h);
1260         }
1261 }
1262
1263 static char * __init memfmt(char *buf, unsigned long n)
1264 {
1265         if (n >= (1UL << 30))
1266                 sprintf(buf, "%lu GB", n >> 30);
1267         else if (n >= (1UL << 20))
1268                 sprintf(buf, "%lu MB", n >> 20);
1269         else
1270                 sprintf(buf, "%lu KB", n >> 10);
1271         return buf;
1272 }
1273
1274 static void __init report_hugepages(void)
1275 {
1276         struct hstate *h;
1277
1278         for_each_hstate(h) {
1279                 char buf[32];
1280                 printk(KERN_INFO "HugeTLB registered %s page size, "
1281                                  "pre-allocated %ld pages\n",
1282                         memfmt(buf, huge_page_size(h)),
1283                         h->free_huge_pages);
1284         }
1285 }
1286
1287 #ifdef CONFIG_HIGHMEM
1288 static void try_to_free_low(struct hstate *h, unsigned long count,
1289                                                 nodemask_t *nodes_allowed)
1290 {
1291         int i;
1292
1293         if (h->order >= MAX_ORDER)
1294                 return;
1295
1296         for_each_node_mask(i, *nodes_allowed) {
1297                 struct page *page, *next;
1298                 struct list_head *freel = &h->hugepage_freelists[i];
1299                 list_for_each_entry_safe(page, next, freel, lru) {
1300                         if (count >= h->nr_huge_pages)
1301                                 return;
1302                         if (PageHighMem(page))
1303                                 continue;
1304                         list_del(&page->lru);
1305                         update_and_free_page(h, page);
1306                         h->free_huge_pages--;
1307                         h->free_huge_pages_node[page_to_nid(page)]--;
1308                 }
1309         }
1310 }
1311 #else
1312 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1313                                                 nodemask_t *nodes_allowed)
1314 {
1315 }
1316 #endif
1317
1318 /*
1319  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1320  * balanced by operating on them in a round-robin fashion.
1321  * Returns 1 if an adjustment was made.
1322  */
1323 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1324                                 int delta)
1325 {
1326         int start_nid, next_nid;
1327         int ret = 0;
1328
1329         VM_BUG_ON(delta != -1 && delta != 1);
1330
1331         if (delta < 0)
1332                 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1333         else
1334                 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1335         next_nid = start_nid;
1336
1337         do {
1338                 int nid = next_nid;
1339                 if (delta < 0)  {
1340                         /*
1341                          * To shrink on this node, there must be a surplus page
1342                          */
1343                         if (!h->surplus_huge_pages_node[nid]) {
1344                                 next_nid = hstate_next_node_to_alloc(h,
1345                                                                 nodes_allowed);
1346                                 continue;
1347                         }
1348                 }
1349                 if (delta > 0) {
1350                         /*
1351                          * Surplus cannot exceed the total number of pages
1352                          */
1353                         if (h->surplus_huge_pages_node[nid] >=
1354                                                 h->nr_huge_pages_node[nid]) {
1355                                 next_nid = hstate_next_node_to_free(h,
1356                                                                 nodes_allowed);
1357                                 continue;
1358                         }
1359                 }
1360
1361                 h->surplus_huge_pages += delta;
1362                 h->surplus_huge_pages_node[nid] += delta;
1363                 ret = 1;
1364                 break;
1365         } while (next_nid != start_nid);
1366
1367         return ret;
1368 }
1369
1370 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1371 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1372                                                 nodemask_t *nodes_allowed)
1373 {
1374         unsigned long min_count, ret;
1375
1376         if (h->order >= MAX_ORDER)
1377                 return h->max_huge_pages;
1378
1379         /*
1380          * Increase the pool size
1381          * First take pages out of surplus state.  Then make up the
1382          * remaining difference by allocating fresh huge pages.
1383          *
1384          * We might race with alloc_buddy_huge_page() here and be unable
1385          * to convert a surplus huge page to a normal huge page. That is
1386          * not critical, though, it just means the overall size of the
1387          * pool might be one hugepage larger than it needs to be, but
1388          * within all the constraints specified by the sysctls.
1389          */
1390         spin_lock(&hugetlb_lock);
1391         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1392                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1393                         break;
1394         }
1395
1396         while (count > persistent_huge_pages(h)) {
1397                 /*
1398                  * If this allocation races such that we no longer need the
1399                  * page, free_huge_page will handle it by freeing the page
1400                  * and reducing the surplus.
1401                  */
1402                 spin_unlock(&hugetlb_lock);
1403                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1404                 spin_lock(&hugetlb_lock);
1405                 if (!ret)
1406                         goto out;
1407
1408                 /* Bail for signals. Probably ctrl-c from user */
1409                 if (signal_pending(current))
1410                         goto out;
1411         }
1412
1413         /*
1414          * Decrease the pool size
1415          * First return free pages to the buddy allocator (being careful
1416          * to keep enough around to satisfy reservations).  Then place
1417          * pages into surplus state as needed so the pool will shrink
1418          * to the desired size as pages become free.
1419          *
1420          * By placing pages into the surplus state independent of the
1421          * overcommit value, we are allowing the surplus pool size to
1422          * exceed overcommit. There are few sane options here. Since
1423          * alloc_buddy_huge_page() is checking the global counter,
1424          * though, we'll note that we're not allowed to exceed surplus
1425          * and won't grow the pool anywhere else. Not until one of the
1426          * sysctls are changed, or the surplus pages go out of use.
1427          */
1428         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1429         min_count = max(count, min_count);
1430         try_to_free_low(h, min_count, nodes_allowed);
1431         while (min_count < persistent_huge_pages(h)) {
1432                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1433                         break;
1434         }
1435         while (count < persistent_huge_pages(h)) {
1436                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1437                         break;
1438         }
1439 out:
1440         ret = persistent_huge_pages(h);
1441         spin_unlock(&hugetlb_lock);
1442         return ret;
1443 }
1444
1445 #define HSTATE_ATTR_RO(_name) \
1446         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1447
1448 #define HSTATE_ATTR(_name) \
1449         static struct kobj_attribute _name##_attr = \
1450                 __ATTR(_name, 0644, _name##_show, _name##_store)
1451
1452 static struct kobject *hugepages_kobj;
1453 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1454
1455 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1456
1457 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1458 {
1459         int i;
1460
1461         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1462                 if (hstate_kobjs[i] == kobj) {
1463                         if (nidp)
1464                                 *nidp = NUMA_NO_NODE;
1465                         return &hstates[i];
1466                 }
1467
1468         return kobj_to_node_hstate(kobj, nidp);
1469 }
1470
1471 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1472                                         struct kobj_attribute *attr, char *buf)
1473 {
1474         struct hstate *h;
1475         unsigned long nr_huge_pages;
1476         int nid;
1477
1478         h = kobj_to_hstate(kobj, &nid);
1479         if (nid == NUMA_NO_NODE)
1480                 nr_huge_pages = h->nr_huge_pages;
1481         else
1482                 nr_huge_pages = h->nr_huge_pages_node[nid];
1483
1484         return sprintf(buf, "%lu\n", nr_huge_pages);
1485 }
1486
1487 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1488                         struct kobject *kobj, struct kobj_attribute *attr,
1489                         const char *buf, size_t len)
1490 {
1491         int err;
1492         int nid;
1493         unsigned long count;
1494         struct hstate *h;
1495         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1496
1497         err = strict_strtoul(buf, 10, &count);
1498         if (err)
1499                 goto out;
1500
1501         h = kobj_to_hstate(kobj, &nid);
1502         if (h->order >= MAX_ORDER) {
1503                 err = -EINVAL;
1504                 goto out;
1505         }
1506
1507         if (nid == NUMA_NO_NODE) {
1508                 /*
1509                  * global hstate attribute
1510                  */
1511                 if (!(obey_mempolicy &&
1512                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1513                         NODEMASK_FREE(nodes_allowed);
1514                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1515                 }
1516         } else if (nodes_allowed) {
1517                 /*
1518                  * per node hstate attribute: adjust count to global,
1519                  * but restrict alloc/free to the specified node.
1520                  */
1521                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1522                 init_nodemask_of_node(nodes_allowed, nid);
1523         } else
1524                 nodes_allowed = &node_states[N_HIGH_MEMORY];
1525
1526         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1527
1528         if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1529                 NODEMASK_FREE(nodes_allowed);
1530
1531         return len;
1532 out:
1533         NODEMASK_FREE(nodes_allowed);
1534         return err;
1535 }
1536
1537 static ssize_t nr_hugepages_show(struct kobject *kobj,
1538                                        struct kobj_attribute *attr, char *buf)
1539 {
1540         return nr_hugepages_show_common(kobj, attr, buf);
1541 }
1542
1543 static ssize_t nr_hugepages_store(struct kobject *kobj,
1544                struct kobj_attribute *attr, const char *buf, size_t len)
1545 {
1546         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1547 }
1548 HSTATE_ATTR(nr_hugepages);
1549
1550 #ifdef CONFIG_NUMA
1551
1552 /*
1553  * hstate attribute for optionally mempolicy-based constraint on persistent
1554  * huge page alloc/free.
1555  */
1556 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1557                                        struct kobj_attribute *attr, char *buf)
1558 {
1559         return nr_hugepages_show_common(kobj, attr, buf);
1560 }
1561
1562 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1563                struct kobj_attribute *attr, const char *buf, size_t len)
1564 {
1565         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1566 }
1567 HSTATE_ATTR(nr_hugepages_mempolicy);
1568 #endif
1569
1570
1571 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1572                                         struct kobj_attribute *attr, char *buf)
1573 {
1574         struct hstate *h = kobj_to_hstate(kobj, NULL);
1575         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1576 }
1577
1578 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1579                 struct kobj_attribute *attr, const char *buf, size_t count)
1580 {
1581         int err;
1582         unsigned long input;
1583         struct hstate *h = kobj_to_hstate(kobj, NULL);
1584
1585         if (h->order >= MAX_ORDER)
1586                 return -EINVAL;
1587
1588         err = strict_strtoul(buf, 10, &input);
1589         if (err)
1590                 return err;
1591
1592         spin_lock(&hugetlb_lock);
1593         h->nr_overcommit_huge_pages = input;
1594         spin_unlock(&hugetlb_lock);
1595
1596         return count;
1597 }
1598 HSTATE_ATTR(nr_overcommit_hugepages);
1599
1600 static ssize_t free_hugepages_show(struct kobject *kobj,
1601                                         struct kobj_attribute *attr, char *buf)
1602 {
1603         struct hstate *h;
1604         unsigned long free_huge_pages;
1605         int nid;
1606
1607         h = kobj_to_hstate(kobj, &nid);
1608         if (nid == NUMA_NO_NODE)
1609                 free_huge_pages = h->free_huge_pages;
1610         else
1611                 free_huge_pages = h->free_huge_pages_node[nid];
1612
1613         return sprintf(buf, "%lu\n", free_huge_pages);
1614 }
1615 HSTATE_ATTR_RO(free_hugepages);
1616
1617 static ssize_t resv_hugepages_show(struct kobject *kobj,
1618                                         struct kobj_attribute *attr, char *buf)
1619 {
1620         struct hstate *h = kobj_to_hstate(kobj, NULL);
1621         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1622 }
1623 HSTATE_ATTR_RO(resv_hugepages);
1624
1625 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1626                                         struct kobj_attribute *attr, char *buf)
1627 {
1628         struct hstate *h;
1629         unsigned long surplus_huge_pages;
1630         int nid;
1631
1632         h = kobj_to_hstate(kobj, &nid);
1633         if (nid == NUMA_NO_NODE)
1634                 surplus_huge_pages = h->surplus_huge_pages;
1635         else
1636                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1637
1638         return sprintf(buf, "%lu\n", surplus_huge_pages);
1639 }
1640 HSTATE_ATTR_RO(surplus_hugepages);
1641
1642 static struct attribute *hstate_attrs[] = {
1643         &nr_hugepages_attr.attr,
1644         &nr_overcommit_hugepages_attr.attr,
1645         &free_hugepages_attr.attr,
1646         &resv_hugepages_attr.attr,
1647         &surplus_hugepages_attr.attr,
1648 #ifdef CONFIG_NUMA
1649         &nr_hugepages_mempolicy_attr.attr,
1650 #endif
1651         NULL,
1652 };
1653
1654 static struct attribute_group hstate_attr_group = {
1655         .attrs = hstate_attrs,
1656 };
1657
1658 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1659                                     struct kobject **hstate_kobjs,
1660                                     struct attribute_group *hstate_attr_group)
1661 {
1662         int retval;
1663         int hi = h - hstates;
1664
1665         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1666         if (!hstate_kobjs[hi])
1667                 return -ENOMEM;
1668
1669         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1670         if (retval)
1671                 kobject_put(hstate_kobjs[hi]);
1672
1673         return retval;
1674 }
1675
1676 static void __init hugetlb_sysfs_init(void)
1677 {
1678         struct hstate *h;
1679         int err;
1680
1681         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1682         if (!hugepages_kobj)
1683                 return;
1684
1685         for_each_hstate(h) {
1686                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1687                                          hstate_kobjs, &hstate_attr_group);
1688                 if (err)
1689                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1690                                                                 h->name);
1691         }
1692 }
1693
1694 #ifdef CONFIG_NUMA
1695
1696 /*
1697  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1698  * with node devices in node_devices[] using a parallel array.  The array
1699  * index of a node device or _hstate == node id.
1700  * This is here to avoid any static dependency of the node device driver, in
1701  * the base kernel, on the hugetlb module.
1702  */
1703 struct node_hstate {
1704         struct kobject          *hugepages_kobj;
1705         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1706 };
1707 struct node_hstate node_hstates[MAX_NUMNODES];
1708
1709 /*
1710  * A subset of global hstate attributes for node devices
1711  */
1712 static struct attribute *per_node_hstate_attrs[] = {
1713         &nr_hugepages_attr.attr,
1714         &free_hugepages_attr.attr,
1715         &surplus_hugepages_attr.attr,
1716         NULL,
1717 };
1718
1719 static struct attribute_group per_node_hstate_attr_group = {
1720         .attrs = per_node_hstate_attrs,
1721 };
1722
1723 /*
1724  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1725  * Returns node id via non-NULL nidp.
1726  */
1727 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1728 {
1729         int nid;
1730
1731         for (nid = 0; nid < nr_node_ids; nid++) {
1732                 struct node_hstate *nhs = &node_hstates[nid];
1733                 int i;
1734                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1735                         if (nhs->hstate_kobjs[i] == kobj) {
1736                                 if (nidp)
1737                                         *nidp = nid;
1738                                 return &hstates[i];
1739                         }
1740         }
1741
1742         BUG();
1743         return NULL;
1744 }
1745
1746 /*
1747  * Unregister hstate attributes from a single node device.
1748  * No-op if no hstate attributes attached.
1749  */
1750 void hugetlb_unregister_node(struct node *node)
1751 {
1752         struct hstate *h;
1753         struct node_hstate *nhs = &node_hstates[node->dev.id];
1754
1755         if (!nhs->hugepages_kobj)
1756                 return;         /* no hstate attributes */
1757
1758         for_each_hstate(h)
1759                 if (nhs->hstate_kobjs[h - hstates]) {
1760                         kobject_put(nhs->hstate_kobjs[h - hstates]);
1761                         nhs->hstate_kobjs[h - hstates] = NULL;
1762                 }
1763
1764         kobject_put(nhs->hugepages_kobj);
1765         nhs->hugepages_kobj = NULL;
1766 }
1767
1768 /*
1769  * hugetlb module exit:  unregister hstate attributes from node devices
1770  * that have them.
1771  */
1772 static void hugetlb_unregister_all_nodes(void)
1773 {
1774         int nid;
1775
1776         /*
1777          * disable node device registrations.
1778          */
1779         register_hugetlbfs_with_node(NULL, NULL);
1780
1781         /*
1782          * remove hstate attributes from any nodes that have them.
1783          */
1784         for (nid = 0; nid < nr_node_ids; nid++)
1785                 hugetlb_unregister_node(&node_devices[nid]);
1786 }
1787
1788 /*
1789  * Register hstate attributes for a single node device.
1790  * No-op if attributes already registered.
1791  */
1792 void hugetlb_register_node(struct node *node)
1793 {
1794         struct hstate *h;
1795         struct node_hstate *nhs = &node_hstates[node->dev.id];
1796         int err;
1797
1798         if (nhs->hugepages_kobj)
1799                 return;         /* already allocated */
1800
1801         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1802                                                         &node->dev.kobj);
1803         if (!nhs->hugepages_kobj)
1804                 return;
1805
1806         for_each_hstate(h) {
1807                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1808                                                 nhs->hstate_kobjs,
1809                                                 &per_node_hstate_attr_group);
1810                 if (err) {
1811                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1812                                         " for node %d\n",
1813                                                 h->name, node->dev.id);
1814                         hugetlb_unregister_node(node);
1815                         break;
1816                 }
1817         }
1818 }
1819
1820 /*
1821  * hugetlb init time:  register hstate attributes for all registered node
1822  * devices of nodes that have memory.  All on-line nodes should have
1823  * registered their associated device by this time.
1824  */
1825 static void hugetlb_register_all_nodes(void)
1826 {
1827         int nid;
1828
1829         for_each_node_state(nid, N_HIGH_MEMORY) {
1830                 struct node *node = &node_devices[nid];
1831                 if (node->dev.id == nid)
1832                         hugetlb_register_node(node);
1833         }
1834
1835         /*
1836          * Let the node device driver know we're here so it can
1837          * [un]register hstate attributes on node hotplug.
1838          */
1839         register_hugetlbfs_with_node(hugetlb_register_node,
1840                                      hugetlb_unregister_node);
1841 }
1842 #else   /* !CONFIG_NUMA */
1843
1844 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1845 {
1846         BUG();
1847         if (nidp)
1848                 *nidp = -1;
1849         return NULL;
1850 }
1851
1852 static void hugetlb_unregister_all_nodes(void) { }
1853
1854 static void hugetlb_register_all_nodes(void) { }
1855
1856 #endif
1857
1858 static void __exit hugetlb_exit(void)
1859 {
1860         struct hstate *h;
1861
1862         hugetlb_unregister_all_nodes();
1863
1864         for_each_hstate(h) {
1865                 kobject_put(hstate_kobjs[h - hstates]);
1866         }
1867
1868         kobject_put(hugepages_kobj);
1869 }
1870 module_exit(hugetlb_exit);
1871
1872 static int __init hugetlb_init(void)
1873 {
1874         /* Some platform decide whether they support huge pages at boot
1875          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1876          * there is no such support
1877          */
1878         if (HPAGE_SHIFT == 0)
1879                 return 0;
1880
1881         if (!size_to_hstate(default_hstate_size)) {
1882                 default_hstate_size = HPAGE_SIZE;
1883                 if (!size_to_hstate(default_hstate_size))
1884                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1885         }
1886         default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1887         if (default_hstate_max_huge_pages)
1888                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1889
1890         hugetlb_init_hstates();
1891
1892         gather_bootmem_prealloc();
1893
1894         report_hugepages();
1895
1896         hugetlb_sysfs_init();
1897
1898         hugetlb_register_all_nodes();
1899
1900         return 0;
1901 }
1902 module_init(hugetlb_init);
1903
1904 /* Should be called on processing a hugepagesz=... option */
1905 void __init hugetlb_add_hstate(unsigned order)
1906 {
1907         struct hstate *h;
1908         unsigned long i;
1909
1910         if (size_to_hstate(PAGE_SIZE << order)) {
1911                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1912                 return;
1913         }
1914         BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1915         BUG_ON(order == 0);
1916         h = &hstates[max_hstate++];
1917         h->order = order;
1918         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1919         h->nr_huge_pages = 0;
1920         h->free_huge_pages = 0;
1921         for (i = 0; i < MAX_NUMNODES; ++i)
1922                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1923         h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1924         h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1925         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1926                                         huge_page_size(h)/1024);
1927
1928         parsed_hstate = h;
1929 }
1930
1931 static int __init hugetlb_nrpages_setup(char *s)
1932 {
1933         unsigned long *mhp;
1934         static unsigned long *last_mhp;
1935
1936         /*
1937          * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1938          * so this hugepages= parameter goes to the "default hstate".
1939          */
1940         if (!max_hstate)
1941                 mhp = &default_hstate_max_huge_pages;
1942         else
1943                 mhp = &parsed_hstate->max_huge_pages;
1944
1945         if (mhp == last_mhp) {
1946                 printk(KERN_WARNING "hugepages= specified twice without "
1947                         "interleaving hugepagesz=, ignoring\n");
1948                 return 1;
1949         }
1950
1951         if (sscanf(s, "%lu", mhp) <= 0)
1952                 *mhp = 0;
1953
1954         /*
1955          * Global state is always initialized later in hugetlb_init.
1956          * But we need to allocate >= MAX_ORDER hstates here early to still
1957          * use the bootmem allocator.
1958          */
1959         if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1960                 hugetlb_hstate_alloc_pages(parsed_hstate);
1961
1962         last_mhp = mhp;
1963
1964         return 1;
1965 }
1966 __setup("hugepages=", hugetlb_nrpages_setup);
1967
1968 static int __init hugetlb_default_setup(char *s)
1969 {
1970         default_hstate_size = memparse(s, &s);
1971         return 1;
1972 }
1973 __setup("default_hugepagesz=", hugetlb_default_setup);
1974
1975 static unsigned int cpuset_mems_nr(unsigned int *array)
1976 {
1977         int node;
1978         unsigned int nr = 0;
1979
1980         for_each_node_mask(node, cpuset_current_mems_allowed)
1981                 nr += array[node];
1982
1983         return nr;
1984 }
1985
1986 #ifdef CONFIG_SYSCTL
1987 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1988                          struct ctl_table *table, int write,
1989                          void __user *buffer, size_t *length, loff_t *ppos)
1990 {
1991         struct hstate *h = &default_hstate;
1992         unsigned long tmp;
1993         int ret;
1994
1995         tmp = h->max_huge_pages;
1996
1997         if (write && h->order >= MAX_ORDER)
1998                 return -EINVAL;
1999
2000         table->data = &tmp;
2001         table->maxlen = sizeof(unsigned long);
2002         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2003         if (ret)
2004                 goto out;
2005
2006         if (write) {
2007                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2008                                                 GFP_KERNEL | __GFP_NORETRY);
2009                 if (!(obey_mempolicy &&
2010                                init_nodemask_of_mempolicy(nodes_allowed))) {
2011                         NODEMASK_FREE(nodes_allowed);
2012                         nodes_allowed = &node_states[N_HIGH_MEMORY];
2013                 }
2014                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2015
2016                 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2017                         NODEMASK_FREE(nodes_allowed);
2018         }
2019 out:
2020         return ret;
2021 }
2022
2023 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2024                           void __user *buffer, size_t *length, loff_t *ppos)
2025 {
2026
2027         return hugetlb_sysctl_handler_common(false, table, write,
2028                                                         buffer, length, ppos);
2029 }
2030
2031 #ifdef CONFIG_NUMA
2032 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2033                           void __user *buffer, size_t *length, loff_t *ppos)
2034 {
2035         return hugetlb_sysctl_handler_common(true, table, write,
2036                                                         buffer, length, ppos);
2037 }
2038 #endif /* CONFIG_NUMA */
2039
2040 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2041                         void __user *buffer,
2042                         size_t *length, loff_t *ppos)
2043 {
2044         proc_dointvec(table, write, buffer, length, ppos);
2045         if (hugepages_treat_as_movable)
2046                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2047         else
2048                 htlb_alloc_mask = GFP_HIGHUSER;
2049         return 0;
2050 }
2051
2052 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2053                         void __user *buffer,
2054                         size_t *length, loff_t *ppos)
2055 {
2056         struct hstate *h = &default_hstate;
2057         unsigned long tmp;
2058         int ret;
2059
2060         tmp = h->nr_overcommit_huge_pages;
2061
2062         if (write && h->order >= MAX_ORDER)
2063                 return -EINVAL;
2064
2065         table->data = &tmp;
2066         table->maxlen = sizeof(unsigned long);
2067         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2068         if (ret)
2069                 goto out;
2070
2071         if (write) {
2072                 spin_lock(&hugetlb_lock);
2073                 h->nr_overcommit_huge_pages = tmp;
2074                 spin_unlock(&hugetlb_lock);
2075         }
2076 out:
2077         return ret;
2078 }
2079
2080 #endif /* CONFIG_SYSCTL */
2081
2082 void hugetlb_report_meminfo(struct seq_file *m)
2083 {
2084         struct hstate *h = &default_hstate;
2085         seq_printf(m,
2086                         "HugePages_Total:   %5lu\n"
2087                         "HugePages_Free:    %5lu\n"
2088                         "HugePages_Rsvd:    %5lu\n"
2089                         "HugePages_Surp:    %5lu\n"
2090                         "Hugepagesize:   %8lu kB\n",
2091                         h->nr_huge_pages,
2092                         h->free_huge_pages,
2093                         h->resv_huge_pages,
2094                         h->surplus_huge_pages,
2095                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2096 }
2097
2098 int hugetlb_report_node_meminfo(int nid, char *buf)
2099 {
2100         struct hstate *h = &default_hstate;
2101         return sprintf(buf,
2102                 "Node %d HugePages_Total: %5u\n"
2103                 "Node %d HugePages_Free:  %5u\n"
2104                 "Node %d HugePages_Surp:  %5u\n",
2105                 nid, h->nr_huge_pages_node[nid],
2106                 nid, h->free_huge_pages_node[nid],
2107                 nid, h->surplus_huge_pages_node[nid]);
2108 }
2109
2110 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2111 unsigned long hugetlb_total_pages(void)
2112 {
2113         struct hstate *h;
2114         unsigned long nr_total_pages = 0;
2115
2116         for_each_hstate(h)
2117                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2118         return nr_total_pages;
2119 }
2120
2121 static int hugetlb_acct_memory(struct hstate *h, long delta)
2122 {
2123         int ret = -ENOMEM;
2124
2125         spin_lock(&hugetlb_lock);
2126         /*
2127          * When cpuset is configured, it breaks the strict hugetlb page
2128          * reservation as the accounting is done on a global variable. Such
2129          * reservation is completely rubbish in the presence of cpuset because
2130          * the reservation is not checked against page availability for the
2131          * current cpuset. Application can still potentially OOM'ed by kernel
2132          * with lack of free htlb page in cpuset that the task is in.
2133          * Attempt to enforce strict accounting with cpuset is almost
2134          * impossible (or too ugly) because cpuset is too fluid that
2135          * task or memory node can be dynamically moved between cpusets.
2136          *
2137          * The change of semantics for shared hugetlb mapping with cpuset is
2138          * undesirable. However, in order to preserve some of the semantics,
2139          * we fall back to check against current free page availability as
2140          * a best attempt and hopefully to minimize the impact of changing
2141          * semantics that cpuset has.
2142          */
2143         if (delta > 0) {
2144                 if (gather_surplus_pages(h, delta) < 0)
2145                         goto out;
2146
2147                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2148                         return_unused_surplus_pages(h, delta);
2149                         goto out;
2150                 }
2151         }
2152
2153         ret = 0;
2154         if (delta < 0)
2155                 return_unused_surplus_pages(h, (unsigned long) -delta);
2156
2157 out:
2158         spin_unlock(&hugetlb_lock);
2159         return ret;
2160 }
2161
2162 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2163 {
2164         struct resv_map *reservations = vma_resv_map(vma);
2165
2166         /*
2167          * This new VMA should share its siblings reservation map if present.
2168          * The VMA will only ever have a valid reservation map pointer where
2169          * it is being copied for another still existing VMA.  As that VMA
2170          * has a reference to the reservation map it cannot disappear until
2171          * after this open call completes.  It is therefore safe to take a
2172          * new reference here without additional locking.
2173          */
2174         if (reservations)
2175                 kref_get(&reservations->refs);
2176 }
2177
2178 static void resv_map_put(struct vm_area_struct *vma)
2179 {
2180         struct resv_map *reservations = vma_resv_map(vma);
2181
2182         if (!reservations)
2183                 return;
2184         kref_put(&reservations->refs, resv_map_release);
2185 }
2186
2187 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2188 {
2189         struct hstate *h = hstate_vma(vma);
2190         struct resv_map *reservations = vma_resv_map(vma);
2191         struct hugepage_subpool *spool = subpool_vma(vma);
2192         unsigned long reserve;
2193         unsigned long start;
2194         unsigned long end;
2195
2196         if (reservations) {
2197                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2198                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2199
2200                 reserve = (end - start) -
2201                         region_count(&reservations->regions, start, end);
2202
2203                 resv_map_put(vma);
2204
2205                 if (reserve) {
2206                         hugetlb_acct_memory(h, -reserve);
2207                         hugepage_subpool_put_pages(spool, reserve);
2208                 }
2209         }
2210 }
2211
2212 /*
2213  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2214  * handle_mm_fault() to try to instantiate regular-sized pages in the
2215  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2216  * this far.
2217  */
2218 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2219 {
2220         BUG();
2221         return 0;
2222 }
2223
2224 const struct vm_operations_struct hugetlb_vm_ops = {
2225         .fault = hugetlb_vm_op_fault,
2226         .open = hugetlb_vm_op_open,
2227         .close = hugetlb_vm_op_close,
2228 };
2229
2230 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2231                                 int writable)
2232 {
2233         pte_t entry;
2234
2235         if (writable) {
2236                 entry =
2237                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2238         } else {
2239                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2240         }
2241         entry = pte_mkyoung(entry);
2242         entry = pte_mkhuge(entry);
2243
2244         return entry;
2245 }
2246
2247 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2248                                    unsigned long address, pte_t *ptep)
2249 {
2250         pte_t entry;
2251
2252         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2253         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2254                 update_mmu_cache(vma, address, ptep);
2255 }
2256
2257
2258 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2259                             struct vm_area_struct *vma)
2260 {
2261         pte_t *src_pte, *dst_pte, entry;
2262         struct page *ptepage;
2263         unsigned long addr;
2264         int cow;
2265         struct hstate *h = hstate_vma(vma);
2266         unsigned long sz = huge_page_size(h);
2267
2268         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2269
2270         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2271                 src_pte = huge_pte_offset(src, addr);
2272                 if (!src_pte)
2273                         continue;
2274                 dst_pte = huge_pte_alloc(dst, addr, sz);
2275                 if (!dst_pte)
2276                         goto nomem;
2277
2278                 /* If the pagetables are shared don't copy or take references */
2279                 if (dst_pte == src_pte)
2280                         continue;
2281
2282                 spin_lock(&dst->page_table_lock);
2283                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2284                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2285                         if (cow)
2286                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2287                         entry = huge_ptep_get(src_pte);
2288                         ptepage = pte_page(entry);
2289                         get_page(ptepage);
2290                         page_dup_rmap(ptepage);
2291                         set_huge_pte_at(dst, addr, dst_pte, entry);
2292                 }
2293                 spin_unlock(&src->page_table_lock);
2294                 spin_unlock(&dst->page_table_lock);
2295         }
2296         return 0;
2297
2298 nomem:
2299         return -ENOMEM;
2300 }
2301
2302 static int is_hugetlb_entry_migration(pte_t pte)
2303 {
2304         swp_entry_t swp;
2305
2306         if (huge_pte_none(pte) || pte_present(pte))
2307                 return 0;
2308         swp = pte_to_swp_entry(pte);
2309         if (non_swap_entry(swp) && is_migration_entry(swp))
2310                 return 1;
2311         else
2312                 return 0;
2313 }
2314
2315 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2316 {
2317         swp_entry_t swp;
2318
2319         if (huge_pte_none(pte) || pte_present(pte))
2320                 return 0;
2321         swp = pte_to_swp_entry(pte);
2322         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2323                 return 1;
2324         else
2325                 return 0;
2326 }
2327
2328 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2329                             unsigned long end, struct page *ref_page)
2330 {
2331         struct mm_struct *mm = vma->vm_mm;
2332         unsigned long address;
2333         pte_t *ptep;
2334         pte_t pte;
2335         struct page *page;
2336         struct page *tmp;
2337         struct hstate *h = hstate_vma(vma);
2338         unsigned long sz = huge_page_size(h);
2339
2340         /*
2341          * A page gathering list, protected by per file i_mmap_mutex. The
2342          * lock is used to avoid list corruption from multiple unmapping
2343          * of the same page since we are using page->lru.
2344          */
2345         LIST_HEAD(page_list);
2346
2347         WARN_ON(!is_vm_hugetlb_page(vma));
2348         BUG_ON(start & ~huge_page_mask(h));
2349         BUG_ON(end & ~huge_page_mask(h));
2350
2351         mmu_notifier_invalidate_range_start(mm, start, end);
2352         spin_lock(&mm->page_table_lock);
2353         for (address = start; address < end; address += sz) {
2354                 ptep = huge_pte_offset(mm, address);
2355                 if (!ptep)
2356                         continue;
2357
2358                 if (huge_pmd_unshare(mm, &address, ptep))
2359                         continue;
2360
2361                 /*
2362                  * If a reference page is supplied, it is because a specific
2363                  * page is being unmapped, not a range. Ensure the page we
2364                  * are about to unmap is the actual page of interest.
2365                  */
2366                 if (ref_page) {
2367                         pte = huge_ptep_get(ptep);
2368                         if (huge_pte_none(pte))
2369                                 continue;
2370                         page = pte_page(pte);
2371                         if (page != ref_page)
2372                                 continue;
2373
2374                         /*
2375                          * Mark the VMA as having unmapped its page so that
2376                          * future faults in this VMA will fail rather than
2377                          * looking like data was lost
2378                          */
2379                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2380                 }
2381
2382                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2383                 if (huge_pte_none(pte))
2384                         continue;
2385
2386                 /*
2387                  * HWPoisoned hugepage is already unmapped and dropped reference
2388                  */
2389                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2390                         continue;
2391
2392                 page = pte_page(pte);
2393                 if (pte_dirty(pte))
2394                         set_page_dirty(page);
2395                 list_add(&page->lru, &page_list);
2396         }
2397         spin_unlock(&mm->page_table_lock);
2398         flush_tlb_range(vma, start, end);
2399         mmu_notifier_invalidate_range_end(mm, start, end);
2400         list_for_each_entry_safe(page, tmp, &page_list, lru) {
2401                 page_remove_rmap(page);
2402                 list_del(&page->lru);
2403                 put_page(page);
2404         }
2405 }
2406
2407 void __unmap_hugepage_range_final(struct vm_area_struct *vma,
2408                           unsigned long start, unsigned long end,
2409                           struct page *ref_page)
2410 {
2411         __unmap_hugepage_range(vma, start, end, ref_page);
2412
2413         /*
2414          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2415          * test will fail on a vma being torn down, and not grab a page table
2416          * on its way out.  We're lucky that the flag has such an appropriate
2417          * name, and can in fact be safely cleared here. We could clear it
2418          * before the __unmap_hugepage_range above, but all that's necessary
2419          * is to clear it before releasing the i_mmap_mutex. This works
2420          * because in the context this is called, the VMA is about to be
2421          * destroyed and the i_mmap_mutex is held.
2422          */
2423         vma->vm_flags &= ~VM_MAYSHARE;
2424 }
2425
2426 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2427                           unsigned long end, struct page *ref_page)
2428 {
2429         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2430         __unmap_hugepage_range(vma, start, end, ref_page);
2431         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2432 }
2433
2434 /*
2435  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2436  * mappping it owns the reserve page for. The intention is to unmap the page
2437  * from other VMAs and let the children be SIGKILLed if they are faulting the
2438  * same region.
2439  */
2440 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2441                                 struct page *page, unsigned long address)
2442 {
2443         struct hstate *h = hstate_vma(vma);
2444         struct vm_area_struct *iter_vma;
2445         struct address_space *mapping;
2446         struct prio_tree_iter iter;
2447         pgoff_t pgoff;
2448
2449         /*
2450          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2451          * from page cache lookup which is in HPAGE_SIZE units.
2452          */
2453         address = address & huge_page_mask(h);
2454         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2455                         vma->vm_pgoff;
2456         mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2457
2458         /*
2459          * Take the mapping lock for the duration of the table walk. As
2460          * this mapping should be shared between all the VMAs,
2461          * __unmap_hugepage_range() is called as the lock is already held
2462          */
2463         mutex_lock(&mapping->i_mmap_mutex);
2464         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2465                 /* Do not unmap the current VMA */
2466                 if (iter_vma == vma)
2467                         continue;
2468
2469                 /*
2470                  * Unmap the page from other VMAs without their own reserves.
2471                  * They get marked to be SIGKILLed if they fault in these
2472                  * areas. This is because a future no-page fault on this VMA
2473                  * could insert a zeroed page instead of the data existing
2474                  * from the time of fork. This would look like data corruption
2475                  */
2476                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2477                         __unmap_hugepage_range(iter_vma,
2478                                 address, address + huge_page_size(h),
2479                                 page);
2480         }
2481         mutex_unlock(&mapping->i_mmap_mutex);
2482
2483         return 1;
2484 }
2485
2486 /*
2487  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2488  */
2489 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2490                         unsigned long address, pte_t *ptep, pte_t pte,
2491                         struct page *pagecache_page)
2492 {
2493         struct hstate *h = hstate_vma(vma);
2494         struct page *old_page, *new_page;
2495         int avoidcopy;
2496         int outside_reserve = 0;
2497
2498         old_page = pte_page(pte);
2499
2500 retry_avoidcopy:
2501         /* If no-one else is actually using this page, avoid the copy
2502          * and just make the page writable */
2503         avoidcopy = (page_mapcount(old_page) == 1);
2504         if (avoidcopy) {
2505                 if (PageAnon(old_page))
2506                         page_move_anon_rmap(old_page, vma, address);
2507                 set_huge_ptep_writable(vma, address, ptep);
2508                 return 0;
2509         }
2510
2511         /*
2512          * If the process that created a MAP_PRIVATE mapping is about to
2513          * perform a COW due to a shared page count, attempt to satisfy
2514          * the allocation without using the existing reserves. The pagecache
2515          * page is used to determine if the reserve at this address was
2516          * consumed or not. If reserves were used, a partial faulted mapping
2517          * at the time of fork() could consume its reserves on COW instead
2518          * of the full address range.
2519          */
2520         if (!(vma->vm_flags & VM_MAYSHARE) &&
2521                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2522                         old_page != pagecache_page)
2523                 outside_reserve = 1;
2524
2525         page_cache_get(old_page);
2526
2527         /* Drop page_table_lock as buddy allocator may be called */
2528         spin_unlock(&mm->page_table_lock);
2529         new_page = alloc_huge_page(vma, address, outside_reserve);
2530
2531         if (IS_ERR(new_page)) {
2532                 page_cache_release(old_page);
2533
2534                 /*
2535                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2536                  * it is due to references held by a child and an insufficient
2537                  * huge page pool. To guarantee the original mappers
2538                  * reliability, unmap the page from child processes. The child
2539                  * may get SIGKILLed if it later faults.
2540                  */
2541                 if (outside_reserve) {
2542                         BUG_ON(huge_pte_none(pte));
2543                         if (unmap_ref_private(mm, vma, old_page, address)) {
2544                                 BUG_ON(huge_pte_none(pte));
2545                                 spin_lock(&mm->page_table_lock);
2546                                 goto retry_avoidcopy;
2547                         }
2548                         WARN_ON_ONCE(1);
2549                 }
2550
2551                 /* Caller expects lock to be held */
2552                 spin_lock(&mm->page_table_lock);
2553                 return -PTR_ERR(new_page);
2554         }
2555
2556         /*
2557          * When the original hugepage is shared one, it does not have
2558          * anon_vma prepared.
2559          */
2560         if (unlikely(anon_vma_prepare(vma))) {
2561                 page_cache_release(new_page);
2562                 page_cache_release(old_page);
2563                 /* Caller expects lock to be held */
2564                 spin_lock(&mm->page_table_lock);
2565                 return VM_FAULT_OOM;
2566         }
2567
2568         copy_user_huge_page(new_page, old_page, address, vma,
2569                             pages_per_huge_page(h));
2570         __SetPageUptodate(new_page);
2571
2572         /*
2573          * Retake the page_table_lock to check for racing updates
2574          * before the page tables are altered
2575          */
2576         spin_lock(&mm->page_table_lock);
2577         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2578         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2579                 /* Break COW */
2580                 mmu_notifier_invalidate_range_start(mm,
2581                         address & huge_page_mask(h),
2582                         (address & huge_page_mask(h)) + huge_page_size(h));
2583                 huge_ptep_clear_flush(vma, address, ptep);
2584                 set_huge_pte_at(mm, address, ptep,
2585                                 make_huge_pte(vma, new_page, 1));
2586                 page_remove_rmap(old_page);
2587                 hugepage_add_new_anon_rmap(new_page, vma, address);
2588                 /* Make the old page be freed below */
2589                 new_page = old_page;
2590                 mmu_notifier_invalidate_range_end(mm,
2591                         address & huge_page_mask(h),
2592                         (address & huge_page_mask(h)) + huge_page_size(h));
2593         }
2594         page_cache_release(new_page);
2595         page_cache_release(old_page);
2596         return 0;
2597 }
2598
2599 /* Return the pagecache page at a given address within a VMA */
2600 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2601                         struct vm_area_struct *vma, unsigned long address)
2602 {
2603         struct address_space *mapping;
2604         pgoff_t idx;
2605
2606         mapping = vma->vm_file->f_mapping;
2607         idx = vma_hugecache_offset(h, vma, address);
2608
2609         return find_lock_page(mapping, idx);
2610 }
2611
2612 /*
2613  * Return whether there is a pagecache page to back given address within VMA.
2614  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2615  */
2616 static bool hugetlbfs_pagecache_present(struct hstate *h,
2617                         struct vm_area_struct *vma, unsigned long address)
2618 {
2619         struct address_space *mapping;
2620         pgoff_t idx;
2621         struct page *page;
2622
2623         mapping = vma->vm_file->f_mapping;
2624         idx = vma_hugecache_offset(h, vma, address);
2625
2626         page = find_get_page(mapping, idx);
2627         if (page)
2628                 put_page(page);
2629         return page != NULL;
2630 }
2631
2632 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2633                         unsigned long address, pte_t *ptep, unsigned int flags)
2634 {
2635         struct hstate *h = hstate_vma(vma);
2636         int ret = VM_FAULT_SIGBUS;
2637         pgoff_t idx;
2638         unsigned long size;
2639         struct page *page;
2640         struct address_space *mapping;
2641         pte_t new_pte;
2642
2643         /*
2644          * Currently, we are forced to kill the process in the event the
2645          * original mapper has unmapped pages from the child due to a failed
2646          * COW. Warn that such a situation has occurred as it may not be obvious
2647          */
2648         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2649                 printk(KERN_WARNING
2650                         "PID %d killed due to inadequate hugepage pool\n",
2651                         current->pid);
2652                 return ret;
2653         }
2654
2655         mapping = vma->vm_file->f_mapping;
2656         idx = vma_hugecache_offset(h, vma, address);
2657
2658         /*
2659          * Use page lock to guard against racing truncation
2660          * before we get page_table_lock.
2661          */
2662 retry:
2663         page = find_lock_page(mapping, idx);
2664         if (!page) {
2665                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2666                 if (idx >= size)
2667                         goto out;
2668                 page = alloc_huge_page(vma, address, 0);
2669                 if (IS_ERR(page)) {
2670                         ret = -PTR_ERR(page);
2671                         goto out;
2672                 }
2673                 clear_huge_page(page, address, pages_per_huge_page(h));
2674                 __SetPageUptodate(page);
2675
2676                 if (vma->vm_flags & VM_MAYSHARE) {
2677                         int err;
2678                         struct inode *inode = mapping->host;
2679
2680                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2681                         if (err) {
2682                                 put_page(page);
2683                                 if (err == -EEXIST)
2684                                         goto retry;
2685                                 goto out;
2686                         }
2687
2688                         spin_lock(&inode->i_lock);
2689                         inode->i_blocks += blocks_per_huge_page(h);
2690                         spin_unlock(&inode->i_lock);
2691                         page_dup_rmap(page);
2692                 } else {
2693                         lock_page(page);
2694                         if (unlikely(anon_vma_prepare(vma))) {
2695                                 ret = VM_FAULT_OOM;
2696                                 goto backout_unlocked;
2697                         }
2698                         hugepage_add_new_anon_rmap(page, vma, address);
2699                 }
2700         } else {
2701                 /*
2702                  * If memory error occurs between mmap() and fault, some process
2703                  * don't have hwpoisoned swap entry for errored virtual address.
2704                  * So we need to block hugepage fault by PG_hwpoison bit check.
2705                  */
2706                 if (unlikely(PageHWPoison(page))) {
2707                         ret = VM_FAULT_HWPOISON |
2708                               VM_FAULT_SET_HINDEX(h - hstates);
2709                         goto backout_unlocked;
2710                 }
2711                 page_dup_rmap(page);
2712         }
2713
2714         /*
2715          * If we are going to COW a private mapping later, we examine the
2716          * pending reservations for this page now. This will ensure that
2717          * any allocations necessary to record that reservation occur outside
2718          * the spinlock.
2719          */
2720         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2721                 if (vma_needs_reservation(h, vma, address) < 0) {
2722                         ret = VM_FAULT_OOM;
2723                         goto backout_unlocked;
2724                 }
2725
2726         spin_lock(&mm->page_table_lock);
2727         size = i_size_read(mapping->host) >> huge_page_shift(h);
2728         if (idx >= size)
2729                 goto backout;
2730
2731         ret = 0;
2732         if (!huge_pte_none(huge_ptep_get(ptep)))
2733                 goto backout;
2734
2735         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2736                                 && (vma->vm_flags & VM_SHARED)));
2737         set_huge_pte_at(mm, address, ptep, new_pte);
2738
2739         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2740                 /* Optimization, do the COW without a second fault */
2741                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2742         }
2743
2744         spin_unlock(&mm->page_table_lock);
2745         unlock_page(page);
2746 out:
2747         return ret;
2748
2749 backout:
2750         spin_unlock(&mm->page_table_lock);
2751 backout_unlocked:
2752         unlock_page(page);
2753         put_page(page);
2754         goto out;
2755 }
2756
2757 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2758                         unsigned long address, unsigned int flags)
2759 {
2760         pte_t *ptep;
2761         pte_t entry;
2762         int ret;
2763         struct page *page = NULL;
2764         struct page *pagecache_page = NULL;
2765         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2766         struct hstate *h = hstate_vma(vma);
2767
2768         ptep = huge_pte_offset(mm, address);
2769         if (ptep) {
2770                 entry = huge_ptep_get(ptep);
2771                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2772                         migration_entry_wait_huge(mm, ptep);
2773                         return 0;
2774                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2775                         return VM_FAULT_HWPOISON_LARGE |
2776                                VM_FAULT_SET_HINDEX(h - hstates);
2777         }
2778
2779         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2780         if (!ptep)
2781                 return VM_FAULT_OOM;
2782
2783         /*
2784          * Serialize hugepage allocation and instantiation, so that we don't
2785          * get spurious allocation failures if two CPUs race to instantiate
2786          * the same page in the page cache.
2787          */
2788         mutex_lock(&hugetlb_instantiation_mutex);
2789         entry = huge_ptep_get(ptep);
2790         if (huge_pte_none(entry)) {
2791                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2792                 goto out_mutex;
2793         }
2794
2795         ret = 0;
2796
2797         /*
2798          * If we are going to COW the mapping later, we examine the pending
2799          * reservations for this page now. This will ensure that any
2800          * allocations necessary to record that reservation occur outside the
2801          * spinlock. For private mappings, we also lookup the pagecache
2802          * page now as it is used to determine if a reservation has been
2803          * consumed.
2804          */
2805         if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2806                 if (vma_needs_reservation(h, vma, address) < 0) {
2807                         ret = VM_FAULT_OOM;
2808                         goto out_mutex;
2809                 }
2810
2811                 if (!(vma->vm_flags & VM_MAYSHARE))
2812                         pagecache_page = hugetlbfs_pagecache_page(h,
2813                                                                 vma, address);
2814         }
2815
2816         /*
2817          * hugetlb_cow() requires page locks of pte_page(entry) and
2818          * pagecache_page, so here we need take the former one
2819          * when page != pagecache_page or !pagecache_page.
2820          * Note that locking order is always pagecache_page -> page,
2821          * so no worry about deadlock.
2822          */
2823         page = pte_page(entry);
2824         get_page(page);
2825         if (page != pagecache_page)
2826                 lock_page(page);
2827
2828         spin_lock(&mm->page_table_lock);
2829         /* Check for a racing update before calling hugetlb_cow */
2830         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2831                 goto out_page_table_lock;
2832
2833
2834         if (flags & FAULT_FLAG_WRITE) {
2835                 if (!pte_write(entry)) {
2836                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2837                                                         pagecache_page);
2838                         goto out_page_table_lock;
2839                 }
2840                 entry = pte_mkdirty(entry);
2841         }
2842         entry = pte_mkyoung(entry);
2843         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2844                                                 flags & FAULT_FLAG_WRITE))
2845                 update_mmu_cache(vma, address, ptep);
2846
2847 out_page_table_lock:
2848         spin_unlock(&mm->page_table_lock);
2849
2850         if (pagecache_page) {
2851                 unlock_page(pagecache_page);
2852                 put_page(pagecache_page);
2853         }
2854         if (page != pagecache_page)
2855                 unlock_page(page);
2856         put_page(page);
2857
2858 out_mutex:
2859         mutex_unlock(&hugetlb_instantiation_mutex);
2860
2861         return ret;
2862 }
2863
2864 /* Can be overriden by architectures */
2865 __attribute__((weak)) struct page *
2866 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2867                pud_t *pud, int write)
2868 {
2869         BUG();
2870         return NULL;
2871 }
2872
2873 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2874                         struct page **pages, struct vm_area_struct **vmas,
2875                         unsigned long *position, int *length, int i,
2876                         unsigned int flags)
2877 {
2878         unsigned long pfn_offset;
2879         unsigned long vaddr = *position;
2880         int remainder = *length;
2881         struct hstate *h = hstate_vma(vma);
2882
2883         spin_lock(&mm->page_table_lock);
2884         while (vaddr < vma->vm_end && remainder) {
2885                 pte_t *pte;
2886                 int absent;
2887                 struct page *page;
2888
2889                 /*
2890                  * Some archs (sparc64, sh*) have multiple pte_ts to
2891                  * each hugepage.  We have to make sure we get the
2892                  * first, for the page indexing below to work.
2893                  */
2894                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2895                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2896
2897                 /*
2898                  * When coredumping, it suits get_dump_page if we just return
2899                  * an error where there's an empty slot with no huge pagecache
2900                  * to back it.  This way, we avoid allocating a hugepage, and
2901                  * the sparse dumpfile avoids allocating disk blocks, but its
2902                  * huge holes still show up with zeroes where they need to be.
2903                  */
2904                 if (absent && (flags & FOLL_DUMP) &&
2905                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2906                         remainder = 0;
2907                         break;
2908                 }
2909
2910                 /*
2911                  * We need call hugetlb_fault for both hugepages under migration
2912                  * (in which case hugetlb_fault waits for the migration,) and
2913                  * hwpoisoned hugepages (in which case we need to prevent the
2914                  * caller from accessing to them.) In order to do this, we use
2915                  * here is_swap_pte instead of is_hugetlb_entry_migration and
2916                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2917                  * both cases, and because we can't follow correct pages
2918                  * directly from any kind of swap entries.
2919                  */
2920                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2921                     ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2922                         int ret;
2923
2924                         spin_unlock(&mm->page_table_lock);
2925                         ret = hugetlb_fault(mm, vma, vaddr,
2926                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2927                         spin_lock(&mm->page_table_lock);
2928                         if (!(ret & VM_FAULT_ERROR))
2929                                 continue;
2930
2931                         remainder = 0;
2932                         break;
2933                 }
2934
2935                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2936                 page = pte_page(huge_ptep_get(pte));
2937 same_page:
2938                 if (pages) {
2939                         pages[i] = mem_map_offset(page, pfn_offset);
2940                         get_page(pages[i]);
2941                 }
2942
2943                 if (vmas)
2944                         vmas[i] = vma;
2945
2946                 vaddr += PAGE_SIZE;
2947                 ++pfn_offset;
2948                 --remainder;
2949                 ++i;
2950                 if (vaddr < vma->vm_end && remainder &&
2951                                 pfn_offset < pages_per_huge_page(h)) {
2952                         /*
2953                          * We use pfn_offset to avoid touching the pageframes
2954                          * of this compound page.
2955                          */
2956                         goto same_page;
2957                 }
2958         }
2959         spin_unlock(&mm->page_table_lock);
2960         *length = remainder;
2961         *position = vaddr;
2962
2963         return i ? i : -EFAULT;
2964 }
2965
2966 void hugetlb_change_protection(struct vm_area_struct *vma,
2967                 unsigned long address, unsigned long end, pgprot_t newprot)
2968 {
2969         struct mm_struct *mm = vma->vm_mm;
2970         unsigned long start = address;
2971         pte_t *ptep;
2972         pte_t pte;
2973         struct hstate *h = hstate_vma(vma);
2974
2975         BUG_ON(address >= end);
2976         flush_cache_range(vma, address, end);
2977
2978         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2979         spin_lock(&mm->page_table_lock);
2980         for (; address < end; address += huge_page_size(h)) {
2981                 ptep = huge_pte_offset(mm, address);
2982                 if (!ptep)
2983                         continue;
2984                 if (huge_pmd_unshare(mm, &address, ptep))
2985                         continue;
2986                 if (!huge_pte_none(huge_ptep_get(ptep))) {
2987                         pte = huge_ptep_get_and_clear(mm, address, ptep);
2988                         pte = pte_mkhuge(pte_modify(pte, newprot));
2989                         set_huge_pte_at(mm, address, ptep, pte);
2990                 }
2991         }
2992         spin_unlock(&mm->page_table_lock);
2993         /*
2994          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
2995          * may have cleared our pud entry and done put_page on the page table:
2996          * once we release i_mmap_mutex, another task can do the final put_page
2997          * and that page table be reused and filled with junk.
2998          */
2999         flush_tlb_range(vma, start, end);
3000         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3001 }
3002
3003 int hugetlb_reserve_pages(struct inode *inode,
3004                                         long from, long to,
3005                                         struct vm_area_struct *vma,
3006                                         vm_flags_t vm_flags)
3007 {
3008         long ret, chg;
3009         struct hstate *h = hstate_inode(inode);
3010         struct hugepage_subpool *spool = subpool_inode(inode);
3011
3012         /*
3013          * Only apply hugepage reservation if asked. At fault time, an
3014          * attempt will be made for VM_NORESERVE to allocate a page
3015          * without using reserves
3016          */
3017         if (vm_flags & VM_NORESERVE)
3018                 return 0;
3019
3020         /*
3021          * Shared mappings base their reservation on the number of pages that
3022          * are already allocated on behalf of the file. Private mappings need
3023          * to reserve the full area even if read-only as mprotect() may be
3024          * called to make the mapping read-write. Assume !vma is a shm mapping
3025          */
3026         if (!vma || vma->vm_flags & VM_MAYSHARE)
3027                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3028         else {
3029                 struct resv_map *resv_map = resv_map_alloc();
3030                 if (!resv_map)
3031                         return -ENOMEM;
3032
3033                 chg = to - from;
3034
3035                 set_vma_resv_map(vma, resv_map);
3036                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3037         }
3038
3039         if (chg < 0) {
3040                 ret = chg;
3041                 goto out_err;
3042         }
3043
3044         /* There must be enough pages in the subpool for the mapping */
3045         if (hugepage_subpool_get_pages(spool, chg)) {
3046                 ret = -ENOSPC;
3047                 goto out_err;
3048         }
3049
3050         /*
3051          * Check enough hugepages are available for the reservation.
3052          * Hand the pages back to the subpool if there are not
3053          */
3054         ret = hugetlb_acct_memory(h, chg);
3055         if (ret < 0) {
3056                 hugepage_subpool_put_pages(spool, chg);
3057                 goto out_err;
3058         }
3059
3060         /*
3061          * Account for the reservations made. Shared mappings record regions
3062          * that have reservations as they are shared by multiple VMAs.
3063          * When the last VMA disappears, the region map says how much
3064          * the reservation was and the page cache tells how much of
3065          * the reservation was consumed. Private mappings are per-VMA and
3066          * only the consumed reservations are tracked. When the VMA
3067          * disappears, the original reservation is the VMA size and the
3068          * consumed reservations are stored in the map. Hence, nothing
3069          * else has to be done for private mappings here
3070          */
3071         if (!vma || vma->vm_flags & VM_MAYSHARE)
3072                 region_add(&inode->i_mapping->private_list, from, to);
3073         return 0;
3074 out_err:
3075         if (vma)
3076                 resv_map_put(vma);
3077         return ret;
3078 }
3079
3080 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3081 {
3082         struct hstate *h = hstate_inode(inode);
3083         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3084         struct hugepage_subpool *spool = subpool_inode(inode);
3085
3086         spin_lock(&inode->i_lock);
3087         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3088         spin_unlock(&inode->i_lock);
3089
3090         hugepage_subpool_put_pages(spool, (chg - freed));
3091         hugetlb_acct_memory(h, -(chg - freed));
3092 }
3093
3094 #ifdef CONFIG_MEMORY_FAILURE
3095
3096 /* Should be called in hugetlb_lock */
3097 static int is_hugepage_on_freelist(struct page *hpage)
3098 {
3099         struct page *page;
3100         struct page *tmp;
3101         struct hstate *h = page_hstate(hpage);
3102         int nid = page_to_nid(hpage);
3103
3104         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3105                 if (page == hpage)
3106                         return 1;
3107         return 0;
3108 }
3109
3110 /*
3111  * This function is called from memory failure code.
3112  * Assume the caller holds page lock of the head page.
3113  */
3114 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3115 {
3116         struct hstate *h = page_hstate(hpage);
3117         int nid = page_to_nid(hpage);
3118         int ret = -EBUSY;
3119
3120         spin_lock(&hugetlb_lock);
3121         if (is_hugepage_on_freelist(hpage)) {
3122                 list_del(&hpage->lru);
3123                 set_page_refcounted(hpage);
3124                 h->free_huge_pages--;
3125                 h->free_huge_pages_node[nid]--;
3126                 ret = 0;
3127         }
3128         spin_unlock(&hugetlb_lock);
3129         return ret;
3130 }
3131 #endif