x86/mm: If INVPCID is available, use it to flush global mappings
[pandora-kernel.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <linux/io.h>
28
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
32
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
40
41 __initdata LIST_HEAD(huge_boot_pages);
42
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
47
48 #define for_each_hstate(h) \
49         for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50
51 /*
52  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53  */
54 static DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58         bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60         spin_unlock(&spool->lock);
61
62         /* If no pages are used, and no other handles to the subpool
63          * remain, free the subpool the subpool remain */
64         if (free)
65                 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70         struct hugepage_subpool *spool;
71
72         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73         if (!spool)
74                 return NULL;
75
76         spin_lock_init(&spool->lock);
77         spool->count = 1;
78         spool->max_hpages = nr_blocks;
79         spool->used_hpages = 0;
80
81         return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86         spin_lock(&spool->lock);
87         BUG_ON(!spool->count);
88         spool->count--;
89         unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93                                       long delta)
94 {
95         int ret = 0;
96
97         if (!spool)
98                 return 0;
99
100         spin_lock(&spool->lock);
101         if ((spool->used_hpages + delta) <= spool->max_hpages) {
102                 spool->used_hpages += delta;
103         } else {
104                 ret = -ENOMEM;
105         }
106         spin_unlock(&spool->lock);
107
108         return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112                                        long delta)
113 {
114         if (!spool)
115                 return;
116
117         spin_lock(&spool->lock);
118         spool->used_hpages -= delta;
119         /* If hugetlbfs_put_super couldn't free spool due to
120         * an outstanding quota reference, free it now. */
121         unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126         return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131         return subpool_inode(vma->vm_file->f_dentry->d_inode);
132 }
133
134 /*
135  * Region tracking -- allows tracking of reservations and instantiated pages
136  *                    across the pages in a mapping.
137  *
138  * The region data structures are protected by a combination of the mmap_sem
139  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
140  * must either hold the mmap_sem for write, or the mmap_sem for read and
141  * the hugetlb_instantiation mutex:
142  *
143  *      down_write(&mm->mmap_sem);
144  * or
145  *      down_read(&mm->mmap_sem);
146  *      mutex_lock(&hugetlb_instantiation_mutex);
147  */
148 struct file_region {
149         struct list_head link;
150         long from;
151         long to;
152 };
153
154 static long region_add(struct list_head *head, long f, long t)
155 {
156         struct file_region *rg, *nrg, *trg;
157
158         /* Locate the region we are either in or before. */
159         list_for_each_entry(rg, head, link)
160                 if (f <= rg->to)
161                         break;
162
163         /* Round our left edge to the current segment if it encloses us. */
164         if (f > rg->from)
165                 f = rg->from;
166
167         /* Check for and consume any regions we now overlap with. */
168         nrg = rg;
169         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170                 if (&rg->link == head)
171                         break;
172                 if (rg->from > t)
173                         break;
174
175                 /* If this area reaches higher then extend our area to
176                  * include it completely.  If this is not the first area
177                  * which we intend to reuse, free it. */
178                 if (rg->to > t)
179                         t = rg->to;
180                 if (rg != nrg) {
181                         list_del(&rg->link);
182                         kfree(rg);
183                 }
184         }
185         nrg->from = f;
186         nrg->to = t;
187         return 0;
188 }
189
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192         struct file_region *rg, *nrg;
193         long chg = 0;
194
195         /* Locate the region we are before or in. */
196         list_for_each_entry(rg, head, link)
197                 if (f <= rg->to)
198                         break;
199
200         /* If we are below the current region then a new region is required.
201          * Subtle, allocate a new region at the position but make it zero
202          * size such that we can guarantee to record the reservation. */
203         if (&rg->link == head || t < rg->from) {
204                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205                 if (!nrg)
206                         return -ENOMEM;
207                 nrg->from = f;
208                 nrg->to   = f;
209                 INIT_LIST_HEAD(&nrg->link);
210                 list_add(&nrg->link, rg->link.prev);
211
212                 return t - f;
213         }
214
215         /* Round our left edge to the current segment if it encloses us. */
216         if (f > rg->from)
217                 f = rg->from;
218         chg = t - f;
219
220         /* Check for and consume any regions we now overlap with. */
221         list_for_each_entry(rg, rg->link.prev, link) {
222                 if (&rg->link == head)
223                         break;
224                 if (rg->from > t)
225                         return chg;
226
227                 /* We overlap with this area, if it extends further than
228                  * us then we must extend ourselves.  Account for its
229                  * existing reservation. */
230                 if (rg->to > t) {
231                         chg += rg->to - t;
232                         t = rg->to;
233                 }
234                 chg -= rg->to - rg->from;
235         }
236         return chg;
237 }
238
239 static long region_truncate(struct list_head *head, long end)
240 {
241         struct file_region *rg, *trg;
242         long chg = 0;
243
244         /* Locate the region we are either in or before. */
245         list_for_each_entry(rg, head, link)
246                 if (end <= rg->to)
247                         break;
248         if (&rg->link == head)
249                 return 0;
250
251         /* If we are in the middle of a region then adjust it. */
252         if (end > rg->from) {
253                 chg = rg->to - end;
254                 rg->to = end;
255                 rg = list_entry(rg->link.next, typeof(*rg), link);
256         }
257
258         /* Drop any remaining regions. */
259         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260                 if (&rg->link == head)
261                         break;
262                 chg += rg->to - rg->from;
263                 list_del(&rg->link);
264                 kfree(rg);
265         }
266         return chg;
267 }
268
269 static long region_count(struct list_head *head, long f, long t)
270 {
271         struct file_region *rg;
272         long chg = 0;
273
274         /* Locate each segment we overlap with, and count that overlap. */
275         list_for_each_entry(rg, head, link) {
276                 int seg_from;
277                 int seg_to;
278
279                 if (rg->to <= f)
280                         continue;
281                 if (rg->from >= t)
282                         break;
283
284                 seg_from = max(rg->from, f);
285                 seg_to = min(rg->to, t);
286
287                 chg += seg_to - seg_from;
288         }
289
290         return chg;
291 }
292
293 /*
294  * Convert the address within this vma to the page offset within
295  * the mapping, in pagecache page units; huge pages here.
296  */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298                         struct vm_area_struct *vma, unsigned long address)
299 {
300         return ((address - vma->vm_start) >> huge_page_shift(h)) +
301                         (vma->vm_pgoff >> huge_page_order(h));
302 }
303
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305                                      unsigned long address)
306 {
307         return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309
310 /*
311  * Return the size of the pages allocated when backing a VMA. In the majority
312  * cases this will be same size as used by the page table entries.
313  */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316         struct hstate *hstate;
317
318         if (!is_vm_hugetlb_page(vma))
319                 return PAGE_SIZE;
320
321         hstate = hstate_vma(vma);
322
323         return 1UL << (hstate->order + PAGE_SHIFT);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327 /*
328  * Return the page size being used by the MMU to back a VMA. In the majority
329  * of cases, the page size used by the kernel matches the MMU size. On
330  * architectures where it differs, an architecture-specific version of this
331  * function is required.
332  */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336         return vma_kernel_pagesize(vma);
337 }
338 #endif
339
340 /*
341  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342  * bits of the reservation map pointer, which are always clear due to
343  * alignment.
344  */
345 #define HPAGE_RESV_OWNER    (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349 /*
350  * These helpers are used to track how many pages are reserved for
351  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352  * is guaranteed to have their future faults succeed.
353  *
354  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355  * the reserve counters are updated with the hugetlb_lock held. It is safe
356  * to reset the VMA at fork() time as it is not in use yet and there is no
357  * chance of the global counters getting corrupted as a result of the values.
358  *
359  * The private mapping reservation is represented in a subtly different
360  * manner to a shared mapping.  A shared mapping has a region map associated
361  * with the underlying file, this region map represents the backing file
362  * pages which have ever had a reservation assigned which this persists even
363  * after the page is instantiated.  A private mapping has a region map
364  * associated with the original mmap which is attached to all VMAs which
365  * reference it, this region map represents those offsets which have consumed
366  * reservation ie. where pages have been instantiated.
367  */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370         return (unsigned long)vma->vm_private_data;
371 }
372
373 static void set_vma_private_data(struct vm_area_struct *vma,
374                                                         unsigned long value)
375 {
376         vma->vm_private_data = (void *)value;
377 }
378
379 struct resv_map {
380         struct kref refs;
381         struct list_head regions;
382 };
383
384 static struct resv_map *resv_map_alloc(void)
385 {
386         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387         if (!resv_map)
388                 return NULL;
389
390         kref_init(&resv_map->refs);
391         INIT_LIST_HEAD(&resv_map->regions);
392
393         return resv_map;
394 }
395
396 static void resv_map_release(struct kref *ref)
397 {
398         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400         /* Clear out any active regions before we release the map. */
401         region_truncate(&resv_map->regions, 0);
402         kfree(resv_map);
403 }
404
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407         VM_BUG_ON(!is_vm_hugetlb_page(vma));
408         if (!(vma->vm_flags & VM_MAYSHARE))
409                 return (struct resv_map *)(get_vma_private_data(vma) &
410                                                         ~HPAGE_RESV_MASK);
411         return NULL;
412 }
413
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416         VM_BUG_ON(!is_vm_hugetlb_page(vma));
417         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419         set_vma_private_data(vma, (get_vma_private_data(vma) &
420                                 HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425         VM_BUG_ON(!is_vm_hugetlb_page(vma));
426         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433         VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435         return (get_vma_private_data(vma) & flag) != 0;
436 }
437
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate *h,
440                         struct vm_area_struct *vma)
441 {
442         if (vma->vm_flags & VM_NORESERVE)
443                 return;
444
445         if (vma->vm_flags & VM_MAYSHARE) {
446                 /* Shared mappings always use reserves */
447                 h->resv_huge_pages--;
448         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
449                 /*
450                  * Only the process that called mmap() has reserves for
451                  * private mappings.
452                  */
453                 h->resv_huge_pages--;
454         }
455 }
456
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
459 {
460         VM_BUG_ON(!is_vm_hugetlb_page(vma));
461         if (!(vma->vm_flags & VM_MAYSHARE))
462                 vma->vm_private_data = (void *)0;
463 }
464
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct *vma)
467 {
468         if (vma->vm_flags & VM_MAYSHARE)
469                 return 1;
470         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471                 return 1;
472         return 0;
473 }
474
475 static void copy_gigantic_page(struct page *dst, struct page *src)
476 {
477         int i;
478         struct hstate *h = page_hstate(src);
479         struct page *dst_base = dst;
480         struct page *src_base = src;
481
482         for (i = 0; i < pages_per_huge_page(h); ) {
483                 cond_resched();
484                 copy_highpage(dst, src);
485
486                 i++;
487                 dst = mem_map_next(dst, dst_base, i);
488                 src = mem_map_next(src, src_base, i);
489         }
490 }
491
492 void copy_huge_page(struct page *dst, struct page *src)
493 {
494         int i;
495         struct hstate *h = page_hstate(src);
496
497         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498                 copy_gigantic_page(dst, src);
499                 return;
500         }
501
502         might_sleep();
503         for (i = 0; i < pages_per_huge_page(h); i++) {
504                 cond_resched();
505                 copy_highpage(dst + i, src + i);
506         }
507 }
508
509 static void enqueue_huge_page(struct hstate *h, struct page *page)
510 {
511         int nid = page_to_nid(page);
512         list_add(&page->lru, &h->hugepage_freelists[nid]);
513         h->free_huge_pages++;
514         h->free_huge_pages_node[nid]++;
515 }
516
517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
518 {
519         struct page *page;
520
521         if (list_empty(&h->hugepage_freelists[nid]))
522                 return NULL;
523         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524         list_del(&page->lru);
525         set_page_refcounted(page);
526         h->free_huge_pages--;
527         h->free_huge_pages_node[nid]--;
528         return page;
529 }
530
531 static struct page *dequeue_huge_page_vma(struct hstate *h,
532                                 struct vm_area_struct *vma,
533                                 unsigned long address, int avoid_reserve)
534 {
535         struct page *page = NULL;
536         struct mempolicy *mpol;
537         nodemask_t *nodemask;
538         struct zonelist *zonelist;
539         struct zone *zone;
540         struct zoneref *z;
541         unsigned int cpuset_mems_cookie;
542
543 retry_cpuset:
544         cpuset_mems_cookie = get_mems_allowed();
545         zonelist = huge_zonelist(vma, address,
546                                         htlb_alloc_mask, &mpol, &nodemask);
547         /*
548          * A child process with MAP_PRIVATE mappings created by their parent
549          * have no page reserves. This check ensures that reservations are
550          * not "stolen". The child may still get SIGKILLed
551          */
552         if (!vma_has_reserves(vma) &&
553                         h->free_huge_pages - h->resv_huge_pages == 0)
554                 goto err;
555
556         /* If reserves cannot be used, ensure enough pages are in the pool */
557         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558                 goto err;
559
560         for_each_zone_zonelist_nodemask(zone, z, zonelist,
561                                                 MAX_NR_ZONES - 1, nodemask) {
562                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
564                         if (page) {
565                                 if (!avoid_reserve)
566                                         decrement_hugepage_resv_vma(h, vma);
567                                 break;
568                         }
569                 }
570         }
571
572         mpol_cond_put(mpol);
573         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574                 goto retry_cpuset;
575         return page;
576
577 err:
578         mpol_cond_put(mpol);
579         return NULL;
580 }
581
582 static void update_and_free_page(struct hstate *h, struct page *page)
583 {
584         int i;
585
586         VM_BUG_ON(h->order >= MAX_ORDER);
587
588         h->nr_huge_pages--;
589         h->nr_huge_pages_node[page_to_nid(page)]--;
590         for (i = 0; i < pages_per_huge_page(h); i++) {
591                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
592                                 1 << PG_referenced | 1 << PG_dirty |
593                                 1 << PG_active | 1 << PG_reserved |
594                                 1 << PG_private | 1 << PG_writeback);
595         }
596         set_compound_page_dtor(page, NULL);
597         set_page_refcounted(page);
598         arch_release_hugepage(page);
599         __free_pages(page, huge_page_order(h));
600 }
601
602 struct hstate *size_to_hstate(unsigned long size)
603 {
604         struct hstate *h;
605
606         for_each_hstate(h) {
607                 if (huge_page_size(h) == size)
608                         return h;
609         }
610         return NULL;
611 }
612
613 static void free_huge_page(struct page *page)
614 {
615         /*
616          * Can't pass hstate in here because it is called from the
617          * compound page destructor.
618          */
619         struct hstate *h = page_hstate(page);
620         int nid = page_to_nid(page);
621         struct hugepage_subpool *spool =
622                 (struct hugepage_subpool *)page_private(page);
623
624         set_page_private(page, 0);
625         page->mapping = NULL;
626         BUG_ON(page_count(page));
627         BUG_ON(page_mapcount(page));
628         INIT_LIST_HEAD(&page->lru);
629
630         spin_lock(&hugetlb_lock);
631         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
632                 update_and_free_page(h, page);
633                 h->surplus_huge_pages--;
634                 h->surplus_huge_pages_node[nid]--;
635         } else {
636                 enqueue_huge_page(h, page);
637         }
638         spin_unlock(&hugetlb_lock);
639         hugepage_subpool_put_pages(spool, 1);
640 }
641
642 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
643 {
644         set_compound_page_dtor(page, free_huge_page);
645         spin_lock(&hugetlb_lock);
646         h->nr_huge_pages++;
647         h->nr_huge_pages_node[nid]++;
648         spin_unlock(&hugetlb_lock);
649         put_page(page); /* free it into the hugepage allocator */
650 }
651
652 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
653 {
654         int i;
655         int nr_pages = 1 << order;
656         struct page *p = page + 1;
657
658         /* we rely on prep_new_huge_page to set the destructor */
659         set_compound_order(page, order);
660         __SetPageHead(page);
661         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
662                 __SetPageTail(p);
663                 set_page_count(p, 0);
664                 p->first_page = page;
665         }
666 }
667
668 int PageHuge(struct page *page)
669 {
670         compound_page_dtor *dtor;
671
672         if (!PageCompound(page))
673                 return 0;
674
675         page = compound_head(page);
676         dtor = get_compound_page_dtor(page);
677
678         return dtor == free_huge_page;
679 }
680 EXPORT_SYMBOL_GPL(PageHuge);
681
682 /*
683  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
684  * normal or transparent huge pages.
685  */
686 int PageHeadHuge(struct page *page_head)
687 {
688         compound_page_dtor *dtor;
689
690         if (!PageHead(page_head))
691                 return 0;
692
693         dtor = get_compound_page_dtor(page_head);
694
695         return dtor == free_huge_page;
696 }
697 EXPORT_SYMBOL_GPL(PageHeadHuge);
698
699 pgoff_t __basepage_index(struct page *page)
700 {
701         struct page *page_head = compound_head(page);
702         pgoff_t index = page_index(page_head);
703         unsigned long compound_idx;
704
705         if (!PageHuge(page_head))
706                 return page_index(page);
707
708         if (compound_order(page_head) >= MAX_ORDER)
709                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
710         else
711                 compound_idx = page - page_head;
712
713         return (index << compound_order(page_head)) + compound_idx;
714 }
715
716 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
717 {
718         struct page *page;
719
720         if (h->order >= MAX_ORDER)
721                 return NULL;
722
723         page = alloc_pages_exact_node(nid,
724                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
725                                                 __GFP_REPEAT|__GFP_NOWARN,
726                 huge_page_order(h));
727         if (page) {
728                 if (arch_prepare_hugepage(page)) {
729                         __free_pages(page, huge_page_order(h));
730                         return NULL;
731                 }
732                 prep_new_huge_page(h, page, nid);
733         }
734
735         return page;
736 }
737
738 /*
739  * common helper functions for hstate_next_node_to_{alloc|free}.
740  * We may have allocated or freed a huge page based on a different
741  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
742  * be outside of *nodes_allowed.  Ensure that we use an allowed
743  * node for alloc or free.
744  */
745 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
746 {
747         nid = next_node(nid, *nodes_allowed);
748         if (nid == MAX_NUMNODES)
749                 nid = first_node(*nodes_allowed);
750         VM_BUG_ON(nid >= MAX_NUMNODES);
751
752         return nid;
753 }
754
755 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
756 {
757         if (!node_isset(nid, *nodes_allowed))
758                 nid = next_node_allowed(nid, nodes_allowed);
759         return nid;
760 }
761
762 /*
763  * returns the previously saved node ["this node"] from which to
764  * allocate a persistent huge page for the pool and advance the
765  * next node from which to allocate, handling wrap at end of node
766  * mask.
767  */
768 static int hstate_next_node_to_alloc(struct hstate *h,
769                                         nodemask_t *nodes_allowed)
770 {
771         int nid;
772
773         VM_BUG_ON(!nodes_allowed);
774
775         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
776         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
777
778         return nid;
779 }
780
781 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
782 {
783         struct page *page;
784         int start_nid;
785         int next_nid;
786         int ret = 0;
787
788         start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
789         next_nid = start_nid;
790
791         do {
792                 page = alloc_fresh_huge_page_node(h, next_nid);
793                 if (page) {
794                         ret = 1;
795                         break;
796                 }
797                 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
798         } while (next_nid != start_nid);
799
800         if (ret)
801                 count_vm_event(HTLB_BUDDY_PGALLOC);
802         else
803                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
804
805         return ret;
806 }
807
808 /*
809  * helper for free_pool_huge_page() - return the previously saved
810  * node ["this node"] from which to free a huge page.  Advance the
811  * next node id whether or not we find a free huge page to free so
812  * that the next attempt to free addresses the next node.
813  */
814 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
815 {
816         int nid;
817
818         VM_BUG_ON(!nodes_allowed);
819
820         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
821         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
822
823         return nid;
824 }
825
826 /*
827  * Free huge page from pool from next node to free.
828  * Attempt to keep persistent huge pages more or less
829  * balanced over allowed nodes.
830  * Called with hugetlb_lock locked.
831  */
832 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
833                                                          bool acct_surplus)
834 {
835         int start_nid;
836         int next_nid;
837         int ret = 0;
838
839         start_nid = hstate_next_node_to_free(h, nodes_allowed);
840         next_nid = start_nid;
841
842         do {
843                 /*
844                  * If we're returning unused surplus pages, only examine
845                  * nodes with surplus pages.
846                  */
847                 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
848                     !list_empty(&h->hugepage_freelists[next_nid])) {
849                         struct page *page =
850                                 list_entry(h->hugepage_freelists[next_nid].next,
851                                           struct page, lru);
852                         list_del(&page->lru);
853                         h->free_huge_pages--;
854                         h->free_huge_pages_node[next_nid]--;
855                         if (acct_surplus) {
856                                 h->surplus_huge_pages--;
857                                 h->surplus_huge_pages_node[next_nid]--;
858                         }
859                         update_and_free_page(h, page);
860                         ret = 1;
861                         break;
862                 }
863                 next_nid = hstate_next_node_to_free(h, nodes_allowed);
864         } while (next_nid != start_nid);
865
866         return ret;
867 }
868
869 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
870 {
871         struct page *page;
872         unsigned int r_nid;
873
874         if (h->order >= MAX_ORDER)
875                 return NULL;
876
877         /*
878          * Assume we will successfully allocate the surplus page to
879          * prevent racing processes from causing the surplus to exceed
880          * overcommit
881          *
882          * This however introduces a different race, where a process B
883          * tries to grow the static hugepage pool while alloc_pages() is
884          * called by process A. B will only examine the per-node
885          * counters in determining if surplus huge pages can be
886          * converted to normal huge pages in adjust_pool_surplus(). A
887          * won't be able to increment the per-node counter, until the
888          * lock is dropped by B, but B doesn't drop hugetlb_lock until
889          * no more huge pages can be converted from surplus to normal
890          * state (and doesn't try to convert again). Thus, we have a
891          * case where a surplus huge page exists, the pool is grown, and
892          * the surplus huge page still exists after, even though it
893          * should just have been converted to a normal huge page. This
894          * does not leak memory, though, as the hugepage will be freed
895          * once it is out of use. It also does not allow the counters to
896          * go out of whack in adjust_pool_surplus() as we don't modify
897          * the node values until we've gotten the hugepage and only the
898          * per-node value is checked there.
899          */
900         spin_lock(&hugetlb_lock);
901         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
902                 spin_unlock(&hugetlb_lock);
903                 return NULL;
904         } else {
905                 h->nr_huge_pages++;
906                 h->surplus_huge_pages++;
907         }
908         spin_unlock(&hugetlb_lock);
909
910         if (nid == NUMA_NO_NODE)
911                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
912                                    __GFP_REPEAT|__GFP_NOWARN,
913                                    huge_page_order(h));
914         else
915                 page = alloc_pages_exact_node(nid,
916                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
917                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
918
919         if (page && arch_prepare_hugepage(page)) {
920                 __free_pages(page, huge_page_order(h));
921                 return NULL;
922         }
923
924         spin_lock(&hugetlb_lock);
925         if (page) {
926                 r_nid = page_to_nid(page);
927                 set_compound_page_dtor(page, free_huge_page);
928                 /*
929                  * We incremented the global counters already
930                  */
931                 h->nr_huge_pages_node[r_nid]++;
932                 h->surplus_huge_pages_node[r_nid]++;
933                 __count_vm_event(HTLB_BUDDY_PGALLOC);
934         } else {
935                 h->nr_huge_pages--;
936                 h->surplus_huge_pages--;
937                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
938         }
939         spin_unlock(&hugetlb_lock);
940
941         return page;
942 }
943
944 /*
945  * This allocation function is useful in the context where vma is irrelevant.
946  * E.g. soft-offlining uses this function because it only cares physical
947  * address of error page.
948  */
949 struct page *alloc_huge_page_node(struct hstate *h, int nid)
950 {
951         struct page *page;
952
953         spin_lock(&hugetlb_lock);
954         page = dequeue_huge_page_node(h, nid);
955         spin_unlock(&hugetlb_lock);
956
957         if (!page)
958                 page = alloc_buddy_huge_page(h, nid);
959
960         return page;
961 }
962
963 /*
964  * Increase the hugetlb pool such that it can accommodate a reservation
965  * of size 'delta'.
966  */
967 static int gather_surplus_pages(struct hstate *h, int delta)
968 {
969         struct list_head surplus_list;
970         struct page *page, *tmp;
971         int ret, i;
972         int needed, allocated;
973
974         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
975         if (needed <= 0) {
976                 h->resv_huge_pages += delta;
977                 return 0;
978         }
979
980         allocated = 0;
981         INIT_LIST_HEAD(&surplus_list);
982
983         ret = -ENOMEM;
984 retry:
985         spin_unlock(&hugetlb_lock);
986         for (i = 0; i < needed; i++) {
987                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
988                 if (!page)
989                         /*
990                          * We were not able to allocate enough pages to
991                          * satisfy the entire reservation so we free what
992                          * we've allocated so far.
993                          */
994                         goto free;
995
996                 list_add(&page->lru, &surplus_list);
997         }
998         allocated += needed;
999
1000         /*
1001          * After retaking hugetlb_lock, we need to recalculate 'needed'
1002          * because either resv_huge_pages or free_huge_pages may have changed.
1003          */
1004         spin_lock(&hugetlb_lock);
1005         needed = (h->resv_huge_pages + delta) -
1006                         (h->free_huge_pages + allocated);
1007         if (needed > 0)
1008                 goto retry;
1009
1010         /*
1011          * The surplus_list now contains _at_least_ the number of extra pages
1012          * needed to accommodate the reservation.  Add the appropriate number
1013          * of pages to the hugetlb pool and free the extras back to the buddy
1014          * allocator.  Commit the entire reservation here to prevent another
1015          * process from stealing the pages as they are added to the pool but
1016          * before they are reserved.
1017          */
1018         needed += allocated;
1019         h->resv_huge_pages += delta;
1020         ret = 0;
1021
1022         /* Free the needed pages to the hugetlb pool */
1023         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1024                 if ((--needed) < 0)
1025                         break;
1026                 list_del(&page->lru);
1027                 /*
1028                  * This page is now managed by the hugetlb allocator and has
1029                  * no users -- drop the buddy allocator's reference.
1030                  */
1031                 put_page_testzero(page);
1032                 VM_BUG_ON(page_count(page));
1033                 enqueue_huge_page(h, page);
1034         }
1035         spin_unlock(&hugetlb_lock);
1036
1037         /* Free unnecessary surplus pages to the buddy allocator */
1038 free:
1039         if (!list_empty(&surplus_list)) {
1040                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1041                         list_del(&page->lru);
1042                         put_page(page);
1043                 }
1044         }
1045         spin_lock(&hugetlb_lock);
1046
1047         return ret;
1048 }
1049
1050 /*
1051  * When releasing a hugetlb pool reservation, any surplus pages that were
1052  * allocated to satisfy the reservation must be explicitly freed if they were
1053  * never used.
1054  * Called with hugetlb_lock held.
1055  */
1056 static void return_unused_surplus_pages(struct hstate *h,
1057                                         unsigned long unused_resv_pages)
1058 {
1059         unsigned long nr_pages;
1060
1061         /* Uncommit the reservation */
1062         h->resv_huge_pages -= unused_resv_pages;
1063
1064         /* Cannot return gigantic pages currently */
1065         if (h->order >= MAX_ORDER)
1066                 return;
1067
1068         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1069
1070         /*
1071          * We want to release as many surplus pages as possible, spread
1072          * evenly across all nodes with memory. Iterate across these nodes
1073          * until we can no longer free unreserved surplus pages. This occurs
1074          * when the nodes with surplus pages have no free pages.
1075          * free_pool_huge_page() will balance the the freed pages across the
1076          * on-line nodes with memory and will handle the hstate accounting.
1077          */
1078         while (nr_pages--) {
1079                 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1080                         break;
1081                 cond_resched_lock(&hugetlb_lock);
1082         }
1083 }
1084
1085 /*
1086  * Determine if the huge page at addr within the vma has an associated
1087  * reservation.  Where it does not we will need to logically increase
1088  * reservation and actually increase subpool usage before an allocation
1089  * can occur.  Where any new reservation would be required the
1090  * reservation change is prepared, but not committed.  Once the page
1091  * has been allocated from the subpool and instantiated the change should
1092  * be committed via vma_commit_reservation.  No action is required on
1093  * failure.
1094  */
1095 static long vma_needs_reservation(struct hstate *h,
1096                         struct vm_area_struct *vma, unsigned long addr)
1097 {
1098         struct address_space *mapping = vma->vm_file->f_mapping;
1099         struct inode *inode = mapping->host;
1100
1101         if (vma->vm_flags & VM_MAYSHARE) {
1102                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1103                 return region_chg(&inode->i_mapping->private_list,
1104                                                         idx, idx + 1);
1105
1106         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1107                 return 1;
1108
1109         } else  {
1110                 long err;
1111                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1112                 struct resv_map *reservations = vma_resv_map(vma);
1113
1114                 err = region_chg(&reservations->regions, idx, idx + 1);
1115                 if (err < 0)
1116                         return err;
1117                 return 0;
1118         }
1119 }
1120 static void vma_commit_reservation(struct hstate *h,
1121                         struct vm_area_struct *vma, unsigned long addr)
1122 {
1123         struct address_space *mapping = vma->vm_file->f_mapping;
1124         struct inode *inode = mapping->host;
1125
1126         if (vma->vm_flags & VM_MAYSHARE) {
1127                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1128                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1129
1130         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1131                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1132                 struct resv_map *reservations = vma_resv_map(vma);
1133
1134                 /* Mark this page used in the map. */
1135                 region_add(&reservations->regions, idx, idx + 1);
1136         }
1137 }
1138
1139 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1140                                     unsigned long addr, int avoid_reserve)
1141 {
1142         struct hugepage_subpool *spool = subpool_vma(vma);
1143         struct hstate *h = hstate_vma(vma);
1144         struct page *page;
1145         long chg;
1146
1147         /*
1148          * Processes that did not create the mapping will have no
1149          * reserves and will not have accounted against subpool
1150          * limit. Check that the subpool limit can be made before
1151          * satisfying the allocation MAP_NORESERVE mappings may also
1152          * need pages and subpool limit allocated allocated if no reserve
1153          * mapping overlaps.
1154          */
1155         chg = vma_needs_reservation(h, vma, addr);
1156         if (chg < 0)
1157                 return ERR_PTR(-VM_FAULT_OOM);
1158         if (chg)
1159                 if (hugepage_subpool_get_pages(spool, chg))
1160                         return ERR_PTR(-VM_FAULT_SIGBUS);
1161
1162         spin_lock(&hugetlb_lock);
1163         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1164         spin_unlock(&hugetlb_lock);
1165
1166         if (!page) {
1167                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1168                 if (!page) {
1169                         hugepage_subpool_put_pages(spool, chg);
1170                         return ERR_PTR(-VM_FAULT_SIGBUS);
1171                 }
1172         }
1173
1174         set_page_private(page, (unsigned long)spool);
1175
1176         vma_commit_reservation(h, vma, addr);
1177
1178         return page;
1179 }
1180
1181 int __weak alloc_bootmem_huge_page(struct hstate *h)
1182 {
1183         struct huge_bootmem_page *m;
1184         int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1185
1186         while (nr_nodes) {
1187                 void *addr;
1188
1189                 addr = __alloc_bootmem_node_nopanic(
1190                                 NODE_DATA(hstate_next_node_to_alloc(h,
1191                                                 &node_states[N_HIGH_MEMORY])),
1192                                 huge_page_size(h), huge_page_size(h), 0);
1193
1194                 if (addr) {
1195                         /*
1196                          * Use the beginning of the huge page to store the
1197                          * huge_bootmem_page struct (until gather_bootmem
1198                          * puts them into the mem_map).
1199                          */
1200                         m = addr;
1201                         goto found;
1202                 }
1203                 nr_nodes--;
1204         }
1205         return 0;
1206
1207 found:
1208         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1209         /* Put them into a private list first because mem_map is not up yet */
1210         list_add(&m->list, &huge_boot_pages);
1211         m->hstate = h;
1212         return 1;
1213 }
1214
1215 static void prep_compound_huge_page(struct page *page, int order)
1216 {
1217         if (unlikely(order > (MAX_ORDER - 1)))
1218                 prep_compound_gigantic_page(page, order);
1219         else
1220                 prep_compound_page(page, order);
1221 }
1222
1223 /* Put bootmem huge pages into the standard lists after mem_map is up */
1224 static void __init gather_bootmem_prealloc(void)
1225 {
1226         struct huge_bootmem_page *m;
1227
1228         list_for_each_entry(m, &huge_boot_pages, list) {
1229                 struct hstate *h = m->hstate;
1230                 struct page *page;
1231
1232 #ifdef CONFIG_HIGHMEM
1233                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1234                 free_bootmem_late((unsigned long)m,
1235                                   sizeof(struct huge_bootmem_page));
1236 #else
1237                 page = virt_to_page(m);
1238 #endif
1239                 __ClearPageReserved(page);
1240                 WARN_ON(page_count(page) != 1);
1241                 prep_compound_huge_page(page, h->order);
1242                 prep_new_huge_page(h, page, page_to_nid(page));
1243                 /*
1244                  * If we had gigantic hugepages allocated at boot time, we need
1245                  * to restore the 'stolen' pages to totalram_pages in order to
1246                  * fix confusing memory reports from free(1) and another
1247                  * side-effects, like CommitLimit going negative.
1248                  */
1249                 if (h->order > (MAX_ORDER - 1))
1250                         totalram_pages += 1 << h->order;
1251         }
1252 }
1253
1254 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1255 {
1256         unsigned long i;
1257
1258         for (i = 0; i < h->max_huge_pages; ++i) {
1259                 if (h->order >= MAX_ORDER) {
1260                         if (!alloc_bootmem_huge_page(h))
1261                                 break;
1262                 } else if (!alloc_fresh_huge_page(h,
1263                                          &node_states[N_HIGH_MEMORY]))
1264                         break;
1265         }
1266         h->max_huge_pages = i;
1267 }
1268
1269 static void __init hugetlb_init_hstates(void)
1270 {
1271         struct hstate *h;
1272
1273         for_each_hstate(h) {
1274                 /* oversize hugepages were init'ed in early boot */
1275                 if (h->order < MAX_ORDER)
1276                         hugetlb_hstate_alloc_pages(h);
1277         }
1278 }
1279
1280 static char * __init memfmt(char *buf, unsigned long n)
1281 {
1282         if (n >= (1UL << 30))
1283                 sprintf(buf, "%lu GB", n >> 30);
1284         else if (n >= (1UL << 20))
1285                 sprintf(buf, "%lu MB", n >> 20);
1286         else
1287                 sprintf(buf, "%lu KB", n >> 10);
1288         return buf;
1289 }
1290
1291 static void __init report_hugepages(void)
1292 {
1293         struct hstate *h;
1294
1295         for_each_hstate(h) {
1296                 char buf[32];
1297                 printk(KERN_INFO "HugeTLB registered %s page size, "
1298                                  "pre-allocated %ld pages\n",
1299                         memfmt(buf, huge_page_size(h)),
1300                         h->free_huge_pages);
1301         }
1302 }
1303
1304 #ifdef CONFIG_HIGHMEM
1305 static void try_to_free_low(struct hstate *h, unsigned long count,
1306                                                 nodemask_t *nodes_allowed)
1307 {
1308         int i;
1309
1310         if (h->order >= MAX_ORDER)
1311                 return;
1312
1313         for_each_node_mask(i, *nodes_allowed) {
1314                 struct page *page, *next;
1315                 struct list_head *freel = &h->hugepage_freelists[i];
1316                 list_for_each_entry_safe(page, next, freel, lru) {
1317                         if (count >= h->nr_huge_pages)
1318                                 return;
1319                         if (PageHighMem(page))
1320                                 continue;
1321                         list_del(&page->lru);
1322                         update_and_free_page(h, page);
1323                         h->free_huge_pages--;
1324                         h->free_huge_pages_node[page_to_nid(page)]--;
1325                 }
1326         }
1327 }
1328 #else
1329 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1330                                                 nodemask_t *nodes_allowed)
1331 {
1332 }
1333 #endif
1334
1335 /*
1336  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1337  * balanced by operating on them in a round-robin fashion.
1338  * Returns 1 if an adjustment was made.
1339  */
1340 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1341                                 int delta)
1342 {
1343         int start_nid, next_nid;
1344         int ret = 0;
1345
1346         VM_BUG_ON(delta != -1 && delta != 1);
1347
1348         if (delta < 0)
1349                 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1350         else
1351                 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1352         next_nid = start_nid;
1353
1354         do {
1355                 int nid = next_nid;
1356                 if (delta < 0)  {
1357                         /*
1358                          * To shrink on this node, there must be a surplus page
1359                          */
1360                         if (!h->surplus_huge_pages_node[nid]) {
1361                                 next_nid = hstate_next_node_to_alloc(h,
1362                                                                 nodes_allowed);
1363                                 continue;
1364                         }
1365                 }
1366                 if (delta > 0) {
1367                         /*
1368                          * Surplus cannot exceed the total number of pages
1369                          */
1370                         if (h->surplus_huge_pages_node[nid] >=
1371                                                 h->nr_huge_pages_node[nid]) {
1372                                 next_nid = hstate_next_node_to_free(h,
1373                                                                 nodes_allowed);
1374                                 continue;
1375                         }
1376                 }
1377
1378                 h->surplus_huge_pages += delta;
1379                 h->surplus_huge_pages_node[nid] += delta;
1380                 ret = 1;
1381                 break;
1382         } while (next_nid != start_nid);
1383
1384         return ret;
1385 }
1386
1387 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1388 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1389                                                 nodemask_t *nodes_allowed)
1390 {
1391         unsigned long min_count, ret;
1392
1393         if (h->order >= MAX_ORDER)
1394                 return h->max_huge_pages;
1395
1396         /*
1397          * Increase the pool size
1398          * First take pages out of surplus state.  Then make up the
1399          * remaining difference by allocating fresh huge pages.
1400          *
1401          * We might race with alloc_buddy_huge_page() here and be unable
1402          * to convert a surplus huge page to a normal huge page. That is
1403          * not critical, though, it just means the overall size of the
1404          * pool might be one hugepage larger than it needs to be, but
1405          * within all the constraints specified by the sysctls.
1406          */
1407         spin_lock(&hugetlb_lock);
1408         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1409                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1410                         break;
1411         }
1412
1413         while (count > persistent_huge_pages(h)) {
1414                 /*
1415                  * If this allocation races such that we no longer need the
1416                  * page, free_huge_page will handle it by freeing the page
1417                  * and reducing the surplus.
1418                  */
1419                 spin_unlock(&hugetlb_lock);
1420
1421                 /* yield cpu to avoid soft lockup */
1422                 cond_resched();
1423
1424                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1425                 spin_lock(&hugetlb_lock);
1426                 if (!ret)
1427                         goto out;
1428
1429                 /* Bail for signals. Probably ctrl-c from user */
1430                 if (signal_pending(current))
1431                         goto out;
1432         }
1433
1434         /*
1435          * Decrease the pool size
1436          * First return free pages to the buddy allocator (being careful
1437          * to keep enough around to satisfy reservations).  Then place
1438          * pages into surplus state as needed so the pool will shrink
1439          * to the desired size as pages become free.
1440          *
1441          * By placing pages into the surplus state independent of the
1442          * overcommit value, we are allowing the surplus pool size to
1443          * exceed overcommit. There are few sane options here. Since
1444          * alloc_buddy_huge_page() is checking the global counter,
1445          * though, we'll note that we're not allowed to exceed surplus
1446          * and won't grow the pool anywhere else. Not until one of the
1447          * sysctls are changed, or the surplus pages go out of use.
1448          */
1449         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1450         min_count = max(count, min_count);
1451         try_to_free_low(h, min_count, nodes_allowed);
1452         while (min_count < persistent_huge_pages(h)) {
1453                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1454                         break;
1455                 cond_resched_lock(&hugetlb_lock);
1456         }
1457         while (count < persistent_huge_pages(h)) {
1458                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1459                         break;
1460         }
1461 out:
1462         ret = persistent_huge_pages(h);
1463         spin_unlock(&hugetlb_lock);
1464         return ret;
1465 }
1466
1467 #define HSTATE_ATTR_RO(_name) \
1468         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1469
1470 #define HSTATE_ATTR(_name) \
1471         static struct kobj_attribute _name##_attr = \
1472                 __ATTR(_name, 0644, _name##_show, _name##_store)
1473
1474 static struct kobject *hugepages_kobj;
1475 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1476
1477 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1478
1479 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1480 {
1481         int i;
1482
1483         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1484                 if (hstate_kobjs[i] == kobj) {
1485                         if (nidp)
1486                                 *nidp = NUMA_NO_NODE;
1487                         return &hstates[i];
1488                 }
1489
1490         return kobj_to_node_hstate(kobj, nidp);
1491 }
1492
1493 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1494                                         struct kobj_attribute *attr, char *buf)
1495 {
1496         struct hstate *h;
1497         unsigned long nr_huge_pages;
1498         int nid;
1499
1500         h = kobj_to_hstate(kobj, &nid);
1501         if (nid == NUMA_NO_NODE)
1502                 nr_huge_pages = h->nr_huge_pages;
1503         else
1504                 nr_huge_pages = h->nr_huge_pages_node[nid];
1505
1506         return sprintf(buf, "%lu\n", nr_huge_pages);
1507 }
1508
1509 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1510                         struct kobject *kobj, struct kobj_attribute *attr,
1511                         const char *buf, size_t len)
1512 {
1513         int err;
1514         int nid;
1515         unsigned long count;
1516         struct hstate *h;
1517         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1518
1519         err = strict_strtoul(buf, 10, &count);
1520         if (err)
1521                 goto out;
1522
1523         h = kobj_to_hstate(kobj, &nid);
1524         if (h->order >= MAX_ORDER) {
1525                 err = -EINVAL;
1526                 goto out;
1527         }
1528
1529         if (nid == NUMA_NO_NODE) {
1530                 /*
1531                  * global hstate attribute
1532                  */
1533                 if (!(obey_mempolicy &&
1534                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1535                         NODEMASK_FREE(nodes_allowed);
1536                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1537                 }
1538         } else if (nodes_allowed) {
1539                 /*
1540                  * per node hstate attribute: adjust count to global,
1541                  * but restrict alloc/free to the specified node.
1542                  */
1543                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1544                 init_nodemask_of_node(nodes_allowed, nid);
1545         } else
1546                 nodes_allowed = &node_states[N_HIGH_MEMORY];
1547
1548         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1549
1550         if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1551                 NODEMASK_FREE(nodes_allowed);
1552
1553         return len;
1554 out:
1555         NODEMASK_FREE(nodes_allowed);
1556         return err;
1557 }
1558
1559 static ssize_t nr_hugepages_show(struct kobject *kobj,
1560                                        struct kobj_attribute *attr, char *buf)
1561 {
1562         return nr_hugepages_show_common(kobj, attr, buf);
1563 }
1564
1565 static ssize_t nr_hugepages_store(struct kobject *kobj,
1566                struct kobj_attribute *attr, const char *buf, size_t len)
1567 {
1568         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1569 }
1570 HSTATE_ATTR(nr_hugepages);
1571
1572 #ifdef CONFIG_NUMA
1573
1574 /*
1575  * hstate attribute for optionally mempolicy-based constraint on persistent
1576  * huge page alloc/free.
1577  */
1578 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1579                                        struct kobj_attribute *attr, char *buf)
1580 {
1581         return nr_hugepages_show_common(kobj, attr, buf);
1582 }
1583
1584 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1585                struct kobj_attribute *attr, const char *buf, size_t len)
1586 {
1587         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1588 }
1589 HSTATE_ATTR(nr_hugepages_mempolicy);
1590 #endif
1591
1592
1593 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1594                                         struct kobj_attribute *attr, char *buf)
1595 {
1596         struct hstate *h = kobj_to_hstate(kobj, NULL);
1597         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1598 }
1599
1600 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1601                 struct kobj_attribute *attr, const char *buf, size_t count)
1602 {
1603         int err;
1604         unsigned long input;
1605         struct hstate *h = kobj_to_hstate(kobj, NULL);
1606
1607         if (h->order >= MAX_ORDER)
1608                 return -EINVAL;
1609
1610         err = strict_strtoul(buf, 10, &input);
1611         if (err)
1612                 return err;
1613
1614         spin_lock(&hugetlb_lock);
1615         h->nr_overcommit_huge_pages = input;
1616         spin_unlock(&hugetlb_lock);
1617
1618         return count;
1619 }
1620 HSTATE_ATTR(nr_overcommit_hugepages);
1621
1622 static ssize_t free_hugepages_show(struct kobject *kobj,
1623                                         struct kobj_attribute *attr, char *buf)
1624 {
1625         struct hstate *h;
1626         unsigned long free_huge_pages;
1627         int nid;
1628
1629         h = kobj_to_hstate(kobj, &nid);
1630         if (nid == NUMA_NO_NODE)
1631                 free_huge_pages = h->free_huge_pages;
1632         else
1633                 free_huge_pages = h->free_huge_pages_node[nid];
1634
1635         return sprintf(buf, "%lu\n", free_huge_pages);
1636 }
1637 HSTATE_ATTR_RO(free_hugepages);
1638
1639 static ssize_t resv_hugepages_show(struct kobject *kobj,
1640                                         struct kobj_attribute *attr, char *buf)
1641 {
1642         struct hstate *h = kobj_to_hstate(kobj, NULL);
1643         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1644 }
1645 HSTATE_ATTR_RO(resv_hugepages);
1646
1647 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1648                                         struct kobj_attribute *attr, char *buf)
1649 {
1650         struct hstate *h;
1651         unsigned long surplus_huge_pages;
1652         int nid;
1653
1654         h = kobj_to_hstate(kobj, &nid);
1655         if (nid == NUMA_NO_NODE)
1656                 surplus_huge_pages = h->surplus_huge_pages;
1657         else
1658                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1659
1660         return sprintf(buf, "%lu\n", surplus_huge_pages);
1661 }
1662 HSTATE_ATTR_RO(surplus_hugepages);
1663
1664 static struct attribute *hstate_attrs[] = {
1665         &nr_hugepages_attr.attr,
1666         &nr_overcommit_hugepages_attr.attr,
1667         &free_hugepages_attr.attr,
1668         &resv_hugepages_attr.attr,
1669         &surplus_hugepages_attr.attr,
1670 #ifdef CONFIG_NUMA
1671         &nr_hugepages_mempolicy_attr.attr,
1672 #endif
1673         NULL,
1674 };
1675
1676 static struct attribute_group hstate_attr_group = {
1677         .attrs = hstate_attrs,
1678 };
1679
1680 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1681                                     struct kobject **hstate_kobjs,
1682                                     struct attribute_group *hstate_attr_group)
1683 {
1684         int retval;
1685         int hi = h - hstates;
1686
1687         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1688         if (!hstate_kobjs[hi])
1689                 return -ENOMEM;
1690
1691         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1692         if (retval)
1693                 kobject_put(hstate_kobjs[hi]);
1694
1695         return retval;
1696 }
1697
1698 static void __init hugetlb_sysfs_init(void)
1699 {
1700         struct hstate *h;
1701         int err;
1702
1703         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1704         if (!hugepages_kobj)
1705                 return;
1706
1707         for_each_hstate(h) {
1708                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1709                                          hstate_kobjs, &hstate_attr_group);
1710                 if (err)
1711                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1712                                                                 h->name);
1713         }
1714 }
1715
1716 #ifdef CONFIG_NUMA
1717
1718 /*
1719  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1720  * with node sysdevs in node_devices[] using a parallel array.  The array
1721  * index of a node sysdev or _hstate == node id.
1722  * This is here to avoid any static dependency of the node sysdev driver, in
1723  * the base kernel, on the hugetlb module.
1724  */
1725 struct node_hstate {
1726         struct kobject          *hugepages_kobj;
1727         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1728 };
1729 struct node_hstate node_hstates[MAX_NUMNODES];
1730
1731 /*
1732  * A subset of global hstate attributes for node sysdevs
1733  */
1734 static struct attribute *per_node_hstate_attrs[] = {
1735         &nr_hugepages_attr.attr,
1736         &free_hugepages_attr.attr,
1737         &surplus_hugepages_attr.attr,
1738         NULL,
1739 };
1740
1741 static struct attribute_group per_node_hstate_attr_group = {
1742         .attrs = per_node_hstate_attrs,
1743 };
1744
1745 /*
1746  * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1747  * Returns node id via non-NULL nidp.
1748  */
1749 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1750 {
1751         int nid;
1752
1753         for (nid = 0; nid < nr_node_ids; nid++) {
1754                 struct node_hstate *nhs = &node_hstates[nid];
1755                 int i;
1756                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1757                         if (nhs->hstate_kobjs[i] == kobj) {
1758                                 if (nidp)
1759                                         *nidp = nid;
1760                                 return &hstates[i];
1761                         }
1762         }
1763
1764         BUG();
1765         return NULL;
1766 }
1767
1768 /*
1769  * Unregister hstate attributes from a single node sysdev.
1770  * No-op if no hstate attributes attached.
1771  */
1772 void hugetlb_unregister_node(struct node *node)
1773 {
1774         struct hstate *h;
1775         struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1776
1777         if (!nhs->hugepages_kobj)
1778                 return;         /* no hstate attributes */
1779
1780         for_each_hstate(h)
1781                 if (nhs->hstate_kobjs[h - hstates]) {
1782                         kobject_put(nhs->hstate_kobjs[h - hstates]);
1783                         nhs->hstate_kobjs[h - hstates] = NULL;
1784                 }
1785
1786         kobject_put(nhs->hugepages_kobj);
1787         nhs->hugepages_kobj = NULL;
1788 }
1789
1790 /*
1791  * hugetlb module exit:  unregister hstate attributes from node sysdevs
1792  * that have them.
1793  */
1794 static void hugetlb_unregister_all_nodes(void)
1795 {
1796         int nid;
1797
1798         /*
1799          * disable node sysdev registrations.
1800          */
1801         register_hugetlbfs_with_node(NULL, NULL);
1802
1803         /*
1804          * remove hstate attributes from any nodes that have them.
1805          */
1806         for (nid = 0; nid < nr_node_ids; nid++)
1807                 hugetlb_unregister_node(&node_devices[nid]);
1808 }
1809
1810 /*
1811  * Register hstate attributes for a single node sysdev.
1812  * No-op if attributes already registered.
1813  */
1814 void hugetlb_register_node(struct node *node)
1815 {
1816         struct hstate *h;
1817         struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1818         int err;
1819
1820         if (nhs->hugepages_kobj)
1821                 return;         /* already allocated */
1822
1823         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1824                                                         &node->sysdev.kobj);
1825         if (!nhs->hugepages_kobj)
1826                 return;
1827
1828         for_each_hstate(h) {
1829                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1830                                                 nhs->hstate_kobjs,
1831                                                 &per_node_hstate_attr_group);
1832                 if (err) {
1833                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1834                                         " for node %d\n",
1835                                                 h->name, node->sysdev.id);
1836                         hugetlb_unregister_node(node);
1837                         break;
1838                 }
1839         }
1840 }
1841
1842 /*
1843  * hugetlb init time:  register hstate attributes for all registered node
1844  * sysdevs of nodes that have memory.  All on-line nodes should have
1845  * registered their associated sysdev by this time.
1846  */
1847 static void hugetlb_register_all_nodes(void)
1848 {
1849         int nid;
1850
1851         for_each_node_state(nid, N_HIGH_MEMORY) {
1852                 struct node *node = &node_devices[nid];
1853                 if (node->sysdev.id == nid)
1854                         hugetlb_register_node(node);
1855         }
1856
1857         /*
1858          * Let the node sysdev driver know we're here so it can
1859          * [un]register hstate attributes on node hotplug.
1860          */
1861         register_hugetlbfs_with_node(hugetlb_register_node,
1862                                      hugetlb_unregister_node);
1863 }
1864 #else   /* !CONFIG_NUMA */
1865
1866 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1867 {
1868         BUG();
1869         if (nidp)
1870                 *nidp = -1;
1871         return NULL;
1872 }
1873
1874 static void hugetlb_unregister_all_nodes(void) { }
1875
1876 static void hugetlb_register_all_nodes(void) { }
1877
1878 #endif
1879
1880 static void __exit hugetlb_exit(void)
1881 {
1882         struct hstate *h;
1883
1884         hugetlb_unregister_all_nodes();
1885
1886         for_each_hstate(h) {
1887                 kobject_put(hstate_kobjs[h - hstates]);
1888         }
1889
1890         kobject_put(hugepages_kobj);
1891 }
1892 module_exit(hugetlb_exit);
1893
1894 static int __init hugetlb_init(void)
1895 {
1896         if (!hugepages_supported())
1897                 return 0;
1898
1899         if (!size_to_hstate(default_hstate_size)) {
1900                 default_hstate_size = HPAGE_SIZE;
1901                 if (!size_to_hstate(default_hstate_size))
1902                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1903         }
1904         default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1905         if (default_hstate_max_huge_pages)
1906                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1907
1908         hugetlb_init_hstates();
1909
1910         gather_bootmem_prealloc();
1911
1912         report_hugepages();
1913
1914         hugetlb_sysfs_init();
1915
1916         hugetlb_register_all_nodes();
1917
1918         return 0;
1919 }
1920 module_init(hugetlb_init);
1921
1922 /* Should be called on processing a hugepagesz=... option */
1923 void __init hugetlb_add_hstate(unsigned order)
1924 {
1925         struct hstate *h;
1926         unsigned long i;
1927
1928         if (size_to_hstate(PAGE_SIZE << order)) {
1929                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1930                 return;
1931         }
1932         BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1933         BUG_ON(order == 0);
1934         h = &hstates[max_hstate++];
1935         h->order = order;
1936         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1937         h->nr_huge_pages = 0;
1938         h->free_huge_pages = 0;
1939         for (i = 0; i < MAX_NUMNODES; ++i)
1940                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1941         h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1942         h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1943         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1944                                         huge_page_size(h)/1024);
1945
1946         parsed_hstate = h;
1947 }
1948
1949 static int __init hugetlb_nrpages_setup(char *s)
1950 {
1951         unsigned long *mhp;
1952         static unsigned long *last_mhp;
1953
1954         /*
1955          * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1956          * so this hugepages= parameter goes to the "default hstate".
1957          */
1958         if (!max_hstate)
1959                 mhp = &default_hstate_max_huge_pages;
1960         else
1961                 mhp = &parsed_hstate->max_huge_pages;
1962
1963         if (mhp == last_mhp) {
1964                 printk(KERN_WARNING "hugepages= specified twice without "
1965                         "interleaving hugepagesz=, ignoring\n");
1966                 return 1;
1967         }
1968
1969         if (sscanf(s, "%lu", mhp) <= 0)
1970                 *mhp = 0;
1971
1972         /*
1973          * Global state is always initialized later in hugetlb_init.
1974          * But we need to allocate >= MAX_ORDER hstates here early to still
1975          * use the bootmem allocator.
1976          */
1977         if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1978                 hugetlb_hstate_alloc_pages(parsed_hstate);
1979
1980         last_mhp = mhp;
1981
1982         return 1;
1983 }
1984 __setup("hugepages=", hugetlb_nrpages_setup);
1985
1986 static int __init hugetlb_default_setup(char *s)
1987 {
1988         default_hstate_size = memparse(s, &s);
1989         return 1;
1990 }
1991 __setup("default_hugepagesz=", hugetlb_default_setup);
1992
1993 static unsigned int cpuset_mems_nr(unsigned int *array)
1994 {
1995         int node;
1996         unsigned int nr = 0;
1997
1998         for_each_node_mask(node, cpuset_current_mems_allowed)
1999                 nr += array[node];
2000
2001         return nr;
2002 }
2003
2004 #ifdef CONFIG_SYSCTL
2005 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2006                          struct ctl_table *table, int write,
2007                          void __user *buffer, size_t *length, loff_t *ppos)
2008 {
2009         struct hstate *h = &default_hstate;
2010         unsigned long tmp;
2011         int ret;
2012
2013         if (!hugepages_supported())
2014                 return -ENOTSUPP;
2015
2016         tmp = h->max_huge_pages;
2017
2018         if (write && h->order >= MAX_ORDER)
2019                 return -EINVAL;
2020
2021         table->data = &tmp;
2022         table->maxlen = sizeof(unsigned long);
2023         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2024         if (ret)
2025                 goto out;
2026
2027         if (write) {
2028                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2029                                                 GFP_KERNEL | __GFP_NORETRY);
2030                 if (!(obey_mempolicy &&
2031                                init_nodemask_of_mempolicy(nodes_allowed))) {
2032                         NODEMASK_FREE(nodes_allowed);
2033                         nodes_allowed = &node_states[N_HIGH_MEMORY];
2034                 }
2035                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2036
2037                 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2038                         NODEMASK_FREE(nodes_allowed);
2039         }
2040 out:
2041         return ret;
2042 }
2043
2044 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2045                           void __user *buffer, size_t *length, loff_t *ppos)
2046 {
2047
2048         return hugetlb_sysctl_handler_common(false, table, write,
2049                                                         buffer, length, ppos);
2050 }
2051
2052 #ifdef CONFIG_NUMA
2053 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2054                           void __user *buffer, size_t *length, loff_t *ppos)
2055 {
2056         return hugetlb_sysctl_handler_common(true, table, write,
2057                                                         buffer, length, ppos);
2058 }
2059 #endif /* CONFIG_NUMA */
2060
2061 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2062                         void __user *buffer,
2063                         size_t *length, loff_t *ppos)
2064 {
2065         proc_dointvec(table, write, buffer, length, ppos);
2066         if (hugepages_treat_as_movable)
2067                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2068         else
2069                 htlb_alloc_mask = GFP_HIGHUSER;
2070         return 0;
2071 }
2072
2073 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2074                         void __user *buffer,
2075                         size_t *length, loff_t *ppos)
2076 {
2077         struct hstate *h = &default_hstate;
2078         unsigned long tmp;
2079         int ret;
2080
2081         if (!hugepages_supported())
2082                 return -ENOTSUPP;
2083
2084         tmp = h->nr_overcommit_huge_pages;
2085
2086         if (write && h->order >= MAX_ORDER)
2087                 return -EINVAL;
2088
2089         table->data = &tmp;
2090         table->maxlen = sizeof(unsigned long);
2091         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2092         if (ret)
2093                 goto out;
2094
2095         if (write) {
2096                 spin_lock(&hugetlb_lock);
2097                 h->nr_overcommit_huge_pages = tmp;
2098                 spin_unlock(&hugetlb_lock);
2099         }
2100 out:
2101         return ret;
2102 }
2103
2104 #endif /* CONFIG_SYSCTL */
2105
2106 void hugetlb_report_meminfo(struct seq_file *m)
2107 {
2108         struct hstate *h = &default_hstate;
2109         if (!hugepages_supported())
2110                 return;
2111         seq_printf(m,
2112                         "HugePages_Total:   %5lu\n"
2113                         "HugePages_Free:    %5lu\n"
2114                         "HugePages_Rsvd:    %5lu\n"
2115                         "HugePages_Surp:    %5lu\n"
2116                         "Hugepagesize:   %8lu kB\n",
2117                         h->nr_huge_pages,
2118                         h->free_huge_pages,
2119                         h->resv_huge_pages,
2120                         h->surplus_huge_pages,
2121                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2122 }
2123
2124 int hugetlb_report_node_meminfo(int nid, char *buf)
2125 {
2126         struct hstate *h = &default_hstate;
2127         if (!hugepages_supported())
2128                 return 0;
2129         return sprintf(buf,
2130                 "Node %d HugePages_Total: %5u\n"
2131                 "Node %d HugePages_Free:  %5u\n"
2132                 "Node %d HugePages_Surp:  %5u\n",
2133                 nid, h->nr_huge_pages_node[nid],
2134                 nid, h->free_huge_pages_node[nid],
2135                 nid, h->surplus_huge_pages_node[nid]);
2136 }
2137
2138 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2139 unsigned long hugetlb_total_pages(void)
2140 {
2141         struct hstate *h;
2142         unsigned long nr_total_pages = 0;
2143
2144         for_each_hstate(h)
2145                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2146         return nr_total_pages;
2147 }
2148
2149 static int hugetlb_acct_memory(struct hstate *h, long delta)
2150 {
2151         int ret = -ENOMEM;
2152
2153         spin_lock(&hugetlb_lock);
2154         /*
2155          * When cpuset is configured, it breaks the strict hugetlb page
2156          * reservation as the accounting is done on a global variable. Such
2157          * reservation is completely rubbish in the presence of cpuset because
2158          * the reservation is not checked against page availability for the
2159          * current cpuset. Application can still potentially OOM'ed by kernel
2160          * with lack of free htlb page in cpuset that the task is in.
2161          * Attempt to enforce strict accounting with cpuset is almost
2162          * impossible (or too ugly) because cpuset is too fluid that
2163          * task or memory node can be dynamically moved between cpusets.
2164          *
2165          * The change of semantics for shared hugetlb mapping with cpuset is
2166          * undesirable. However, in order to preserve some of the semantics,
2167          * we fall back to check against current free page availability as
2168          * a best attempt and hopefully to minimize the impact of changing
2169          * semantics that cpuset has.
2170          */
2171         if (delta > 0) {
2172                 if (gather_surplus_pages(h, delta) < 0)
2173                         goto out;
2174
2175                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2176                         return_unused_surplus_pages(h, delta);
2177                         goto out;
2178                 }
2179         }
2180
2181         ret = 0;
2182         if (delta < 0)
2183                 return_unused_surplus_pages(h, (unsigned long) -delta);
2184
2185 out:
2186         spin_unlock(&hugetlb_lock);
2187         return ret;
2188 }
2189
2190 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2191 {
2192         struct resv_map *reservations = vma_resv_map(vma);
2193
2194         /*
2195          * This new VMA should share its siblings reservation map if present.
2196          * The VMA will only ever have a valid reservation map pointer where
2197          * it is being copied for another still existing VMA.  As that VMA
2198          * has a reference to the reservation map it cannot disappear until
2199          * after this open call completes.  It is therefore safe to take a
2200          * new reference here without additional locking.
2201          */
2202         if (reservations)
2203                 kref_get(&reservations->refs);
2204 }
2205
2206 static void resv_map_put(struct vm_area_struct *vma)
2207 {
2208         struct resv_map *reservations = vma_resv_map(vma);
2209
2210         if (!reservations)
2211                 return;
2212         kref_put(&reservations->refs, resv_map_release);
2213 }
2214
2215 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2216 {
2217         struct hstate *h = hstate_vma(vma);
2218         struct resv_map *reservations = vma_resv_map(vma);
2219         struct hugepage_subpool *spool = subpool_vma(vma);
2220         unsigned long reserve;
2221         unsigned long start;
2222         unsigned long end;
2223
2224         if (reservations) {
2225                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2226                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2227
2228                 reserve = (end - start) -
2229                         region_count(&reservations->regions, start, end);
2230
2231                 resv_map_put(vma);
2232
2233                 if (reserve) {
2234                         hugetlb_acct_memory(h, -reserve);
2235                         hugepage_subpool_put_pages(spool, reserve);
2236                 }
2237         }
2238 }
2239
2240 /*
2241  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2242  * handle_mm_fault() to try to instantiate regular-sized pages in the
2243  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2244  * this far.
2245  */
2246 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2247 {
2248         BUG();
2249         return 0;
2250 }
2251
2252 const struct vm_operations_struct hugetlb_vm_ops = {
2253         .fault = hugetlb_vm_op_fault,
2254         .open = hugetlb_vm_op_open,
2255         .close = hugetlb_vm_op_close,
2256 };
2257
2258 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2259                                 int writable)
2260 {
2261         pte_t entry;
2262
2263         if (writable) {
2264                 entry =
2265                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2266         } else {
2267                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2268         }
2269         entry = pte_mkyoung(entry);
2270         entry = pte_mkhuge(entry);
2271
2272         return entry;
2273 }
2274
2275 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2276                                    unsigned long address, pte_t *ptep)
2277 {
2278         pte_t entry;
2279
2280         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2281         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2282                 update_mmu_cache(vma, address, ptep);
2283 }
2284
2285 static int is_hugetlb_entry_migration(pte_t pte)
2286 {
2287         swp_entry_t swp;
2288
2289         if (huge_pte_none(pte) || pte_present(pte))
2290                 return 0;
2291         swp = pte_to_swp_entry(pte);
2292         if (non_swap_entry(swp) && is_migration_entry(swp))
2293                 return 1;
2294         else
2295                 return 0;
2296 }
2297
2298 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2299 {
2300         swp_entry_t swp;
2301
2302         if (huge_pte_none(pte) || pte_present(pte))
2303                 return 0;
2304         swp = pte_to_swp_entry(pte);
2305         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2306                 return 1;
2307         else
2308                 return 0;
2309 }
2310
2311 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2312                             struct vm_area_struct *vma)
2313 {
2314         pte_t *src_pte, *dst_pte, entry;
2315         struct page *ptepage;
2316         unsigned long addr;
2317         int cow;
2318         struct hstate *h = hstate_vma(vma);
2319         unsigned long sz = huge_page_size(h);
2320
2321         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2322
2323         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2324                 src_pte = huge_pte_offset(src, addr);
2325                 if (!src_pte)
2326                         continue;
2327                 dst_pte = huge_pte_alloc(dst, addr, sz);
2328                 if (!dst_pte)
2329                         goto nomem;
2330
2331                 /* If the pagetables are shared don't copy or take references */
2332                 if (dst_pte == src_pte)
2333                         continue;
2334
2335                 spin_lock(&dst->page_table_lock);
2336                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2337                 entry = huge_ptep_get(src_pte);
2338                 if (huge_pte_none(entry)) { /* skip none entry */
2339                         ;
2340                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2341                                     is_hugetlb_entry_hwpoisoned(entry))) {
2342                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
2343
2344                         if (is_write_migration_entry(swp_entry) && cow) {
2345                                 /*
2346                                  * COW mappings require pages in both
2347                                  * parent and child to be set to read.
2348                                  */
2349                                 make_migration_entry_read(&swp_entry);
2350                                 entry = swp_entry_to_pte(swp_entry);
2351                                 set_huge_pte_at(src, addr, src_pte, entry);
2352                         }
2353                         set_huge_pte_at(dst, addr, dst_pte, entry);
2354                 } else {
2355                         if (cow)
2356                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2357                         entry = huge_ptep_get(src_pte);
2358                         ptepage = pte_page(entry);
2359                         get_page(ptepage);
2360                         page_dup_rmap(ptepage);
2361                         set_huge_pte_at(dst, addr, dst_pte, entry);
2362                 }
2363                 spin_unlock(&src->page_table_lock);
2364                 spin_unlock(&dst->page_table_lock);
2365         }
2366         return 0;
2367
2368 nomem:
2369         return -ENOMEM;
2370 }
2371
2372 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2373                             unsigned long end, struct page *ref_page)
2374 {
2375         struct mm_struct *mm = vma->vm_mm;
2376         unsigned long address;
2377         pte_t *ptep;
2378         pte_t pte;
2379         struct page *page;
2380         struct page *tmp;
2381         struct hstate *h = hstate_vma(vma);
2382         unsigned long sz = huge_page_size(h);
2383
2384         /*
2385          * A page gathering list, protected by per file i_mmap_mutex. The
2386          * lock is used to avoid list corruption from multiple unmapping
2387          * of the same page since we are using page->lru.
2388          */
2389         LIST_HEAD(page_list);
2390
2391         WARN_ON(!is_vm_hugetlb_page(vma));
2392         BUG_ON(start & ~huge_page_mask(h));
2393         BUG_ON(end & ~huge_page_mask(h));
2394
2395         mmu_notifier_invalidate_range_start(mm, start, end);
2396         spin_lock(&mm->page_table_lock);
2397         for (address = start; address < end; address += sz) {
2398                 ptep = huge_pte_offset(mm, address);
2399                 if (!ptep)
2400                         continue;
2401
2402                 if (huge_pmd_unshare(mm, &address, ptep))
2403                         continue;
2404
2405                 /*
2406                  * If a reference page is supplied, it is because a specific
2407                  * page is being unmapped, not a range. Ensure the page we
2408                  * are about to unmap is the actual page of interest.
2409                  */
2410                 if (ref_page) {
2411                         pte = huge_ptep_get(ptep);
2412                         if (huge_pte_none(pte))
2413                                 continue;
2414                         page = pte_page(pte);
2415                         if (page != ref_page)
2416                                 continue;
2417
2418                         /*
2419                          * Mark the VMA as having unmapped its page so that
2420                          * future faults in this VMA will fail rather than
2421                          * looking like data was lost
2422                          */
2423                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2424                 }
2425
2426                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2427                 if (huge_pte_none(pte))
2428                         continue;
2429
2430                 /*
2431                  * Migrating hugepage or HWPoisoned hugepage is already
2432                  * unmapped and its refcount is dropped
2433                  */
2434                 if (unlikely(!pte_present(pte)))
2435                         continue;
2436
2437                 page = pte_page(pte);
2438                 if (pte_dirty(pte))
2439                         set_page_dirty(page);
2440                 list_add(&page->lru, &page_list);
2441         }
2442         spin_unlock(&mm->page_table_lock);
2443         flush_tlb_range(vma, start, end);
2444         mmu_notifier_invalidate_range_end(mm, start, end);
2445         list_for_each_entry_safe(page, tmp, &page_list, lru) {
2446                 page_remove_rmap(page);
2447                 list_del(&page->lru);
2448                 put_page(page);
2449         }
2450 }
2451
2452 void __unmap_hugepage_range_final(struct vm_area_struct *vma,
2453                           unsigned long start, unsigned long end,
2454                           struct page *ref_page)
2455 {
2456         __unmap_hugepage_range(vma, start, end, ref_page);
2457
2458         /*
2459          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2460          * test will fail on a vma being torn down, and not grab a page table
2461          * on its way out.  We're lucky that the flag has such an appropriate
2462          * name, and can in fact be safely cleared here. We could clear it
2463          * before the __unmap_hugepage_range above, but all that's necessary
2464          * is to clear it before releasing the i_mmap_mutex. This works
2465          * because in the context this is called, the VMA is about to be
2466          * destroyed and the i_mmap_mutex is held.
2467          */
2468         vma->vm_flags &= ~VM_MAYSHARE;
2469 }
2470
2471 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2472                           unsigned long end, struct page *ref_page)
2473 {
2474         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2475         __unmap_hugepage_range(vma, start, end, ref_page);
2476         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2477 }
2478
2479 /*
2480  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2481  * mappping it owns the reserve page for. The intention is to unmap the page
2482  * from other VMAs and let the children be SIGKILLed if they are faulting the
2483  * same region.
2484  */
2485 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2486                                 struct page *page, unsigned long address)
2487 {
2488         struct hstate *h = hstate_vma(vma);
2489         struct vm_area_struct *iter_vma;
2490         struct address_space *mapping;
2491         struct prio_tree_iter iter;
2492         pgoff_t pgoff;
2493
2494         /*
2495          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2496          * from page cache lookup which is in HPAGE_SIZE units.
2497          */
2498         address = address & huge_page_mask(h);
2499         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2500                         vma->vm_pgoff;
2501         mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2502
2503         /*
2504          * Take the mapping lock for the duration of the table walk. As
2505          * this mapping should be shared between all the VMAs,
2506          * __unmap_hugepage_range() is called as the lock is already held
2507          */
2508         mutex_lock(&mapping->i_mmap_mutex);
2509         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2510                 /* Do not unmap the current VMA */
2511                 if (iter_vma == vma)
2512                         continue;
2513
2514                 /*
2515                  * Shared VMAs have their own reserves and do not affect
2516                  * MAP_PRIVATE accounting but it is possible that a shared
2517                  * VMA is using the same page so check and skip such VMAs.
2518                  */
2519                 if (iter_vma->vm_flags & VM_MAYSHARE)
2520                         continue;
2521
2522                 /*
2523                  * Unmap the page from other VMAs without their own reserves.
2524                  * They get marked to be SIGKILLed if they fault in these
2525                  * areas. This is because a future no-page fault on this VMA
2526                  * could insert a zeroed page instead of the data existing
2527                  * from the time of fork. This would look like data corruption
2528                  */
2529                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2530                         __unmap_hugepage_range(iter_vma,
2531                                 address, address + huge_page_size(h),
2532                                 page);
2533         }
2534         mutex_unlock(&mapping->i_mmap_mutex);
2535
2536         return 1;
2537 }
2538
2539 /*
2540  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2541  */
2542 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2543                         unsigned long address, pte_t *ptep, pte_t pte,
2544                         struct page *pagecache_page)
2545 {
2546         struct hstate *h = hstate_vma(vma);
2547         struct page *old_page, *new_page;
2548         int avoidcopy;
2549         int outside_reserve = 0;
2550
2551         old_page = pte_page(pte);
2552
2553 retry_avoidcopy:
2554         /* If no-one else is actually using this page, avoid the copy
2555          * and just make the page writable */
2556         avoidcopy = (page_mapcount(old_page) == 1);
2557         if (avoidcopy) {
2558                 if (PageAnon(old_page))
2559                         page_move_anon_rmap(old_page, vma, address);
2560                 set_huge_ptep_writable(vma, address, ptep);
2561                 return 0;
2562         }
2563
2564         /*
2565          * If the process that created a MAP_PRIVATE mapping is about to
2566          * perform a COW due to a shared page count, attempt to satisfy
2567          * the allocation without using the existing reserves. The pagecache
2568          * page is used to determine if the reserve at this address was
2569          * consumed or not. If reserves were used, a partial faulted mapping
2570          * at the time of fork() could consume its reserves on COW instead
2571          * of the full address range.
2572          */
2573         if (!(vma->vm_flags & VM_MAYSHARE) &&
2574                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2575                         old_page != pagecache_page)
2576                 outside_reserve = 1;
2577
2578         page_cache_get(old_page);
2579
2580         /* Drop page_table_lock as buddy allocator may be called */
2581         spin_unlock(&mm->page_table_lock);
2582         new_page = alloc_huge_page(vma, address, outside_reserve);
2583
2584         if (IS_ERR(new_page)) {
2585                 page_cache_release(old_page);
2586
2587                 /*
2588                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2589                  * it is due to references held by a child and an insufficient
2590                  * huge page pool. To guarantee the original mappers
2591                  * reliability, unmap the page from child processes. The child
2592                  * may get SIGKILLed if it later faults.
2593                  */
2594                 if (outside_reserve) {
2595                         BUG_ON(huge_pte_none(pte));
2596                         if (unmap_ref_private(mm, vma, old_page, address)) {
2597                                 BUG_ON(huge_pte_none(pte));
2598                                 spin_lock(&mm->page_table_lock);
2599                                 goto retry_avoidcopy;
2600                         }
2601                         WARN_ON_ONCE(1);
2602                 }
2603
2604                 /* Caller expects lock to be held */
2605                 spin_lock(&mm->page_table_lock);
2606                 return -PTR_ERR(new_page);
2607         }
2608
2609         /*
2610          * When the original hugepage is shared one, it does not have
2611          * anon_vma prepared.
2612          */
2613         if (unlikely(anon_vma_prepare(vma))) {
2614                 page_cache_release(new_page);
2615                 page_cache_release(old_page);
2616                 /* Caller expects lock to be held */
2617                 spin_lock(&mm->page_table_lock);
2618                 return VM_FAULT_OOM;
2619         }
2620
2621         copy_user_huge_page(new_page, old_page, address, vma,
2622                             pages_per_huge_page(h));
2623         __SetPageUptodate(new_page);
2624
2625         /*
2626          * Retake the page_table_lock to check for racing updates
2627          * before the page tables are altered
2628          */
2629         spin_lock(&mm->page_table_lock);
2630         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2631         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2632                 /* Break COW */
2633                 mmu_notifier_invalidate_range_start(mm,
2634                         address & huge_page_mask(h),
2635                         (address & huge_page_mask(h)) + huge_page_size(h));
2636                 huge_ptep_clear_flush(vma, address, ptep);
2637                 set_huge_pte_at(mm, address, ptep,
2638                                 make_huge_pte(vma, new_page, 1));
2639                 page_remove_rmap(old_page);
2640                 hugepage_add_new_anon_rmap(new_page, vma, address);
2641                 /* Make the old page be freed below */
2642                 new_page = old_page;
2643                 mmu_notifier_invalidate_range_end(mm,
2644                         address & huge_page_mask(h),
2645                         (address & huge_page_mask(h)) + huge_page_size(h));
2646         }
2647         page_cache_release(new_page);
2648         page_cache_release(old_page);
2649         return 0;
2650 }
2651
2652 /* Return the pagecache page at a given address within a VMA */
2653 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2654                         struct vm_area_struct *vma, unsigned long address)
2655 {
2656         struct address_space *mapping;
2657         pgoff_t idx;
2658
2659         mapping = vma->vm_file->f_mapping;
2660         idx = vma_hugecache_offset(h, vma, address);
2661
2662         return find_lock_page(mapping, idx);
2663 }
2664
2665 /*
2666  * Return whether there is a pagecache page to back given address within VMA.
2667  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2668  */
2669 static bool hugetlbfs_pagecache_present(struct hstate *h,
2670                         struct vm_area_struct *vma, unsigned long address)
2671 {
2672         struct address_space *mapping;
2673         pgoff_t idx;
2674         struct page *page;
2675
2676         mapping = vma->vm_file->f_mapping;
2677         idx = vma_hugecache_offset(h, vma, address);
2678
2679         page = find_get_page(mapping, idx);
2680         if (page)
2681                 put_page(page);
2682         return page != NULL;
2683 }
2684
2685 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2686                         unsigned long address, pte_t *ptep, unsigned int flags)
2687 {
2688         struct hstate *h = hstate_vma(vma);
2689         int ret = VM_FAULT_SIGBUS;
2690         pgoff_t idx;
2691         unsigned long size;
2692         struct page *page;
2693         struct address_space *mapping;
2694         pte_t new_pte;
2695
2696         /*
2697          * Currently, we are forced to kill the process in the event the
2698          * original mapper has unmapped pages from the child due to a failed
2699          * COW. Warn that such a situation has occurred as it may not be obvious
2700          */
2701         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2702                 printk(KERN_WARNING
2703                         "PID %d killed due to inadequate hugepage pool\n",
2704                         current->pid);
2705                 return ret;
2706         }
2707
2708         mapping = vma->vm_file->f_mapping;
2709         idx = vma_hugecache_offset(h, vma, address);
2710
2711         /*
2712          * Use page lock to guard against racing truncation
2713          * before we get page_table_lock.
2714          */
2715 retry:
2716         page = find_lock_page(mapping, idx);
2717         if (!page) {
2718                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2719                 if (idx >= size)
2720                         goto out;
2721                 page = alloc_huge_page(vma, address, 0);
2722                 if (IS_ERR(page)) {
2723                         ret = -PTR_ERR(page);
2724                         goto out;
2725                 }
2726                 clear_huge_page(page, address, pages_per_huge_page(h));
2727                 __SetPageUptodate(page);
2728
2729                 if (vma->vm_flags & VM_MAYSHARE) {
2730                         int err;
2731                         struct inode *inode = mapping->host;
2732
2733                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2734                         if (err) {
2735                                 put_page(page);
2736                                 if (err == -EEXIST)
2737                                         goto retry;
2738                                 goto out;
2739                         }
2740
2741                         spin_lock(&inode->i_lock);
2742                         inode->i_blocks += blocks_per_huge_page(h);
2743                         spin_unlock(&inode->i_lock);
2744                         page_dup_rmap(page);
2745                 } else {
2746                         lock_page(page);
2747                         if (unlikely(anon_vma_prepare(vma))) {
2748                                 ret = VM_FAULT_OOM;
2749                                 goto backout_unlocked;
2750                         }
2751                         hugepage_add_new_anon_rmap(page, vma, address);
2752                 }
2753         } else {
2754                 /*
2755                  * If memory error occurs between mmap() and fault, some process
2756                  * don't have hwpoisoned swap entry for errored virtual address.
2757                  * So we need to block hugepage fault by PG_hwpoison bit check.
2758                  */
2759                 if (unlikely(PageHWPoison(page))) {
2760                         ret = VM_FAULT_HWPOISON |
2761                               VM_FAULT_SET_HINDEX(h - hstates);
2762                         goto backout_unlocked;
2763                 }
2764                 page_dup_rmap(page);
2765         }
2766
2767         /*
2768          * If we are going to COW a private mapping later, we examine the
2769          * pending reservations for this page now. This will ensure that
2770          * any allocations necessary to record that reservation occur outside
2771          * the spinlock.
2772          */
2773         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2774                 if (vma_needs_reservation(h, vma, address) < 0) {
2775                         ret = VM_FAULT_OOM;
2776                         goto backout_unlocked;
2777                 }
2778
2779         spin_lock(&mm->page_table_lock);
2780         size = i_size_read(mapping->host) >> huge_page_shift(h);
2781         if (idx >= size)
2782                 goto backout;
2783
2784         ret = 0;
2785         if (!huge_pte_none(huge_ptep_get(ptep)))
2786                 goto backout;
2787
2788         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2789                                 && (vma->vm_flags & VM_SHARED)));
2790         set_huge_pte_at(mm, address, ptep, new_pte);
2791
2792         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2793                 /* Optimization, do the COW without a second fault */
2794                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2795         }
2796
2797         spin_unlock(&mm->page_table_lock);
2798         unlock_page(page);
2799 out:
2800         return ret;
2801
2802 backout:
2803         spin_unlock(&mm->page_table_lock);
2804 backout_unlocked:
2805         unlock_page(page);
2806         put_page(page);
2807         goto out;
2808 }
2809
2810 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2811                         unsigned long address, unsigned int flags)
2812 {
2813         pte_t *ptep;
2814         pte_t entry;
2815         int ret;
2816         struct page *page = NULL;
2817         struct page *pagecache_page = NULL;
2818         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2819         struct hstate *h = hstate_vma(vma);
2820         int need_wait_lock = 0;
2821
2822         ptep = huge_pte_offset(mm, address);
2823         if (ptep) {
2824                 entry = huge_ptep_get(ptep);
2825                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2826                         migration_entry_wait_huge(mm, ptep);
2827                         return 0;
2828                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2829                         return VM_FAULT_HWPOISON_LARGE |
2830                                VM_FAULT_SET_HINDEX(h - hstates);
2831         } else {
2832                 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2833                 if (!ptep)
2834                         return VM_FAULT_OOM;
2835         }
2836
2837         /*
2838          * Serialize hugepage allocation and instantiation, so that we don't
2839          * get spurious allocation failures if two CPUs race to instantiate
2840          * the same page in the page cache.
2841          */
2842         mutex_lock(&hugetlb_instantiation_mutex);
2843         entry = huge_ptep_get(ptep);
2844         if (huge_pte_none(entry)) {
2845                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2846                 goto out_mutex;
2847         }
2848
2849         ret = 0;
2850
2851         /*
2852          * entry could be a migration/hwpoison entry at this point, so this
2853          * check prevents the kernel from going below assuming that we have
2854          * a active hugepage in pagecache. This goto expects the 2nd page fault,
2855          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
2856          * handle it.
2857          */
2858         if (!pte_present(entry))
2859                 goto out_mutex;
2860
2861         /*
2862          * If we are going to COW the mapping later, we examine the pending
2863          * reservations for this page now. This will ensure that any
2864          * allocations necessary to record that reservation occur outside the
2865          * spinlock. For private mappings, we also lookup the pagecache
2866          * page now as it is used to determine if a reservation has been
2867          * consumed.
2868          */
2869         if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2870                 if (vma_needs_reservation(h, vma, address) < 0) {
2871                         ret = VM_FAULT_OOM;
2872                         goto out_mutex;
2873                 }
2874
2875                 if (!(vma->vm_flags & VM_MAYSHARE))
2876                         pagecache_page = hugetlbfs_pagecache_page(h,
2877                                                                 vma, address);
2878         }
2879
2880         spin_lock(&mm->page_table_lock);
2881         /* Check for a racing update before calling hugetlb_cow */
2882         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2883                 goto out_page_table_lock;
2884
2885         /*
2886          * hugetlb_cow() requires page locks of pte_page(entry) and
2887          * pagecache_page, so here we need take the former one
2888          * when page != pagecache_page or !pagecache_page.
2889          */
2890         page = pte_page(entry);
2891         if (page != pagecache_page)
2892                 if (!trylock_page(page)) {
2893                         need_wait_lock = 1;
2894                         goto out_page_table_lock;
2895                 }
2896
2897         get_page(page);
2898
2899         if (flags & FAULT_FLAG_WRITE) {
2900                 if (!pte_write(entry)) {
2901                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2902                                                         pagecache_page);
2903                         goto out_put_page;
2904                 }
2905                 entry = pte_mkdirty(entry);
2906         }
2907         entry = pte_mkyoung(entry);
2908         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2909                                                 flags & FAULT_FLAG_WRITE))
2910                 update_mmu_cache(vma, address, ptep);
2911 out_put_page:
2912         if (page != pagecache_page)
2913                 unlock_page(page);
2914         put_page(page);
2915 out_page_table_lock:
2916         spin_unlock(&mm->page_table_lock);
2917
2918         if (pagecache_page) {
2919                 unlock_page(pagecache_page);
2920                 put_page(pagecache_page);
2921         }
2922 out_mutex:
2923         mutex_unlock(&hugetlb_instantiation_mutex);
2924
2925         /*
2926          * Generally it's safe to hold refcount during waiting page lock. But
2927          * here we just wait to defer the next page fault to avoid busy loop and
2928          * the page is not used after unlocked before returning from the current
2929          * page fault. So we are safe from accessing freed page, even if we wait
2930          * here without taking refcount.
2931          */
2932         if (need_wait_lock)
2933                 wait_on_page_locked(page);
2934         return ret;
2935 }
2936
2937 /* Can be overriden by architectures */
2938 __attribute__((weak)) struct page *
2939 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2940                pud_t *pud, int write)
2941 {
2942         BUG();
2943         return NULL;
2944 }
2945
2946 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2947                         struct page **pages, struct vm_area_struct **vmas,
2948                         unsigned long *position, int *length, int i,
2949                         unsigned int flags)
2950 {
2951         unsigned long pfn_offset;
2952         unsigned long vaddr = *position;
2953         int remainder = *length;
2954         struct hstate *h = hstate_vma(vma);
2955
2956         spin_lock(&mm->page_table_lock);
2957         while (vaddr < vma->vm_end && remainder) {
2958                 pte_t *pte;
2959                 int absent;
2960                 struct page *page;
2961
2962                 /*
2963                  * Some archs (sparc64, sh*) have multiple pte_ts to
2964                  * each hugepage.  We have to make sure we get the
2965                  * first, for the page indexing below to work.
2966                  */
2967                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2968                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2969
2970                 /*
2971                  * When coredumping, it suits get_dump_page if we just return
2972                  * an error where there's an empty slot with no huge pagecache
2973                  * to back it.  This way, we avoid allocating a hugepage, and
2974                  * the sparse dumpfile avoids allocating disk blocks, but its
2975                  * huge holes still show up with zeroes where they need to be.
2976                  */
2977                 if (absent && (flags & FOLL_DUMP) &&
2978                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2979                         remainder = 0;
2980                         break;
2981                 }
2982
2983                 /*
2984                  * We need call hugetlb_fault for both hugepages under migration
2985                  * (in which case hugetlb_fault waits for the migration,) and
2986                  * hwpoisoned hugepages (in which case we need to prevent the
2987                  * caller from accessing to them.) In order to do this, we use
2988                  * here is_swap_pte instead of is_hugetlb_entry_migration and
2989                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2990                  * both cases, and because we can't follow correct pages
2991                  * directly from any kind of swap entries.
2992                  */
2993                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2994                     ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2995                         int ret;
2996
2997                         spin_unlock(&mm->page_table_lock);
2998                         ret = hugetlb_fault(mm, vma, vaddr,
2999                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3000                         spin_lock(&mm->page_table_lock);
3001                         if (!(ret & VM_FAULT_ERROR))
3002                                 continue;
3003
3004                         remainder = 0;
3005                         break;
3006                 }
3007
3008                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3009                 page = pte_page(huge_ptep_get(pte));
3010 same_page:
3011                 if (pages) {
3012                         pages[i] = mem_map_offset(page, pfn_offset);
3013                         get_page(pages[i]);
3014                 }
3015
3016                 if (vmas)
3017                         vmas[i] = vma;
3018
3019                 vaddr += PAGE_SIZE;
3020                 ++pfn_offset;
3021                 --remainder;
3022                 ++i;
3023                 if (vaddr < vma->vm_end && remainder &&
3024                                 pfn_offset < pages_per_huge_page(h)) {
3025                         /*
3026                          * We use pfn_offset to avoid touching the pageframes
3027                          * of this compound page.
3028                          */
3029                         goto same_page;
3030                 }
3031         }
3032         spin_unlock(&mm->page_table_lock);
3033         *length = remainder;
3034         *position = vaddr;
3035
3036         return i ? i : -EFAULT;
3037 }
3038
3039 void hugetlb_change_protection(struct vm_area_struct *vma,
3040                 unsigned long address, unsigned long end, pgprot_t newprot)
3041 {
3042         struct mm_struct *mm = vma->vm_mm;
3043         unsigned long start = address;
3044         pte_t *ptep;
3045         pte_t pte;
3046         struct hstate *h = hstate_vma(vma);
3047
3048         BUG_ON(address >= end);
3049         flush_cache_range(vma, address, end);
3050
3051         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3052         spin_lock(&mm->page_table_lock);
3053         for (; address < end; address += huge_page_size(h)) {
3054                 ptep = huge_pte_offset(mm, address);
3055                 if (!ptep)
3056                         continue;
3057                 if (huge_pmd_unshare(mm, &address, ptep))
3058                         continue;
3059                 pte = huge_ptep_get(ptep);
3060                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
3061                         continue;
3062                 if (unlikely(is_hugetlb_entry_migration(pte))) {
3063                         swp_entry_t entry = pte_to_swp_entry(pte);
3064
3065                         if (is_write_migration_entry(entry)) {
3066                                 pte_t newpte;
3067
3068                                 make_migration_entry_read(&entry);
3069                                 newpte = swp_entry_to_pte(entry);
3070                                 set_huge_pte_at(mm, address, ptep, newpte);
3071                         }
3072                         continue;
3073                 }
3074                 if (!huge_pte_none(pte)) {
3075                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3076                         pte = pte_mkhuge(pte_modify(pte, newprot));
3077                         set_huge_pte_at(mm, address, ptep, pte);
3078                 }
3079         }
3080         spin_unlock(&mm->page_table_lock);
3081         /*
3082          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3083          * may have cleared our pud entry and done put_page on the page table:
3084          * once we release i_mmap_mutex, another task can do the final put_page
3085          * and that page table be reused and filled with junk.
3086          */
3087         flush_tlb_range(vma, start, end);
3088         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3089 }
3090
3091 int hugetlb_reserve_pages(struct inode *inode,
3092                                         long from, long to,
3093                                         struct vm_area_struct *vma,
3094                                         vm_flags_t vm_flags)
3095 {
3096         long ret, chg;
3097         struct hstate *h = hstate_inode(inode);
3098         struct hugepage_subpool *spool = subpool_inode(inode);
3099
3100         /*
3101          * Only apply hugepage reservation if asked. At fault time, an
3102          * attempt will be made for VM_NORESERVE to allocate a page
3103          * without using reserves
3104          */
3105         if (vm_flags & VM_NORESERVE)
3106                 return 0;
3107
3108         /*
3109          * Shared mappings base their reservation on the number of pages that
3110          * are already allocated on behalf of the file. Private mappings need
3111          * to reserve the full area even if read-only as mprotect() may be
3112          * called to make the mapping read-write. Assume !vma is a shm mapping
3113          */
3114         if (!vma || vma->vm_flags & VM_MAYSHARE)
3115                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3116         else {
3117                 struct resv_map *resv_map = resv_map_alloc();
3118                 if (!resv_map)
3119                         return -ENOMEM;
3120
3121                 chg = to - from;
3122
3123                 set_vma_resv_map(vma, resv_map);
3124                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3125         }
3126
3127         if (chg < 0) {
3128                 ret = chg;
3129                 goto out_err;
3130         }
3131
3132         /* There must be enough pages in the subpool for the mapping */
3133         if (hugepage_subpool_get_pages(spool, chg)) {
3134                 ret = -ENOSPC;
3135                 goto out_err;
3136         }
3137
3138         /*
3139          * Check enough hugepages are available for the reservation.
3140          * Hand the pages back to the subpool if there are not
3141          */
3142         ret = hugetlb_acct_memory(h, chg);
3143         if (ret < 0) {
3144                 hugepage_subpool_put_pages(spool, chg);
3145                 goto out_err;
3146         }
3147
3148         /*
3149          * Account for the reservations made. Shared mappings record regions
3150          * that have reservations as they are shared by multiple VMAs.
3151          * When the last VMA disappears, the region map says how much
3152          * the reservation was and the page cache tells how much of
3153          * the reservation was consumed. Private mappings are per-VMA and
3154          * only the consumed reservations are tracked. When the VMA
3155          * disappears, the original reservation is the VMA size and the
3156          * consumed reservations are stored in the map. Hence, nothing
3157          * else has to be done for private mappings here
3158          */
3159         if (!vma || vma->vm_flags & VM_MAYSHARE)
3160                 region_add(&inode->i_mapping->private_list, from, to);
3161         return 0;
3162 out_err:
3163         if (vma)
3164                 resv_map_put(vma);
3165         return ret;
3166 }
3167
3168 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3169 {
3170         struct hstate *h = hstate_inode(inode);
3171         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3172         struct hugepage_subpool *spool = subpool_inode(inode);
3173
3174         spin_lock(&inode->i_lock);
3175         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3176         spin_unlock(&inode->i_lock);
3177
3178         hugepage_subpool_put_pages(spool, (chg - freed));
3179         hugetlb_acct_memory(h, -(chg - freed));
3180 }
3181
3182 #ifdef CONFIG_MEMORY_FAILURE
3183
3184 /* Should be called in hugetlb_lock */
3185 static int is_hugepage_on_freelist(struct page *hpage)
3186 {
3187         struct page *page;
3188         struct page *tmp;
3189         struct hstate *h = page_hstate(hpage);
3190         int nid = page_to_nid(hpage);
3191
3192         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3193                 if (page == hpage)
3194                         return 1;
3195         return 0;
3196 }
3197
3198 /*
3199  * This function is called from memory failure code.
3200  * Assume the caller holds page lock of the head page.
3201  */
3202 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3203 {
3204         struct hstate *h = page_hstate(hpage);
3205         int nid = page_to_nid(hpage);
3206         int ret = -EBUSY;
3207
3208         spin_lock(&hugetlb_lock);
3209         if (is_hugepage_on_freelist(hpage)) {
3210                 list_del(&hpage->lru);
3211                 set_page_refcounted(hpage);
3212                 h->free_huge_pages--;
3213                 h->free_huge_pages_node[nid]--;
3214                 ret = 0;
3215         }
3216         spin_unlock(&hugetlb_lock);
3217         return ret;
3218 }
3219 #endif