udf: don't increment lenExtents while writing to a hole
[pandora-kernel.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12 #include <linux/kmemcheck.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22
23 #include <asm/local.h>
24 #include "trace.h"
25
26 static void update_pages_handler(struct work_struct *work);
27
28 /*
29  * The ring buffer header is special. We must manually up keep it.
30  */
31 int ring_buffer_print_entry_header(struct trace_seq *s)
32 {
33         int ret;
34
35         ret = trace_seq_printf(s, "# compressed entry header\n");
36         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
37         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
38         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
39         ret = trace_seq_printf(s, "\n");
40         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
41                                RINGBUF_TYPE_PADDING);
42         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
43                                RINGBUF_TYPE_TIME_EXTEND);
44         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
45                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47         return ret;
48 }
49
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117
118 /*
119  * A fast way to enable or disable all ring buffers is to
120  * call tracing_on or tracing_off. Turning off the ring buffers
121  * prevents all ring buffers from being recorded to.
122  * Turning this switch on, makes it OK to write to the
123  * ring buffer, if the ring buffer is enabled itself.
124  *
125  * There's three layers that must be on in order to write
126  * to the ring buffer.
127  *
128  * 1) This global flag must be set.
129  * 2) The ring buffer must be enabled for recording.
130  * 3) The per cpu buffer must be enabled for recording.
131  *
132  * In case of an anomaly, this global flag has a bit set that
133  * will permantly disable all ring buffers.
134  */
135
136 /*
137  * Global flag to disable all recording to ring buffers
138  *  This has two bits: ON, DISABLED
139  *
140  *  ON   DISABLED
141  * ---- ----------
142  *   0      0        : ring buffers are off
143  *   1      0        : ring buffers are on
144  *   X      1        : ring buffers are permanently disabled
145  */
146
147 enum {
148         RB_BUFFERS_ON_BIT       = 0,
149         RB_BUFFERS_DISABLED_BIT = 1,
150 };
151
152 enum {
153         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
154         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
155 };
156
157 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
158
159 /* Used for individual buffers (after the counter) */
160 #define RB_BUFFER_OFF           (1 << 20)
161
162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
163
164 /**
165  * tracing_off_permanent - permanently disable ring buffers
166  *
167  * This function, once called, will disable all ring buffers
168  * permanently.
169  */
170 void tracing_off_permanent(void)
171 {
172         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
173 }
174
175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
176 #define RB_ALIGNMENT            4U
177 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
178 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
179
180 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
181 # define RB_FORCE_8BYTE_ALIGNMENT       0
182 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
183 #else
184 # define RB_FORCE_8BYTE_ALIGNMENT       1
185 # define RB_ARCH_ALIGNMENT              8U
186 #endif
187
188 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
189 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
190
191 enum {
192         RB_LEN_TIME_EXTEND = 8,
193         RB_LEN_TIME_STAMP = 16,
194 };
195
196 #define skip_time_extend(event) \
197         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
198
199 static inline int rb_null_event(struct ring_buffer_event *event)
200 {
201         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
202 }
203
204 static void rb_event_set_padding(struct ring_buffer_event *event)
205 {
206         /* padding has a NULL time_delta */
207         event->type_len = RINGBUF_TYPE_PADDING;
208         event->time_delta = 0;
209 }
210
211 static unsigned
212 rb_event_data_length(struct ring_buffer_event *event)
213 {
214         unsigned length;
215
216         if (event->type_len)
217                 length = event->type_len * RB_ALIGNMENT;
218         else
219                 length = event->array[0];
220         return length + RB_EVNT_HDR_SIZE;
221 }
222
223 /*
224  * Return the length of the given event. Will return
225  * the length of the time extend if the event is a
226  * time extend.
227  */
228 static inline unsigned
229 rb_event_length(struct ring_buffer_event *event)
230 {
231         switch (event->type_len) {
232         case RINGBUF_TYPE_PADDING:
233                 if (rb_null_event(event))
234                         /* undefined */
235                         return -1;
236                 return  event->array[0] + RB_EVNT_HDR_SIZE;
237
238         case RINGBUF_TYPE_TIME_EXTEND:
239                 return RB_LEN_TIME_EXTEND;
240
241         case RINGBUF_TYPE_TIME_STAMP:
242                 return RB_LEN_TIME_STAMP;
243
244         case RINGBUF_TYPE_DATA:
245                 return rb_event_data_length(event);
246         default:
247                 BUG();
248         }
249         /* not hit */
250         return 0;
251 }
252
253 /*
254  * Return total length of time extend and data,
255  *   or just the event length for all other events.
256  */
257 static inline unsigned
258 rb_event_ts_length(struct ring_buffer_event *event)
259 {
260         unsigned len = 0;
261
262         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
263                 /* time extends include the data event after it */
264                 len = RB_LEN_TIME_EXTEND;
265                 event = skip_time_extend(event);
266         }
267         return len + rb_event_length(event);
268 }
269
270 /**
271  * ring_buffer_event_length - return the length of the event
272  * @event: the event to get the length of
273  *
274  * Returns the size of the data load of a data event.
275  * If the event is something other than a data event, it
276  * returns the size of the event itself. With the exception
277  * of a TIME EXTEND, where it still returns the size of the
278  * data load of the data event after it.
279  */
280 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
281 {
282         unsigned length;
283
284         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
285                 event = skip_time_extend(event);
286
287         length = rb_event_length(event);
288         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
289                 return length;
290         length -= RB_EVNT_HDR_SIZE;
291         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
292                 length -= sizeof(event->array[0]);
293         return length;
294 }
295 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
296
297 /* inline for ring buffer fast paths */
298 static void *
299 rb_event_data(struct ring_buffer_event *event)
300 {
301         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
302                 event = skip_time_extend(event);
303         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
304         /* If length is in len field, then array[0] has the data */
305         if (event->type_len)
306                 return (void *)&event->array[0];
307         /* Otherwise length is in array[0] and array[1] has the data */
308         return (void *)&event->array[1];
309 }
310
311 /**
312  * ring_buffer_event_data - return the data of the event
313  * @event: the event to get the data from
314  */
315 void *ring_buffer_event_data(struct ring_buffer_event *event)
316 {
317         return rb_event_data(event);
318 }
319 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
320
321 #define for_each_buffer_cpu(buffer, cpu)                \
322         for_each_cpu(cpu, buffer->cpumask)
323
324 #define TS_SHIFT        27
325 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
326 #define TS_DELTA_TEST   (~TS_MASK)
327
328 /* Flag when events were overwritten */
329 #define RB_MISSED_EVENTS        (1 << 31)
330 /* Missed count stored at end */
331 #define RB_MISSED_STORED        (1 << 30)
332
333 struct buffer_data_page {
334         u64              time_stamp;    /* page time stamp */
335         local_t          commit;        /* write committed index */
336         unsigned char    data[];        /* data of buffer page */
337 };
338
339 /*
340  * Note, the buffer_page list must be first. The buffer pages
341  * are allocated in cache lines, which means that each buffer
342  * page will be at the beginning of a cache line, and thus
343  * the least significant bits will be zero. We use this to
344  * add flags in the list struct pointers, to make the ring buffer
345  * lockless.
346  */
347 struct buffer_page {
348         struct list_head list;          /* list of buffer pages */
349         local_t          write;         /* index for next write */
350         unsigned         read;          /* index for next read */
351         local_t          entries;       /* entries on this page */
352         unsigned long    real_end;      /* real end of data */
353         struct buffer_data_page *page;  /* Actual data page */
354 };
355
356 /*
357  * The buffer page counters, write and entries, must be reset
358  * atomically when crossing page boundaries. To synchronize this
359  * update, two counters are inserted into the number. One is
360  * the actual counter for the write position or count on the page.
361  *
362  * The other is a counter of updaters. Before an update happens
363  * the update partition of the counter is incremented. This will
364  * allow the updater to update the counter atomically.
365  *
366  * The counter is 20 bits, and the state data is 12.
367  */
368 #define RB_WRITE_MASK           0xfffff
369 #define RB_WRITE_INTCNT         (1 << 20)
370
371 static void rb_init_page(struct buffer_data_page *bpage)
372 {
373         local_set(&bpage->commit, 0);
374 }
375
376 /**
377  * ring_buffer_page_len - the size of data on the page.
378  * @page: The page to read
379  *
380  * Returns the amount of data on the page, including buffer page header.
381  */
382 size_t ring_buffer_page_len(void *page)
383 {
384         return local_read(&((struct buffer_data_page *)page)->commit)
385                 + BUF_PAGE_HDR_SIZE;
386 }
387
388 /*
389  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
390  * this issue out.
391  */
392 static void free_buffer_page(struct buffer_page *bpage)
393 {
394         free_page((unsigned long)bpage->page);
395         kfree(bpage);
396 }
397
398 /*
399  * We need to fit the time_stamp delta into 27 bits.
400  */
401 static inline int test_time_stamp(u64 delta)
402 {
403         if (delta & TS_DELTA_TEST)
404                 return 1;
405         return 0;
406 }
407
408 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
409
410 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
411 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
412
413 int ring_buffer_print_page_header(struct trace_seq *s)
414 {
415         struct buffer_data_page field;
416         int ret;
417
418         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
419                                "offset:0;\tsize:%u;\tsigned:%u;\n",
420                                (unsigned int)sizeof(field.time_stamp),
421                                (unsigned int)is_signed_type(u64));
422
423         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
424                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
425                                (unsigned int)offsetof(typeof(field), commit),
426                                (unsigned int)sizeof(field.commit),
427                                (unsigned int)is_signed_type(long));
428
429         ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
430                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
431                                (unsigned int)offsetof(typeof(field), commit),
432                                1,
433                                (unsigned int)is_signed_type(long));
434
435         ret = trace_seq_printf(s, "\tfield: char data;\t"
436                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
437                                (unsigned int)offsetof(typeof(field), data),
438                                (unsigned int)BUF_PAGE_SIZE,
439                                (unsigned int)is_signed_type(char));
440
441         return ret;
442 }
443
444 /*
445  * head_page == tail_page && head == tail then buffer is empty.
446  */
447 struct ring_buffer_per_cpu {
448         int                             cpu;
449         atomic_t                        record_disabled;
450         struct ring_buffer              *buffer;
451         raw_spinlock_t                  reader_lock;    /* serialize readers */
452         arch_spinlock_t                 lock;
453         struct lock_class_key           lock_key;
454         unsigned int                    nr_pages;
455         struct list_head                *pages;
456         struct buffer_page              *head_page;     /* read from head */
457         struct buffer_page              *tail_page;     /* write to tail */
458         struct buffer_page              *commit_page;   /* committed pages */
459         struct buffer_page              *reader_page;
460         unsigned long                   lost_events;
461         unsigned long                   last_overrun;
462         local_t                         entries_bytes;
463         local_t                         commit_overrun;
464         local_t                         overrun;
465         local_t                         entries;
466         local_t                         committing;
467         local_t                         commits;
468         unsigned long                   read;
469         unsigned long                   read_bytes;
470         u64                             write_stamp;
471         u64                             read_stamp;
472         /* ring buffer pages to update, > 0 to add, < 0 to remove */
473         int                             nr_pages_to_update;
474         struct list_head                new_pages; /* new pages to add */
475         struct work_struct              update_pages_work;
476         struct completion               update_done;
477 };
478
479 struct ring_buffer {
480         unsigned                        flags;
481         int                             cpus;
482         atomic_t                        record_disabled;
483         atomic_t                        resize_disabled;
484         cpumask_var_t                   cpumask;
485
486         struct lock_class_key           *reader_lock_key;
487
488         struct mutex                    mutex;
489
490         struct ring_buffer_per_cpu      **buffers;
491
492 #ifdef CONFIG_HOTPLUG_CPU
493         struct notifier_block           cpu_notify;
494 #endif
495         u64                             (*clock)(void);
496 };
497
498 struct ring_buffer_iter {
499         struct ring_buffer_per_cpu      *cpu_buffer;
500         unsigned long                   head;
501         struct buffer_page              *head_page;
502         struct buffer_page              *cache_reader_page;
503         unsigned long                   cache_read;
504         u64                             read_stamp;
505 };
506
507 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
508 #define RB_WARN_ON(b, cond)                                             \
509         ({                                                              \
510                 int _____ret = unlikely(cond);                          \
511                 if (_____ret) {                                         \
512                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
513                                 struct ring_buffer_per_cpu *__b =       \
514                                         (void *)b;                      \
515                                 atomic_inc(&__b->buffer->record_disabled); \
516                         } else                                          \
517                                 atomic_inc(&b->record_disabled);        \
518                         WARN_ON(1);                                     \
519                 }                                                       \
520                 _____ret;                                               \
521         })
522
523 /* Up this if you want to test the TIME_EXTENTS and normalization */
524 #define DEBUG_SHIFT 0
525
526 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
527 {
528         /* shift to debug/test normalization and TIME_EXTENTS */
529         return buffer->clock() << DEBUG_SHIFT;
530 }
531
532 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
533 {
534         u64 time;
535
536         preempt_disable_notrace();
537         time = rb_time_stamp(buffer);
538         preempt_enable_no_resched_notrace();
539
540         return time;
541 }
542 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
543
544 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
545                                       int cpu, u64 *ts)
546 {
547         /* Just stupid testing the normalize function and deltas */
548         *ts >>= DEBUG_SHIFT;
549 }
550 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
551
552 /*
553  * Making the ring buffer lockless makes things tricky.
554  * Although writes only happen on the CPU that they are on,
555  * and they only need to worry about interrupts. Reads can
556  * happen on any CPU.
557  *
558  * The reader page is always off the ring buffer, but when the
559  * reader finishes with a page, it needs to swap its page with
560  * a new one from the buffer. The reader needs to take from
561  * the head (writes go to the tail). But if a writer is in overwrite
562  * mode and wraps, it must push the head page forward.
563  *
564  * Here lies the problem.
565  *
566  * The reader must be careful to replace only the head page, and
567  * not another one. As described at the top of the file in the
568  * ASCII art, the reader sets its old page to point to the next
569  * page after head. It then sets the page after head to point to
570  * the old reader page. But if the writer moves the head page
571  * during this operation, the reader could end up with the tail.
572  *
573  * We use cmpxchg to help prevent this race. We also do something
574  * special with the page before head. We set the LSB to 1.
575  *
576  * When the writer must push the page forward, it will clear the
577  * bit that points to the head page, move the head, and then set
578  * the bit that points to the new head page.
579  *
580  * We also don't want an interrupt coming in and moving the head
581  * page on another writer. Thus we use the second LSB to catch
582  * that too. Thus:
583  *
584  * head->list->prev->next        bit 1          bit 0
585  *                              -------        -------
586  * Normal page                     0              0
587  * Points to head page             0              1
588  * New head page                   1              0
589  *
590  * Note we can not trust the prev pointer of the head page, because:
591  *
592  * +----+       +-----+        +-----+
593  * |    |------>|  T  |---X--->|  N  |
594  * |    |<------|     |        |     |
595  * +----+       +-----+        +-----+
596  *   ^                           ^ |
597  *   |          +-----+          | |
598  *   +----------|  R  |----------+ |
599  *              |     |<-----------+
600  *              +-----+
601  *
602  * Key:  ---X-->  HEAD flag set in pointer
603  *         T      Tail page
604  *         R      Reader page
605  *         N      Next page
606  *
607  * (see __rb_reserve_next() to see where this happens)
608  *
609  *  What the above shows is that the reader just swapped out
610  *  the reader page with a page in the buffer, but before it
611  *  could make the new header point back to the new page added
612  *  it was preempted by a writer. The writer moved forward onto
613  *  the new page added by the reader and is about to move forward
614  *  again.
615  *
616  *  You can see, it is legitimate for the previous pointer of
617  *  the head (or any page) not to point back to itself. But only
618  *  temporarially.
619  */
620
621 #define RB_PAGE_NORMAL          0UL
622 #define RB_PAGE_HEAD            1UL
623 #define RB_PAGE_UPDATE          2UL
624
625
626 #define RB_FLAG_MASK            3UL
627
628 /* PAGE_MOVED is not part of the mask */
629 #define RB_PAGE_MOVED           4UL
630
631 /*
632  * rb_list_head - remove any bit
633  */
634 static struct list_head *rb_list_head(struct list_head *list)
635 {
636         unsigned long val = (unsigned long)list;
637
638         return (struct list_head *)(val & ~RB_FLAG_MASK);
639 }
640
641 /*
642  * rb_is_head_page - test if the given page is the head page
643  *
644  * Because the reader may move the head_page pointer, we can
645  * not trust what the head page is (it may be pointing to
646  * the reader page). But if the next page is a header page,
647  * its flags will be non zero.
648  */
649 static inline int
650 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
651                 struct buffer_page *page, struct list_head *list)
652 {
653         unsigned long val;
654
655         val = (unsigned long)list->next;
656
657         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
658                 return RB_PAGE_MOVED;
659
660         return val & RB_FLAG_MASK;
661 }
662
663 /*
664  * rb_is_reader_page
665  *
666  * The unique thing about the reader page, is that, if the
667  * writer is ever on it, the previous pointer never points
668  * back to the reader page.
669  */
670 static int rb_is_reader_page(struct buffer_page *page)
671 {
672         struct list_head *list = page->list.prev;
673
674         return rb_list_head(list->next) != &page->list;
675 }
676
677 /*
678  * rb_set_list_to_head - set a list_head to be pointing to head.
679  */
680 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
681                                 struct list_head *list)
682 {
683         unsigned long *ptr;
684
685         ptr = (unsigned long *)&list->next;
686         *ptr |= RB_PAGE_HEAD;
687         *ptr &= ~RB_PAGE_UPDATE;
688 }
689
690 /*
691  * rb_head_page_activate - sets up head page
692  */
693 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
694 {
695         struct buffer_page *head;
696
697         head = cpu_buffer->head_page;
698         if (!head)
699                 return;
700
701         /*
702          * Set the previous list pointer to have the HEAD flag.
703          */
704         rb_set_list_to_head(cpu_buffer, head->list.prev);
705 }
706
707 static void rb_list_head_clear(struct list_head *list)
708 {
709         unsigned long *ptr = (unsigned long *)&list->next;
710
711         *ptr &= ~RB_FLAG_MASK;
712 }
713
714 /*
715  * rb_head_page_dactivate - clears head page ptr (for free list)
716  */
717 static void
718 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
719 {
720         struct list_head *hd;
721
722         /* Go through the whole list and clear any pointers found. */
723         rb_list_head_clear(cpu_buffer->pages);
724
725         list_for_each(hd, cpu_buffer->pages)
726                 rb_list_head_clear(hd);
727 }
728
729 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
730                             struct buffer_page *head,
731                             struct buffer_page *prev,
732                             int old_flag, int new_flag)
733 {
734         struct list_head *list;
735         unsigned long val = (unsigned long)&head->list;
736         unsigned long ret;
737
738         list = &prev->list;
739
740         val &= ~RB_FLAG_MASK;
741
742         ret = cmpxchg((unsigned long *)&list->next,
743                       val | old_flag, val | new_flag);
744
745         /* check if the reader took the page */
746         if ((ret & ~RB_FLAG_MASK) != val)
747                 return RB_PAGE_MOVED;
748
749         return ret & RB_FLAG_MASK;
750 }
751
752 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
753                                    struct buffer_page *head,
754                                    struct buffer_page *prev,
755                                    int old_flag)
756 {
757         return rb_head_page_set(cpu_buffer, head, prev,
758                                 old_flag, RB_PAGE_UPDATE);
759 }
760
761 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
762                                  struct buffer_page *head,
763                                  struct buffer_page *prev,
764                                  int old_flag)
765 {
766         return rb_head_page_set(cpu_buffer, head, prev,
767                                 old_flag, RB_PAGE_HEAD);
768 }
769
770 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
771                                    struct buffer_page *head,
772                                    struct buffer_page *prev,
773                                    int old_flag)
774 {
775         return rb_head_page_set(cpu_buffer, head, prev,
776                                 old_flag, RB_PAGE_NORMAL);
777 }
778
779 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
780                                struct buffer_page **bpage)
781 {
782         struct list_head *p = rb_list_head((*bpage)->list.next);
783
784         *bpage = list_entry(p, struct buffer_page, list);
785 }
786
787 static struct buffer_page *
788 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
789 {
790         struct buffer_page *head;
791         struct buffer_page *page;
792         struct list_head *list;
793         int i;
794
795         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
796                 return NULL;
797
798         /* sanity check */
799         list = cpu_buffer->pages;
800         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
801                 return NULL;
802
803         page = head = cpu_buffer->head_page;
804         /*
805          * It is possible that the writer moves the header behind
806          * where we started, and we miss in one loop.
807          * A second loop should grab the header, but we'll do
808          * three loops just because I'm paranoid.
809          */
810         for (i = 0; i < 3; i++) {
811                 do {
812                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
813                                 cpu_buffer->head_page = page;
814                                 return page;
815                         }
816                         rb_inc_page(cpu_buffer, &page);
817                 } while (page != head);
818         }
819
820         RB_WARN_ON(cpu_buffer, 1);
821
822         return NULL;
823 }
824
825 static int rb_head_page_replace(struct buffer_page *old,
826                                 struct buffer_page *new)
827 {
828         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
829         unsigned long val;
830         unsigned long ret;
831
832         val = *ptr & ~RB_FLAG_MASK;
833         val |= RB_PAGE_HEAD;
834
835         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
836
837         return ret == val;
838 }
839
840 /*
841  * rb_tail_page_update - move the tail page forward
842  *
843  * Returns 1 if moved tail page, 0 if someone else did.
844  */
845 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
846                                struct buffer_page *tail_page,
847                                struct buffer_page *next_page)
848 {
849         struct buffer_page *old_tail;
850         unsigned long old_entries;
851         unsigned long old_write;
852         int ret = 0;
853
854         /*
855          * The tail page now needs to be moved forward.
856          *
857          * We need to reset the tail page, but without messing
858          * with possible erasing of data brought in by interrupts
859          * that have moved the tail page and are currently on it.
860          *
861          * We add a counter to the write field to denote this.
862          */
863         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
864         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
865
866         /*
867          * Just make sure we have seen our old_write and synchronize
868          * with any interrupts that come in.
869          */
870         barrier();
871
872         /*
873          * If the tail page is still the same as what we think
874          * it is, then it is up to us to update the tail
875          * pointer.
876          */
877         if (tail_page == cpu_buffer->tail_page) {
878                 /* Zero the write counter */
879                 unsigned long val = old_write & ~RB_WRITE_MASK;
880                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
881
882                 /*
883                  * This will only succeed if an interrupt did
884                  * not come in and change it. In which case, we
885                  * do not want to modify it.
886                  *
887                  * We add (void) to let the compiler know that we do not care
888                  * about the return value of these functions. We use the
889                  * cmpxchg to only update if an interrupt did not already
890                  * do it for us. If the cmpxchg fails, we don't care.
891                  */
892                 (void)local_cmpxchg(&next_page->write, old_write, val);
893                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
894
895                 /*
896                  * No need to worry about races with clearing out the commit.
897                  * it only can increment when a commit takes place. But that
898                  * only happens in the outer most nested commit.
899                  */
900                 local_set(&next_page->page->commit, 0);
901
902                 old_tail = cmpxchg(&cpu_buffer->tail_page,
903                                    tail_page, next_page);
904
905                 if (old_tail == tail_page)
906                         ret = 1;
907         }
908
909         return ret;
910 }
911
912 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
913                           struct buffer_page *bpage)
914 {
915         unsigned long val = (unsigned long)bpage;
916
917         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
918                 return 1;
919
920         return 0;
921 }
922
923 /**
924  * rb_check_list - make sure a pointer to a list has the last bits zero
925  */
926 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
927                          struct list_head *list)
928 {
929         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
930                 return 1;
931         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
932                 return 1;
933         return 0;
934 }
935
936 /**
937  * check_pages - integrity check of buffer pages
938  * @cpu_buffer: CPU buffer with pages to test
939  *
940  * As a safety measure we check to make sure the data pages have not
941  * been corrupted.
942  */
943 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
944 {
945         struct list_head *head = cpu_buffer->pages;
946         struct buffer_page *bpage, *tmp;
947
948         /* Reset the head page if it exists */
949         if (cpu_buffer->head_page)
950                 rb_set_head_page(cpu_buffer);
951
952         rb_head_page_deactivate(cpu_buffer);
953
954         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
955                 return -1;
956         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
957                 return -1;
958
959         if (rb_check_list(cpu_buffer, head))
960                 return -1;
961
962         list_for_each_entry_safe(bpage, tmp, head, list) {
963                 if (RB_WARN_ON(cpu_buffer,
964                                bpage->list.next->prev != &bpage->list))
965                         return -1;
966                 if (RB_WARN_ON(cpu_buffer,
967                                bpage->list.prev->next != &bpage->list))
968                         return -1;
969                 if (rb_check_list(cpu_buffer, &bpage->list))
970                         return -1;
971         }
972
973         rb_head_page_activate(cpu_buffer);
974
975         return 0;
976 }
977
978 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
979 {
980         int i;
981         struct buffer_page *bpage, *tmp;
982
983         for (i = 0; i < nr_pages; i++) {
984                 struct page *page;
985                 /*
986                  * __GFP_NORETRY flag makes sure that the allocation fails
987                  * gracefully without invoking oom-killer and the system is
988                  * not destabilized.
989                  */
990                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
991                                     GFP_KERNEL | __GFP_NORETRY,
992                                     cpu_to_node(cpu));
993                 if (!bpage)
994                         goto free_pages;
995
996                 list_add(&bpage->list, pages);
997
998                 page = alloc_pages_node(cpu_to_node(cpu),
999                                         GFP_KERNEL | __GFP_NORETRY, 0);
1000                 if (!page)
1001                         goto free_pages;
1002                 bpage->page = page_address(page);
1003                 rb_init_page(bpage->page);
1004         }
1005
1006         return 0;
1007
1008 free_pages:
1009         list_for_each_entry_safe(bpage, tmp, pages, list) {
1010                 list_del_init(&bpage->list);
1011                 free_buffer_page(bpage);
1012         }
1013
1014         return -ENOMEM;
1015 }
1016
1017 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1018                              unsigned nr_pages)
1019 {
1020         LIST_HEAD(pages);
1021
1022         WARN_ON(!nr_pages);
1023
1024         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1025                 return -ENOMEM;
1026
1027         /*
1028          * The ring buffer page list is a circular list that does not
1029          * start and end with a list head. All page list items point to
1030          * other pages.
1031          */
1032         cpu_buffer->pages = pages.next;
1033         list_del(&pages);
1034
1035         cpu_buffer->nr_pages = nr_pages;
1036
1037         rb_check_pages(cpu_buffer);
1038
1039         return 0;
1040 }
1041
1042 static struct ring_buffer_per_cpu *
1043 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1044 {
1045         struct ring_buffer_per_cpu *cpu_buffer;
1046         struct buffer_page *bpage;
1047         struct page *page;
1048         int ret;
1049
1050         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1051                                   GFP_KERNEL, cpu_to_node(cpu));
1052         if (!cpu_buffer)
1053                 return NULL;
1054
1055         cpu_buffer->cpu = cpu;
1056         cpu_buffer->buffer = buffer;
1057         raw_spin_lock_init(&cpu_buffer->reader_lock);
1058         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1059         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1060         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1061         init_completion(&cpu_buffer->update_done);
1062
1063         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1064                             GFP_KERNEL, cpu_to_node(cpu));
1065         if (!bpage)
1066                 goto fail_free_buffer;
1067
1068         rb_check_bpage(cpu_buffer, bpage);
1069
1070         cpu_buffer->reader_page = bpage;
1071         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1072         if (!page)
1073                 goto fail_free_reader;
1074         bpage->page = page_address(page);
1075         rb_init_page(bpage->page);
1076
1077         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1078         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1079
1080         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1081         if (ret < 0)
1082                 goto fail_free_reader;
1083
1084         cpu_buffer->head_page
1085                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1086         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1087
1088         rb_head_page_activate(cpu_buffer);
1089
1090         return cpu_buffer;
1091
1092  fail_free_reader:
1093         free_buffer_page(cpu_buffer->reader_page);
1094
1095  fail_free_buffer:
1096         kfree(cpu_buffer);
1097         return NULL;
1098 }
1099
1100 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1101 {
1102         struct list_head *head = cpu_buffer->pages;
1103         struct buffer_page *bpage, *tmp;
1104
1105         free_buffer_page(cpu_buffer->reader_page);
1106
1107         rb_head_page_deactivate(cpu_buffer);
1108
1109         if (head) {
1110                 list_for_each_entry_safe(bpage, tmp, head, list) {
1111                         list_del_init(&bpage->list);
1112                         free_buffer_page(bpage);
1113                 }
1114                 bpage = list_entry(head, struct buffer_page, list);
1115                 free_buffer_page(bpage);
1116         }
1117
1118         kfree(cpu_buffer);
1119 }
1120
1121 #ifdef CONFIG_HOTPLUG_CPU
1122 static int rb_cpu_notify(struct notifier_block *self,
1123                          unsigned long action, void *hcpu);
1124 #endif
1125
1126 /**
1127  * ring_buffer_alloc - allocate a new ring_buffer
1128  * @size: the size in bytes per cpu that is needed.
1129  * @flags: attributes to set for the ring buffer.
1130  *
1131  * Currently the only flag that is available is the RB_FL_OVERWRITE
1132  * flag. This flag means that the buffer will overwrite old data
1133  * when the buffer wraps. If this flag is not set, the buffer will
1134  * drop data when the tail hits the head.
1135  */
1136 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1137                                         struct lock_class_key *key)
1138 {
1139         struct ring_buffer *buffer;
1140         int bsize;
1141         int cpu, nr_pages;
1142
1143         /* keep it in its own cache line */
1144         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1145                          GFP_KERNEL);
1146         if (!buffer)
1147                 return NULL;
1148
1149         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1150                 goto fail_free_buffer;
1151
1152         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1153         buffer->flags = flags;
1154         buffer->clock = trace_clock_local;
1155         buffer->reader_lock_key = key;
1156
1157         /* need at least two pages */
1158         if (nr_pages < 2)
1159                 nr_pages = 2;
1160
1161         /*
1162          * In case of non-hotplug cpu, if the ring-buffer is allocated
1163          * in early initcall, it will not be notified of secondary cpus.
1164          * In that off case, we need to allocate for all possible cpus.
1165          */
1166 #ifdef CONFIG_HOTPLUG_CPU
1167         get_online_cpus();
1168         cpumask_copy(buffer->cpumask, cpu_online_mask);
1169 #else
1170         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1171 #endif
1172         buffer->cpus = nr_cpu_ids;
1173
1174         bsize = sizeof(void *) * nr_cpu_ids;
1175         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1176                                   GFP_KERNEL);
1177         if (!buffer->buffers)
1178                 goto fail_free_cpumask;
1179
1180         for_each_buffer_cpu(buffer, cpu) {
1181                 buffer->buffers[cpu] =
1182                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1183                 if (!buffer->buffers[cpu])
1184                         goto fail_free_buffers;
1185         }
1186
1187 #ifdef CONFIG_HOTPLUG_CPU
1188         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1189         buffer->cpu_notify.priority = 0;
1190         register_cpu_notifier(&buffer->cpu_notify);
1191 #endif
1192
1193         put_online_cpus();
1194         mutex_init(&buffer->mutex);
1195
1196         return buffer;
1197
1198  fail_free_buffers:
1199         for_each_buffer_cpu(buffer, cpu) {
1200                 if (buffer->buffers[cpu])
1201                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1202         }
1203         kfree(buffer->buffers);
1204
1205  fail_free_cpumask:
1206         free_cpumask_var(buffer->cpumask);
1207         put_online_cpus();
1208
1209  fail_free_buffer:
1210         kfree(buffer);
1211         return NULL;
1212 }
1213 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1214
1215 /**
1216  * ring_buffer_free - free a ring buffer.
1217  * @buffer: the buffer to free.
1218  */
1219 void
1220 ring_buffer_free(struct ring_buffer *buffer)
1221 {
1222         int cpu;
1223
1224         get_online_cpus();
1225
1226 #ifdef CONFIG_HOTPLUG_CPU
1227         unregister_cpu_notifier(&buffer->cpu_notify);
1228 #endif
1229
1230         for_each_buffer_cpu(buffer, cpu)
1231                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1232
1233         put_online_cpus();
1234
1235         kfree(buffer->buffers);
1236         free_cpumask_var(buffer->cpumask);
1237
1238         kfree(buffer);
1239 }
1240 EXPORT_SYMBOL_GPL(ring_buffer_free);
1241
1242 void ring_buffer_set_clock(struct ring_buffer *buffer,
1243                            u64 (*clock)(void))
1244 {
1245         buffer->clock = clock;
1246 }
1247
1248 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1249
1250 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1251 {
1252         return local_read(&bpage->entries) & RB_WRITE_MASK;
1253 }
1254
1255 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1256 {
1257         return local_read(&bpage->write) & RB_WRITE_MASK;
1258 }
1259
1260 static int
1261 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1262 {
1263         struct list_head *tail_page, *to_remove, *next_page;
1264         struct buffer_page *to_remove_page, *tmp_iter_page;
1265         struct buffer_page *last_page, *first_page;
1266         unsigned int nr_removed;
1267         unsigned long head_bit;
1268         int page_entries;
1269
1270         head_bit = 0;
1271
1272         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1273         atomic_inc(&cpu_buffer->record_disabled);
1274         /*
1275          * We don't race with the readers since we have acquired the reader
1276          * lock. We also don't race with writers after disabling recording.
1277          * This makes it easy to figure out the first and the last page to be
1278          * removed from the list. We unlink all the pages in between including
1279          * the first and last pages. This is done in a busy loop so that we
1280          * lose the least number of traces.
1281          * The pages are freed after we restart recording and unlock readers.
1282          */
1283         tail_page = &cpu_buffer->tail_page->list;
1284
1285         /*
1286          * tail page might be on reader page, we remove the next page
1287          * from the ring buffer
1288          */
1289         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1290                 tail_page = rb_list_head(tail_page->next);
1291         to_remove = tail_page;
1292
1293         /* start of pages to remove */
1294         first_page = list_entry(rb_list_head(to_remove->next),
1295                                 struct buffer_page, list);
1296
1297         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1298                 to_remove = rb_list_head(to_remove)->next;
1299                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1300         }
1301
1302         next_page = rb_list_head(to_remove)->next;
1303
1304         /*
1305          * Now we remove all pages between tail_page and next_page.
1306          * Make sure that we have head_bit value preserved for the
1307          * next page
1308          */
1309         tail_page->next = (struct list_head *)((unsigned long)next_page |
1310                                                 head_bit);
1311         next_page = rb_list_head(next_page);
1312         next_page->prev = tail_page;
1313
1314         /* make sure pages points to a valid page in the ring buffer */
1315         cpu_buffer->pages = next_page;
1316
1317         /* update head page */
1318         if (head_bit)
1319                 cpu_buffer->head_page = list_entry(next_page,
1320                                                 struct buffer_page, list);
1321
1322         /*
1323          * change read pointer to make sure any read iterators reset
1324          * themselves
1325          */
1326         cpu_buffer->read = 0;
1327
1328         /* pages are removed, resume tracing and then free the pages */
1329         atomic_dec(&cpu_buffer->record_disabled);
1330         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1331
1332         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1333
1334         /* last buffer page to remove */
1335         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1336                                 list);
1337         tmp_iter_page = first_page;
1338
1339         do {
1340                 to_remove_page = tmp_iter_page;
1341                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1342
1343                 /* update the counters */
1344                 page_entries = rb_page_entries(to_remove_page);
1345                 if (page_entries) {
1346                         /*
1347                          * If something was added to this page, it was full
1348                          * since it is not the tail page. So we deduct the
1349                          * bytes consumed in ring buffer from here.
1350                          * Increment overrun to account for the lost events.
1351                          */
1352                         local_add(page_entries, &cpu_buffer->overrun);
1353                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1354                 }
1355
1356                 /*
1357                  * We have already removed references to this list item, just
1358                  * free up the buffer_page and its page
1359                  */
1360                 free_buffer_page(to_remove_page);
1361                 nr_removed--;
1362
1363         } while (to_remove_page != last_page);
1364
1365         RB_WARN_ON(cpu_buffer, nr_removed);
1366
1367         return nr_removed == 0;
1368 }
1369
1370 static int
1371 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1372 {
1373         struct list_head *pages = &cpu_buffer->new_pages;
1374         int retries, success;
1375
1376         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1377         /*
1378          * We are holding the reader lock, so the reader page won't be swapped
1379          * in the ring buffer. Now we are racing with the writer trying to
1380          * move head page and the tail page.
1381          * We are going to adapt the reader page update process where:
1382          * 1. We first splice the start and end of list of new pages between
1383          *    the head page and its previous page.
1384          * 2. We cmpxchg the prev_page->next to point from head page to the
1385          *    start of new pages list.
1386          * 3. Finally, we update the head->prev to the end of new list.
1387          *
1388          * We will try this process 10 times, to make sure that we don't keep
1389          * spinning.
1390          */
1391         retries = 10;
1392         success = 0;
1393         while (retries--) {
1394                 struct list_head *head_page, *prev_page, *r;
1395                 struct list_head *last_page, *first_page;
1396                 struct list_head *head_page_with_bit;
1397
1398                 head_page = &rb_set_head_page(cpu_buffer)->list;
1399                 prev_page = head_page->prev;
1400
1401                 first_page = pages->next;
1402                 last_page  = pages->prev;
1403
1404                 head_page_with_bit = (struct list_head *)
1405                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1406
1407                 last_page->next = head_page_with_bit;
1408                 first_page->prev = prev_page;
1409
1410                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1411
1412                 if (r == head_page_with_bit) {
1413                         /*
1414                          * yay, we replaced the page pointer to our new list,
1415                          * now, we just have to update to head page's prev
1416                          * pointer to point to end of list
1417                          */
1418                         head_page->prev = last_page;
1419                         success = 1;
1420                         break;
1421                 }
1422         }
1423
1424         if (success)
1425                 INIT_LIST_HEAD(pages);
1426         /*
1427          * If we weren't successful in adding in new pages, warn and stop
1428          * tracing
1429          */
1430         RB_WARN_ON(cpu_buffer, !success);
1431         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1432
1433         /* free pages if they weren't inserted */
1434         if (!success) {
1435                 struct buffer_page *bpage, *tmp;
1436                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1437                                          list) {
1438                         list_del_init(&bpage->list);
1439                         free_buffer_page(bpage);
1440                 }
1441         }
1442         return success;
1443 }
1444
1445 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1446 {
1447         int success;
1448
1449         if (cpu_buffer->nr_pages_to_update > 0)
1450                 success = rb_insert_pages(cpu_buffer);
1451         else
1452                 success = rb_remove_pages(cpu_buffer,
1453                                         -cpu_buffer->nr_pages_to_update);
1454
1455         if (success)
1456                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1457 }
1458
1459 static void update_pages_handler(struct work_struct *work)
1460 {
1461         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1462                         struct ring_buffer_per_cpu, update_pages_work);
1463         rb_update_pages(cpu_buffer);
1464         complete(&cpu_buffer->update_done);
1465 }
1466
1467 /**
1468  * ring_buffer_resize - resize the ring buffer
1469  * @buffer: the buffer to resize.
1470  * @size: the new size.
1471  *
1472  * Minimum size is 2 * BUF_PAGE_SIZE.
1473  *
1474  * Returns 0 on success and < 0 on failure.
1475  */
1476 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1477                         int cpu_id)
1478 {
1479         struct ring_buffer_per_cpu *cpu_buffer;
1480         unsigned nr_pages;
1481         int cpu, err = 0;
1482
1483         /*
1484          * Always succeed at resizing a non-existent buffer:
1485          */
1486         if (!buffer)
1487                 return size;
1488
1489         /* Make sure the requested buffer exists */
1490         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1491             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1492                 return size;
1493
1494         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1495         size *= BUF_PAGE_SIZE;
1496
1497         /* we need a minimum of two pages */
1498         if (size < BUF_PAGE_SIZE * 2)
1499                 size = BUF_PAGE_SIZE * 2;
1500
1501         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1502
1503         /*
1504          * Don't succeed if resizing is disabled, as a reader might be
1505          * manipulating the ring buffer and is expecting a sane state while
1506          * this is true.
1507          */
1508         if (atomic_read(&buffer->resize_disabled))
1509                 return -EBUSY;
1510
1511         /* prevent another thread from changing buffer sizes */
1512         mutex_lock(&buffer->mutex);
1513
1514         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1515                 /* calculate the pages to update */
1516                 for_each_buffer_cpu(buffer, cpu) {
1517                         cpu_buffer = buffer->buffers[cpu];
1518
1519                         cpu_buffer->nr_pages_to_update = nr_pages -
1520                                                         cpu_buffer->nr_pages;
1521                         /*
1522                          * nothing more to do for removing pages or no update
1523                          */
1524                         if (cpu_buffer->nr_pages_to_update <= 0)
1525                                 continue;
1526                         /*
1527                          * to add pages, make sure all new pages can be
1528                          * allocated without receiving ENOMEM
1529                          */
1530                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1531                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1532                                                 &cpu_buffer->new_pages, cpu)) {
1533                                 /* not enough memory for new pages */
1534                                 err = -ENOMEM;
1535                                 goto out_err;
1536                         }
1537                 }
1538
1539                 get_online_cpus();
1540                 /*
1541                  * Fire off all the required work handlers
1542                  * We can't schedule on offline CPUs, but it's not necessary
1543                  * since we can change their buffer sizes without any race.
1544                  */
1545                 for_each_buffer_cpu(buffer, cpu) {
1546                         cpu_buffer = buffer->buffers[cpu];
1547                         if (!cpu_buffer->nr_pages_to_update)
1548                                 continue;
1549
1550                         if (cpu_online(cpu))
1551                                 schedule_work_on(cpu,
1552                                                 &cpu_buffer->update_pages_work);
1553                         else
1554                                 rb_update_pages(cpu_buffer);
1555                 }
1556
1557                 /* wait for all the updates to complete */
1558                 for_each_buffer_cpu(buffer, cpu) {
1559                         cpu_buffer = buffer->buffers[cpu];
1560                         if (!cpu_buffer->nr_pages_to_update)
1561                                 continue;
1562
1563                         if (cpu_online(cpu))
1564                                 wait_for_completion(&cpu_buffer->update_done);
1565                         cpu_buffer->nr_pages_to_update = 0;
1566                 }
1567
1568                 put_online_cpus();
1569         } else {
1570                 /* Make sure this CPU has been intitialized */
1571                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1572                         goto out;
1573
1574                 cpu_buffer = buffer->buffers[cpu_id];
1575
1576                 if (nr_pages == cpu_buffer->nr_pages)
1577                         goto out;
1578
1579                 cpu_buffer->nr_pages_to_update = nr_pages -
1580                                                 cpu_buffer->nr_pages;
1581
1582                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1583                 if (cpu_buffer->nr_pages_to_update > 0 &&
1584                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1585                                             &cpu_buffer->new_pages, cpu_id)) {
1586                         err = -ENOMEM;
1587                         goto out_err;
1588                 }
1589
1590                 get_online_cpus();
1591
1592                 if (cpu_online(cpu_id)) {
1593                         schedule_work_on(cpu_id,
1594                                          &cpu_buffer->update_pages_work);
1595                         wait_for_completion(&cpu_buffer->update_done);
1596                 } else
1597                         rb_update_pages(cpu_buffer);
1598
1599                 cpu_buffer->nr_pages_to_update = 0;
1600                 put_online_cpus();
1601         }
1602
1603  out:
1604         /*
1605          * The ring buffer resize can happen with the ring buffer
1606          * enabled, so that the update disturbs the tracing as little
1607          * as possible. But if the buffer is disabled, we do not need
1608          * to worry about that, and we can take the time to verify
1609          * that the buffer is not corrupt.
1610          */
1611         if (atomic_read(&buffer->record_disabled)) {
1612                 atomic_inc(&buffer->record_disabled);
1613                 /*
1614                  * Even though the buffer was disabled, we must make sure
1615                  * that it is truly disabled before calling rb_check_pages.
1616                  * There could have been a race between checking
1617                  * record_disable and incrementing it.
1618                  */
1619                 synchronize_sched();
1620                 for_each_buffer_cpu(buffer, cpu) {
1621                         cpu_buffer = buffer->buffers[cpu];
1622                         rb_check_pages(cpu_buffer);
1623                 }
1624                 atomic_dec(&buffer->record_disabled);
1625         }
1626
1627         mutex_unlock(&buffer->mutex);
1628         return size;
1629
1630  out_err:
1631         for_each_buffer_cpu(buffer, cpu) {
1632                 struct buffer_page *bpage, *tmp;
1633
1634                 cpu_buffer = buffer->buffers[cpu];
1635                 cpu_buffer->nr_pages_to_update = 0;
1636
1637                 if (list_empty(&cpu_buffer->new_pages))
1638                         continue;
1639
1640                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1641                                         list) {
1642                         list_del_init(&bpage->list);
1643                         free_buffer_page(bpage);
1644                 }
1645         }
1646         mutex_unlock(&buffer->mutex);
1647         return err;
1648 }
1649 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1650
1651 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1652 {
1653         mutex_lock(&buffer->mutex);
1654         if (val)
1655                 buffer->flags |= RB_FL_OVERWRITE;
1656         else
1657                 buffer->flags &= ~RB_FL_OVERWRITE;
1658         mutex_unlock(&buffer->mutex);
1659 }
1660 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1661
1662 static inline void *
1663 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1664 {
1665         return bpage->data + index;
1666 }
1667
1668 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1669 {
1670         return bpage->page->data + index;
1671 }
1672
1673 static inline struct ring_buffer_event *
1674 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1675 {
1676         return __rb_page_index(cpu_buffer->reader_page,
1677                                cpu_buffer->reader_page->read);
1678 }
1679
1680 static inline struct ring_buffer_event *
1681 rb_iter_head_event(struct ring_buffer_iter *iter)
1682 {
1683         return __rb_page_index(iter->head_page, iter->head);
1684 }
1685
1686 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1687 {
1688         return local_read(&bpage->page->commit);
1689 }
1690
1691 /* Size is determined by what has been committed */
1692 static inline unsigned rb_page_size(struct buffer_page *bpage)
1693 {
1694         return rb_page_commit(bpage);
1695 }
1696
1697 static inline unsigned
1698 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1699 {
1700         return rb_page_commit(cpu_buffer->commit_page);
1701 }
1702
1703 static inline unsigned
1704 rb_event_index(struct ring_buffer_event *event)
1705 {
1706         unsigned long addr = (unsigned long)event;
1707
1708         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1709 }
1710
1711 static inline int
1712 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1713                    struct ring_buffer_event *event)
1714 {
1715         unsigned long addr = (unsigned long)event;
1716         unsigned long index;
1717
1718         index = rb_event_index(event);
1719         addr &= PAGE_MASK;
1720
1721         return cpu_buffer->commit_page->page == (void *)addr &&
1722                 rb_commit_index(cpu_buffer) == index;
1723 }
1724
1725 static void
1726 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1727 {
1728         unsigned long max_count;
1729
1730         /*
1731          * We only race with interrupts and NMIs on this CPU.
1732          * If we own the commit event, then we can commit
1733          * all others that interrupted us, since the interruptions
1734          * are in stack format (they finish before they come
1735          * back to us). This allows us to do a simple loop to
1736          * assign the commit to the tail.
1737          */
1738  again:
1739         max_count = cpu_buffer->nr_pages * 100;
1740
1741         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1742                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1743                         return;
1744                 if (RB_WARN_ON(cpu_buffer,
1745                                rb_is_reader_page(cpu_buffer->tail_page)))
1746                         return;
1747                 local_set(&cpu_buffer->commit_page->page->commit,
1748                           rb_page_write(cpu_buffer->commit_page));
1749                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1750                 cpu_buffer->write_stamp =
1751                         cpu_buffer->commit_page->page->time_stamp;
1752                 /* add barrier to keep gcc from optimizing too much */
1753                 barrier();
1754         }
1755         while (rb_commit_index(cpu_buffer) !=
1756                rb_page_write(cpu_buffer->commit_page)) {
1757
1758                 local_set(&cpu_buffer->commit_page->page->commit,
1759                           rb_page_write(cpu_buffer->commit_page));
1760                 RB_WARN_ON(cpu_buffer,
1761                            local_read(&cpu_buffer->commit_page->page->commit) &
1762                            ~RB_WRITE_MASK);
1763                 barrier();
1764         }
1765
1766         /* again, keep gcc from optimizing */
1767         barrier();
1768
1769         /*
1770          * If an interrupt came in just after the first while loop
1771          * and pushed the tail page forward, we will be left with
1772          * a dangling commit that will never go forward.
1773          */
1774         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1775                 goto again;
1776 }
1777
1778 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1779 {
1780         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1781         cpu_buffer->reader_page->read = 0;
1782 }
1783
1784 static void rb_inc_iter(struct ring_buffer_iter *iter)
1785 {
1786         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1787
1788         /*
1789          * The iterator could be on the reader page (it starts there).
1790          * But the head could have moved, since the reader was
1791          * found. Check for this case and assign the iterator
1792          * to the head page instead of next.
1793          */
1794         if (iter->head_page == cpu_buffer->reader_page)
1795                 iter->head_page = rb_set_head_page(cpu_buffer);
1796         else
1797                 rb_inc_page(cpu_buffer, &iter->head_page);
1798
1799         iter->read_stamp = iter->head_page->page->time_stamp;
1800         iter->head = 0;
1801 }
1802
1803 /* Slow path, do not inline */
1804 static noinline struct ring_buffer_event *
1805 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1806 {
1807         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1808
1809         /* Not the first event on the page? */
1810         if (rb_event_index(event)) {
1811                 event->time_delta = delta & TS_MASK;
1812                 event->array[0] = delta >> TS_SHIFT;
1813         } else {
1814                 /* nope, just zero it */
1815                 event->time_delta = 0;
1816                 event->array[0] = 0;
1817         }
1818
1819         return skip_time_extend(event);
1820 }
1821
1822 /**
1823  * ring_buffer_update_event - update event type and data
1824  * @event: the even to update
1825  * @type: the type of event
1826  * @length: the size of the event field in the ring buffer
1827  *
1828  * Update the type and data fields of the event. The length
1829  * is the actual size that is written to the ring buffer,
1830  * and with this, we can determine what to place into the
1831  * data field.
1832  */
1833 static void
1834 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1835                 struct ring_buffer_event *event, unsigned length,
1836                 int add_timestamp, u64 delta)
1837 {
1838         /* Only a commit updates the timestamp */
1839         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1840                 delta = 0;
1841
1842         /*
1843          * If we need to add a timestamp, then we
1844          * add it to the start of the resevered space.
1845          */
1846         if (unlikely(add_timestamp)) {
1847                 event = rb_add_time_stamp(event, delta);
1848                 length -= RB_LEN_TIME_EXTEND;
1849                 delta = 0;
1850         }
1851
1852         event->time_delta = delta;
1853         length -= RB_EVNT_HDR_SIZE;
1854         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1855                 event->type_len = 0;
1856                 event->array[0] = length;
1857         } else
1858                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1859 }
1860
1861 /*
1862  * rb_handle_head_page - writer hit the head page
1863  *
1864  * Returns: +1 to retry page
1865  *           0 to continue
1866  *          -1 on error
1867  */
1868 static int
1869 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1870                     struct buffer_page *tail_page,
1871                     struct buffer_page *next_page)
1872 {
1873         struct buffer_page *new_head;
1874         int entries;
1875         int type;
1876         int ret;
1877
1878         entries = rb_page_entries(next_page);
1879
1880         /*
1881          * The hard part is here. We need to move the head
1882          * forward, and protect against both readers on
1883          * other CPUs and writers coming in via interrupts.
1884          */
1885         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1886                                        RB_PAGE_HEAD);
1887
1888         /*
1889          * type can be one of four:
1890          *  NORMAL - an interrupt already moved it for us
1891          *  HEAD   - we are the first to get here.
1892          *  UPDATE - we are the interrupt interrupting
1893          *           a current move.
1894          *  MOVED  - a reader on another CPU moved the next
1895          *           pointer to its reader page. Give up
1896          *           and try again.
1897          */
1898
1899         switch (type) {
1900         case RB_PAGE_HEAD:
1901                 /*
1902                  * We changed the head to UPDATE, thus
1903                  * it is our responsibility to update
1904                  * the counters.
1905                  */
1906                 local_add(entries, &cpu_buffer->overrun);
1907                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1908
1909                 /*
1910                  * The entries will be zeroed out when we move the
1911                  * tail page.
1912                  */
1913
1914                 /* still more to do */
1915                 break;
1916
1917         case RB_PAGE_UPDATE:
1918                 /*
1919                  * This is an interrupt that interrupt the
1920                  * previous update. Still more to do.
1921                  */
1922                 break;
1923         case RB_PAGE_NORMAL:
1924                 /*
1925                  * An interrupt came in before the update
1926                  * and processed this for us.
1927                  * Nothing left to do.
1928                  */
1929                 return 1;
1930         case RB_PAGE_MOVED:
1931                 /*
1932                  * The reader is on another CPU and just did
1933                  * a swap with our next_page.
1934                  * Try again.
1935                  */
1936                 return 1;
1937         default:
1938                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1939                 return -1;
1940         }
1941
1942         /*
1943          * Now that we are here, the old head pointer is
1944          * set to UPDATE. This will keep the reader from
1945          * swapping the head page with the reader page.
1946          * The reader (on another CPU) will spin till
1947          * we are finished.
1948          *
1949          * We just need to protect against interrupts
1950          * doing the job. We will set the next pointer
1951          * to HEAD. After that, we set the old pointer
1952          * to NORMAL, but only if it was HEAD before.
1953          * otherwise we are an interrupt, and only
1954          * want the outer most commit to reset it.
1955          */
1956         new_head = next_page;
1957         rb_inc_page(cpu_buffer, &new_head);
1958
1959         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1960                                     RB_PAGE_NORMAL);
1961
1962         /*
1963          * Valid returns are:
1964          *  HEAD   - an interrupt came in and already set it.
1965          *  NORMAL - One of two things:
1966          *            1) We really set it.
1967          *            2) A bunch of interrupts came in and moved
1968          *               the page forward again.
1969          */
1970         switch (ret) {
1971         case RB_PAGE_HEAD:
1972         case RB_PAGE_NORMAL:
1973                 /* OK */
1974                 break;
1975         default:
1976                 RB_WARN_ON(cpu_buffer, 1);
1977                 return -1;
1978         }
1979
1980         /*
1981          * It is possible that an interrupt came in,
1982          * set the head up, then more interrupts came in
1983          * and moved it again. When we get back here,
1984          * the page would have been set to NORMAL but we
1985          * just set it back to HEAD.
1986          *
1987          * How do you detect this? Well, if that happened
1988          * the tail page would have moved.
1989          */
1990         if (ret == RB_PAGE_NORMAL) {
1991                 /*
1992                  * If the tail had moved passed next, then we need
1993                  * to reset the pointer.
1994                  */
1995                 if (cpu_buffer->tail_page != tail_page &&
1996                     cpu_buffer->tail_page != next_page)
1997                         rb_head_page_set_normal(cpu_buffer, new_head,
1998                                                 next_page,
1999                                                 RB_PAGE_HEAD);
2000         }
2001
2002         /*
2003          * If this was the outer most commit (the one that
2004          * changed the original pointer from HEAD to UPDATE),
2005          * then it is up to us to reset it to NORMAL.
2006          */
2007         if (type == RB_PAGE_HEAD) {
2008                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2009                                               tail_page,
2010                                               RB_PAGE_UPDATE);
2011                 if (RB_WARN_ON(cpu_buffer,
2012                                ret != RB_PAGE_UPDATE))
2013                         return -1;
2014         }
2015
2016         return 0;
2017 }
2018
2019 static unsigned rb_calculate_event_length(unsigned length)
2020 {
2021         struct ring_buffer_event event; /* Used only for sizeof array */
2022
2023         /* zero length can cause confusions */
2024         if (!length)
2025                 length = 1;
2026
2027         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2028                 length += sizeof(event.array[0]);
2029
2030         length += RB_EVNT_HDR_SIZE;
2031         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2032
2033         return length;
2034 }
2035
2036 static inline void
2037 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2038               struct buffer_page *tail_page,
2039               unsigned long tail, unsigned long length)
2040 {
2041         struct ring_buffer_event *event;
2042
2043         /*
2044          * Only the event that crossed the page boundary
2045          * must fill the old tail_page with padding.
2046          */
2047         if (tail >= BUF_PAGE_SIZE) {
2048                 /*
2049                  * If the page was filled, then we still need
2050                  * to update the real_end. Reset it to zero
2051                  * and the reader will ignore it.
2052                  */
2053                 if (tail == BUF_PAGE_SIZE)
2054                         tail_page->real_end = 0;
2055
2056                 local_sub(length, &tail_page->write);
2057                 return;
2058         }
2059
2060         event = __rb_page_index(tail_page, tail);
2061         kmemcheck_annotate_bitfield(event, bitfield);
2062
2063         /* account for padding bytes */
2064         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2065
2066         /*
2067          * Save the original length to the meta data.
2068          * This will be used by the reader to add lost event
2069          * counter.
2070          */
2071         tail_page->real_end = tail;
2072
2073         /*
2074          * If this event is bigger than the minimum size, then
2075          * we need to be careful that we don't subtract the
2076          * write counter enough to allow another writer to slip
2077          * in on this page.
2078          * We put in a discarded commit instead, to make sure
2079          * that this space is not used again.
2080          *
2081          * If we are less than the minimum size, we don't need to
2082          * worry about it.
2083          */
2084         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2085                 /* No room for any events */
2086
2087                 /* Mark the rest of the page with padding */
2088                 rb_event_set_padding(event);
2089
2090                 /* Set the write back to the previous setting */
2091                 local_sub(length, &tail_page->write);
2092                 return;
2093         }
2094
2095         /* Put in a discarded event */
2096         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2097         event->type_len = RINGBUF_TYPE_PADDING;
2098         /* time delta must be non zero */
2099         event->time_delta = 1;
2100
2101         /* Set write to end of buffer */
2102         length = (tail + length) - BUF_PAGE_SIZE;
2103         local_sub(length, &tail_page->write);
2104 }
2105
2106 /*
2107  * This is the slow path, force gcc not to inline it.
2108  */
2109 static noinline struct ring_buffer_event *
2110 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2111              unsigned long length, unsigned long tail,
2112              struct buffer_page *tail_page, u64 ts)
2113 {
2114         struct buffer_page *commit_page = cpu_buffer->commit_page;
2115         struct ring_buffer *buffer = cpu_buffer->buffer;
2116         struct buffer_page *next_page;
2117         int ret;
2118
2119         next_page = tail_page;
2120
2121         rb_inc_page(cpu_buffer, &next_page);
2122
2123         /*
2124          * If for some reason, we had an interrupt storm that made
2125          * it all the way around the buffer, bail, and warn
2126          * about it.
2127          */
2128         if (unlikely(next_page == commit_page)) {
2129                 local_inc(&cpu_buffer->commit_overrun);
2130                 goto out_reset;
2131         }
2132
2133         /*
2134          * This is where the fun begins!
2135          *
2136          * We are fighting against races between a reader that
2137          * could be on another CPU trying to swap its reader
2138          * page with the buffer head.
2139          *
2140          * We are also fighting against interrupts coming in and
2141          * moving the head or tail on us as well.
2142          *
2143          * If the next page is the head page then we have filled
2144          * the buffer, unless the commit page is still on the
2145          * reader page.
2146          */
2147         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2148
2149                 /*
2150                  * If the commit is not on the reader page, then
2151                  * move the header page.
2152                  */
2153                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2154                         /*
2155                          * If we are not in overwrite mode,
2156                          * this is easy, just stop here.
2157                          */
2158                         if (!(buffer->flags & RB_FL_OVERWRITE))
2159                                 goto out_reset;
2160
2161                         ret = rb_handle_head_page(cpu_buffer,
2162                                                   tail_page,
2163                                                   next_page);
2164                         if (ret < 0)
2165                                 goto out_reset;
2166                         if (ret)
2167                                 goto out_again;
2168                 } else {
2169                         /*
2170                          * We need to be careful here too. The
2171                          * commit page could still be on the reader
2172                          * page. We could have a small buffer, and
2173                          * have filled up the buffer with events
2174                          * from interrupts and such, and wrapped.
2175                          *
2176                          * Note, if the tail page is also the on the
2177                          * reader_page, we let it move out.
2178                          */
2179                         if (unlikely((cpu_buffer->commit_page !=
2180                                       cpu_buffer->tail_page) &&
2181                                      (cpu_buffer->commit_page ==
2182                                       cpu_buffer->reader_page))) {
2183                                 local_inc(&cpu_buffer->commit_overrun);
2184                                 goto out_reset;
2185                         }
2186                 }
2187         }
2188
2189         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2190         if (ret) {
2191                 /*
2192                  * Nested commits always have zero deltas, so
2193                  * just reread the time stamp
2194                  */
2195                 ts = rb_time_stamp(buffer);
2196                 next_page->page->time_stamp = ts;
2197         }
2198
2199  out_again:
2200
2201         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2202
2203         /* fail and let the caller try again */
2204         return ERR_PTR(-EAGAIN);
2205
2206  out_reset:
2207         /* reset write */
2208         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2209
2210         return NULL;
2211 }
2212
2213 static struct ring_buffer_event *
2214 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2215                   unsigned long length, u64 ts,
2216                   u64 delta, int add_timestamp)
2217 {
2218         struct buffer_page *tail_page;
2219         struct ring_buffer_event *event;
2220         unsigned long tail, write;
2221
2222         /*
2223          * If the time delta since the last event is too big to
2224          * hold in the time field of the event, then we append a
2225          * TIME EXTEND event ahead of the data event.
2226          */
2227         if (unlikely(add_timestamp))
2228                 length += RB_LEN_TIME_EXTEND;
2229
2230         tail_page = cpu_buffer->tail_page;
2231         write = local_add_return(length, &tail_page->write);
2232
2233         /* set write to only the index of the write */
2234         write &= RB_WRITE_MASK;
2235         tail = write - length;
2236
2237         /* See if we shot pass the end of this buffer page */
2238         if (unlikely(write > BUF_PAGE_SIZE))
2239                 return rb_move_tail(cpu_buffer, length, tail,
2240                                     tail_page, ts);
2241
2242         /* We reserved something on the buffer */
2243
2244         event = __rb_page_index(tail_page, tail);
2245         kmemcheck_annotate_bitfield(event, bitfield);
2246         rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2247
2248         local_inc(&tail_page->entries);
2249
2250         /*
2251          * If this is the first commit on the page, then update
2252          * its timestamp.
2253          */
2254         if (!tail)
2255                 tail_page->page->time_stamp = ts;
2256
2257         /* account for these added bytes */
2258         local_add(length, &cpu_buffer->entries_bytes);
2259
2260         return event;
2261 }
2262
2263 static inline int
2264 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2265                   struct ring_buffer_event *event)
2266 {
2267         unsigned long new_index, old_index;
2268         struct buffer_page *bpage;
2269         unsigned long index;
2270         unsigned long addr;
2271
2272         new_index = rb_event_index(event);
2273         old_index = new_index + rb_event_ts_length(event);
2274         addr = (unsigned long)event;
2275         addr &= PAGE_MASK;
2276
2277         bpage = cpu_buffer->tail_page;
2278
2279         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2280                 unsigned long write_mask =
2281                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2282                 unsigned long event_length = rb_event_length(event);
2283                 /*
2284                  * This is on the tail page. It is possible that
2285                  * a write could come in and move the tail page
2286                  * and write to the next page. That is fine
2287                  * because we just shorten what is on this page.
2288                  */
2289                 old_index += write_mask;
2290                 new_index += write_mask;
2291                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2292                 if (index == old_index) {
2293                         /* update counters */
2294                         local_sub(event_length, &cpu_buffer->entries_bytes);
2295                         return 1;
2296                 }
2297         }
2298
2299         /* could not discard */
2300         return 0;
2301 }
2302
2303 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2304 {
2305         local_inc(&cpu_buffer->committing);
2306         local_inc(&cpu_buffer->commits);
2307 }
2308
2309 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2310 {
2311         unsigned long commits;
2312
2313         if (RB_WARN_ON(cpu_buffer,
2314                        !local_read(&cpu_buffer->committing)))
2315                 return;
2316
2317  again:
2318         commits = local_read(&cpu_buffer->commits);
2319         /* synchronize with interrupts */
2320         barrier();
2321         if (local_read(&cpu_buffer->committing) == 1)
2322                 rb_set_commit_to_write(cpu_buffer);
2323
2324         local_dec(&cpu_buffer->committing);
2325
2326         /* synchronize with interrupts */
2327         barrier();
2328
2329         /*
2330          * Need to account for interrupts coming in between the
2331          * updating of the commit page and the clearing of the
2332          * committing counter.
2333          */
2334         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2335             !local_read(&cpu_buffer->committing)) {
2336                 local_inc(&cpu_buffer->committing);
2337                 goto again;
2338         }
2339 }
2340
2341 static struct ring_buffer_event *
2342 rb_reserve_next_event(struct ring_buffer *buffer,
2343                       struct ring_buffer_per_cpu *cpu_buffer,
2344                       unsigned long length)
2345 {
2346         struct ring_buffer_event *event;
2347         u64 ts, delta;
2348         int nr_loops = 0;
2349         int add_timestamp;
2350         u64 diff;
2351
2352         rb_start_commit(cpu_buffer);
2353
2354 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2355         /*
2356          * Due to the ability to swap a cpu buffer from a buffer
2357          * it is possible it was swapped before we committed.
2358          * (committing stops a swap). We check for it here and
2359          * if it happened, we have to fail the write.
2360          */
2361         barrier();
2362         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2363                 local_dec(&cpu_buffer->committing);
2364                 local_dec(&cpu_buffer->commits);
2365                 return NULL;
2366         }
2367 #endif
2368
2369         length = rb_calculate_event_length(length);
2370  again:
2371         add_timestamp = 0;
2372         delta = 0;
2373
2374         /*
2375          * We allow for interrupts to reenter here and do a trace.
2376          * If one does, it will cause this original code to loop
2377          * back here. Even with heavy interrupts happening, this
2378          * should only happen a few times in a row. If this happens
2379          * 1000 times in a row, there must be either an interrupt
2380          * storm or we have something buggy.
2381          * Bail!
2382          */
2383         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2384                 goto out_fail;
2385
2386         ts = rb_time_stamp(cpu_buffer->buffer);
2387         diff = ts - cpu_buffer->write_stamp;
2388
2389         /* make sure this diff is calculated here */
2390         barrier();
2391
2392         /* Did the write stamp get updated already? */
2393         if (likely(ts >= cpu_buffer->write_stamp)) {
2394                 delta = diff;
2395                 if (unlikely(test_time_stamp(delta))) {
2396                         int local_clock_stable = 1;
2397 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2398                         local_clock_stable = sched_clock_stable;
2399 #endif
2400                         WARN_ONCE(delta > (1ULL << 59),
2401                                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2402                                   (unsigned long long)delta,
2403                                   (unsigned long long)ts,
2404                                   (unsigned long long)cpu_buffer->write_stamp,
2405                                   local_clock_stable ? "" :
2406                                   "If you just came from a suspend/resume,\n"
2407                                   "please switch to the trace global clock:\n"
2408                                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2409                         add_timestamp = 1;
2410                 }
2411         }
2412
2413         event = __rb_reserve_next(cpu_buffer, length, ts,
2414                                   delta, add_timestamp);
2415         if (unlikely(PTR_ERR(event) == -EAGAIN))
2416                 goto again;
2417
2418         if (!event)
2419                 goto out_fail;
2420
2421         return event;
2422
2423  out_fail:
2424         rb_end_commit(cpu_buffer);
2425         return NULL;
2426 }
2427
2428 #ifdef CONFIG_TRACING
2429
2430 #define TRACE_RECURSIVE_DEPTH 16
2431
2432 /* Keep this code out of the fast path cache */
2433 static noinline void trace_recursive_fail(void)
2434 {
2435         /* Disable all tracing before we do anything else */
2436         tracing_off_permanent();
2437
2438         printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2439                     "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2440                     trace_recursion_buffer(),
2441                     hardirq_count() >> HARDIRQ_SHIFT,
2442                     softirq_count() >> SOFTIRQ_SHIFT,
2443                     in_nmi());
2444
2445         WARN_ON_ONCE(1);
2446 }
2447
2448 static inline int trace_recursive_lock(void)
2449 {
2450         trace_recursion_inc();
2451
2452         if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
2453                 return 0;
2454
2455         trace_recursive_fail();
2456
2457         return -1;
2458 }
2459
2460 static inline void trace_recursive_unlock(void)
2461 {
2462         WARN_ON_ONCE(!trace_recursion_buffer());
2463
2464         trace_recursion_dec();
2465 }
2466
2467 #else
2468
2469 #define trace_recursive_lock()          (0)
2470 #define trace_recursive_unlock()        do { } while (0)
2471
2472 #endif
2473
2474 /**
2475  * ring_buffer_lock_reserve - reserve a part of the buffer
2476  * @buffer: the ring buffer to reserve from
2477  * @length: the length of the data to reserve (excluding event header)
2478  *
2479  * Returns a reseverd event on the ring buffer to copy directly to.
2480  * The user of this interface will need to get the body to write into
2481  * and can use the ring_buffer_event_data() interface.
2482  *
2483  * The length is the length of the data needed, not the event length
2484  * which also includes the event header.
2485  *
2486  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2487  * If NULL is returned, then nothing has been allocated or locked.
2488  */
2489 struct ring_buffer_event *
2490 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2491 {
2492         struct ring_buffer_per_cpu *cpu_buffer;
2493         struct ring_buffer_event *event;
2494         int cpu;
2495
2496         if (ring_buffer_flags != RB_BUFFERS_ON)
2497                 return NULL;
2498
2499         /* If we are tracing schedule, we don't want to recurse */
2500         preempt_disable_notrace();
2501
2502         if (atomic_read(&buffer->record_disabled))
2503                 goto out_nocheck;
2504
2505         if (trace_recursive_lock())
2506                 goto out_nocheck;
2507
2508         cpu = raw_smp_processor_id();
2509
2510         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2511                 goto out;
2512
2513         cpu_buffer = buffer->buffers[cpu];
2514
2515         if (atomic_read(&cpu_buffer->record_disabled))
2516                 goto out;
2517
2518         if (length > BUF_MAX_DATA_SIZE)
2519                 goto out;
2520
2521         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2522         if (!event)
2523                 goto out;
2524
2525         return event;
2526
2527  out:
2528         trace_recursive_unlock();
2529
2530  out_nocheck:
2531         preempt_enable_notrace();
2532         return NULL;
2533 }
2534 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2535
2536 static void
2537 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2538                       struct ring_buffer_event *event)
2539 {
2540         u64 delta;
2541
2542         /*
2543          * The event first in the commit queue updates the
2544          * time stamp.
2545          */
2546         if (rb_event_is_commit(cpu_buffer, event)) {
2547                 /*
2548                  * A commit event that is first on a page
2549                  * updates the write timestamp with the page stamp
2550                  */
2551                 if (!rb_event_index(event))
2552                         cpu_buffer->write_stamp =
2553                                 cpu_buffer->commit_page->page->time_stamp;
2554                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2555                         delta = event->array[0];
2556                         delta <<= TS_SHIFT;
2557                         delta += event->time_delta;
2558                         cpu_buffer->write_stamp += delta;
2559                 } else
2560                         cpu_buffer->write_stamp += event->time_delta;
2561         }
2562 }
2563
2564 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2565                       struct ring_buffer_event *event)
2566 {
2567         local_inc(&cpu_buffer->entries);
2568         rb_update_write_stamp(cpu_buffer, event);
2569         rb_end_commit(cpu_buffer);
2570 }
2571
2572 /**
2573  * ring_buffer_unlock_commit - commit a reserved
2574  * @buffer: The buffer to commit to
2575  * @event: The event pointer to commit.
2576  *
2577  * This commits the data to the ring buffer, and releases any locks held.
2578  *
2579  * Must be paired with ring_buffer_lock_reserve.
2580  */
2581 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2582                               struct ring_buffer_event *event)
2583 {
2584         struct ring_buffer_per_cpu *cpu_buffer;
2585         int cpu = raw_smp_processor_id();
2586
2587         cpu_buffer = buffer->buffers[cpu];
2588
2589         rb_commit(cpu_buffer, event);
2590
2591         trace_recursive_unlock();
2592
2593         preempt_enable_notrace();
2594
2595         return 0;
2596 }
2597 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2598
2599 static inline void rb_event_discard(struct ring_buffer_event *event)
2600 {
2601         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2602                 event = skip_time_extend(event);
2603
2604         /* array[0] holds the actual length for the discarded event */
2605         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2606         event->type_len = RINGBUF_TYPE_PADDING;
2607         /* time delta must be non zero */
2608         if (!event->time_delta)
2609                 event->time_delta = 1;
2610 }
2611
2612 /*
2613  * Decrement the entries to the page that an event is on.
2614  * The event does not even need to exist, only the pointer
2615  * to the page it is on. This may only be called before the commit
2616  * takes place.
2617  */
2618 static inline void
2619 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2620                    struct ring_buffer_event *event)
2621 {
2622         unsigned long addr = (unsigned long)event;
2623         struct buffer_page *bpage = cpu_buffer->commit_page;
2624         struct buffer_page *start;
2625
2626         addr &= PAGE_MASK;
2627
2628         /* Do the likely case first */
2629         if (likely(bpage->page == (void *)addr)) {
2630                 local_dec(&bpage->entries);
2631                 return;
2632         }
2633
2634         /*
2635          * Because the commit page may be on the reader page we
2636          * start with the next page and check the end loop there.
2637          */
2638         rb_inc_page(cpu_buffer, &bpage);
2639         start = bpage;
2640         do {
2641                 if (bpage->page == (void *)addr) {
2642                         local_dec(&bpage->entries);
2643                         return;
2644                 }
2645                 rb_inc_page(cpu_buffer, &bpage);
2646         } while (bpage != start);
2647
2648         /* commit not part of this buffer?? */
2649         RB_WARN_ON(cpu_buffer, 1);
2650 }
2651
2652 /**
2653  * ring_buffer_commit_discard - discard an event that has not been committed
2654  * @buffer: the ring buffer
2655  * @event: non committed event to discard
2656  *
2657  * Sometimes an event that is in the ring buffer needs to be ignored.
2658  * This function lets the user discard an event in the ring buffer
2659  * and then that event will not be read later.
2660  *
2661  * This function only works if it is called before the the item has been
2662  * committed. It will try to free the event from the ring buffer
2663  * if another event has not been added behind it.
2664  *
2665  * If another event has been added behind it, it will set the event
2666  * up as discarded, and perform the commit.
2667  *
2668  * If this function is called, do not call ring_buffer_unlock_commit on
2669  * the event.
2670  */
2671 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2672                                 struct ring_buffer_event *event)
2673 {
2674         struct ring_buffer_per_cpu *cpu_buffer;
2675         int cpu;
2676
2677         /* The event is discarded regardless */
2678         rb_event_discard(event);
2679
2680         cpu = smp_processor_id();
2681         cpu_buffer = buffer->buffers[cpu];
2682
2683         /*
2684          * This must only be called if the event has not been
2685          * committed yet. Thus we can assume that preemption
2686          * is still disabled.
2687          */
2688         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2689
2690         rb_decrement_entry(cpu_buffer, event);
2691         if (rb_try_to_discard(cpu_buffer, event))
2692                 goto out;
2693
2694         /*
2695          * The commit is still visible by the reader, so we
2696          * must still update the timestamp.
2697          */
2698         rb_update_write_stamp(cpu_buffer, event);
2699  out:
2700         rb_end_commit(cpu_buffer);
2701
2702         trace_recursive_unlock();
2703
2704         preempt_enable_notrace();
2705
2706 }
2707 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2708
2709 /**
2710  * ring_buffer_write - write data to the buffer without reserving
2711  * @buffer: The ring buffer to write to.
2712  * @length: The length of the data being written (excluding the event header)
2713  * @data: The data to write to the buffer.
2714  *
2715  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2716  * one function. If you already have the data to write to the buffer, it
2717  * may be easier to simply call this function.
2718  *
2719  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2720  * and not the length of the event which would hold the header.
2721  */
2722 int ring_buffer_write(struct ring_buffer *buffer,
2723                         unsigned long length,
2724                         void *data)
2725 {
2726         struct ring_buffer_per_cpu *cpu_buffer;
2727         struct ring_buffer_event *event;
2728         void *body;
2729         int ret = -EBUSY;
2730         int cpu;
2731
2732         if (ring_buffer_flags != RB_BUFFERS_ON)
2733                 return -EBUSY;
2734
2735         preempt_disable_notrace();
2736
2737         if (atomic_read(&buffer->record_disabled))
2738                 goto out;
2739
2740         cpu = raw_smp_processor_id();
2741
2742         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2743                 goto out;
2744
2745         cpu_buffer = buffer->buffers[cpu];
2746
2747         if (atomic_read(&cpu_buffer->record_disabled))
2748                 goto out;
2749
2750         if (length > BUF_MAX_DATA_SIZE)
2751                 goto out;
2752
2753         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2754         if (!event)
2755                 goto out;
2756
2757         body = rb_event_data(event);
2758
2759         memcpy(body, data, length);
2760
2761         rb_commit(cpu_buffer, event);
2762
2763         ret = 0;
2764  out:
2765         preempt_enable_notrace();
2766
2767         return ret;
2768 }
2769 EXPORT_SYMBOL_GPL(ring_buffer_write);
2770
2771 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2772 {
2773         struct buffer_page *reader = cpu_buffer->reader_page;
2774         struct buffer_page *head = rb_set_head_page(cpu_buffer);
2775         struct buffer_page *commit = cpu_buffer->commit_page;
2776
2777         /* In case of error, head will be NULL */
2778         if (unlikely(!head))
2779                 return 1;
2780
2781         return reader->read == rb_page_commit(reader) &&
2782                 (commit == reader ||
2783                  (commit == head &&
2784                   head->read == rb_page_commit(commit)));
2785 }
2786
2787 /**
2788  * ring_buffer_record_disable - stop all writes into the buffer
2789  * @buffer: The ring buffer to stop writes to.
2790  *
2791  * This prevents all writes to the buffer. Any attempt to write
2792  * to the buffer after this will fail and return NULL.
2793  *
2794  * The caller should call synchronize_sched() after this.
2795  */
2796 void ring_buffer_record_disable(struct ring_buffer *buffer)
2797 {
2798         atomic_inc(&buffer->record_disabled);
2799 }
2800 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2801
2802 /**
2803  * ring_buffer_record_enable - enable writes to the buffer
2804  * @buffer: The ring buffer to enable writes
2805  *
2806  * Note, multiple disables will need the same number of enables
2807  * to truly enable the writing (much like preempt_disable).
2808  */
2809 void ring_buffer_record_enable(struct ring_buffer *buffer)
2810 {
2811         atomic_dec(&buffer->record_disabled);
2812 }
2813 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2814
2815 /**
2816  * ring_buffer_record_off - stop all writes into the buffer
2817  * @buffer: The ring buffer to stop writes to.
2818  *
2819  * This prevents all writes to the buffer. Any attempt to write
2820  * to the buffer after this will fail and return NULL.
2821  *
2822  * This is different than ring_buffer_record_disable() as
2823  * it works like an on/off switch, where as the disable() version
2824  * must be paired with a enable().
2825  */
2826 void ring_buffer_record_off(struct ring_buffer *buffer)
2827 {
2828         unsigned int rd;
2829         unsigned int new_rd;
2830
2831         do {
2832                 rd = atomic_read(&buffer->record_disabled);
2833                 new_rd = rd | RB_BUFFER_OFF;
2834         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2835 }
2836 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2837
2838 /**
2839  * ring_buffer_record_on - restart writes into the buffer
2840  * @buffer: The ring buffer to start writes to.
2841  *
2842  * This enables all writes to the buffer that was disabled by
2843  * ring_buffer_record_off().
2844  *
2845  * This is different than ring_buffer_record_enable() as
2846  * it works like an on/off switch, where as the enable() version
2847  * must be paired with a disable().
2848  */
2849 void ring_buffer_record_on(struct ring_buffer *buffer)
2850 {
2851         unsigned int rd;
2852         unsigned int new_rd;
2853
2854         do {
2855                 rd = atomic_read(&buffer->record_disabled);
2856                 new_rd = rd & ~RB_BUFFER_OFF;
2857         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2858 }
2859 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2860
2861 /**
2862  * ring_buffer_record_is_on - return true if the ring buffer can write
2863  * @buffer: The ring buffer to see if write is enabled
2864  *
2865  * Returns true if the ring buffer is in a state that it accepts writes.
2866  */
2867 int ring_buffer_record_is_on(struct ring_buffer *buffer)
2868 {
2869         return !atomic_read(&buffer->record_disabled);
2870 }
2871
2872 /**
2873  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2874  * @buffer: The ring buffer to stop writes to.
2875  * @cpu: The CPU buffer to stop
2876  *
2877  * This prevents all writes to the buffer. Any attempt to write
2878  * to the buffer after this will fail and return NULL.
2879  *
2880  * The caller should call synchronize_sched() after this.
2881  */
2882 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2883 {
2884         struct ring_buffer_per_cpu *cpu_buffer;
2885
2886         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2887                 return;
2888
2889         cpu_buffer = buffer->buffers[cpu];
2890         atomic_inc(&cpu_buffer->record_disabled);
2891 }
2892 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2893
2894 /**
2895  * ring_buffer_record_enable_cpu - enable writes to the buffer
2896  * @buffer: The ring buffer to enable writes
2897  * @cpu: The CPU to enable.
2898  *
2899  * Note, multiple disables will need the same number of enables
2900  * to truly enable the writing (much like preempt_disable).
2901  */
2902 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2903 {
2904         struct ring_buffer_per_cpu *cpu_buffer;
2905
2906         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2907                 return;
2908
2909         cpu_buffer = buffer->buffers[cpu];
2910         atomic_dec(&cpu_buffer->record_disabled);
2911 }
2912 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2913
2914 /*
2915  * The total entries in the ring buffer is the running counter
2916  * of entries entered into the ring buffer, minus the sum of
2917  * the entries read from the ring buffer and the number of
2918  * entries that were overwritten.
2919  */
2920 static inline unsigned long
2921 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2922 {
2923         return local_read(&cpu_buffer->entries) -
2924                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2925 }
2926
2927 /**
2928  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2929  * @buffer: The ring buffer
2930  * @cpu: The per CPU buffer to read from.
2931  */
2932 unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2933 {
2934         unsigned long flags;
2935         struct ring_buffer_per_cpu *cpu_buffer;
2936         struct buffer_page *bpage;
2937         unsigned long ret;
2938
2939         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2940                 return 0;
2941
2942         cpu_buffer = buffer->buffers[cpu];
2943         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2944         /*
2945          * if the tail is on reader_page, oldest time stamp is on the reader
2946          * page
2947          */
2948         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2949                 bpage = cpu_buffer->reader_page;
2950         else
2951                 bpage = rb_set_head_page(cpu_buffer);
2952         ret = bpage->page->time_stamp;
2953         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2954
2955         return ret;
2956 }
2957 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2958
2959 /**
2960  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2961  * @buffer: The ring buffer
2962  * @cpu: The per CPU buffer to read from.
2963  */
2964 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
2965 {
2966         struct ring_buffer_per_cpu *cpu_buffer;
2967         unsigned long ret;
2968
2969         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2970                 return 0;
2971
2972         cpu_buffer = buffer->buffers[cpu];
2973         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
2974
2975         return ret;
2976 }
2977 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
2978
2979 /**
2980  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2981  * @buffer: The ring buffer
2982  * @cpu: The per CPU buffer to get the entries from.
2983  */
2984 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2985 {
2986         struct ring_buffer_per_cpu *cpu_buffer;
2987
2988         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2989                 return 0;
2990
2991         cpu_buffer = buffer->buffers[cpu];
2992
2993         return rb_num_of_entries(cpu_buffer);
2994 }
2995 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2996
2997 /**
2998  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2999  * @buffer: The ring buffer
3000  * @cpu: The per CPU buffer to get the number of overruns from
3001  */
3002 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3003 {
3004         struct ring_buffer_per_cpu *cpu_buffer;
3005         unsigned long ret;
3006
3007         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3008                 return 0;
3009
3010         cpu_buffer = buffer->buffers[cpu];
3011         ret = local_read(&cpu_buffer->overrun);
3012
3013         return ret;
3014 }
3015 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3016
3017 /**
3018  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
3019  * @buffer: The ring buffer
3020  * @cpu: The per CPU buffer to get the number of overruns from
3021  */
3022 unsigned long
3023 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3024 {
3025         struct ring_buffer_per_cpu *cpu_buffer;
3026         unsigned long ret;
3027
3028         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3029                 return 0;
3030
3031         cpu_buffer = buffer->buffers[cpu];
3032         ret = local_read(&cpu_buffer->commit_overrun);
3033
3034         return ret;
3035 }
3036 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3037
3038 /**
3039  * ring_buffer_entries - get the number of entries in a buffer
3040  * @buffer: The ring buffer
3041  *
3042  * Returns the total number of entries in the ring buffer
3043  * (all CPU entries)
3044  */
3045 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3046 {
3047         struct ring_buffer_per_cpu *cpu_buffer;
3048         unsigned long entries = 0;
3049         int cpu;
3050
3051         /* if you care about this being correct, lock the buffer */
3052         for_each_buffer_cpu(buffer, cpu) {
3053                 cpu_buffer = buffer->buffers[cpu];
3054                 entries += rb_num_of_entries(cpu_buffer);
3055         }
3056
3057         return entries;
3058 }
3059 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3060
3061 /**
3062  * ring_buffer_overruns - get the number of overruns in buffer
3063  * @buffer: The ring buffer
3064  *
3065  * Returns the total number of overruns in the ring buffer
3066  * (all CPU entries)
3067  */
3068 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3069 {
3070         struct ring_buffer_per_cpu *cpu_buffer;
3071         unsigned long overruns = 0;
3072         int cpu;
3073
3074         /* if you care about this being correct, lock the buffer */
3075         for_each_buffer_cpu(buffer, cpu) {
3076                 cpu_buffer = buffer->buffers[cpu];
3077                 overruns += local_read(&cpu_buffer->overrun);
3078         }
3079
3080         return overruns;
3081 }
3082 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3083
3084 static void rb_iter_reset(struct ring_buffer_iter *iter)
3085 {
3086         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3087
3088         /* Iterator usage is expected to have record disabled */
3089         if (list_empty(&cpu_buffer->reader_page->list)) {
3090                 iter->head_page = rb_set_head_page(cpu_buffer);
3091                 if (unlikely(!iter->head_page))
3092                         return;
3093                 iter->head = iter->head_page->read;
3094         } else {
3095                 iter->head_page = cpu_buffer->reader_page;
3096                 iter->head = cpu_buffer->reader_page->read;
3097         }
3098         if (iter->head)
3099                 iter->read_stamp = cpu_buffer->read_stamp;
3100         else
3101                 iter->read_stamp = iter->head_page->page->time_stamp;
3102         iter->cache_reader_page = cpu_buffer->reader_page;
3103         iter->cache_read = cpu_buffer->read;
3104 }
3105
3106 /**
3107  * ring_buffer_iter_reset - reset an iterator
3108  * @iter: The iterator to reset
3109  *
3110  * Resets the iterator, so that it will start from the beginning
3111  * again.
3112  */
3113 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3114 {
3115         struct ring_buffer_per_cpu *cpu_buffer;
3116         unsigned long flags;
3117
3118         if (!iter)
3119                 return;
3120
3121         cpu_buffer = iter->cpu_buffer;
3122
3123         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3124         rb_iter_reset(iter);
3125         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3126 }
3127 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3128
3129 /**
3130  * ring_buffer_iter_empty - check if an iterator has no more to read
3131  * @iter: The iterator to check
3132  */
3133 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3134 {
3135         struct ring_buffer_per_cpu *cpu_buffer;
3136
3137         cpu_buffer = iter->cpu_buffer;
3138
3139         return iter->head_page == cpu_buffer->commit_page &&
3140                 iter->head == rb_commit_index(cpu_buffer);
3141 }
3142 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3143
3144 static void
3145 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3146                      struct ring_buffer_event *event)
3147 {
3148         u64 delta;
3149
3150         switch (event->type_len) {
3151         case RINGBUF_TYPE_PADDING:
3152                 return;
3153
3154         case RINGBUF_TYPE_TIME_EXTEND:
3155                 delta = event->array[0];
3156                 delta <<= TS_SHIFT;
3157                 delta += event->time_delta;
3158                 cpu_buffer->read_stamp += delta;
3159                 return;
3160
3161         case RINGBUF_TYPE_TIME_STAMP:
3162                 /* FIXME: not implemented */
3163                 return;
3164
3165         case RINGBUF_TYPE_DATA:
3166                 cpu_buffer->read_stamp += event->time_delta;
3167                 return;
3168
3169         default:
3170                 BUG();
3171         }
3172         return;
3173 }
3174
3175 static void
3176 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3177                           struct ring_buffer_event *event)
3178 {
3179         u64 delta;
3180
3181         switch (event->type_len) {
3182         case RINGBUF_TYPE_PADDING:
3183                 return;
3184
3185         case RINGBUF_TYPE_TIME_EXTEND:
3186                 delta = event->array[0];
3187                 delta <<= TS_SHIFT;
3188                 delta += event->time_delta;
3189                 iter->read_stamp += delta;
3190                 return;
3191
3192         case RINGBUF_TYPE_TIME_STAMP:
3193                 /* FIXME: not implemented */
3194                 return;
3195
3196         case RINGBUF_TYPE_DATA:
3197                 iter->read_stamp += event->time_delta;
3198                 return;
3199
3200         default:
3201                 BUG();
3202         }
3203         return;
3204 }
3205
3206 static struct buffer_page *
3207 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3208 {
3209         struct buffer_page *reader = NULL;
3210         unsigned long overwrite;
3211         unsigned long flags;
3212         int nr_loops = 0;
3213         int ret;
3214
3215         local_irq_save(flags);
3216         arch_spin_lock(&cpu_buffer->lock);
3217
3218  again:
3219         /*
3220          * This should normally only loop twice. But because the
3221          * start of the reader inserts an empty page, it causes
3222          * a case where we will loop three times. There should be no
3223          * reason to loop four times (that I know of).
3224          */
3225         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3226                 reader = NULL;
3227                 goto out;
3228         }
3229
3230         reader = cpu_buffer->reader_page;
3231
3232         /* If there's more to read, return this page */
3233         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3234                 goto out;
3235
3236         /* Never should we have an index greater than the size */
3237         if (RB_WARN_ON(cpu_buffer,
3238                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3239                 goto out;
3240
3241         /* check if we caught up to the tail */
3242         reader = NULL;
3243         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3244                 goto out;
3245
3246         /* Don't bother swapping if the ring buffer is empty */
3247         if (rb_num_of_entries(cpu_buffer) == 0)
3248                 goto out;
3249
3250         /*
3251          * Reset the reader page to size zero.
3252          */
3253         local_set(&cpu_buffer->reader_page->write, 0);
3254         local_set(&cpu_buffer->reader_page->entries, 0);
3255         local_set(&cpu_buffer->reader_page->page->commit, 0);
3256         cpu_buffer->reader_page->real_end = 0;
3257
3258  spin:
3259         /*
3260          * Splice the empty reader page into the list around the head.
3261          */
3262         reader = rb_set_head_page(cpu_buffer);
3263         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3264         cpu_buffer->reader_page->list.prev = reader->list.prev;
3265
3266         /*
3267          * cpu_buffer->pages just needs to point to the buffer, it
3268          *  has no specific buffer page to point to. Lets move it out
3269          *  of our way so we don't accidentally swap it.
3270          */
3271         cpu_buffer->pages = reader->list.prev;
3272
3273         /* The reader page will be pointing to the new head */
3274         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3275
3276         /*
3277          * We want to make sure we read the overruns after we set up our
3278          * pointers to the next object. The writer side does a
3279          * cmpxchg to cross pages which acts as the mb on the writer
3280          * side. Note, the reader will constantly fail the swap
3281          * while the writer is updating the pointers, so this
3282          * guarantees that the overwrite recorded here is the one we
3283          * want to compare with the last_overrun.
3284          */
3285         smp_mb();
3286         overwrite = local_read(&(cpu_buffer->overrun));
3287
3288         /*
3289          * Here's the tricky part.
3290          *
3291          * We need to move the pointer past the header page.
3292          * But we can only do that if a writer is not currently
3293          * moving it. The page before the header page has the
3294          * flag bit '1' set if it is pointing to the page we want.
3295          * but if the writer is in the process of moving it
3296          * than it will be '2' or already moved '0'.
3297          */
3298
3299         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3300
3301         /*
3302          * If we did not convert it, then we must try again.
3303          */
3304         if (!ret)
3305                 goto spin;
3306
3307         /*
3308          * Yeah! We succeeded in replacing the page.
3309          *
3310          * Now make the new head point back to the reader page.
3311          */
3312         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3313         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3314
3315         /* Finally update the reader page to the new head */
3316         cpu_buffer->reader_page = reader;
3317         rb_reset_reader_page(cpu_buffer);
3318
3319         if (overwrite != cpu_buffer->last_overrun) {
3320                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3321                 cpu_buffer->last_overrun = overwrite;
3322         }
3323
3324         goto again;
3325
3326  out:
3327         arch_spin_unlock(&cpu_buffer->lock);
3328         local_irq_restore(flags);
3329
3330         return reader;
3331 }
3332
3333 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3334 {
3335         struct ring_buffer_event *event;
3336         struct buffer_page *reader;
3337         unsigned length;
3338
3339         reader = rb_get_reader_page(cpu_buffer);
3340
3341         /* This function should not be called when buffer is empty */
3342         if (RB_WARN_ON(cpu_buffer, !reader))
3343                 return;
3344
3345         event = rb_reader_event(cpu_buffer);
3346
3347         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3348                 cpu_buffer->read++;
3349
3350         rb_update_read_stamp(cpu_buffer, event);
3351
3352         length = rb_event_length(event);
3353         cpu_buffer->reader_page->read += length;
3354 }
3355
3356 static void rb_advance_iter(struct ring_buffer_iter *iter)
3357 {
3358         struct ring_buffer_per_cpu *cpu_buffer;
3359         struct ring_buffer_event *event;
3360         unsigned length;
3361
3362         cpu_buffer = iter->cpu_buffer;
3363
3364         /*
3365          * Check if we are at the end of the buffer.
3366          */
3367         if (iter->head >= rb_page_size(iter->head_page)) {
3368                 /* discarded commits can make the page empty */
3369                 if (iter->head_page == cpu_buffer->commit_page)
3370                         return;
3371                 rb_inc_iter(iter);
3372                 return;
3373         }
3374
3375         event = rb_iter_head_event(iter);
3376
3377         length = rb_event_length(event);
3378
3379         /*
3380          * This should not be called to advance the header if we are
3381          * at the tail of the buffer.
3382          */
3383         if (RB_WARN_ON(cpu_buffer,
3384                        (iter->head_page == cpu_buffer->commit_page) &&
3385                        (iter->head + length > rb_commit_index(cpu_buffer))))
3386                 return;
3387
3388         rb_update_iter_read_stamp(iter, event);
3389
3390         iter->head += length;
3391
3392         /* check for end of page padding */
3393         if ((iter->head >= rb_page_size(iter->head_page)) &&
3394             (iter->head_page != cpu_buffer->commit_page))
3395                 rb_advance_iter(iter);
3396 }
3397
3398 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3399 {
3400         return cpu_buffer->lost_events;
3401 }
3402
3403 static struct ring_buffer_event *
3404 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3405                unsigned long *lost_events)
3406 {
3407         struct ring_buffer_event *event;
3408         struct buffer_page *reader;
3409         int nr_loops = 0;
3410
3411  again:
3412         /*
3413          * We repeat when a time extend is encountered.
3414          * Since the time extend is always attached to a data event,
3415          * we should never loop more than once.
3416          * (We never hit the following condition more than twice).
3417          */
3418         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3419                 return NULL;
3420
3421         reader = rb_get_reader_page(cpu_buffer);
3422         if (!reader)
3423                 return NULL;
3424
3425         event = rb_reader_event(cpu_buffer);
3426
3427         switch (event->type_len) {
3428         case RINGBUF_TYPE_PADDING:
3429                 if (rb_null_event(event))
3430                         RB_WARN_ON(cpu_buffer, 1);
3431                 /*
3432                  * Because the writer could be discarding every
3433                  * event it creates (which would probably be bad)
3434                  * if we were to go back to "again" then we may never
3435                  * catch up, and will trigger the warn on, or lock
3436                  * the box. Return the padding, and we will release
3437                  * the current locks, and try again.
3438                  */
3439                 return event;
3440
3441         case RINGBUF_TYPE_TIME_EXTEND:
3442                 /* Internal data, OK to advance */
3443                 rb_advance_reader(cpu_buffer);
3444                 goto again;
3445
3446         case RINGBUF_TYPE_TIME_STAMP:
3447                 /* FIXME: not implemented */
3448                 rb_advance_reader(cpu_buffer);
3449                 goto again;
3450
3451         case RINGBUF_TYPE_DATA:
3452                 if (ts) {
3453                         *ts = cpu_buffer->read_stamp + event->time_delta;
3454                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3455                                                          cpu_buffer->cpu, ts);
3456                 }
3457                 if (lost_events)
3458                         *lost_events = rb_lost_events(cpu_buffer);
3459                 return event;
3460
3461         default:
3462                 BUG();
3463         }
3464
3465         return NULL;
3466 }
3467 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3468
3469 static struct ring_buffer_event *
3470 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3471 {
3472         struct ring_buffer *buffer;
3473         struct ring_buffer_per_cpu *cpu_buffer;
3474         struct ring_buffer_event *event;
3475         int nr_loops = 0;
3476
3477         cpu_buffer = iter->cpu_buffer;
3478         buffer = cpu_buffer->buffer;
3479
3480         /*
3481          * Check if someone performed a consuming read to
3482          * the buffer. A consuming read invalidates the iterator
3483          * and we need to reset the iterator in this case.
3484          */
3485         if (unlikely(iter->cache_read != cpu_buffer->read ||
3486                      iter->cache_reader_page != cpu_buffer->reader_page))
3487                 rb_iter_reset(iter);
3488
3489  again:
3490         if (ring_buffer_iter_empty(iter))
3491                 return NULL;
3492
3493         /*
3494          * We repeat when a time extend is encountered.
3495          * Since the time extend is always attached to a data event,
3496          * we should never loop more than once.
3497          * (We never hit the following condition more than twice).
3498          */
3499         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3500                 return NULL;
3501
3502         if (rb_per_cpu_empty(cpu_buffer))
3503                 return NULL;
3504
3505         if (iter->head >= local_read(&iter->head_page->page->commit)) {
3506                 rb_inc_iter(iter);
3507                 goto again;
3508         }
3509
3510         event = rb_iter_head_event(iter);
3511
3512         switch (event->type_len) {
3513         case RINGBUF_TYPE_PADDING:
3514                 if (rb_null_event(event)) {
3515                         rb_inc_iter(iter);
3516                         goto again;
3517                 }
3518                 rb_advance_iter(iter);
3519                 return event;
3520
3521         case RINGBUF_TYPE_TIME_EXTEND:
3522                 /* Internal data, OK to advance */
3523                 rb_advance_iter(iter);
3524                 goto again;
3525
3526         case RINGBUF_TYPE_TIME_STAMP:
3527                 /* FIXME: not implemented */
3528                 rb_advance_iter(iter);
3529                 goto again;
3530
3531         case RINGBUF_TYPE_DATA:
3532                 if (ts) {
3533                         *ts = iter->read_stamp + event->time_delta;
3534                         ring_buffer_normalize_time_stamp(buffer,
3535                                                          cpu_buffer->cpu, ts);
3536                 }
3537                 return event;
3538
3539         default:
3540                 BUG();
3541         }
3542
3543         return NULL;
3544 }
3545 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3546
3547 static inline int rb_ok_to_lock(void)
3548 {
3549         /*
3550          * If an NMI die dumps out the content of the ring buffer
3551          * do not grab locks. We also permanently disable the ring
3552          * buffer too. A one time deal is all you get from reading
3553          * the ring buffer from an NMI.
3554          */
3555         if (likely(!in_nmi()))
3556                 return 1;
3557
3558         tracing_off_permanent();
3559         return 0;
3560 }
3561
3562 /**
3563  * ring_buffer_peek - peek at the next event to be read
3564  * @buffer: The ring buffer to read
3565  * @cpu: The cpu to peak at
3566  * @ts: The timestamp counter of this event.
3567  * @lost_events: a variable to store if events were lost (may be NULL)
3568  *
3569  * This will return the event that will be read next, but does
3570  * not consume the data.
3571  */
3572 struct ring_buffer_event *
3573 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3574                  unsigned long *lost_events)
3575 {
3576         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3577         struct ring_buffer_event *event;
3578         unsigned long flags;
3579         int dolock;
3580
3581         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3582                 return NULL;
3583
3584         dolock = rb_ok_to_lock();
3585  again:
3586         local_irq_save(flags);
3587         if (dolock)
3588                 raw_spin_lock(&cpu_buffer->reader_lock);
3589         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3590         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3591                 rb_advance_reader(cpu_buffer);
3592         if (dolock)
3593                 raw_spin_unlock(&cpu_buffer->reader_lock);
3594         local_irq_restore(flags);
3595
3596         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3597                 goto again;
3598
3599         return event;
3600 }
3601
3602 /**
3603  * ring_buffer_iter_peek - peek at the next event to be read
3604  * @iter: The ring buffer iterator
3605  * @ts: The timestamp counter of this event.
3606  *
3607  * This will return the event that will be read next, but does
3608  * not increment the iterator.
3609  */
3610 struct ring_buffer_event *
3611 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3612 {
3613         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3614         struct ring_buffer_event *event;
3615         unsigned long flags;
3616
3617  again:
3618         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3619         event = rb_iter_peek(iter, ts);
3620         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3621
3622         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3623                 goto again;
3624
3625         return event;
3626 }
3627
3628 /**
3629  * ring_buffer_consume - return an event and consume it
3630  * @buffer: The ring buffer to get the next event from
3631  * @cpu: the cpu to read the buffer from
3632  * @ts: a variable to store the timestamp (may be NULL)
3633  * @lost_events: a variable to store if events were lost (may be NULL)
3634  *
3635  * Returns the next event in the ring buffer, and that event is consumed.
3636  * Meaning, that sequential reads will keep returning a different event,
3637  * and eventually empty the ring buffer if the producer is slower.
3638  */
3639 struct ring_buffer_event *
3640 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3641                     unsigned long *lost_events)
3642 {
3643         struct ring_buffer_per_cpu *cpu_buffer;
3644         struct ring_buffer_event *event = NULL;
3645         unsigned long flags;
3646         int dolock;
3647
3648         dolock = rb_ok_to_lock();
3649
3650  again:
3651         /* might be called in atomic */
3652         preempt_disable();
3653
3654         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3655                 goto out;
3656
3657         cpu_buffer = buffer->buffers[cpu];
3658         local_irq_save(flags);
3659         if (dolock)
3660                 raw_spin_lock(&cpu_buffer->reader_lock);
3661
3662         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3663         if (event) {
3664                 cpu_buffer->lost_events = 0;
3665                 rb_advance_reader(cpu_buffer);
3666         }
3667
3668         if (dolock)
3669                 raw_spin_unlock(&cpu_buffer->reader_lock);
3670         local_irq_restore(flags);
3671
3672  out:
3673         preempt_enable();
3674
3675         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3676                 goto again;
3677
3678         return event;
3679 }
3680 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3681
3682 /**
3683  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3684  * @buffer: The ring buffer to read from
3685  * @cpu: The cpu buffer to iterate over
3686  *
3687  * This performs the initial preparations necessary to iterate
3688  * through the buffer.  Memory is allocated, buffer recording
3689  * is disabled, and the iterator pointer is returned to the caller.
3690  *
3691  * Disabling buffer recordng prevents the reading from being
3692  * corrupted. This is not a consuming read, so a producer is not
3693  * expected.
3694  *
3695  * After a sequence of ring_buffer_read_prepare calls, the user is
3696  * expected to make at least one call to ring_buffer_prepare_sync.
3697  * Afterwards, ring_buffer_read_start is invoked to get things going
3698  * for real.
3699  *
3700  * This overall must be paired with ring_buffer_finish.
3701  */
3702 struct ring_buffer_iter *
3703 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3704 {
3705         struct ring_buffer_per_cpu *cpu_buffer;
3706         struct ring_buffer_iter *iter;
3707
3708         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3709                 return NULL;
3710
3711         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3712         if (!iter)
3713                 return NULL;
3714
3715         cpu_buffer = buffer->buffers[cpu];
3716
3717         iter->cpu_buffer = cpu_buffer;
3718
3719         atomic_inc(&buffer->resize_disabled);
3720         atomic_inc(&cpu_buffer->record_disabled);
3721
3722         return iter;
3723 }
3724 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3725
3726 /**
3727  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3728  *
3729  * All previously invoked ring_buffer_read_prepare calls to prepare
3730  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3731  * calls on those iterators are allowed.
3732  */
3733 void
3734 ring_buffer_read_prepare_sync(void)
3735 {
3736         synchronize_sched();
3737 }
3738 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3739
3740 /**
3741  * ring_buffer_read_start - start a non consuming read of the buffer
3742  * @iter: The iterator returned by ring_buffer_read_prepare
3743  *
3744  * This finalizes the startup of an iteration through the buffer.
3745  * The iterator comes from a call to ring_buffer_read_prepare and
3746  * an intervening ring_buffer_read_prepare_sync must have been
3747  * performed.
3748  *
3749  * Must be paired with ring_buffer_finish.
3750  */
3751 void
3752 ring_buffer_read_start(struct ring_buffer_iter *iter)
3753 {
3754         struct ring_buffer_per_cpu *cpu_buffer;
3755         unsigned long flags;
3756
3757         if (!iter)
3758                 return;
3759
3760         cpu_buffer = iter->cpu_buffer;
3761
3762         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3763         arch_spin_lock(&cpu_buffer->lock);
3764         rb_iter_reset(iter);
3765         arch_spin_unlock(&cpu_buffer->lock);
3766         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3767 }
3768 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3769
3770 /**
3771  * ring_buffer_finish - finish reading the iterator of the buffer
3772  * @iter: The iterator retrieved by ring_buffer_start
3773  *
3774  * This re-enables the recording to the buffer, and frees the
3775  * iterator.
3776  */
3777 void
3778 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3779 {
3780         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3781
3782         /*
3783          * Ring buffer is disabled from recording, here's a good place
3784          * to check the integrity of the ring buffer. 
3785          */
3786         rb_check_pages(cpu_buffer);
3787
3788         atomic_dec(&cpu_buffer->record_disabled);
3789         atomic_dec(&cpu_buffer->buffer->resize_disabled);
3790         kfree(iter);
3791 }
3792 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3793
3794 /**
3795  * ring_buffer_read - read the next item in the ring buffer by the iterator
3796  * @iter: The ring buffer iterator
3797  * @ts: The time stamp of the event read.
3798  *
3799  * This reads the next event in the ring buffer and increments the iterator.
3800  */
3801 struct ring_buffer_event *
3802 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3803 {
3804         struct ring_buffer_event *event;
3805         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3806         unsigned long flags;
3807
3808         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3809  again:
3810         event = rb_iter_peek(iter, ts);
3811         if (!event)
3812                 goto out;
3813
3814         if (event->type_len == RINGBUF_TYPE_PADDING)
3815                 goto again;
3816
3817         rb_advance_iter(iter);
3818  out:
3819         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3820
3821         return event;
3822 }
3823 EXPORT_SYMBOL_GPL(ring_buffer_read);
3824
3825 /**
3826  * ring_buffer_size - return the size of the ring buffer (in bytes)
3827  * @buffer: The ring buffer.
3828  */
3829 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
3830 {
3831         /*
3832          * Earlier, this method returned
3833          *      BUF_PAGE_SIZE * buffer->nr_pages
3834          * Since the nr_pages field is now removed, we have converted this to
3835          * return the per cpu buffer value.
3836          */
3837         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3838                 return 0;
3839
3840         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
3841 }
3842 EXPORT_SYMBOL_GPL(ring_buffer_size);
3843
3844 static void
3845 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3846 {
3847         rb_head_page_deactivate(cpu_buffer);
3848
3849         cpu_buffer->head_page
3850                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3851         local_set(&cpu_buffer->head_page->write, 0);
3852         local_set(&cpu_buffer->head_page->entries, 0);
3853         local_set(&cpu_buffer->head_page->page->commit, 0);
3854
3855         cpu_buffer->head_page->read = 0;
3856
3857         cpu_buffer->tail_page = cpu_buffer->head_page;
3858         cpu_buffer->commit_page = cpu_buffer->head_page;
3859
3860         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3861         INIT_LIST_HEAD(&cpu_buffer->new_pages);
3862         local_set(&cpu_buffer->reader_page->write, 0);
3863         local_set(&cpu_buffer->reader_page->entries, 0);
3864         local_set(&cpu_buffer->reader_page->page->commit, 0);
3865         cpu_buffer->reader_page->read = 0;
3866
3867         local_set(&cpu_buffer->commit_overrun, 0);
3868         local_set(&cpu_buffer->entries_bytes, 0);
3869         local_set(&cpu_buffer->overrun, 0);
3870         local_set(&cpu_buffer->entries, 0);
3871         local_set(&cpu_buffer->committing, 0);
3872         local_set(&cpu_buffer->commits, 0);
3873         cpu_buffer->read = 0;
3874         cpu_buffer->read_bytes = 0;
3875
3876         cpu_buffer->write_stamp = 0;
3877         cpu_buffer->read_stamp = 0;
3878
3879         cpu_buffer->lost_events = 0;
3880         cpu_buffer->last_overrun = 0;
3881
3882         rb_head_page_activate(cpu_buffer);
3883 }
3884
3885 /**
3886  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3887  * @buffer: The ring buffer to reset a per cpu buffer of
3888  * @cpu: The CPU buffer to be reset
3889  */
3890 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3891 {
3892         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3893         unsigned long flags;
3894
3895         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3896                 return;
3897
3898         atomic_inc(&buffer->resize_disabled);
3899         atomic_inc(&cpu_buffer->record_disabled);
3900
3901         /* Make sure all commits have finished */
3902         synchronize_sched();
3903
3904         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3905
3906         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3907                 goto out;
3908
3909         arch_spin_lock(&cpu_buffer->lock);
3910
3911         rb_reset_cpu(cpu_buffer);
3912
3913         arch_spin_unlock(&cpu_buffer->lock);
3914
3915  out:
3916         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3917
3918         atomic_dec(&cpu_buffer->record_disabled);
3919         atomic_dec(&buffer->resize_disabled);
3920 }
3921 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3922
3923 /**
3924  * ring_buffer_reset - reset a ring buffer
3925  * @buffer: The ring buffer to reset all cpu buffers
3926  */
3927 void ring_buffer_reset(struct ring_buffer *buffer)
3928 {
3929         int cpu;
3930
3931         for_each_buffer_cpu(buffer, cpu)
3932                 ring_buffer_reset_cpu(buffer, cpu);
3933 }
3934 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3935
3936 /**
3937  * rind_buffer_empty - is the ring buffer empty?
3938  * @buffer: The ring buffer to test
3939  */
3940 int ring_buffer_empty(struct ring_buffer *buffer)
3941 {
3942         struct ring_buffer_per_cpu *cpu_buffer;
3943         unsigned long flags;
3944         int dolock;
3945         int cpu;
3946         int ret;
3947
3948         dolock = rb_ok_to_lock();
3949
3950         /* yes this is racy, but if you don't like the race, lock the buffer */
3951         for_each_buffer_cpu(buffer, cpu) {
3952                 cpu_buffer = buffer->buffers[cpu];
3953                 local_irq_save(flags);
3954                 if (dolock)
3955                         raw_spin_lock(&cpu_buffer->reader_lock);
3956                 ret = rb_per_cpu_empty(cpu_buffer);
3957                 if (dolock)
3958                         raw_spin_unlock(&cpu_buffer->reader_lock);
3959                 local_irq_restore(flags);
3960
3961                 if (!ret)
3962                         return 0;
3963         }
3964
3965         return 1;
3966 }
3967 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3968
3969 /**
3970  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3971  * @buffer: The ring buffer
3972  * @cpu: The CPU buffer to test
3973  */
3974 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3975 {
3976         struct ring_buffer_per_cpu *cpu_buffer;
3977         unsigned long flags;
3978         int dolock;
3979         int ret;
3980
3981         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3982                 return 1;
3983
3984         dolock = rb_ok_to_lock();
3985
3986         cpu_buffer = buffer->buffers[cpu];
3987         local_irq_save(flags);
3988         if (dolock)
3989                 raw_spin_lock(&cpu_buffer->reader_lock);
3990         ret = rb_per_cpu_empty(cpu_buffer);
3991         if (dolock)
3992                 raw_spin_unlock(&cpu_buffer->reader_lock);
3993         local_irq_restore(flags);
3994
3995         return ret;
3996 }
3997 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3998
3999 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4000 /**
4001  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4002  * @buffer_a: One buffer to swap with
4003  * @buffer_b: The other buffer to swap with
4004  *
4005  * This function is useful for tracers that want to take a "snapshot"
4006  * of a CPU buffer and has another back up buffer lying around.
4007  * it is expected that the tracer handles the cpu buffer not being
4008  * used at the moment.
4009  */
4010 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4011                          struct ring_buffer *buffer_b, int cpu)
4012 {
4013         struct ring_buffer_per_cpu *cpu_buffer_a;
4014         struct ring_buffer_per_cpu *cpu_buffer_b;
4015         int ret = -EINVAL;
4016
4017         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4018             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4019                 goto out;
4020
4021         cpu_buffer_a = buffer_a->buffers[cpu];
4022         cpu_buffer_b = buffer_b->buffers[cpu];
4023
4024         /* At least make sure the two buffers are somewhat the same */
4025         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4026                 goto out;
4027
4028         ret = -EAGAIN;
4029
4030         if (ring_buffer_flags != RB_BUFFERS_ON)
4031                 goto out;
4032
4033         if (atomic_read(&buffer_a->record_disabled))
4034                 goto out;
4035
4036         if (atomic_read(&buffer_b->record_disabled))
4037                 goto out;
4038
4039         if (atomic_read(&cpu_buffer_a->record_disabled))
4040                 goto out;
4041
4042         if (atomic_read(&cpu_buffer_b->record_disabled))
4043                 goto out;
4044
4045         /*
4046          * We can't do a synchronize_sched here because this
4047          * function can be called in atomic context.
4048          * Normally this will be called from the same CPU as cpu.
4049          * If not it's up to the caller to protect this.
4050          */
4051         atomic_inc(&cpu_buffer_a->record_disabled);
4052         atomic_inc(&cpu_buffer_b->record_disabled);
4053
4054         ret = -EBUSY;
4055         if (local_read(&cpu_buffer_a->committing))
4056                 goto out_dec;
4057         if (local_read(&cpu_buffer_b->committing))
4058                 goto out_dec;
4059
4060         buffer_a->buffers[cpu] = cpu_buffer_b;
4061         buffer_b->buffers[cpu] = cpu_buffer_a;
4062
4063         cpu_buffer_b->buffer = buffer_a;
4064         cpu_buffer_a->buffer = buffer_b;
4065
4066         ret = 0;
4067
4068 out_dec:
4069         atomic_dec(&cpu_buffer_a->record_disabled);
4070         atomic_dec(&cpu_buffer_b->record_disabled);
4071 out:
4072         return ret;
4073 }
4074 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4075 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4076
4077 /**
4078  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4079  * @buffer: the buffer to allocate for.
4080  *
4081  * This function is used in conjunction with ring_buffer_read_page.
4082  * When reading a full page from the ring buffer, these functions
4083  * can be used to speed up the process. The calling function should
4084  * allocate a few pages first with this function. Then when it
4085  * needs to get pages from the ring buffer, it passes the result
4086  * of this function into ring_buffer_read_page, which will swap
4087  * the page that was allocated, with the read page of the buffer.
4088  *
4089  * Returns:
4090  *  The page allocated, or NULL on error.
4091  */
4092 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4093 {
4094         struct buffer_data_page *bpage;
4095         struct page *page;
4096
4097         page = alloc_pages_node(cpu_to_node(cpu),
4098                                 GFP_KERNEL | __GFP_NORETRY, 0);
4099         if (!page)
4100                 return NULL;
4101
4102         bpage = page_address(page);
4103
4104         rb_init_page(bpage);
4105
4106         return bpage;
4107 }
4108 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4109
4110 /**
4111  * ring_buffer_free_read_page - free an allocated read page
4112  * @buffer: the buffer the page was allocate for
4113  * @data: the page to free
4114  *
4115  * Free a page allocated from ring_buffer_alloc_read_page.
4116  */
4117 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4118 {
4119         free_page((unsigned long)data);
4120 }
4121 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4122
4123 /**
4124  * ring_buffer_read_page - extract a page from the ring buffer
4125  * @buffer: buffer to extract from
4126  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4127  * @len: amount to extract
4128  * @cpu: the cpu of the buffer to extract
4129  * @full: should the extraction only happen when the page is full.
4130  *
4131  * This function will pull out a page from the ring buffer and consume it.
4132  * @data_page must be the address of the variable that was returned
4133  * from ring_buffer_alloc_read_page. This is because the page might be used
4134  * to swap with a page in the ring buffer.
4135  *
4136  * for example:
4137  *      rpage = ring_buffer_alloc_read_page(buffer);
4138  *      if (!rpage)
4139  *              return error;
4140  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4141  *      if (ret >= 0)
4142  *              process_page(rpage, ret);
4143  *
4144  * When @full is set, the function will not return true unless
4145  * the writer is off the reader page.
4146  *
4147  * Note: it is up to the calling functions to handle sleeps and wakeups.
4148  *  The ring buffer can be used anywhere in the kernel and can not
4149  *  blindly call wake_up. The layer that uses the ring buffer must be
4150  *  responsible for that.
4151  *
4152  * Returns:
4153  *  >=0 if data has been transferred, returns the offset of consumed data.
4154  *  <0 if no data has been transferred.
4155  */
4156 int ring_buffer_read_page(struct ring_buffer *buffer,
4157                           void **data_page, size_t len, int cpu, int full)
4158 {
4159         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4160         struct ring_buffer_event *event;
4161         struct buffer_data_page *bpage;
4162         struct buffer_page *reader;
4163         unsigned long missed_events;
4164         unsigned long flags;
4165         unsigned int commit;
4166         unsigned int read;
4167         u64 save_timestamp;
4168         int ret = -1;
4169
4170         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4171                 goto out;
4172
4173         /*
4174          * If len is not big enough to hold the page header, then
4175          * we can not copy anything.
4176          */
4177         if (len <= BUF_PAGE_HDR_SIZE)
4178                 goto out;
4179
4180         len -= BUF_PAGE_HDR_SIZE;
4181
4182         if (!data_page)
4183                 goto out;
4184
4185         bpage = *data_page;
4186         if (!bpage)
4187                 goto out;
4188
4189         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4190
4191         reader = rb_get_reader_page(cpu_buffer);
4192         if (!reader)
4193                 goto out_unlock;
4194
4195         event = rb_reader_event(cpu_buffer);
4196
4197         read = reader->read;
4198         commit = rb_page_commit(reader);
4199
4200         /* Check if any events were dropped */
4201         missed_events = cpu_buffer->lost_events;
4202
4203         /*
4204          * If this page has been partially read or
4205          * if len is not big enough to read the rest of the page or
4206          * a writer is still on the page, then
4207          * we must copy the data from the page to the buffer.
4208          * Otherwise, we can simply swap the page with the one passed in.
4209          */
4210         if (read || (len < (commit - read)) ||
4211             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4212                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4213                 unsigned int rpos = read;
4214                 unsigned int pos = 0;
4215                 unsigned int size;
4216
4217                 if (full)
4218                         goto out_unlock;
4219
4220                 if (len > (commit - read))
4221                         len = (commit - read);
4222
4223                 /* Always keep the time extend and data together */
4224                 size = rb_event_ts_length(event);
4225
4226                 if (len < size)
4227                         goto out_unlock;
4228
4229                 /* save the current timestamp, since the user will need it */
4230                 save_timestamp = cpu_buffer->read_stamp;
4231
4232                 /* Need to copy one event at a time */
4233                 do {
4234                         /* We need the size of one event, because
4235                          * rb_advance_reader only advances by one event,
4236                          * whereas rb_event_ts_length may include the size of
4237                          * one or two events.
4238                          * We have already ensured there's enough space if this
4239                          * is a time extend. */
4240                         size = rb_event_length(event);
4241                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4242
4243                         len -= size;
4244
4245                         rb_advance_reader(cpu_buffer);
4246                         rpos = reader->read;
4247                         pos += size;
4248
4249                         if (rpos >= commit)
4250                                 break;
4251
4252                         event = rb_reader_event(cpu_buffer);
4253                         /* Always keep the time extend and data together */
4254                         size = rb_event_ts_length(event);
4255                 } while (len >= size);
4256
4257                 /* update bpage */
4258                 local_set(&bpage->commit, pos);
4259                 bpage->time_stamp = save_timestamp;
4260
4261                 /* we copied everything to the beginning */
4262                 read = 0;
4263         } else {
4264                 /* update the entry counter */
4265                 cpu_buffer->read += rb_page_entries(reader);
4266                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4267
4268                 /* swap the pages */
4269                 rb_init_page(bpage);
4270                 bpage = reader->page;
4271                 reader->page = *data_page;
4272                 local_set(&reader->write, 0);
4273                 local_set(&reader->entries, 0);
4274                 reader->read = 0;
4275                 *data_page = bpage;
4276
4277                 /*
4278                  * Use the real_end for the data size,
4279                  * This gives us a chance to store the lost events
4280                  * on the page.
4281                  */
4282                 if (reader->real_end)
4283                         local_set(&bpage->commit, reader->real_end);
4284         }
4285         ret = read;
4286
4287         cpu_buffer->lost_events = 0;
4288
4289         commit = local_read(&bpage->commit);
4290         /*
4291          * Set a flag in the commit field if we lost events
4292          */
4293         if (missed_events) {
4294                 /* If there is room at the end of the page to save the
4295                  * missed events, then record it there.
4296                  */
4297                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4298                         memcpy(&bpage->data[commit], &missed_events,
4299                                sizeof(missed_events));
4300                         local_add(RB_MISSED_STORED, &bpage->commit);
4301                         commit += sizeof(missed_events);
4302                 }
4303                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4304         }
4305
4306         /*
4307          * This page may be off to user land. Zero it out here.
4308          */
4309         if (commit < BUF_PAGE_SIZE)
4310                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4311
4312  out_unlock:
4313         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4314
4315  out:
4316         return ret;
4317 }
4318 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4319
4320 #ifdef CONFIG_HOTPLUG_CPU
4321 static int rb_cpu_notify(struct notifier_block *self,
4322                          unsigned long action, void *hcpu)
4323 {
4324         struct ring_buffer *buffer =
4325                 container_of(self, struct ring_buffer, cpu_notify);
4326         long cpu = (long)hcpu;
4327         int cpu_i, nr_pages_same;
4328         unsigned int nr_pages;
4329
4330         switch (action) {
4331         case CPU_UP_PREPARE:
4332         case CPU_UP_PREPARE_FROZEN:
4333                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4334                         return NOTIFY_OK;
4335
4336                 nr_pages = 0;
4337                 nr_pages_same = 1;
4338                 /* check if all cpu sizes are same */
4339                 for_each_buffer_cpu(buffer, cpu_i) {
4340                         /* fill in the size from first enabled cpu */
4341                         if (nr_pages == 0)
4342                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4343                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4344                                 nr_pages_same = 0;
4345                                 break;
4346                         }
4347                 }
4348                 /* allocate minimum pages, user can later expand it */
4349                 if (!nr_pages_same)
4350                         nr_pages = 2;
4351                 buffer->buffers[cpu] =
4352                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4353                 if (!buffer->buffers[cpu]) {
4354                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4355                              cpu);
4356                         return NOTIFY_OK;
4357                 }
4358                 smp_wmb();
4359                 cpumask_set_cpu(cpu, buffer->cpumask);
4360                 break;
4361         case CPU_DOWN_PREPARE:
4362         case CPU_DOWN_PREPARE_FROZEN:
4363                 /*
4364                  * Do nothing.
4365                  *  If we were to free the buffer, then the user would
4366                  *  lose any trace that was in the buffer.
4367                  */
4368                 break;
4369         default:
4370                 break;
4371         }
4372         return NOTIFY_OK;
4373 }
4374 #endif