kernel/trace/ring_buffer.c: reduce inlining
[pandora-kernel.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/spinlock.h>
8 #include <linux/debugfs.h>
9 #include <linux/uaccess.h>
10 #include <linux/module.h>
11 #include <linux/percpu.h>
12 #include <linux/mutex.h>
13 #include <linux/sched.h>        /* used for sched_clock() (for now) */
14 #include <linux/init.h>
15 #include <linux/hash.h>
16 #include <linux/list.h>
17 #include <linux/fs.h>
18
19 #include "trace.h"
20
21 /*
22  * A fast way to enable or disable all ring buffers is to
23  * call tracing_on or tracing_off. Turning off the ring buffers
24  * prevents all ring buffers from being recorded to.
25  * Turning this switch on, makes it OK to write to the
26  * ring buffer, if the ring buffer is enabled itself.
27  *
28  * There's three layers that must be on in order to write
29  * to the ring buffer.
30  *
31  * 1) This global flag must be set.
32  * 2) The ring buffer must be enabled for recording.
33  * 3) The per cpu buffer must be enabled for recording.
34  *
35  * In case of an anomaly, this global flag has a bit set that
36  * will permantly disable all ring buffers.
37  */
38
39 /*
40  * Global flag to disable all recording to ring buffers
41  *  This has two bits: ON, DISABLED
42  *
43  *  ON   DISABLED
44  * ---- ----------
45  *   0      0        : ring buffers are off
46  *   1      0        : ring buffers are on
47  *   X      1        : ring buffers are permanently disabled
48  */
49
50 enum {
51         RB_BUFFERS_ON_BIT       = 0,
52         RB_BUFFERS_DISABLED_BIT = 1,
53 };
54
55 enum {
56         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
57         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
58 };
59
60 static long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
61
62 /**
63  * tracing_on - enable all tracing buffers
64  *
65  * This function enables all tracing buffers that may have been
66  * disabled with tracing_off.
67  */
68 void tracing_on(void)
69 {
70         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
71 }
72 EXPORT_SYMBOL_GPL(tracing_on);
73
74 /**
75  * tracing_off - turn off all tracing buffers
76  *
77  * This function stops all tracing buffers from recording data.
78  * It does not disable any overhead the tracers themselves may
79  * be causing. This function simply causes all recording to
80  * the ring buffers to fail.
81  */
82 void tracing_off(void)
83 {
84         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
85 }
86 EXPORT_SYMBOL_GPL(tracing_off);
87
88 /**
89  * tracing_off_permanent - permanently disable ring buffers
90  *
91  * This function, once called, will disable all ring buffers
92  * permanenty.
93  */
94 void tracing_off_permanent(void)
95 {
96         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
97 }
98
99 #include "trace.h"
100
101 /* Up this if you want to test the TIME_EXTENTS and normalization */
102 #define DEBUG_SHIFT 0
103
104 /* FIXME!!! */
105 u64 ring_buffer_time_stamp(int cpu)
106 {
107         u64 time;
108
109         preempt_disable_notrace();
110         /* shift to debug/test normalization and TIME_EXTENTS */
111         time = sched_clock() << DEBUG_SHIFT;
112         preempt_enable_no_resched_notrace();
113
114         return time;
115 }
116 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
117
118 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
119 {
120         /* Just stupid testing the normalize function and deltas */
121         *ts >>= DEBUG_SHIFT;
122 }
123 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
124
125 #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
126 #define RB_ALIGNMENT_SHIFT      2
127 #define RB_ALIGNMENT            (1 << RB_ALIGNMENT_SHIFT)
128 #define RB_MAX_SMALL_DATA       28
129
130 enum {
131         RB_LEN_TIME_EXTEND = 8,
132         RB_LEN_TIME_STAMP = 16,
133 };
134
135 /* inline for ring buffer fast paths */
136 static unsigned
137 rb_event_length(struct ring_buffer_event *event)
138 {
139         unsigned length;
140
141         switch (event->type) {
142         case RINGBUF_TYPE_PADDING:
143                 /* undefined */
144                 return -1;
145
146         case RINGBUF_TYPE_TIME_EXTEND:
147                 return RB_LEN_TIME_EXTEND;
148
149         case RINGBUF_TYPE_TIME_STAMP:
150                 return RB_LEN_TIME_STAMP;
151
152         case RINGBUF_TYPE_DATA:
153                 if (event->len)
154                         length = event->len << RB_ALIGNMENT_SHIFT;
155                 else
156                         length = event->array[0];
157                 return length + RB_EVNT_HDR_SIZE;
158         default:
159                 BUG();
160         }
161         /* not hit */
162         return 0;
163 }
164
165 /**
166  * ring_buffer_event_length - return the length of the event
167  * @event: the event to get the length of
168  */
169 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
170 {
171         unsigned length = rb_event_length(event);
172         if (event->type != RINGBUF_TYPE_DATA)
173                 return length;
174         length -= RB_EVNT_HDR_SIZE;
175         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
176                 length -= sizeof(event->array[0]);
177         return length;
178 }
179 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
180
181 /* inline for ring buffer fast paths */
182 static void *
183 rb_event_data(struct ring_buffer_event *event)
184 {
185         BUG_ON(event->type != RINGBUF_TYPE_DATA);
186         /* If length is in len field, then array[0] has the data */
187         if (event->len)
188                 return (void *)&event->array[0];
189         /* Otherwise length is in array[0] and array[1] has the data */
190         return (void *)&event->array[1];
191 }
192
193 /**
194  * ring_buffer_event_data - return the data of the event
195  * @event: the event to get the data from
196  */
197 void *ring_buffer_event_data(struct ring_buffer_event *event)
198 {
199         return rb_event_data(event);
200 }
201 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
202
203 #define for_each_buffer_cpu(buffer, cpu)                \
204         for_each_cpu(cpu, buffer->cpumask)
205
206 #define TS_SHIFT        27
207 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
208 #define TS_DELTA_TEST   (~TS_MASK)
209
210 struct buffer_data_page {
211         u64              time_stamp;    /* page time stamp */
212         local_t          commit;        /* write commited index */
213         unsigned char    data[];        /* data of buffer page */
214 };
215
216 struct buffer_page {
217         local_t          write;         /* index for next write */
218         unsigned         read;          /* index for next read */
219         struct list_head list;          /* list of free pages */
220         struct buffer_data_page *page;  /* Actual data page */
221 };
222
223 static void rb_init_page(struct buffer_data_page *bpage)
224 {
225         local_set(&bpage->commit, 0);
226 }
227
228 /*
229  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
230  * this issue out.
231  */
232 static void free_buffer_page(struct buffer_page *bpage)
233 {
234         free_page((unsigned long)bpage->page);
235         kfree(bpage);
236 }
237
238 /*
239  * We need to fit the time_stamp delta into 27 bits.
240  */
241 static inline int test_time_stamp(u64 delta)
242 {
243         if (delta & TS_DELTA_TEST)
244                 return 1;
245         return 0;
246 }
247
248 #define BUF_PAGE_SIZE (PAGE_SIZE - sizeof(struct buffer_data_page))
249
250 /*
251  * head_page == tail_page && head == tail then buffer is empty.
252  */
253 struct ring_buffer_per_cpu {
254         int                             cpu;
255         struct ring_buffer              *buffer;
256         spinlock_t                      reader_lock; /* serialize readers */
257         raw_spinlock_t                  lock;
258         struct lock_class_key           lock_key;
259         struct list_head                pages;
260         struct buffer_page              *head_page;     /* read from head */
261         struct buffer_page              *tail_page;     /* write to tail */
262         struct buffer_page              *commit_page;   /* commited pages */
263         struct buffer_page              *reader_page;
264         unsigned long                   overrun;
265         unsigned long                   entries;
266         u64                             write_stamp;
267         u64                             read_stamp;
268         atomic_t                        record_disabled;
269 };
270
271 struct ring_buffer {
272         unsigned                        pages;
273         unsigned                        flags;
274         int                             cpus;
275         cpumask_var_t                   cpumask;
276         atomic_t                        record_disabled;
277
278         struct mutex                    mutex;
279
280         struct ring_buffer_per_cpu      **buffers;
281 };
282
283 struct ring_buffer_iter {
284         struct ring_buffer_per_cpu      *cpu_buffer;
285         unsigned long                   head;
286         struct buffer_page              *head_page;
287         u64                             read_stamp;
288 };
289
290 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
291 #define RB_WARN_ON(buffer, cond)                                \
292         ({                                                      \
293                 int _____ret = unlikely(cond);                  \
294                 if (_____ret) {                                 \
295                         atomic_inc(&buffer->record_disabled);   \
296                         WARN_ON(1);                             \
297                 }                                               \
298                 _____ret;                                       \
299         })
300
301 /**
302  * check_pages - integrity check of buffer pages
303  * @cpu_buffer: CPU buffer with pages to test
304  *
305  * As a safty measure we check to make sure the data pages have not
306  * been corrupted.
307  */
308 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
309 {
310         struct list_head *head = &cpu_buffer->pages;
311         struct buffer_page *bpage, *tmp;
312
313         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
314                 return -1;
315         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
316                 return -1;
317
318         list_for_each_entry_safe(bpage, tmp, head, list) {
319                 if (RB_WARN_ON(cpu_buffer,
320                                bpage->list.next->prev != &bpage->list))
321                         return -1;
322                 if (RB_WARN_ON(cpu_buffer,
323                                bpage->list.prev->next != &bpage->list))
324                         return -1;
325         }
326
327         return 0;
328 }
329
330 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
331                              unsigned nr_pages)
332 {
333         struct list_head *head = &cpu_buffer->pages;
334         struct buffer_page *bpage, *tmp;
335         unsigned long addr;
336         LIST_HEAD(pages);
337         unsigned i;
338
339         for (i = 0; i < nr_pages; i++) {
340                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
341                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
342                 if (!bpage)
343                         goto free_pages;
344                 list_add(&bpage->list, &pages);
345
346                 addr = __get_free_page(GFP_KERNEL);
347                 if (!addr)
348                         goto free_pages;
349                 bpage->page = (void *)addr;
350                 rb_init_page(bpage->page);
351         }
352
353         list_splice(&pages, head);
354
355         rb_check_pages(cpu_buffer);
356
357         return 0;
358
359  free_pages:
360         list_for_each_entry_safe(bpage, tmp, &pages, list) {
361                 list_del_init(&bpage->list);
362                 free_buffer_page(bpage);
363         }
364         return -ENOMEM;
365 }
366
367 static struct ring_buffer_per_cpu *
368 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
369 {
370         struct ring_buffer_per_cpu *cpu_buffer;
371         struct buffer_page *bpage;
372         unsigned long addr;
373         int ret;
374
375         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
376                                   GFP_KERNEL, cpu_to_node(cpu));
377         if (!cpu_buffer)
378                 return NULL;
379
380         cpu_buffer->cpu = cpu;
381         cpu_buffer->buffer = buffer;
382         spin_lock_init(&cpu_buffer->reader_lock);
383         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
384         INIT_LIST_HEAD(&cpu_buffer->pages);
385
386         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
387                             GFP_KERNEL, cpu_to_node(cpu));
388         if (!bpage)
389                 goto fail_free_buffer;
390
391         cpu_buffer->reader_page = bpage;
392         addr = __get_free_page(GFP_KERNEL);
393         if (!addr)
394                 goto fail_free_reader;
395         bpage->page = (void *)addr;
396         rb_init_page(bpage->page);
397
398         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
399
400         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
401         if (ret < 0)
402                 goto fail_free_reader;
403
404         cpu_buffer->head_page
405                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
406         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
407
408         return cpu_buffer;
409
410  fail_free_reader:
411         free_buffer_page(cpu_buffer->reader_page);
412
413  fail_free_buffer:
414         kfree(cpu_buffer);
415         return NULL;
416 }
417
418 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
419 {
420         struct list_head *head = &cpu_buffer->pages;
421         struct buffer_page *bpage, *tmp;
422
423         list_del_init(&cpu_buffer->reader_page->list);
424         free_buffer_page(cpu_buffer->reader_page);
425
426         list_for_each_entry_safe(bpage, tmp, head, list) {
427                 list_del_init(&bpage->list);
428                 free_buffer_page(bpage);
429         }
430         kfree(cpu_buffer);
431 }
432
433 /*
434  * Causes compile errors if the struct buffer_page gets bigger
435  * than the struct page.
436  */
437 extern int ring_buffer_page_too_big(void);
438
439 /**
440  * ring_buffer_alloc - allocate a new ring_buffer
441  * @size: the size in bytes per cpu that is needed.
442  * @flags: attributes to set for the ring buffer.
443  *
444  * Currently the only flag that is available is the RB_FL_OVERWRITE
445  * flag. This flag means that the buffer will overwrite old data
446  * when the buffer wraps. If this flag is not set, the buffer will
447  * drop data when the tail hits the head.
448  */
449 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
450 {
451         struct ring_buffer *buffer;
452         int bsize;
453         int cpu;
454
455         /* Paranoid! Optimizes out when all is well */
456         if (sizeof(struct buffer_page) > sizeof(struct page))
457                 ring_buffer_page_too_big();
458
459
460         /* keep it in its own cache line */
461         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
462                          GFP_KERNEL);
463         if (!buffer)
464                 return NULL;
465
466         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
467                 goto fail_free_buffer;
468
469         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
470         buffer->flags = flags;
471
472         /* need at least two pages */
473         if (buffer->pages == 1)
474                 buffer->pages++;
475
476         cpumask_copy(buffer->cpumask, cpu_possible_mask);
477         buffer->cpus = nr_cpu_ids;
478
479         bsize = sizeof(void *) * nr_cpu_ids;
480         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
481                                   GFP_KERNEL);
482         if (!buffer->buffers)
483                 goto fail_free_cpumask;
484
485         for_each_buffer_cpu(buffer, cpu) {
486                 buffer->buffers[cpu] =
487                         rb_allocate_cpu_buffer(buffer, cpu);
488                 if (!buffer->buffers[cpu])
489                         goto fail_free_buffers;
490         }
491
492         mutex_init(&buffer->mutex);
493
494         return buffer;
495
496  fail_free_buffers:
497         for_each_buffer_cpu(buffer, cpu) {
498                 if (buffer->buffers[cpu])
499                         rb_free_cpu_buffer(buffer->buffers[cpu]);
500         }
501         kfree(buffer->buffers);
502
503  fail_free_cpumask:
504         free_cpumask_var(buffer->cpumask);
505
506  fail_free_buffer:
507         kfree(buffer);
508         return NULL;
509 }
510 EXPORT_SYMBOL_GPL(ring_buffer_alloc);
511
512 /**
513  * ring_buffer_free - free a ring buffer.
514  * @buffer: the buffer to free.
515  */
516 void
517 ring_buffer_free(struct ring_buffer *buffer)
518 {
519         int cpu;
520
521         for_each_buffer_cpu(buffer, cpu)
522                 rb_free_cpu_buffer(buffer->buffers[cpu]);
523
524         free_cpumask_var(buffer->cpumask);
525
526         kfree(buffer);
527 }
528 EXPORT_SYMBOL_GPL(ring_buffer_free);
529
530 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
531
532 static void
533 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
534 {
535         struct buffer_page *bpage;
536         struct list_head *p;
537         unsigned i;
538
539         atomic_inc(&cpu_buffer->record_disabled);
540         synchronize_sched();
541
542         for (i = 0; i < nr_pages; i++) {
543                 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
544                         return;
545                 p = cpu_buffer->pages.next;
546                 bpage = list_entry(p, struct buffer_page, list);
547                 list_del_init(&bpage->list);
548                 free_buffer_page(bpage);
549         }
550         if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
551                 return;
552
553         rb_reset_cpu(cpu_buffer);
554
555         rb_check_pages(cpu_buffer);
556
557         atomic_dec(&cpu_buffer->record_disabled);
558
559 }
560
561 static void
562 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
563                 struct list_head *pages, unsigned nr_pages)
564 {
565         struct buffer_page *bpage;
566         struct list_head *p;
567         unsigned i;
568
569         atomic_inc(&cpu_buffer->record_disabled);
570         synchronize_sched();
571
572         for (i = 0; i < nr_pages; i++) {
573                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
574                         return;
575                 p = pages->next;
576                 bpage = list_entry(p, struct buffer_page, list);
577                 list_del_init(&bpage->list);
578                 list_add_tail(&bpage->list, &cpu_buffer->pages);
579         }
580         rb_reset_cpu(cpu_buffer);
581
582         rb_check_pages(cpu_buffer);
583
584         atomic_dec(&cpu_buffer->record_disabled);
585 }
586
587 /**
588  * ring_buffer_resize - resize the ring buffer
589  * @buffer: the buffer to resize.
590  * @size: the new size.
591  *
592  * The tracer is responsible for making sure that the buffer is
593  * not being used while changing the size.
594  * Note: We may be able to change the above requirement by using
595  *  RCU synchronizations.
596  *
597  * Minimum size is 2 * BUF_PAGE_SIZE.
598  *
599  * Returns -1 on failure.
600  */
601 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
602 {
603         struct ring_buffer_per_cpu *cpu_buffer;
604         unsigned nr_pages, rm_pages, new_pages;
605         struct buffer_page *bpage, *tmp;
606         unsigned long buffer_size;
607         unsigned long addr;
608         LIST_HEAD(pages);
609         int i, cpu;
610
611         /*
612          * Always succeed at resizing a non-existent buffer:
613          */
614         if (!buffer)
615                 return size;
616
617         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
618         size *= BUF_PAGE_SIZE;
619         buffer_size = buffer->pages * BUF_PAGE_SIZE;
620
621         /* we need a minimum of two pages */
622         if (size < BUF_PAGE_SIZE * 2)
623                 size = BUF_PAGE_SIZE * 2;
624
625         if (size == buffer_size)
626                 return size;
627
628         mutex_lock(&buffer->mutex);
629
630         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
631
632         if (size < buffer_size) {
633
634                 /* easy case, just free pages */
635                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) {
636                         mutex_unlock(&buffer->mutex);
637                         return -1;
638                 }
639
640                 rm_pages = buffer->pages - nr_pages;
641
642                 for_each_buffer_cpu(buffer, cpu) {
643                         cpu_buffer = buffer->buffers[cpu];
644                         rb_remove_pages(cpu_buffer, rm_pages);
645                 }
646                 goto out;
647         }
648
649         /*
650          * This is a bit more difficult. We only want to add pages
651          * when we can allocate enough for all CPUs. We do this
652          * by allocating all the pages and storing them on a local
653          * link list. If we succeed in our allocation, then we
654          * add these pages to the cpu_buffers. Otherwise we just free
655          * them all and return -ENOMEM;
656          */
657         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) {
658                 mutex_unlock(&buffer->mutex);
659                 return -1;
660         }
661
662         new_pages = nr_pages - buffer->pages;
663
664         for_each_buffer_cpu(buffer, cpu) {
665                 for (i = 0; i < new_pages; i++) {
666                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
667                                                   cache_line_size()),
668                                             GFP_KERNEL, cpu_to_node(cpu));
669                         if (!bpage)
670                                 goto free_pages;
671                         list_add(&bpage->list, &pages);
672                         addr = __get_free_page(GFP_KERNEL);
673                         if (!addr)
674                                 goto free_pages;
675                         bpage->page = (void *)addr;
676                         rb_init_page(bpage->page);
677                 }
678         }
679
680         for_each_buffer_cpu(buffer, cpu) {
681                 cpu_buffer = buffer->buffers[cpu];
682                 rb_insert_pages(cpu_buffer, &pages, new_pages);
683         }
684
685         if (RB_WARN_ON(buffer, !list_empty(&pages))) {
686                 mutex_unlock(&buffer->mutex);
687                 return -1;
688         }
689
690  out:
691         buffer->pages = nr_pages;
692         mutex_unlock(&buffer->mutex);
693
694         return size;
695
696  free_pages:
697         list_for_each_entry_safe(bpage, tmp, &pages, list) {
698                 list_del_init(&bpage->list);
699                 free_buffer_page(bpage);
700         }
701         mutex_unlock(&buffer->mutex);
702         return -ENOMEM;
703 }
704 EXPORT_SYMBOL_GPL(ring_buffer_resize);
705
706 static inline int rb_null_event(struct ring_buffer_event *event)
707 {
708         return event->type == RINGBUF_TYPE_PADDING;
709 }
710
711 static inline void *
712 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
713 {
714         return bpage->data + index;
715 }
716
717 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
718 {
719         return bpage->page->data + index;
720 }
721
722 static inline struct ring_buffer_event *
723 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
724 {
725         return __rb_page_index(cpu_buffer->reader_page,
726                                cpu_buffer->reader_page->read);
727 }
728
729 static inline struct ring_buffer_event *
730 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
731 {
732         return __rb_page_index(cpu_buffer->head_page,
733                                cpu_buffer->head_page->read);
734 }
735
736 static inline struct ring_buffer_event *
737 rb_iter_head_event(struct ring_buffer_iter *iter)
738 {
739         return __rb_page_index(iter->head_page, iter->head);
740 }
741
742 static inline unsigned rb_page_write(struct buffer_page *bpage)
743 {
744         return local_read(&bpage->write);
745 }
746
747 static inline unsigned rb_page_commit(struct buffer_page *bpage)
748 {
749         return local_read(&bpage->page->commit);
750 }
751
752 /* Size is determined by what has been commited */
753 static inline unsigned rb_page_size(struct buffer_page *bpage)
754 {
755         return rb_page_commit(bpage);
756 }
757
758 static inline unsigned
759 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
760 {
761         return rb_page_commit(cpu_buffer->commit_page);
762 }
763
764 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
765 {
766         return rb_page_commit(cpu_buffer->head_page);
767 }
768
769 /*
770  * When the tail hits the head and the buffer is in overwrite mode,
771  * the head jumps to the next page and all content on the previous
772  * page is discarded. But before doing so, we update the overrun
773  * variable of the buffer.
774  */
775 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
776 {
777         struct ring_buffer_event *event;
778         unsigned long head;
779
780         for (head = 0; head < rb_head_size(cpu_buffer);
781              head += rb_event_length(event)) {
782
783                 event = __rb_page_index(cpu_buffer->head_page, head);
784                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
785                         return;
786                 /* Only count data entries */
787                 if (event->type != RINGBUF_TYPE_DATA)
788                         continue;
789                 cpu_buffer->overrun++;
790                 cpu_buffer->entries--;
791         }
792 }
793
794 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
795                                struct buffer_page **bpage)
796 {
797         struct list_head *p = (*bpage)->list.next;
798
799         if (p == &cpu_buffer->pages)
800                 p = p->next;
801
802         *bpage = list_entry(p, struct buffer_page, list);
803 }
804
805 static inline unsigned
806 rb_event_index(struct ring_buffer_event *event)
807 {
808         unsigned long addr = (unsigned long)event;
809
810         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
811 }
812
813 static int
814 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
815              struct ring_buffer_event *event)
816 {
817         unsigned long addr = (unsigned long)event;
818         unsigned long index;
819
820         index = rb_event_index(event);
821         addr &= PAGE_MASK;
822
823         return cpu_buffer->commit_page->page == (void *)addr &&
824                 rb_commit_index(cpu_buffer) == index;
825 }
826
827 static void
828 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
829                     struct ring_buffer_event *event)
830 {
831         unsigned long addr = (unsigned long)event;
832         unsigned long index;
833
834         index = rb_event_index(event);
835         addr &= PAGE_MASK;
836
837         while (cpu_buffer->commit_page->page != (void *)addr) {
838                 if (RB_WARN_ON(cpu_buffer,
839                           cpu_buffer->commit_page == cpu_buffer->tail_page))
840                         return;
841                 cpu_buffer->commit_page->page->commit =
842                         cpu_buffer->commit_page->write;
843                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
844                 cpu_buffer->write_stamp =
845                         cpu_buffer->commit_page->page->time_stamp;
846         }
847
848         /* Now set the commit to the event's index */
849         local_set(&cpu_buffer->commit_page->page->commit, index);
850 }
851
852 static void
853 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
854 {
855         /*
856          * We only race with interrupts and NMIs on this CPU.
857          * If we own the commit event, then we can commit
858          * all others that interrupted us, since the interruptions
859          * are in stack format (they finish before they come
860          * back to us). This allows us to do a simple loop to
861          * assign the commit to the tail.
862          */
863  again:
864         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
865                 cpu_buffer->commit_page->page->commit =
866                         cpu_buffer->commit_page->write;
867                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
868                 cpu_buffer->write_stamp =
869                         cpu_buffer->commit_page->page->time_stamp;
870                 /* add barrier to keep gcc from optimizing too much */
871                 barrier();
872         }
873         while (rb_commit_index(cpu_buffer) !=
874                rb_page_write(cpu_buffer->commit_page)) {
875                 cpu_buffer->commit_page->page->commit =
876                         cpu_buffer->commit_page->write;
877                 barrier();
878         }
879
880         /* again, keep gcc from optimizing */
881         barrier();
882
883         /*
884          * If an interrupt came in just after the first while loop
885          * and pushed the tail page forward, we will be left with
886          * a dangling commit that will never go forward.
887          */
888         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
889                 goto again;
890 }
891
892 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
893 {
894         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
895         cpu_buffer->reader_page->read = 0;
896 }
897
898 static void rb_inc_iter(struct ring_buffer_iter *iter)
899 {
900         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
901
902         /*
903          * The iterator could be on the reader page (it starts there).
904          * But the head could have moved, since the reader was
905          * found. Check for this case and assign the iterator
906          * to the head page instead of next.
907          */
908         if (iter->head_page == cpu_buffer->reader_page)
909                 iter->head_page = cpu_buffer->head_page;
910         else
911                 rb_inc_page(cpu_buffer, &iter->head_page);
912
913         iter->read_stamp = iter->head_page->page->time_stamp;
914         iter->head = 0;
915 }
916
917 /**
918  * ring_buffer_update_event - update event type and data
919  * @event: the even to update
920  * @type: the type of event
921  * @length: the size of the event field in the ring buffer
922  *
923  * Update the type and data fields of the event. The length
924  * is the actual size that is written to the ring buffer,
925  * and with this, we can determine what to place into the
926  * data field.
927  */
928 static void
929 rb_update_event(struct ring_buffer_event *event,
930                          unsigned type, unsigned length)
931 {
932         event->type = type;
933
934         switch (type) {
935
936         case RINGBUF_TYPE_PADDING:
937                 break;
938
939         case RINGBUF_TYPE_TIME_EXTEND:
940                 event->len =
941                         (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
942                         >> RB_ALIGNMENT_SHIFT;
943                 break;
944
945         case RINGBUF_TYPE_TIME_STAMP:
946                 event->len =
947                         (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
948                         >> RB_ALIGNMENT_SHIFT;
949                 break;
950
951         case RINGBUF_TYPE_DATA:
952                 length -= RB_EVNT_HDR_SIZE;
953                 if (length > RB_MAX_SMALL_DATA) {
954                         event->len = 0;
955                         event->array[0] = length;
956                 } else
957                         event->len =
958                                 (length + (RB_ALIGNMENT-1))
959                                 >> RB_ALIGNMENT_SHIFT;
960                 break;
961         default:
962                 BUG();
963         }
964 }
965
966 static unsigned rb_calculate_event_length(unsigned length)
967 {
968         struct ring_buffer_event event; /* Used only for sizeof array */
969
970         /* zero length can cause confusions */
971         if (!length)
972                 length = 1;
973
974         if (length > RB_MAX_SMALL_DATA)
975                 length += sizeof(event.array[0]);
976
977         length += RB_EVNT_HDR_SIZE;
978         length = ALIGN(length, RB_ALIGNMENT);
979
980         return length;
981 }
982
983 static struct ring_buffer_event *
984 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
985                   unsigned type, unsigned long length, u64 *ts)
986 {
987         struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
988         unsigned long tail, write;
989         struct ring_buffer *buffer = cpu_buffer->buffer;
990         struct ring_buffer_event *event;
991         unsigned long flags;
992
993         commit_page = cpu_buffer->commit_page;
994         /* we just need to protect against interrupts */
995         barrier();
996         tail_page = cpu_buffer->tail_page;
997         write = local_add_return(length, &tail_page->write);
998         tail = write - length;
999
1000         /* See if we shot pass the end of this buffer page */
1001         if (write > BUF_PAGE_SIZE) {
1002                 struct buffer_page *next_page = tail_page;
1003
1004                 local_irq_save(flags);
1005                 __raw_spin_lock(&cpu_buffer->lock);
1006
1007                 rb_inc_page(cpu_buffer, &next_page);
1008
1009                 head_page = cpu_buffer->head_page;
1010                 reader_page = cpu_buffer->reader_page;
1011
1012                 /* we grabbed the lock before incrementing */
1013                 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1014                         goto out_unlock;
1015
1016                 /*
1017                  * If for some reason, we had an interrupt storm that made
1018                  * it all the way around the buffer, bail, and warn
1019                  * about it.
1020                  */
1021                 if (unlikely(next_page == commit_page)) {
1022                         WARN_ON_ONCE(1);
1023                         goto out_unlock;
1024                 }
1025
1026                 if (next_page == head_page) {
1027                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
1028                                 /* reset write */
1029                                 if (tail <= BUF_PAGE_SIZE)
1030                                         local_set(&tail_page->write, tail);
1031                                 goto out_unlock;
1032                         }
1033
1034                         /* tail_page has not moved yet? */
1035                         if (tail_page == cpu_buffer->tail_page) {
1036                                 /* count overflows */
1037                                 rb_update_overflow(cpu_buffer);
1038
1039                                 rb_inc_page(cpu_buffer, &head_page);
1040                                 cpu_buffer->head_page = head_page;
1041                                 cpu_buffer->head_page->read = 0;
1042                         }
1043                 }
1044
1045                 /*
1046                  * If the tail page is still the same as what we think
1047                  * it is, then it is up to us to update the tail
1048                  * pointer.
1049                  */
1050                 if (tail_page == cpu_buffer->tail_page) {
1051                         local_set(&next_page->write, 0);
1052                         local_set(&next_page->page->commit, 0);
1053                         cpu_buffer->tail_page = next_page;
1054
1055                         /* reread the time stamp */
1056                         *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1057                         cpu_buffer->tail_page->page->time_stamp = *ts;
1058                 }
1059
1060                 /*
1061                  * The actual tail page has moved forward.
1062                  */
1063                 if (tail < BUF_PAGE_SIZE) {
1064                         /* Mark the rest of the page with padding */
1065                         event = __rb_page_index(tail_page, tail);
1066                         event->type = RINGBUF_TYPE_PADDING;
1067                 }
1068
1069                 if (tail <= BUF_PAGE_SIZE)
1070                         /* Set the write back to the previous setting */
1071                         local_set(&tail_page->write, tail);
1072
1073                 /*
1074                  * If this was a commit entry that failed,
1075                  * increment that too
1076                  */
1077                 if (tail_page == cpu_buffer->commit_page &&
1078                     tail == rb_commit_index(cpu_buffer)) {
1079                         rb_set_commit_to_write(cpu_buffer);
1080                 }
1081
1082                 __raw_spin_unlock(&cpu_buffer->lock);
1083                 local_irq_restore(flags);
1084
1085                 /* fail and let the caller try again */
1086                 return ERR_PTR(-EAGAIN);
1087         }
1088
1089         /* We reserved something on the buffer */
1090
1091         if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1092                 return NULL;
1093
1094         event = __rb_page_index(tail_page, tail);
1095         rb_update_event(event, type, length);
1096
1097         /*
1098          * If this is a commit and the tail is zero, then update
1099          * this page's time stamp.
1100          */
1101         if (!tail && rb_is_commit(cpu_buffer, event))
1102                 cpu_buffer->commit_page->page->time_stamp = *ts;
1103
1104         return event;
1105
1106  out_unlock:
1107         __raw_spin_unlock(&cpu_buffer->lock);
1108         local_irq_restore(flags);
1109         return NULL;
1110 }
1111
1112 static int
1113 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1114                   u64 *ts, u64 *delta)
1115 {
1116         struct ring_buffer_event *event;
1117         static int once;
1118         int ret;
1119
1120         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1121                 printk(KERN_WARNING "Delta way too big! %llu"
1122                        " ts=%llu write stamp = %llu\n",
1123                        (unsigned long long)*delta,
1124                        (unsigned long long)*ts,
1125                        (unsigned long long)cpu_buffer->write_stamp);
1126                 WARN_ON(1);
1127         }
1128
1129         /*
1130          * The delta is too big, we to add a
1131          * new timestamp.
1132          */
1133         event = __rb_reserve_next(cpu_buffer,
1134                                   RINGBUF_TYPE_TIME_EXTEND,
1135                                   RB_LEN_TIME_EXTEND,
1136                                   ts);
1137         if (!event)
1138                 return -EBUSY;
1139
1140         if (PTR_ERR(event) == -EAGAIN)
1141                 return -EAGAIN;
1142
1143         /* Only a commited time event can update the write stamp */
1144         if (rb_is_commit(cpu_buffer, event)) {
1145                 /*
1146                  * If this is the first on the page, then we need to
1147                  * update the page itself, and just put in a zero.
1148                  */
1149                 if (rb_event_index(event)) {
1150                         event->time_delta = *delta & TS_MASK;
1151                         event->array[0] = *delta >> TS_SHIFT;
1152                 } else {
1153                         cpu_buffer->commit_page->page->time_stamp = *ts;
1154                         event->time_delta = 0;
1155                         event->array[0] = 0;
1156                 }
1157                 cpu_buffer->write_stamp = *ts;
1158                 /* let the caller know this was the commit */
1159                 ret = 1;
1160         } else {
1161                 /* Darn, this is just wasted space */
1162                 event->time_delta = 0;
1163                 event->array[0] = 0;
1164                 ret = 0;
1165         }
1166
1167         *delta = 0;
1168
1169         return ret;
1170 }
1171
1172 static struct ring_buffer_event *
1173 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1174                       unsigned type, unsigned long length)
1175 {
1176         struct ring_buffer_event *event;
1177         u64 ts, delta;
1178         int commit = 0;
1179         int nr_loops = 0;
1180
1181  again:
1182         /*
1183          * We allow for interrupts to reenter here and do a trace.
1184          * If one does, it will cause this original code to loop
1185          * back here. Even with heavy interrupts happening, this
1186          * should only happen a few times in a row. If this happens
1187          * 1000 times in a row, there must be either an interrupt
1188          * storm or we have something buggy.
1189          * Bail!
1190          */
1191         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1192                 return NULL;
1193
1194         ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1195
1196         /*
1197          * Only the first commit can update the timestamp.
1198          * Yes there is a race here. If an interrupt comes in
1199          * just after the conditional and it traces too, then it
1200          * will also check the deltas. More than one timestamp may
1201          * also be made. But only the entry that did the actual
1202          * commit will be something other than zero.
1203          */
1204         if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1205             rb_page_write(cpu_buffer->tail_page) ==
1206             rb_commit_index(cpu_buffer)) {
1207
1208                 delta = ts - cpu_buffer->write_stamp;
1209
1210                 /* make sure this delta is calculated here */
1211                 barrier();
1212
1213                 /* Did the write stamp get updated already? */
1214                 if (unlikely(ts < cpu_buffer->write_stamp))
1215                         delta = 0;
1216
1217                 if (test_time_stamp(delta)) {
1218
1219                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1220
1221                         if (commit == -EBUSY)
1222                                 return NULL;
1223
1224                         if (commit == -EAGAIN)
1225                                 goto again;
1226
1227                         RB_WARN_ON(cpu_buffer, commit < 0);
1228                 }
1229         } else
1230                 /* Non commits have zero deltas */
1231                 delta = 0;
1232
1233         event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1234         if (PTR_ERR(event) == -EAGAIN)
1235                 goto again;
1236
1237         if (!event) {
1238                 if (unlikely(commit))
1239                         /*
1240                          * Ouch! We needed a timestamp and it was commited. But
1241                          * we didn't get our event reserved.
1242                          */
1243                         rb_set_commit_to_write(cpu_buffer);
1244                 return NULL;
1245         }
1246
1247         /*
1248          * If the timestamp was commited, make the commit our entry
1249          * now so that we will update it when needed.
1250          */
1251         if (commit)
1252                 rb_set_commit_event(cpu_buffer, event);
1253         else if (!rb_is_commit(cpu_buffer, event))
1254                 delta = 0;
1255
1256         event->time_delta = delta;
1257
1258         return event;
1259 }
1260
1261 static DEFINE_PER_CPU(int, rb_need_resched);
1262
1263 /**
1264  * ring_buffer_lock_reserve - reserve a part of the buffer
1265  * @buffer: the ring buffer to reserve from
1266  * @length: the length of the data to reserve (excluding event header)
1267  * @flags: a pointer to save the interrupt flags
1268  *
1269  * Returns a reseverd event on the ring buffer to copy directly to.
1270  * The user of this interface will need to get the body to write into
1271  * and can use the ring_buffer_event_data() interface.
1272  *
1273  * The length is the length of the data needed, not the event length
1274  * which also includes the event header.
1275  *
1276  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1277  * If NULL is returned, then nothing has been allocated or locked.
1278  */
1279 struct ring_buffer_event *
1280 ring_buffer_lock_reserve(struct ring_buffer *buffer,
1281                          unsigned long length,
1282                          unsigned long *flags)
1283 {
1284         struct ring_buffer_per_cpu *cpu_buffer;
1285         struct ring_buffer_event *event;
1286         int cpu, resched;
1287
1288         if (ring_buffer_flags != RB_BUFFERS_ON)
1289                 return NULL;
1290
1291         if (atomic_read(&buffer->record_disabled))
1292                 return NULL;
1293
1294         /* If we are tracing schedule, we don't want to recurse */
1295         resched = ftrace_preempt_disable();
1296
1297         cpu = raw_smp_processor_id();
1298
1299         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1300                 goto out;
1301
1302         cpu_buffer = buffer->buffers[cpu];
1303
1304         if (atomic_read(&cpu_buffer->record_disabled))
1305                 goto out;
1306
1307         length = rb_calculate_event_length(length);
1308         if (length > BUF_PAGE_SIZE)
1309                 goto out;
1310
1311         event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1312         if (!event)
1313                 goto out;
1314
1315         /*
1316          * Need to store resched state on this cpu.
1317          * Only the first needs to.
1318          */
1319
1320         if (preempt_count() == 1)
1321                 per_cpu(rb_need_resched, cpu) = resched;
1322
1323         return event;
1324
1325  out:
1326         ftrace_preempt_enable(resched);
1327         return NULL;
1328 }
1329 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1330
1331 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1332                       struct ring_buffer_event *event)
1333 {
1334         cpu_buffer->entries++;
1335
1336         /* Only process further if we own the commit */
1337         if (!rb_is_commit(cpu_buffer, event))
1338                 return;
1339
1340         cpu_buffer->write_stamp += event->time_delta;
1341
1342         rb_set_commit_to_write(cpu_buffer);
1343 }
1344
1345 /**
1346  * ring_buffer_unlock_commit - commit a reserved
1347  * @buffer: The buffer to commit to
1348  * @event: The event pointer to commit.
1349  * @flags: the interrupt flags received from ring_buffer_lock_reserve.
1350  *
1351  * This commits the data to the ring buffer, and releases any locks held.
1352  *
1353  * Must be paired with ring_buffer_lock_reserve.
1354  */
1355 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1356                               struct ring_buffer_event *event,
1357                               unsigned long flags)
1358 {
1359         struct ring_buffer_per_cpu *cpu_buffer;
1360         int cpu = raw_smp_processor_id();
1361
1362         cpu_buffer = buffer->buffers[cpu];
1363
1364         rb_commit(cpu_buffer, event);
1365
1366         /*
1367          * Only the last preempt count needs to restore preemption.
1368          */
1369         if (preempt_count() == 1)
1370                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1371         else
1372                 preempt_enable_no_resched_notrace();
1373
1374         return 0;
1375 }
1376 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1377
1378 /**
1379  * ring_buffer_write - write data to the buffer without reserving
1380  * @buffer: The ring buffer to write to.
1381  * @length: The length of the data being written (excluding the event header)
1382  * @data: The data to write to the buffer.
1383  *
1384  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1385  * one function. If you already have the data to write to the buffer, it
1386  * may be easier to simply call this function.
1387  *
1388  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1389  * and not the length of the event which would hold the header.
1390  */
1391 int ring_buffer_write(struct ring_buffer *buffer,
1392                         unsigned long length,
1393                         void *data)
1394 {
1395         struct ring_buffer_per_cpu *cpu_buffer;
1396         struct ring_buffer_event *event;
1397         unsigned long event_length;
1398         void *body;
1399         int ret = -EBUSY;
1400         int cpu, resched;
1401
1402         if (ring_buffer_flags != RB_BUFFERS_ON)
1403                 return -EBUSY;
1404
1405         if (atomic_read(&buffer->record_disabled))
1406                 return -EBUSY;
1407
1408         resched = ftrace_preempt_disable();
1409
1410         cpu = raw_smp_processor_id();
1411
1412         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1413                 goto out;
1414
1415         cpu_buffer = buffer->buffers[cpu];
1416
1417         if (atomic_read(&cpu_buffer->record_disabled))
1418                 goto out;
1419
1420         event_length = rb_calculate_event_length(length);
1421         event = rb_reserve_next_event(cpu_buffer,
1422                                       RINGBUF_TYPE_DATA, event_length);
1423         if (!event)
1424                 goto out;
1425
1426         body = rb_event_data(event);
1427
1428         memcpy(body, data, length);
1429
1430         rb_commit(cpu_buffer, event);
1431
1432         ret = 0;
1433  out:
1434         ftrace_preempt_enable(resched);
1435
1436         return ret;
1437 }
1438 EXPORT_SYMBOL_GPL(ring_buffer_write);
1439
1440 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1441 {
1442         struct buffer_page *reader = cpu_buffer->reader_page;
1443         struct buffer_page *head = cpu_buffer->head_page;
1444         struct buffer_page *commit = cpu_buffer->commit_page;
1445
1446         return reader->read == rb_page_commit(reader) &&
1447                 (commit == reader ||
1448                  (commit == head &&
1449                   head->read == rb_page_commit(commit)));
1450 }
1451
1452 /**
1453  * ring_buffer_record_disable - stop all writes into the buffer
1454  * @buffer: The ring buffer to stop writes to.
1455  *
1456  * This prevents all writes to the buffer. Any attempt to write
1457  * to the buffer after this will fail and return NULL.
1458  *
1459  * The caller should call synchronize_sched() after this.
1460  */
1461 void ring_buffer_record_disable(struct ring_buffer *buffer)
1462 {
1463         atomic_inc(&buffer->record_disabled);
1464 }
1465 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1466
1467 /**
1468  * ring_buffer_record_enable - enable writes to the buffer
1469  * @buffer: The ring buffer to enable writes
1470  *
1471  * Note, multiple disables will need the same number of enables
1472  * to truely enable the writing (much like preempt_disable).
1473  */
1474 void ring_buffer_record_enable(struct ring_buffer *buffer)
1475 {
1476         atomic_dec(&buffer->record_disabled);
1477 }
1478 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1479
1480 /**
1481  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1482  * @buffer: The ring buffer to stop writes to.
1483  * @cpu: The CPU buffer to stop
1484  *
1485  * This prevents all writes to the buffer. Any attempt to write
1486  * to the buffer after this will fail and return NULL.
1487  *
1488  * The caller should call synchronize_sched() after this.
1489  */
1490 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1491 {
1492         struct ring_buffer_per_cpu *cpu_buffer;
1493
1494         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1495                 return;
1496
1497         cpu_buffer = buffer->buffers[cpu];
1498         atomic_inc(&cpu_buffer->record_disabled);
1499 }
1500 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1501
1502 /**
1503  * ring_buffer_record_enable_cpu - enable writes to the buffer
1504  * @buffer: The ring buffer to enable writes
1505  * @cpu: The CPU to enable.
1506  *
1507  * Note, multiple disables will need the same number of enables
1508  * to truely enable the writing (much like preempt_disable).
1509  */
1510 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1511 {
1512         struct ring_buffer_per_cpu *cpu_buffer;
1513
1514         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1515                 return;
1516
1517         cpu_buffer = buffer->buffers[cpu];
1518         atomic_dec(&cpu_buffer->record_disabled);
1519 }
1520 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1521
1522 /**
1523  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1524  * @buffer: The ring buffer
1525  * @cpu: The per CPU buffer to get the entries from.
1526  */
1527 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1528 {
1529         struct ring_buffer_per_cpu *cpu_buffer;
1530
1531         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1532                 return 0;
1533
1534         cpu_buffer = buffer->buffers[cpu];
1535         return cpu_buffer->entries;
1536 }
1537 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1538
1539 /**
1540  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1541  * @buffer: The ring buffer
1542  * @cpu: The per CPU buffer to get the number of overruns from
1543  */
1544 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1545 {
1546         struct ring_buffer_per_cpu *cpu_buffer;
1547
1548         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1549                 return 0;
1550
1551         cpu_buffer = buffer->buffers[cpu];
1552         return cpu_buffer->overrun;
1553 }
1554 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1555
1556 /**
1557  * ring_buffer_entries - get the number of entries in a buffer
1558  * @buffer: The ring buffer
1559  *
1560  * Returns the total number of entries in the ring buffer
1561  * (all CPU entries)
1562  */
1563 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1564 {
1565         struct ring_buffer_per_cpu *cpu_buffer;
1566         unsigned long entries = 0;
1567         int cpu;
1568
1569         /* if you care about this being correct, lock the buffer */
1570         for_each_buffer_cpu(buffer, cpu) {
1571                 cpu_buffer = buffer->buffers[cpu];
1572                 entries += cpu_buffer->entries;
1573         }
1574
1575         return entries;
1576 }
1577 EXPORT_SYMBOL_GPL(ring_buffer_entries);
1578
1579 /**
1580  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1581  * @buffer: The ring buffer
1582  *
1583  * Returns the total number of overruns in the ring buffer
1584  * (all CPU entries)
1585  */
1586 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1587 {
1588         struct ring_buffer_per_cpu *cpu_buffer;
1589         unsigned long overruns = 0;
1590         int cpu;
1591
1592         /* if you care about this being correct, lock the buffer */
1593         for_each_buffer_cpu(buffer, cpu) {
1594                 cpu_buffer = buffer->buffers[cpu];
1595                 overruns += cpu_buffer->overrun;
1596         }
1597
1598         return overruns;
1599 }
1600 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
1601
1602 static void rb_iter_reset(struct ring_buffer_iter *iter)
1603 {
1604         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1605
1606         /* Iterator usage is expected to have record disabled */
1607         if (list_empty(&cpu_buffer->reader_page->list)) {
1608                 iter->head_page = cpu_buffer->head_page;
1609                 iter->head = cpu_buffer->head_page->read;
1610         } else {
1611                 iter->head_page = cpu_buffer->reader_page;
1612                 iter->head = cpu_buffer->reader_page->read;
1613         }
1614         if (iter->head)
1615                 iter->read_stamp = cpu_buffer->read_stamp;
1616         else
1617                 iter->read_stamp = iter->head_page->page->time_stamp;
1618 }
1619
1620 /**
1621  * ring_buffer_iter_reset - reset an iterator
1622  * @iter: The iterator to reset
1623  *
1624  * Resets the iterator, so that it will start from the beginning
1625  * again.
1626  */
1627 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1628 {
1629         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1630         unsigned long flags;
1631
1632         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1633         rb_iter_reset(iter);
1634         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1635 }
1636 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
1637
1638 /**
1639  * ring_buffer_iter_empty - check if an iterator has no more to read
1640  * @iter: The iterator to check
1641  */
1642 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1643 {
1644         struct ring_buffer_per_cpu *cpu_buffer;
1645
1646         cpu_buffer = iter->cpu_buffer;
1647
1648         return iter->head_page == cpu_buffer->commit_page &&
1649                 iter->head == rb_commit_index(cpu_buffer);
1650 }
1651 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
1652
1653 static void
1654 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1655                      struct ring_buffer_event *event)
1656 {
1657         u64 delta;
1658
1659         switch (event->type) {
1660         case RINGBUF_TYPE_PADDING:
1661                 return;
1662
1663         case RINGBUF_TYPE_TIME_EXTEND:
1664                 delta = event->array[0];
1665                 delta <<= TS_SHIFT;
1666                 delta += event->time_delta;
1667                 cpu_buffer->read_stamp += delta;
1668                 return;
1669
1670         case RINGBUF_TYPE_TIME_STAMP:
1671                 /* FIXME: not implemented */
1672                 return;
1673
1674         case RINGBUF_TYPE_DATA:
1675                 cpu_buffer->read_stamp += event->time_delta;
1676                 return;
1677
1678         default:
1679                 BUG();
1680         }
1681         return;
1682 }
1683
1684 static void
1685 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1686                           struct ring_buffer_event *event)
1687 {
1688         u64 delta;
1689
1690         switch (event->type) {
1691         case RINGBUF_TYPE_PADDING:
1692                 return;
1693
1694         case RINGBUF_TYPE_TIME_EXTEND:
1695                 delta = event->array[0];
1696                 delta <<= TS_SHIFT;
1697                 delta += event->time_delta;
1698                 iter->read_stamp += delta;
1699                 return;
1700
1701         case RINGBUF_TYPE_TIME_STAMP:
1702                 /* FIXME: not implemented */
1703                 return;
1704
1705         case RINGBUF_TYPE_DATA:
1706                 iter->read_stamp += event->time_delta;
1707                 return;
1708
1709         default:
1710                 BUG();
1711         }
1712         return;
1713 }
1714
1715 static struct buffer_page *
1716 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1717 {
1718         struct buffer_page *reader = NULL;
1719         unsigned long flags;
1720         int nr_loops = 0;
1721
1722         local_irq_save(flags);
1723         __raw_spin_lock(&cpu_buffer->lock);
1724
1725  again:
1726         /*
1727          * This should normally only loop twice. But because the
1728          * start of the reader inserts an empty page, it causes
1729          * a case where we will loop three times. There should be no
1730          * reason to loop four times (that I know of).
1731          */
1732         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
1733                 reader = NULL;
1734                 goto out;
1735         }
1736
1737         reader = cpu_buffer->reader_page;
1738
1739         /* If there's more to read, return this page */
1740         if (cpu_buffer->reader_page->read < rb_page_size(reader))
1741                 goto out;
1742
1743         /* Never should we have an index greater than the size */
1744         if (RB_WARN_ON(cpu_buffer,
1745                        cpu_buffer->reader_page->read > rb_page_size(reader)))
1746                 goto out;
1747
1748         /* check if we caught up to the tail */
1749         reader = NULL;
1750         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1751                 goto out;
1752
1753         /*
1754          * Splice the empty reader page into the list around the head.
1755          * Reset the reader page to size zero.
1756          */
1757
1758         reader = cpu_buffer->head_page;
1759         cpu_buffer->reader_page->list.next = reader->list.next;
1760         cpu_buffer->reader_page->list.prev = reader->list.prev;
1761
1762         local_set(&cpu_buffer->reader_page->write, 0);
1763         local_set(&cpu_buffer->reader_page->page->commit, 0);
1764
1765         /* Make the reader page now replace the head */
1766         reader->list.prev->next = &cpu_buffer->reader_page->list;
1767         reader->list.next->prev = &cpu_buffer->reader_page->list;
1768
1769         /*
1770          * If the tail is on the reader, then we must set the head
1771          * to the inserted page, otherwise we set it one before.
1772          */
1773         cpu_buffer->head_page = cpu_buffer->reader_page;
1774
1775         if (cpu_buffer->commit_page != reader)
1776                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1777
1778         /* Finally update the reader page to the new head */
1779         cpu_buffer->reader_page = reader;
1780         rb_reset_reader_page(cpu_buffer);
1781
1782         goto again;
1783
1784  out:
1785         __raw_spin_unlock(&cpu_buffer->lock);
1786         local_irq_restore(flags);
1787
1788         return reader;
1789 }
1790
1791 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1792 {
1793         struct ring_buffer_event *event;
1794         struct buffer_page *reader;
1795         unsigned length;
1796
1797         reader = rb_get_reader_page(cpu_buffer);
1798
1799         /* This function should not be called when buffer is empty */
1800         if (RB_WARN_ON(cpu_buffer, !reader))
1801                 return;
1802
1803         event = rb_reader_event(cpu_buffer);
1804
1805         if (event->type == RINGBUF_TYPE_DATA)
1806                 cpu_buffer->entries--;
1807
1808         rb_update_read_stamp(cpu_buffer, event);
1809
1810         length = rb_event_length(event);
1811         cpu_buffer->reader_page->read += length;
1812 }
1813
1814 static void rb_advance_iter(struct ring_buffer_iter *iter)
1815 {
1816         struct ring_buffer *buffer;
1817         struct ring_buffer_per_cpu *cpu_buffer;
1818         struct ring_buffer_event *event;
1819         unsigned length;
1820
1821         cpu_buffer = iter->cpu_buffer;
1822         buffer = cpu_buffer->buffer;
1823
1824         /*
1825          * Check if we are at the end of the buffer.
1826          */
1827         if (iter->head >= rb_page_size(iter->head_page)) {
1828                 if (RB_WARN_ON(buffer,
1829                                iter->head_page == cpu_buffer->commit_page))
1830                         return;
1831                 rb_inc_iter(iter);
1832                 return;
1833         }
1834
1835         event = rb_iter_head_event(iter);
1836
1837         length = rb_event_length(event);
1838
1839         /*
1840          * This should not be called to advance the header if we are
1841          * at the tail of the buffer.
1842          */
1843         if (RB_WARN_ON(cpu_buffer,
1844                        (iter->head_page == cpu_buffer->commit_page) &&
1845                        (iter->head + length > rb_commit_index(cpu_buffer))))
1846                 return;
1847
1848         rb_update_iter_read_stamp(iter, event);
1849
1850         iter->head += length;
1851
1852         /* check for end of page padding */
1853         if ((iter->head >= rb_page_size(iter->head_page)) &&
1854             (iter->head_page != cpu_buffer->commit_page))
1855                 rb_advance_iter(iter);
1856 }
1857
1858 static struct ring_buffer_event *
1859 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1860 {
1861         struct ring_buffer_per_cpu *cpu_buffer;
1862         struct ring_buffer_event *event;
1863         struct buffer_page *reader;
1864         int nr_loops = 0;
1865
1866         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1867                 return NULL;
1868
1869         cpu_buffer = buffer->buffers[cpu];
1870
1871  again:
1872         /*
1873          * We repeat when a timestamp is encountered. It is possible
1874          * to get multiple timestamps from an interrupt entering just
1875          * as one timestamp is about to be written. The max times
1876          * that this can happen is the number of nested interrupts we
1877          * can have.  Nesting 10 deep of interrupts is clearly
1878          * an anomaly.
1879          */
1880         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1881                 return NULL;
1882
1883         reader = rb_get_reader_page(cpu_buffer);
1884         if (!reader)
1885                 return NULL;
1886
1887         event = rb_reader_event(cpu_buffer);
1888
1889         switch (event->type) {
1890         case RINGBUF_TYPE_PADDING:
1891                 RB_WARN_ON(cpu_buffer, 1);
1892                 rb_advance_reader(cpu_buffer);
1893                 return NULL;
1894
1895         case RINGBUF_TYPE_TIME_EXTEND:
1896                 /* Internal data, OK to advance */
1897                 rb_advance_reader(cpu_buffer);
1898                 goto again;
1899
1900         case RINGBUF_TYPE_TIME_STAMP:
1901                 /* FIXME: not implemented */
1902                 rb_advance_reader(cpu_buffer);
1903                 goto again;
1904
1905         case RINGBUF_TYPE_DATA:
1906                 if (ts) {
1907                         *ts = cpu_buffer->read_stamp + event->time_delta;
1908                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1909                 }
1910                 return event;
1911
1912         default:
1913                 BUG();
1914         }
1915
1916         return NULL;
1917 }
1918 EXPORT_SYMBOL_GPL(ring_buffer_peek);
1919
1920 static struct ring_buffer_event *
1921 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1922 {
1923         struct ring_buffer *buffer;
1924         struct ring_buffer_per_cpu *cpu_buffer;
1925         struct ring_buffer_event *event;
1926         int nr_loops = 0;
1927
1928         if (ring_buffer_iter_empty(iter))
1929                 return NULL;
1930
1931         cpu_buffer = iter->cpu_buffer;
1932         buffer = cpu_buffer->buffer;
1933
1934  again:
1935         /*
1936          * We repeat when a timestamp is encountered. It is possible
1937          * to get multiple timestamps from an interrupt entering just
1938          * as one timestamp is about to be written. The max times
1939          * that this can happen is the number of nested interrupts we
1940          * can have. Nesting 10 deep of interrupts is clearly
1941          * an anomaly.
1942          */
1943         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1944                 return NULL;
1945
1946         if (rb_per_cpu_empty(cpu_buffer))
1947                 return NULL;
1948
1949         event = rb_iter_head_event(iter);
1950
1951         switch (event->type) {
1952         case RINGBUF_TYPE_PADDING:
1953                 rb_inc_iter(iter);
1954                 goto again;
1955
1956         case RINGBUF_TYPE_TIME_EXTEND:
1957                 /* Internal data, OK to advance */
1958                 rb_advance_iter(iter);
1959                 goto again;
1960
1961         case RINGBUF_TYPE_TIME_STAMP:
1962                 /* FIXME: not implemented */
1963                 rb_advance_iter(iter);
1964                 goto again;
1965
1966         case RINGBUF_TYPE_DATA:
1967                 if (ts) {
1968                         *ts = iter->read_stamp + event->time_delta;
1969                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1970                 }
1971                 return event;
1972
1973         default:
1974                 BUG();
1975         }
1976
1977         return NULL;
1978 }
1979 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
1980
1981 /**
1982  * ring_buffer_peek - peek at the next event to be read
1983  * @buffer: The ring buffer to read
1984  * @cpu: The cpu to peak at
1985  * @ts: The timestamp counter of this event.
1986  *
1987  * This will return the event that will be read next, but does
1988  * not consume the data.
1989  */
1990 struct ring_buffer_event *
1991 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1992 {
1993         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
1994         struct ring_buffer_event *event;
1995         unsigned long flags;
1996
1997         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1998         event = rb_buffer_peek(buffer, cpu, ts);
1999         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2000
2001         return event;
2002 }
2003
2004 /**
2005  * ring_buffer_iter_peek - peek at the next event to be read
2006  * @iter: The ring buffer iterator
2007  * @ts: The timestamp counter of this event.
2008  *
2009  * This will return the event that will be read next, but does
2010  * not increment the iterator.
2011  */
2012 struct ring_buffer_event *
2013 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2014 {
2015         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2016         struct ring_buffer_event *event;
2017         unsigned long flags;
2018
2019         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2020         event = rb_iter_peek(iter, ts);
2021         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2022
2023         return event;
2024 }
2025
2026 /**
2027  * ring_buffer_consume - return an event and consume it
2028  * @buffer: The ring buffer to get the next event from
2029  *
2030  * Returns the next event in the ring buffer, and that event is consumed.
2031  * Meaning, that sequential reads will keep returning a different event,
2032  * and eventually empty the ring buffer if the producer is slower.
2033  */
2034 struct ring_buffer_event *
2035 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2036 {
2037         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2038         struct ring_buffer_event *event;
2039         unsigned long flags;
2040
2041         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2042                 return NULL;
2043
2044         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2045
2046         event = rb_buffer_peek(buffer, cpu, ts);
2047         if (!event)
2048                 goto out;
2049
2050         rb_advance_reader(cpu_buffer);
2051
2052  out:
2053         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2054
2055         return event;
2056 }
2057 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2058
2059 /**
2060  * ring_buffer_read_start - start a non consuming read of the buffer
2061  * @buffer: The ring buffer to read from
2062  * @cpu: The cpu buffer to iterate over
2063  *
2064  * This starts up an iteration through the buffer. It also disables
2065  * the recording to the buffer until the reading is finished.
2066  * This prevents the reading from being corrupted. This is not
2067  * a consuming read, so a producer is not expected.
2068  *
2069  * Must be paired with ring_buffer_finish.
2070  */
2071 struct ring_buffer_iter *
2072 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2073 {
2074         struct ring_buffer_per_cpu *cpu_buffer;
2075         struct ring_buffer_iter *iter;
2076         unsigned long flags;
2077
2078         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2079                 return NULL;
2080
2081         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2082         if (!iter)
2083                 return NULL;
2084
2085         cpu_buffer = buffer->buffers[cpu];
2086
2087         iter->cpu_buffer = cpu_buffer;
2088
2089         atomic_inc(&cpu_buffer->record_disabled);
2090         synchronize_sched();
2091
2092         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2093         __raw_spin_lock(&cpu_buffer->lock);
2094         rb_iter_reset(iter);
2095         __raw_spin_unlock(&cpu_buffer->lock);
2096         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2097
2098         return iter;
2099 }
2100 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2101
2102 /**
2103  * ring_buffer_finish - finish reading the iterator of the buffer
2104  * @iter: The iterator retrieved by ring_buffer_start
2105  *
2106  * This re-enables the recording to the buffer, and frees the
2107  * iterator.
2108  */
2109 void
2110 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2111 {
2112         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2113
2114         atomic_dec(&cpu_buffer->record_disabled);
2115         kfree(iter);
2116 }
2117 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2118
2119 /**
2120  * ring_buffer_read - read the next item in the ring buffer by the iterator
2121  * @iter: The ring buffer iterator
2122  * @ts: The time stamp of the event read.
2123  *
2124  * This reads the next event in the ring buffer and increments the iterator.
2125  */
2126 struct ring_buffer_event *
2127 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2128 {
2129         struct ring_buffer_event *event;
2130         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2131         unsigned long flags;
2132
2133         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2134         event = rb_iter_peek(iter, ts);
2135         if (!event)
2136                 goto out;
2137
2138         rb_advance_iter(iter);
2139  out:
2140         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2141
2142         return event;
2143 }
2144 EXPORT_SYMBOL_GPL(ring_buffer_read);
2145
2146 /**
2147  * ring_buffer_size - return the size of the ring buffer (in bytes)
2148  * @buffer: The ring buffer.
2149  */
2150 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2151 {
2152         return BUF_PAGE_SIZE * buffer->pages;
2153 }
2154 EXPORT_SYMBOL_GPL(ring_buffer_size);
2155
2156 static void
2157 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2158 {
2159         cpu_buffer->head_page
2160                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2161         local_set(&cpu_buffer->head_page->write, 0);
2162         local_set(&cpu_buffer->head_page->page->commit, 0);
2163
2164         cpu_buffer->head_page->read = 0;
2165
2166         cpu_buffer->tail_page = cpu_buffer->head_page;
2167         cpu_buffer->commit_page = cpu_buffer->head_page;
2168
2169         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2170         local_set(&cpu_buffer->reader_page->write, 0);
2171         local_set(&cpu_buffer->reader_page->page->commit, 0);
2172         cpu_buffer->reader_page->read = 0;
2173
2174         cpu_buffer->overrun = 0;
2175         cpu_buffer->entries = 0;
2176 }
2177
2178 /**
2179  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2180  * @buffer: The ring buffer to reset a per cpu buffer of
2181  * @cpu: The CPU buffer to be reset
2182  */
2183 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2184 {
2185         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2186         unsigned long flags;
2187
2188         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2189                 return;
2190
2191         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2192
2193         __raw_spin_lock(&cpu_buffer->lock);
2194
2195         rb_reset_cpu(cpu_buffer);
2196
2197         __raw_spin_unlock(&cpu_buffer->lock);
2198
2199         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2200 }
2201 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2202
2203 /**
2204  * ring_buffer_reset - reset a ring buffer
2205  * @buffer: The ring buffer to reset all cpu buffers
2206  */
2207 void ring_buffer_reset(struct ring_buffer *buffer)
2208 {
2209         int cpu;
2210
2211         for_each_buffer_cpu(buffer, cpu)
2212                 ring_buffer_reset_cpu(buffer, cpu);
2213 }
2214 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2215
2216 /**
2217  * rind_buffer_empty - is the ring buffer empty?
2218  * @buffer: The ring buffer to test
2219  */
2220 int ring_buffer_empty(struct ring_buffer *buffer)
2221 {
2222         struct ring_buffer_per_cpu *cpu_buffer;
2223         int cpu;
2224
2225         /* yes this is racy, but if you don't like the race, lock the buffer */
2226         for_each_buffer_cpu(buffer, cpu) {
2227                 cpu_buffer = buffer->buffers[cpu];
2228                 if (!rb_per_cpu_empty(cpu_buffer))
2229                         return 0;
2230         }
2231         return 1;
2232 }
2233 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2234
2235 /**
2236  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2237  * @buffer: The ring buffer
2238  * @cpu: The CPU buffer to test
2239  */
2240 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2241 {
2242         struct ring_buffer_per_cpu *cpu_buffer;
2243
2244         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2245                 return 1;
2246
2247         cpu_buffer = buffer->buffers[cpu];
2248         return rb_per_cpu_empty(cpu_buffer);
2249 }
2250 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2251
2252 /**
2253  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2254  * @buffer_a: One buffer to swap with
2255  * @buffer_b: The other buffer to swap with
2256  *
2257  * This function is useful for tracers that want to take a "snapshot"
2258  * of a CPU buffer and has another back up buffer lying around.
2259  * it is expected that the tracer handles the cpu buffer not being
2260  * used at the moment.
2261  */
2262 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2263                          struct ring_buffer *buffer_b, int cpu)
2264 {
2265         struct ring_buffer_per_cpu *cpu_buffer_a;
2266         struct ring_buffer_per_cpu *cpu_buffer_b;
2267
2268         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2269             !cpumask_test_cpu(cpu, buffer_b->cpumask))
2270                 return -EINVAL;
2271
2272         /* At least make sure the two buffers are somewhat the same */
2273         if (buffer_a->pages != buffer_b->pages)
2274                 return -EINVAL;
2275
2276         cpu_buffer_a = buffer_a->buffers[cpu];
2277         cpu_buffer_b = buffer_b->buffers[cpu];
2278
2279         /*
2280          * We can't do a synchronize_sched here because this
2281          * function can be called in atomic context.
2282          * Normally this will be called from the same CPU as cpu.
2283          * If not it's up to the caller to protect this.
2284          */
2285         atomic_inc(&cpu_buffer_a->record_disabled);
2286         atomic_inc(&cpu_buffer_b->record_disabled);
2287
2288         buffer_a->buffers[cpu] = cpu_buffer_b;
2289         buffer_b->buffers[cpu] = cpu_buffer_a;
2290
2291         cpu_buffer_b->buffer = buffer_a;
2292         cpu_buffer_a->buffer = buffer_b;
2293
2294         atomic_dec(&cpu_buffer_a->record_disabled);
2295         atomic_dec(&cpu_buffer_b->record_disabled);
2296
2297         return 0;
2298 }
2299 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2300
2301 static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
2302                               struct buffer_data_page *bpage)
2303 {
2304         struct ring_buffer_event *event;
2305         unsigned long head;
2306
2307         __raw_spin_lock(&cpu_buffer->lock);
2308         for (head = 0; head < local_read(&bpage->commit);
2309              head += rb_event_length(event)) {
2310
2311                 event = __rb_data_page_index(bpage, head);
2312                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2313                         return;
2314                 /* Only count data entries */
2315                 if (event->type != RINGBUF_TYPE_DATA)
2316                         continue;
2317                 cpu_buffer->entries--;
2318         }
2319         __raw_spin_unlock(&cpu_buffer->lock);
2320 }
2321
2322 /**
2323  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2324  * @buffer: the buffer to allocate for.
2325  *
2326  * This function is used in conjunction with ring_buffer_read_page.
2327  * When reading a full page from the ring buffer, these functions
2328  * can be used to speed up the process. The calling function should
2329  * allocate a few pages first with this function. Then when it
2330  * needs to get pages from the ring buffer, it passes the result
2331  * of this function into ring_buffer_read_page, which will swap
2332  * the page that was allocated, with the read page of the buffer.
2333  *
2334  * Returns:
2335  *  The page allocated, or NULL on error.
2336  */
2337 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2338 {
2339         unsigned long addr;
2340         struct buffer_data_page *bpage;
2341
2342         addr = __get_free_page(GFP_KERNEL);
2343         if (!addr)
2344                 return NULL;
2345
2346         bpage = (void *)addr;
2347
2348         return bpage;
2349 }
2350
2351 /**
2352  * ring_buffer_free_read_page - free an allocated read page
2353  * @buffer: the buffer the page was allocate for
2354  * @data: the page to free
2355  *
2356  * Free a page allocated from ring_buffer_alloc_read_page.
2357  */
2358 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2359 {
2360         free_page((unsigned long)data);
2361 }
2362
2363 /**
2364  * ring_buffer_read_page - extract a page from the ring buffer
2365  * @buffer: buffer to extract from
2366  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2367  * @cpu: the cpu of the buffer to extract
2368  * @full: should the extraction only happen when the page is full.
2369  *
2370  * This function will pull out a page from the ring buffer and consume it.
2371  * @data_page must be the address of the variable that was returned
2372  * from ring_buffer_alloc_read_page. This is because the page might be used
2373  * to swap with a page in the ring buffer.
2374  *
2375  * for example:
2376  *      rpage = ring_buffer_alloc_page(buffer);
2377  *      if (!rpage)
2378  *              return error;
2379  *      ret = ring_buffer_read_page(buffer, &rpage, cpu, 0);
2380  *      if (ret)
2381  *              process_page(rpage);
2382  *
2383  * When @full is set, the function will not return true unless
2384  * the writer is off the reader page.
2385  *
2386  * Note: it is up to the calling functions to handle sleeps and wakeups.
2387  *  The ring buffer can be used anywhere in the kernel and can not
2388  *  blindly call wake_up. The layer that uses the ring buffer must be
2389  *  responsible for that.
2390  *
2391  * Returns:
2392  *  1 if data has been transferred
2393  *  0 if no data has been transferred.
2394  */
2395 int ring_buffer_read_page(struct ring_buffer *buffer,
2396                             void **data_page, int cpu, int full)
2397 {
2398         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2399         struct ring_buffer_event *event;
2400         struct buffer_data_page *bpage;
2401         unsigned long flags;
2402         int ret = 0;
2403
2404         if (!data_page)
2405                 return 0;
2406
2407         bpage = *data_page;
2408         if (!bpage)
2409                 return 0;
2410
2411         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2412
2413         /*
2414          * rb_buffer_peek will get the next ring buffer if
2415          * the current reader page is empty.
2416          */
2417         event = rb_buffer_peek(buffer, cpu, NULL);
2418         if (!event)
2419                 goto out;
2420
2421         /* check for data */
2422         if (!local_read(&cpu_buffer->reader_page->page->commit))
2423                 goto out;
2424         /*
2425          * If the writer is already off of the read page, then simply
2426          * switch the read page with the given page. Otherwise
2427          * we need to copy the data from the reader to the writer.
2428          */
2429         if (cpu_buffer->reader_page == cpu_buffer->commit_page) {
2430                 unsigned int read = cpu_buffer->reader_page->read;
2431
2432                 if (full)
2433                         goto out;
2434                 /* The writer is still on the reader page, we must copy */
2435                 bpage = cpu_buffer->reader_page->page;
2436                 memcpy(bpage->data,
2437                        cpu_buffer->reader_page->page->data + read,
2438                        local_read(&bpage->commit) - read);
2439
2440                 /* consume what was read */
2441                 cpu_buffer->reader_page += read;
2442
2443         } else {
2444                 /* swap the pages */
2445                 rb_init_page(bpage);
2446                 bpage = cpu_buffer->reader_page->page;
2447                 cpu_buffer->reader_page->page = *data_page;
2448                 cpu_buffer->reader_page->read = 0;
2449                 *data_page = bpage;
2450         }
2451         ret = 1;
2452
2453         /* update the entry counter */
2454         rb_remove_entries(cpu_buffer, bpage);
2455  out:
2456         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2457
2458         return ret;
2459 }
2460
2461 static ssize_t
2462 rb_simple_read(struct file *filp, char __user *ubuf,
2463                size_t cnt, loff_t *ppos)
2464 {
2465         long *p = filp->private_data;
2466         char buf[64];
2467         int r;
2468
2469         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2470                 r = sprintf(buf, "permanently disabled\n");
2471         else
2472                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
2473
2474         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2475 }
2476
2477 static ssize_t
2478 rb_simple_write(struct file *filp, const char __user *ubuf,
2479                 size_t cnt, loff_t *ppos)
2480 {
2481         long *p = filp->private_data;
2482         char buf[64];
2483         long val;
2484         int ret;
2485
2486         if (cnt >= sizeof(buf))
2487                 return -EINVAL;
2488
2489         if (copy_from_user(&buf, ubuf, cnt))
2490                 return -EFAULT;
2491
2492         buf[cnt] = 0;
2493
2494         ret = strict_strtoul(buf, 10, &val);
2495         if (ret < 0)
2496                 return ret;
2497
2498         if (val)
2499                 set_bit(RB_BUFFERS_ON_BIT, p);
2500         else
2501                 clear_bit(RB_BUFFERS_ON_BIT, p);
2502
2503         (*ppos)++;
2504
2505         return cnt;
2506 }
2507
2508 static struct file_operations rb_simple_fops = {
2509         .open           = tracing_open_generic,
2510         .read           = rb_simple_read,
2511         .write          = rb_simple_write,
2512 };
2513
2514
2515 static __init int rb_init_debugfs(void)
2516 {
2517         struct dentry *d_tracer;
2518         struct dentry *entry;
2519
2520         d_tracer = tracing_init_dentry();
2521
2522         entry = debugfs_create_file("tracing_on", 0644, d_tracer,
2523                                     &ring_buffer_flags, &rb_simple_fops);
2524         if (!entry)
2525                 pr_warning("Could not create debugfs 'tracing_on' entry\n");
2526
2527         return 0;
2528 }
2529
2530 fs_initcall(rb_init_debugfs);