Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[pandora-kernel.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12 #include <linux/kmemcheck.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22
23 #include <asm/local.h>
24 #include "trace.h"
25
26 static void update_pages_handler(struct work_struct *work);
27
28 /*
29  * The ring buffer header is special. We must manually up keep it.
30  */
31 int ring_buffer_print_entry_header(struct trace_seq *s)
32 {
33         int ret;
34
35         ret = trace_seq_printf(s, "# compressed entry header\n");
36         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
37         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
38         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
39         ret = trace_seq_printf(s, "\n");
40         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
41                                RINGBUF_TYPE_PADDING);
42         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
43                                RINGBUF_TYPE_TIME_EXTEND);
44         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
45                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47         return ret;
48 }
49
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117
118 /*
119  * A fast way to enable or disable all ring buffers is to
120  * call tracing_on or tracing_off. Turning off the ring buffers
121  * prevents all ring buffers from being recorded to.
122  * Turning this switch on, makes it OK to write to the
123  * ring buffer, if the ring buffer is enabled itself.
124  *
125  * There's three layers that must be on in order to write
126  * to the ring buffer.
127  *
128  * 1) This global flag must be set.
129  * 2) The ring buffer must be enabled for recording.
130  * 3) The per cpu buffer must be enabled for recording.
131  *
132  * In case of an anomaly, this global flag has a bit set that
133  * will permantly disable all ring buffers.
134  */
135
136 /*
137  * Global flag to disable all recording to ring buffers
138  *  This has two bits: ON, DISABLED
139  *
140  *  ON   DISABLED
141  * ---- ----------
142  *   0      0        : ring buffers are off
143  *   1      0        : ring buffers are on
144  *   X      1        : ring buffers are permanently disabled
145  */
146
147 enum {
148         RB_BUFFERS_ON_BIT       = 0,
149         RB_BUFFERS_DISABLED_BIT = 1,
150 };
151
152 enum {
153         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
154         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
155 };
156
157 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
158
159 /* Used for individual buffers (after the counter) */
160 #define RB_BUFFER_OFF           (1 << 20)
161
162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
163
164 /**
165  * tracing_off_permanent - permanently disable ring buffers
166  *
167  * This function, once called, will disable all ring buffers
168  * permanently.
169  */
170 void tracing_off_permanent(void)
171 {
172         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
173 }
174
175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
176 #define RB_ALIGNMENT            4U
177 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
178 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
179
180 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
181 # define RB_FORCE_8BYTE_ALIGNMENT       0
182 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
183 #else
184 # define RB_FORCE_8BYTE_ALIGNMENT       1
185 # define RB_ARCH_ALIGNMENT              8U
186 #endif
187
188 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
189 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
190
191 enum {
192         RB_LEN_TIME_EXTEND = 8,
193         RB_LEN_TIME_STAMP = 16,
194 };
195
196 #define skip_time_extend(event) \
197         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
198
199 static inline int rb_null_event(struct ring_buffer_event *event)
200 {
201         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
202 }
203
204 static void rb_event_set_padding(struct ring_buffer_event *event)
205 {
206         /* padding has a NULL time_delta */
207         event->type_len = RINGBUF_TYPE_PADDING;
208         event->time_delta = 0;
209 }
210
211 static unsigned
212 rb_event_data_length(struct ring_buffer_event *event)
213 {
214         unsigned length;
215
216         if (event->type_len)
217                 length = event->type_len * RB_ALIGNMENT;
218         else
219                 length = event->array[0];
220         return length + RB_EVNT_HDR_SIZE;
221 }
222
223 /*
224  * Return the length of the given event. Will return
225  * the length of the time extend if the event is a
226  * time extend.
227  */
228 static inline unsigned
229 rb_event_length(struct ring_buffer_event *event)
230 {
231         switch (event->type_len) {
232         case RINGBUF_TYPE_PADDING:
233                 if (rb_null_event(event))
234                         /* undefined */
235                         return -1;
236                 return  event->array[0] + RB_EVNT_HDR_SIZE;
237
238         case RINGBUF_TYPE_TIME_EXTEND:
239                 return RB_LEN_TIME_EXTEND;
240
241         case RINGBUF_TYPE_TIME_STAMP:
242                 return RB_LEN_TIME_STAMP;
243
244         case RINGBUF_TYPE_DATA:
245                 return rb_event_data_length(event);
246         default:
247                 BUG();
248         }
249         /* not hit */
250         return 0;
251 }
252
253 /*
254  * Return total length of time extend and data,
255  *   or just the event length for all other events.
256  */
257 static inline unsigned
258 rb_event_ts_length(struct ring_buffer_event *event)
259 {
260         unsigned len = 0;
261
262         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
263                 /* time extends include the data event after it */
264                 len = RB_LEN_TIME_EXTEND;
265                 event = skip_time_extend(event);
266         }
267         return len + rb_event_length(event);
268 }
269
270 /**
271  * ring_buffer_event_length - return the length of the event
272  * @event: the event to get the length of
273  *
274  * Returns the size of the data load of a data event.
275  * If the event is something other than a data event, it
276  * returns the size of the event itself. With the exception
277  * of a TIME EXTEND, where it still returns the size of the
278  * data load of the data event after it.
279  */
280 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
281 {
282         unsigned length;
283
284         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
285                 event = skip_time_extend(event);
286
287         length = rb_event_length(event);
288         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
289                 return length;
290         length -= RB_EVNT_HDR_SIZE;
291         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
292                 length -= sizeof(event->array[0]);
293         return length;
294 }
295 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
296
297 /* inline for ring buffer fast paths */
298 static void *
299 rb_event_data(struct ring_buffer_event *event)
300 {
301         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
302                 event = skip_time_extend(event);
303         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
304         /* If length is in len field, then array[0] has the data */
305         if (event->type_len)
306                 return (void *)&event->array[0];
307         /* Otherwise length is in array[0] and array[1] has the data */
308         return (void *)&event->array[1];
309 }
310
311 /**
312  * ring_buffer_event_data - return the data of the event
313  * @event: the event to get the data from
314  */
315 void *ring_buffer_event_data(struct ring_buffer_event *event)
316 {
317         return rb_event_data(event);
318 }
319 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
320
321 #define for_each_buffer_cpu(buffer, cpu)                \
322         for_each_cpu(cpu, buffer->cpumask)
323
324 #define TS_SHIFT        27
325 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
326 #define TS_DELTA_TEST   (~TS_MASK)
327
328 /* Flag when events were overwritten */
329 #define RB_MISSED_EVENTS        (1 << 31)
330 /* Missed count stored at end */
331 #define RB_MISSED_STORED        (1 << 30)
332
333 struct buffer_data_page {
334         u64              time_stamp;    /* page time stamp */
335         local_t          commit;        /* write committed index */
336         unsigned char    data[];        /* data of buffer page */
337 };
338
339 /*
340  * Note, the buffer_page list must be first. The buffer pages
341  * are allocated in cache lines, which means that each buffer
342  * page will be at the beginning of a cache line, and thus
343  * the least significant bits will be zero. We use this to
344  * add flags in the list struct pointers, to make the ring buffer
345  * lockless.
346  */
347 struct buffer_page {
348         struct list_head list;          /* list of buffer pages */
349         local_t          write;         /* index for next write */
350         unsigned         read;          /* index for next read */
351         local_t          entries;       /* entries on this page */
352         unsigned long    real_end;      /* real end of data */
353         struct buffer_data_page *page;  /* Actual data page */
354 };
355
356 /*
357  * The buffer page counters, write and entries, must be reset
358  * atomically when crossing page boundaries. To synchronize this
359  * update, two counters are inserted into the number. One is
360  * the actual counter for the write position or count on the page.
361  *
362  * The other is a counter of updaters. Before an update happens
363  * the update partition of the counter is incremented. This will
364  * allow the updater to update the counter atomically.
365  *
366  * The counter is 20 bits, and the state data is 12.
367  */
368 #define RB_WRITE_MASK           0xfffff
369 #define RB_WRITE_INTCNT         (1 << 20)
370
371 static void rb_init_page(struct buffer_data_page *bpage)
372 {
373         local_set(&bpage->commit, 0);
374 }
375
376 /**
377  * ring_buffer_page_len - the size of data on the page.
378  * @page: The page to read
379  *
380  * Returns the amount of data on the page, including buffer page header.
381  */
382 size_t ring_buffer_page_len(void *page)
383 {
384         return local_read(&((struct buffer_data_page *)page)->commit)
385                 + BUF_PAGE_HDR_SIZE;
386 }
387
388 /*
389  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
390  * this issue out.
391  */
392 static void free_buffer_page(struct buffer_page *bpage)
393 {
394         free_page((unsigned long)bpage->page);
395         kfree(bpage);
396 }
397
398 /*
399  * We need to fit the time_stamp delta into 27 bits.
400  */
401 static inline int test_time_stamp(u64 delta)
402 {
403         if (delta & TS_DELTA_TEST)
404                 return 1;
405         return 0;
406 }
407
408 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
409
410 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
411 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
412
413 int ring_buffer_print_page_header(struct trace_seq *s)
414 {
415         struct buffer_data_page field;
416         int ret;
417
418         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
419                                "offset:0;\tsize:%u;\tsigned:%u;\n",
420                                (unsigned int)sizeof(field.time_stamp),
421                                (unsigned int)is_signed_type(u64));
422
423         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
424                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
425                                (unsigned int)offsetof(typeof(field), commit),
426                                (unsigned int)sizeof(field.commit),
427                                (unsigned int)is_signed_type(long));
428
429         ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
430                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
431                                (unsigned int)offsetof(typeof(field), commit),
432                                1,
433                                (unsigned int)is_signed_type(long));
434
435         ret = trace_seq_printf(s, "\tfield: char data;\t"
436                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
437                                (unsigned int)offsetof(typeof(field), data),
438                                (unsigned int)BUF_PAGE_SIZE,
439                                (unsigned int)is_signed_type(char));
440
441         return ret;
442 }
443
444 /*
445  * head_page == tail_page && head == tail then buffer is empty.
446  */
447 struct ring_buffer_per_cpu {
448         int                             cpu;
449         atomic_t                        record_disabled;
450         struct ring_buffer              *buffer;
451         raw_spinlock_t                  reader_lock;    /* serialize readers */
452         arch_spinlock_t                 lock;
453         struct lock_class_key           lock_key;
454         unsigned int                    nr_pages;
455         struct list_head                *pages;
456         struct buffer_page              *head_page;     /* read from head */
457         struct buffer_page              *tail_page;     /* write to tail */
458         struct buffer_page              *commit_page;   /* committed pages */
459         struct buffer_page              *reader_page;
460         unsigned long                   lost_events;
461         unsigned long                   last_overrun;
462         local_t                         entries_bytes;
463         local_t                         commit_overrun;
464         local_t                         overrun;
465         local_t                         entries;
466         local_t                         committing;
467         local_t                         commits;
468         unsigned long                   read;
469         unsigned long                   read_bytes;
470         u64                             write_stamp;
471         u64                             read_stamp;
472         /* ring buffer pages to update, > 0 to add, < 0 to remove */
473         int                             nr_pages_to_update;
474         struct list_head                new_pages; /* new pages to add */
475         struct work_struct              update_pages_work;
476         struct completion               update_done;
477 };
478
479 struct ring_buffer {
480         unsigned                        flags;
481         int                             cpus;
482         atomic_t                        record_disabled;
483         atomic_t                        resize_disabled;
484         cpumask_var_t                   cpumask;
485
486         struct lock_class_key           *reader_lock_key;
487
488         struct mutex                    mutex;
489
490         struct ring_buffer_per_cpu      **buffers;
491
492 #ifdef CONFIG_HOTPLUG_CPU
493         struct notifier_block           cpu_notify;
494 #endif
495         u64                             (*clock)(void);
496 };
497
498 struct ring_buffer_iter {
499         struct ring_buffer_per_cpu      *cpu_buffer;
500         unsigned long                   head;
501         struct buffer_page              *head_page;
502         struct buffer_page              *cache_reader_page;
503         unsigned long                   cache_read;
504         u64                             read_stamp;
505 };
506
507 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
508 #define RB_WARN_ON(b, cond)                                             \
509         ({                                                              \
510                 int _____ret = unlikely(cond);                          \
511                 if (_____ret) {                                         \
512                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
513                                 struct ring_buffer_per_cpu *__b =       \
514                                         (void *)b;                      \
515                                 atomic_inc(&__b->buffer->record_disabled); \
516                         } else                                          \
517                                 atomic_inc(&b->record_disabled);        \
518                         WARN_ON(1);                                     \
519                 }                                                       \
520                 _____ret;                                               \
521         })
522
523 /* Up this if you want to test the TIME_EXTENTS and normalization */
524 #define DEBUG_SHIFT 0
525
526 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
527 {
528         /* shift to debug/test normalization and TIME_EXTENTS */
529         return buffer->clock() << DEBUG_SHIFT;
530 }
531
532 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
533 {
534         u64 time;
535
536         preempt_disable_notrace();
537         time = rb_time_stamp(buffer);
538         preempt_enable_no_resched_notrace();
539
540         return time;
541 }
542 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
543
544 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
545                                       int cpu, u64 *ts)
546 {
547         /* Just stupid testing the normalize function and deltas */
548         *ts >>= DEBUG_SHIFT;
549 }
550 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
551
552 /*
553  * Making the ring buffer lockless makes things tricky.
554  * Although writes only happen on the CPU that they are on,
555  * and they only need to worry about interrupts. Reads can
556  * happen on any CPU.
557  *
558  * The reader page is always off the ring buffer, but when the
559  * reader finishes with a page, it needs to swap its page with
560  * a new one from the buffer. The reader needs to take from
561  * the head (writes go to the tail). But if a writer is in overwrite
562  * mode and wraps, it must push the head page forward.
563  *
564  * Here lies the problem.
565  *
566  * The reader must be careful to replace only the head page, and
567  * not another one. As described at the top of the file in the
568  * ASCII art, the reader sets its old page to point to the next
569  * page after head. It then sets the page after head to point to
570  * the old reader page. But if the writer moves the head page
571  * during this operation, the reader could end up with the tail.
572  *
573  * We use cmpxchg to help prevent this race. We also do something
574  * special with the page before head. We set the LSB to 1.
575  *
576  * When the writer must push the page forward, it will clear the
577  * bit that points to the head page, move the head, and then set
578  * the bit that points to the new head page.
579  *
580  * We also don't want an interrupt coming in and moving the head
581  * page on another writer. Thus we use the second LSB to catch
582  * that too. Thus:
583  *
584  * head->list->prev->next        bit 1          bit 0
585  *                              -------        -------
586  * Normal page                     0              0
587  * Points to head page             0              1
588  * New head page                   1              0
589  *
590  * Note we can not trust the prev pointer of the head page, because:
591  *
592  * +----+       +-----+        +-----+
593  * |    |------>|  T  |---X--->|  N  |
594  * |    |<------|     |        |     |
595  * +----+       +-----+        +-----+
596  *   ^                           ^ |
597  *   |          +-----+          | |
598  *   +----------|  R  |----------+ |
599  *              |     |<-----------+
600  *              +-----+
601  *
602  * Key:  ---X-->  HEAD flag set in pointer
603  *         T      Tail page
604  *         R      Reader page
605  *         N      Next page
606  *
607  * (see __rb_reserve_next() to see where this happens)
608  *
609  *  What the above shows is that the reader just swapped out
610  *  the reader page with a page in the buffer, but before it
611  *  could make the new header point back to the new page added
612  *  it was preempted by a writer. The writer moved forward onto
613  *  the new page added by the reader and is about to move forward
614  *  again.
615  *
616  *  You can see, it is legitimate for the previous pointer of
617  *  the head (or any page) not to point back to itself. But only
618  *  temporarially.
619  */
620
621 #define RB_PAGE_NORMAL          0UL
622 #define RB_PAGE_HEAD            1UL
623 #define RB_PAGE_UPDATE          2UL
624
625
626 #define RB_FLAG_MASK            3UL
627
628 /* PAGE_MOVED is not part of the mask */
629 #define RB_PAGE_MOVED           4UL
630
631 /*
632  * rb_list_head - remove any bit
633  */
634 static struct list_head *rb_list_head(struct list_head *list)
635 {
636         unsigned long val = (unsigned long)list;
637
638         return (struct list_head *)(val & ~RB_FLAG_MASK);
639 }
640
641 /*
642  * rb_is_head_page - test if the given page is the head page
643  *
644  * Because the reader may move the head_page pointer, we can
645  * not trust what the head page is (it may be pointing to
646  * the reader page). But if the next page is a header page,
647  * its flags will be non zero.
648  */
649 static inline int
650 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
651                 struct buffer_page *page, struct list_head *list)
652 {
653         unsigned long val;
654
655         val = (unsigned long)list->next;
656
657         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
658                 return RB_PAGE_MOVED;
659
660         return val & RB_FLAG_MASK;
661 }
662
663 /*
664  * rb_is_reader_page
665  *
666  * The unique thing about the reader page, is that, if the
667  * writer is ever on it, the previous pointer never points
668  * back to the reader page.
669  */
670 static int rb_is_reader_page(struct buffer_page *page)
671 {
672         struct list_head *list = page->list.prev;
673
674         return rb_list_head(list->next) != &page->list;
675 }
676
677 /*
678  * rb_set_list_to_head - set a list_head to be pointing to head.
679  */
680 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
681                                 struct list_head *list)
682 {
683         unsigned long *ptr;
684
685         ptr = (unsigned long *)&list->next;
686         *ptr |= RB_PAGE_HEAD;
687         *ptr &= ~RB_PAGE_UPDATE;
688 }
689
690 /*
691  * rb_head_page_activate - sets up head page
692  */
693 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
694 {
695         struct buffer_page *head;
696
697         head = cpu_buffer->head_page;
698         if (!head)
699                 return;
700
701         /*
702          * Set the previous list pointer to have the HEAD flag.
703          */
704         rb_set_list_to_head(cpu_buffer, head->list.prev);
705 }
706
707 static void rb_list_head_clear(struct list_head *list)
708 {
709         unsigned long *ptr = (unsigned long *)&list->next;
710
711         *ptr &= ~RB_FLAG_MASK;
712 }
713
714 /*
715  * rb_head_page_dactivate - clears head page ptr (for free list)
716  */
717 static void
718 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
719 {
720         struct list_head *hd;
721
722         /* Go through the whole list and clear any pointers found. */
723         rb_list_head_clear(cpu_buffer->pages);
724
725         list_for_each(hd, cpu_buffer->pages)
726                 rb_list_head_clear(hd);
727 }
728
729 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
730                             struct buffer_page *head,
731                             struct buffer_page *prev,
732                             int old_flag, int new_flag)
733 {
734         struct list_head *list;
735         unsigned long val = (unsigned long)&head->list;
736         unsigned long ret;
737
738         list = &prev->list;
739
740         val &= ~RB_FLAG_MASK;
741
742         ret = cmpxchg((unsigned long *)&list->next,
743                       val | old_flag, val | new_flag);
744
745         /* check if the reader took the page */
746         if ((ret & ~RB_FLAG_MASK) != val)
747                 return RB_PAGE_MOVED;
748
749         return ret & RB_FLAG_MASK;
750 }
751
752 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
753                                    struct buffer_page *head,
754                                    struct buffer_page *prev,
755                                    int old_flag)
756 {
757         return rb_head_page_set(cpu_buffer, head, prev,
758                                 old_flag, RB_PAGE_UPDATE);
759 }
760
761 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
762                                  struct buffer_page *head,
763                                  struct buffer_page *prev,
764                                  int old_flag)
765 {
766         return rb_head_page_set(cpu_buffer, head, prev,
767                                 old_flag, RB_PAGE_HEAD);
768 }
769
770 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
771                                    struct buffer_page *head,
772                                    struct buffer_page *prev,
773                                    int old_flag)
774 {
775         return rb_head_page_set(cpu_buffer, head, prev,
776                                 old_flag, RB_PAGE_NORMAL);
777 }
778
779 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
780                                struct buffer_page **bpage)
781 {
782         struct list_head *p = rb_list_head((*bpage)->list.next);
783
784         *bpage = list_entry(p, struct buffer_page, list);
785 }
786
787 static struct buffer_page *
788 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
789 {
790         struct buffer_page *head;
791         struct buffer_page *page;
792         struct list_head *list;
793         int i;
794
795         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
796                 return NULL;
797
798         /* sanity check */
799         list = cpu_buffer->pages;
800         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
801                 return NULL;
802
803         page = head = cpu_buffer->head_page;
804         /*
805          * It is possible that the writer moves the header behind
806          * where we started, and we miss in one loop.
807          * A second loop should grab the header, but we'll do
808          * three loops just because I'm paranoid.
809          */
810         for (i = 0; i < 3; i++) {
811                 do {
812                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
813                                 cpu_buffer->head_page = page;
814                                 return page;
815                         }
816                         rb_inc_page(cpu_buffer, &page);
817                 } while (page != head);
818         }
819
820         RB_WARN_ON(cpu_buffer, 1);
821
822         return NULL;
823 }
824
825 static int rb_head_page_replace(struct buffer_page *old,
826                                 struct buffer_page *new)
827 {
828         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
829         unsigned long val;
830         unsigned long ret;
831
832         val = *ptr & ~RB_FLAG_MASK;
833         val |= RB_PAGE_HEAD;
834
835         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
836
837         return ret == val;
838 }
839
840 /*
841  * rb_tail_page_update - move the tail page forward
842  *
843  * Returns 1 if moved tail page, 0 if someone else did.
844  */
845 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
846                                struct buffer_page *tail_page,
847                                struct buffer_page *next_page)
848 {
849         struct buffer_page *old_tail;
850         unsigned long old_entries;
851         unsigned long old_write;
852         int ret = 0;
853
854         /*
855          * The tail page now needs to be moved forward.
856          *
857          * We need to reset the tail page, but without messing
858          * with possible erasing of data brought in by interrupts
859          * that have moved the tail page and are currently on it.
860          *
861          * We add a counter to the write field to denote this.
862          */
863         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
864         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
865
866         /*
867          * Just make sure we have seen our old_write and synchronize
868          * with any interrupts that come in.
869          */
870         barrier();
871
872         /*
873          * If the tail page is still the same as what we think
874          * it is, then it is up to us to update the tail
875          * pointer.
876          */
877         if (tail_page == cpu_buffer->tail_page) {
878                 /* Zero the write counter */
879                 unsigned long val = old_write & ~RB_WRITE_MASK;
880                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
881
882                 /*
883                  * This will only succeed if an interrupt did
884                  * not come in and change it. In which case, we
885                  * do not want to modify it.
886                  *
887                  * We add (void) to let the compiler know that we do not care
888                  * about the return value of these functions. We use the
889                  * cmpxchg to only update if an interrupt did not already
890                  * do it for us. If the cmpxchg fails, we don't care.
891                  */
892                 (void)local_cmpxchg(&next_page->write, old_write, val);
893                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
894
895                 /*
896                  * No need to worry about races with clearing out the commit.
897                  * it only can increment when a commit takes place. But that
898                  * only happens in the outer most nested commit.
899                  */
900                 local_set(&next_page->page->commit, 0);
901
902                 old_tail = cmpxchg(&cpu_buffer->tail_page,
903                                    tail_page, next_page);
904
905                 if (old_tail == tail_page)
906                         ret = 1;
907         }
908
909         return ret;
910 }
911
912 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
913                           struct buffer_page *bpage)
914 {
915         unsigned long val = (unsigned long)bpage;
916
917         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
918                 return 1;
919
920         return 0;
921 }
922
923 /**
924  * rb_check_list - make sure a pointer to a list has the last bits zero
925  */
926 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
927                          struct list_head *list)
928 {
929         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
930                 return 1;
931         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
932                 return 1;
933         return 0;
934 }
935
936 /**
937  * check_pages - integrity check of buffer pages
938  * @cpu_buffer: CPU buffer with pages to test
939  *
940  * As a safety measure we check to make sure the data pages have not
941  * been corrupted.
942  */
943 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
944 {
945         struct list_head *head = cpu_buffer->pages;
946         struct buffer_page *bpage, *tmp;
947
948         /* Reset the head page if it exists */
949         if (cpu_buffer->head_page)
950                 rb_set_head_page(cpu_buffer);
951
952         rb_head_page_deactivate(cpu_buffer);
953
954         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
955                 return -1;
956         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
957                 return -1;
958
959         if (rb_check_list(cpu_buffer, head))
960                 return -1;
961
962         list_for_each_entry_safe(bpage, tmp, head, list) {
963                 if (RB_WARN_ON(cpu_buffer,
964                                bpage->list.next->prev != &bpage->list))
965                         return -1;
966                 if (RB_WARN_ON(cpu_buffer,
967                                bpage->list.prev->next != &bpage->list))
968                         return -1;
969                 if (rb_check_list(cpu_buffer, &bpage->list))
970                         return -1;
971         }
972
973         rb_head_page_activate(cpu_buffer);
974
975         return 0;
976 }
977
978 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
979 {
980         int i;
981         struct buffer_page *bpage, *tmp;
982
983         for (i = 0; i < nr_pages; i++) {
984                 struct page *page;
985                 /*
986                  * __GFP_NORETRY flag makes sure that the allocation fails
987                  * gracefully without invoking oom-killer and the system is
988                  * not destabilized.
989                  */
990                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
991                                     GFP_KERNEL | __GFP_NORETRY,
992                                     cpu_to_node(cpu));
993                 if (!bpage)
994                         goto free_pages;
995
996                 list_add(&bpage->list, pages);
997
998                 page = alloc_pages_node(cpu_to_node(cpu),
999                                         GFP_KERNEL | __GFP_NORETRY, 0);
1000                 if (!page)
1001                         goto free_pages;
1002                 bpage->page = page_address(page);
1003                 rb_init_page(bpage->page);
1004         }
1005
1006         return 0;
1007
1008 free_pages:
1009         list_for_each_entry_safe(bpage, tmp, pages, list) {
1010                 list_del_init(&bpage->list);
1011                 free_buffer_page(bpage);
1012         }
1013
1014         return -ENOMEM;
1015 }
1016
1017 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1018                              unsigned nr_pages)
1019 {
1020         LIST_HEAD(pages);
1021
1022         WARN_ON(!nr_pages);
1023
1024         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1025                 return -ENOMEM;
1026
1027         /*
1028          * The ring buffer page list is a circular list that does not
1029          * start and end with a list head. All page list items point to
1030          * other pages.
1031          */
1032         cpu_buffer->pages = pages.next;
1033         list_del(&pages);
1034
1035         cpu_buffer->nr_pages = nr_pages;
1036
1037         rb_check_pages(cpu_buffer);
1038
1039         return 0;
1040 }
1041
1042 static struct ring_buffer_per_cpu *
1043 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1044 {
1045         struct ring_buffer_per_cpu *cpu_buffer;
1046         struct buffer_page *bpage;
1047         struct page *page;
1048         int ret;
1049
1050         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1051                                   GFP_KERNEL, cpu_to_node(cpu));
1052         if (!cpu_buffer)
1053                 return NULL;
1054
1055         cpu_buffer->cpu = cpu;
1056         cpu_buffer->buffer = buffer;
1057         raw_spin_lock_init(&cpu_buffer->reader_lock);
1058         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1059         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1060         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1061         init_completion(&cpu_buffer->update_done);
1062
1063         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1064                             GFP_KERNEL, cpu_to_node(cpu));
1065         if (!bpage)
1066                 goto fail_free_buffer;
1067
1068         rb_check_bpage(cpu_buffer, bpage);
1069
1070         cpu_buffer->reader_page = bpage;
1071         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1072         if (!page)
1073                 goto fail_free_reader;
1074         bpage->page = page_address(page);
1075         rb_init_page(bpage->page);
1076
1077         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1078
1079         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1080         if (ret < 0)
1081                 goto fail_free_reader;
1082
1083         cpu_buffer->head_page
1084                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1085         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1086
1087         rb_head_page_activate(cpu_buffer);
1088
1089         return cpu_buffer;
1090
1091  fail_free_reader:
1092         free_buffer_page(cpu_buffer->reader_page);
1093
1094  fail_free_buffer:
1095         kfree(cpu_buffer);
1096         return NULL;
1097 }
1098
1099 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1100 {
1101         struct list_head *head = cpu_buffer->pages;
1102         struct buffer_page *bpage, *tmp;
1103
1104         free_buffer_page(cpu_buffer->reader_page);
1105
1106         rb_head_page_deactivate(cpu_buffer);
1107
1108         if (head) {
1109                 list_for_each_entry_safe(bpage, tmp, head, list) {
1110                         list_del_init(&bpage->list);
1111                         free_buffer_page(bpage);
1112                 }
1113                 bpage = list_entry(head, struct buffer_page, list);
1114                 free_buffer_page(bpage);
1115         }
1116
1117         kfree(cpu_buffer);
1118 }
1119
1120 #ifdef CONFIG_HOTPLUG_CPU
1121 static int rb_cpu_notify(struct notifier_block *self,
1122                          unsigned long action, void *hcpu);
1123 #endif
1124
1125 /**
1126  * ring_buffer_alloc - allocate a new ring_buffer
1127  * @size: the size in bytes per cpu that is needed.
1128  * @flags: attributes to set for the ring buffer.
1129  *
1130  * Currently the only flag that is available is the RB_FL_OVERWRITE
1131  * flag. This flag means that the buffer will overwrite old data
1132  * when the buffer wraps. If this flag is not set, the buffer will
1133  * drop data when the tail hits the head.
1134  */
1135 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1136                                         struct lock_class_key *key)
1137 {
1138         struct ring_buffer *buffer;
1139         int bsize;
1140         int cpu, nr_pages;
1141
1142         /* keep it in its own cache line */
1143         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1144                          GFP_KERNEL);
1145         if (!buffer)
1146                 return NULL;
1147
1148         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1149                 goto fail_free_buffer;
1150
1151         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1152         buffer->flags = flags;
1153         buffer->clock = trace_clock_local;
1154         buffer->reader_lock_key = key;
1155
1156         /* need at least two pages */
1157         if (nr_pages < 2)
1158                 nr_pages = 2;
1159
1160         /*
1161          * In case of non-hotplug cpu, if the ring-buffer is allocated
1162          * in early initcall, it will not be notified of secondary cpus.
1163          * In that off case, we need to allocate for all possible cpus.
1164          */
1165 #ifdef CONFIG_HOTPLUG_CPU
1166         get_online_cpus();
1167         cpumask_copy(buffer->cpumask, cpu_online_mask);
1168 #else
1169         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1170 #endif
1171         buffer->cpus = nr_cpu_ids;
1172
1173         bsize = sizeof(void *) * nr_cpu_ids;
1174         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1175                                   GFP_KERNEL);
1176         if (!buffer->buffers)
1177                 goto fail_free_cpumask;
1178
1179         for_each_buffer_cpu(buffer, cpu) {
1180                 buffer->buffers[cpu] =
1181                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1182                 if (!buffer->buffers[cpu])
1183                         goto fail_free_buffers;
1184         }
1185
1186 #ifdef CONFIG_HOTPLUG_CPU
1187         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1188         buffer->cpu_notify.priority = 0;
1189         register_cpu_notifier(&buffer->cpu_notify);
1190 #endif
1191
1192         put_online_cpus();
1193         mutex_init(&buffer->mutex);
1194
1195         return buffer;
1196
1197  fail_free_buffers:
1198         for_each_buffer_cpu(buffer, cpu) {
1199                 if (buffer->buffers[cpu])
1200                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1201         }
1202         kfree(buffer->buffers);
1203
1204  fail_free_cpumask:
1205         free_cpumask_var(buffer->cpumask);
1206         put_online_cpus();
1207
1208  fail_free_buffer:
1209         kfree(buffer);
1210         return NULL;
1211 }
1212 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1213
1214 /**
1215  * ring_buffer_free - free a ring buffer.
1216  * @buffer: the buffer to free.
1217  */
1218 void
1219 ring_buffer_free(struct ring_buffer *buffer)
1220 {
1221         int cpu;
1222
1223         get_online_cpus();
1224
1225 #ifdef CONFIG_HOTPLUG_CPU
1226         unregister_cpu_notifier(&buffer->cpu_notify);
1227 #endif
1228
1229         for_each_buffer_cpu(buffer, cpu)
1230                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1231
1232         put_online_cpus();
1233
1234         kfree(buffer->buffers);
1235         free_cpumask_var(buffer->cpumask);
1236
1237         kfree(buffer);
1238 }
1239 EXPORT_SYMBOL_GPL(ring_buffer_free);
1240
1241 void ring_buffer_set_clock(struct ring_buffer *buffer,
1242                            u64 (*clock)(void))
1243 {
1244         buffer->clock = clock;
1245 }
1246
1247 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1248
1249 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1250 {
1251         return local_read(&bpage->entries) & RB_WRITE_MASK;
1252 }
1253
1254 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1255 {
1256         return local_read(&bpage->write) & RB_WRITE_MASK;
1257 }
1258
1259 static int
1260 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1261 {
1262         struct list_head *tail_page, *to_remove, *next_page;
1263         struct buffer_page *to_remove_page, *tmp_iter_page;
1264         struct buffer_page *last_page, *first_page;
1265         unsigned int nr_removed;
1266         unsigned long head_bit;
1267         int page_entries;
1268
1269         head_bit = 0;
1270
1271         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1272         atomic_inc(&cpu_buffer->record_disabled);
1273         /*
1274          * We don't race with the readers since we have acquired the reader
1275          * lock. We also don't race with writers after disabling recording.
1276          * This makes it easy to figure out the first and the last page to be
1277          * removed from the list. We unlink all the pages in between including
1278          * the first and last pages. This is done in a busy loop so that we
1279          * lose the least number of traces.
1280          * The pages are freed after we restart recording and unlock readers.
1281          */
1282         tail_page = &cpu_buffer->tail_page->list;
1283
1284         /*
1285          * tail page might be on reader page, we remove the next page
1286          * from the ring buffer
1287          */
1288         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1289                 tail_page = rb_list_head(tail_page->next);
1290         to_remove = tail_page;
1291
1292         /* start of pages to remove */
1293         first_page = list_entry(rb_list_head(to_remove->next),
1294                                 struct buffer_page, list);
1295
1296         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1297                 to_remove = rb_list_head(to_remove)->next;
1298                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1299         }
1300
1301         next_page = rb_list_head(to_remove)->next;
1302
1303         /*
1304          * Now we remove all pages between tail_page and next_page.
1305          * Make sure that we have head_bit value preserved for the
1306          * next page
1307          */
1308         tail_page->next = (struct list_head *)((unsigned long)next_page |
1309                                                 head_bit);
1310         next_page = rb_list_head(next_page);
1311         next_page->prev = tail_page;
1312
1313         /* make sure pages points to a valid page in the ring buffer */
1314         cpu_buffer->pages = next_page;
1315
1316         /* update head page */
1317         if (head_bit)
1318                 cpu_buffer->head_page = list_entry(next_page,
1319                                                 struct buffer_page, list);
1320
1321         /*
1322          * change read pointer to make sure any read iterators reset
1323          * themselves
1324          */
1325         cpu_buffer->read = 0;
1326
1327         /* pages are removed, resume tracing and then free the pages */
1328         atomic_dec(&cpu_buffer->record_disabled);
1329         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1330
1331         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1332
1333         /* last buffer page to remove */
1334         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1335                                 list);
1336         tmp_iter_page = first_page;
1337
1338         do {
1339                 to_remove_page = tmp_iter_page;
1340                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1341
1342                 /* update the counters */
1343                 page_entries = rb_page_entries(to_remove_page);
1344                 if (page_entries) {
1345                         /*
1346                          * If something was added to this page, it was full
1347                          * since it is not the tail page. So we deduct the
1348                          * bytes consumed in ring buffer from here.
1349                          * No need to update overruns, since this page is
1350                          * deleted from ring buffer and its entries are
1351                          * already accounted for.
1352                          */
1353                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1354                 }
1355
1356                 /*
1357                  * We have already removed references to this list item, just
1358                  * free up the buffer_page and its page
1359                  */
1360                 free_buffer_page(to_remove_page);
1361                 nr_removed--;
1362
1363         } while (to_remove_page != last_page);
1364
1365         RB_WARN_ON(cpu_buffer, nr_removed);
1366
1367         return nr_removed == 0;
1368 }
1369
1370 static int
1371 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1372 {
1373         struct list_head *pages = &cpu_buffer->new_pages;
1374         int retries, success;
1375
1376         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1377         /*
1378          * We are holding the reader lock, so the reader page won't be swapped
1379          * in the ring buffer. Now we are racing with the writer trying to
1380          * move head page and the tail page.
1381          * We are going to adapt the reader page update process where:
1382          * 1. We first splice the start and end of list of new pages between
1383          *    the head page and its previous page.
1384          * 2. We cmpxchg the prev_page->next to point from head page to the
1385          *    start of new pages list.
1386          * 3. Finally, we update the head->prev to the end of new list.
1387          *
1388          * We will try this process 10 times, to make sure that we don't keep
1389          * spinning.
1390          */
1391         retries = 10;
1392         success = 0;
1393         while (retries--) {
1394                 struct list_head *head_page, *prev_page, *r;
1395                 struct list_head *last_page, *first_page;
1396                 struct list_head *head_page_with_bit;
1397
1398                 head_page = &rb_set_head_page(cpu_buffer)->list;
1399                 prev_page = head_page->prev;
1400
1401                 first_page = pages->next;
1402                 last_page  = pages->prev;
1403
1404                 head_page_with_bit = (struct list_head *)
1405                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1406
1407                 last_page->next = head_page_with_bit;
1408                 first_page->prev = prev_page;
1409
1410                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1411
1412                 if (r == head_page_with_bit) {
1413                         /*
1414                          * yay, we replaced the page pointer to our new list,
1415                          * now, we just have to update to head page's prev
1416                          * pointer to point to end of list
1417                          */
1418                         head_page->prev = last_page;
1419                         success = 1;
1420                         break;
1421                 }
1422         }
1423
1424         if (success)
1425                 INIT_LIST_HEAD(pages);
1426         /*
1427          * If we weren't successful in adding in new pages, warn and stop
1428          * tracing
1429          */
1430         RB_WARN_ON(cpu_buffer, !success);
1431         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1432
1433         /* free pages if they weren't inserted */
1434         if (!success) {
1435                 struct buffer_page *bpage, *tmp;
1436                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1437                                          list) {
1438                         list_del_init(&bpage->list);
1439                         free_buffer_page(bpage);
1440                 }
1441         }
1442         return success;
1443 }
1444
1445 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1446 {
1447         int success;
1448
1449         if (cpu_buffer->nr_pages_to_update > 0)
1450                 success = rb_insert_pages(cpu_buffer);
1451         else
1452                 success = rb_remove_pages(cpu_buffer,
1453                                         -cpu_buffer->nr_pages_to_update);
1454
1455         if (success)
1456                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1457 }
1458
1459 static void update_pages_handler(struct work_struct *work)
1460 {
1461         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1462                         struct ring_buffer_per_cpu, update_pages_work);
1463         rb_update_pages(cpu_buffer);
1464         complete(&cpu_buffer->update_done);
1465 }
1466
1467 /**
1468  * ring_buffer_resize - resize the ring buffer
1469  * @buffer: the buffer to resize.
1470  * @size: the new size.
1471  *
1472  * Minimum size is 2 * BUF_PAGE_SIZE.
1473  *
1474  * Returns 0 on success and < 0 on failure.
1475  */
1476 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1477                         int cpu_id)
1478 {
1479         struct ring_buffer_per_cpu *cpu_buffer;
1480         unsigned nr_pages;
1481         int cpu, err = 0;
1482
1483         /*
1484          * Always succeed at resizing a non-existent buffer:
1485          */
1486         if (!buffer)
1487                 return size;
1488
1489         /* Make sure the requested buffer exists */
1490         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1491             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1492                 return size;
1493
1494         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1495         size *= BUF_PAGE_SIZE;
1496
1497         /* we need a minimum of two pages */
1498         if (size < BUF_PAGE_SIZE * 2)
1499                 size = BUF_PAGE_SIZE * 2;
1500
1501         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1502
1503         /*
1504          * Don't succeed if resizing is disabled, as a reader might be
1505          * manipulating the ring buffer and is expecting a sane state while
1506          * this is true.
1507          */
1508         if (atomic_read(&buffer->resize_disabled))
1509                 return -EBUSY;
1510
1511         /* prevent another thread from changing buffer sizes */
1512         mutex_lock(&buffer->mutex);
1513
1514         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1515                 /* calculate the pages to update */
1516                 for_each_buffer_cpu(buffer, cpu) {
1517                         cpu_buffer = buffer->buffers[cpu];
1518
1519                         cpu_buffer->nr_pages_to_update = nr_pages -
1520                                                         cpu_buffer->nr_pages;
1521                         /*
1522                          * nothing more to do for removing pages or no update
1523                          */
1524                         if (cpu_buffer->nr_pages_to_update <= 0)
1525                                 continue;
1526                         /*
1527                          * to add pages, make sure all new pages can be
1528                          * allocated without receiving ENOMEM
1529                          */
1530                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1531                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1532                                                 &cpu_buffer->new_pages, cpu)) {
1533                                 /* not enough memory for new pages */
1534                                 err = -ENOMEM;
1535                                 goto out_err;
1536                         }
1537                 }
1538
1539                 get_online_cpus();
1540                 /*
1541                  * Fire off all the required work handlers
1542                  * We can't schedule on offline CPUs, but it's not necessary
1543                  * since we can change their buffer sizes without any race.
1544                  */
1545                 for_each_buffer_cpu(buffer, cpu) {
1546                         cpu_buffer = buffer->buffers[cpu];
1547                         if (!cpu_buffer->nr_pages_to_update)
1548                                 continue;
1549
1550                         if (cpu_online(cpu))
1551                                 schedule_work_on(cpu,
1552                                                 &cpu_buffer->update_pages_work);
1553                         else
1554                                 rb_update_pages(cpu_buffer);
1555                 }
1556
1557                 /* wait for all the updates to complete */
1558                 for_each_buffer_cpu(buffer, cpu) {
1559                         cpu_buffer = buffer->buffers[cpu];
1560                         if (!cpu_buffer->nr_pages_to_update)
1561                                 continue;
1562
1563                         if (cpu_online(cpu))
1564                                 wait_for_completion(&cpu_buffer->update_done);
1565                         cpu_buffer->nr_pages_to_update = 0;
1566                 }
1567
1568                 put_online_cpus();
1569         } else {
1570                 cpu_buffer = buffer->buffers[cpu_id];
1571
1572                 if (nr_pages == cpu_buffer->nr_pages)
1573                         goto out;
1574
1575                 cpu_buffer->nr_pages_to_update = nr_pages -
1576                                                 cpu_buffer->nr_pages;
1577
1578                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1579                 if (cpu_buffer->nr_pages_to_update > 0 &&
1580                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1581                                             &cpu_buffer->new_pages, cpu_id)) {
1582                         err = -ENOMEM;
1583                         goto out_err;
1584                 }
1585
1586                 get_online_cpus();
1587
1588                 if (cpu_online(cpu_id)) {
1589                         schedule_work_on(cpu_id,
1590                                          &cpu_buffer->update_pages_work);
1591                         wait_for_completion(&cpu_buffer->update_done);
1592                 } else
1593                         rb_update_pages(cpu_buffer);
1594
1595                 cpu_buffer->nr_pages_to_update = 0;
1596                 put_online_cpus();
1597         }
1598
1599  out:
1600         /*
1601          * The ring buffer resize can happen with the ring buffer
1602          * enabled, so that the update disturbs the tracing as little
1603          * as possible. But if the buffer is disabled, we do not need
1604          * to worry about that, and we can take the time to verify
1605          * that the buffer is not corrupt.
1606          */
1607         if (atomic_read(&buffer->record_disabled)) {
1608                 atomic_inc(&buffer->record_disabled);
1609                 /*
1610                  * Even though the buffer was disabled, we must make sure
1611                  * that it is truly disabled before calling rb_check_pages.
1612                  * There could have been a race between checking
1613                  * record_disable and incrementing it.
1614                  */
1615                 synchronize_sched();
1616                 for_each_buffer_cpu(buffer, cpu) {
1617                         cpu_buffer = buffer->buffers[cpu];
1618                         rb_check_pages(cpu_buffer);
1619                 }
1620                 atomic_dec(&buffer->record_disabled);
1621         }
1622
1623         mutex_unlock(&buffer->mutex);
1624         return size;
1625
1626  out_err:
1627         for_each_buffer_cpu(buffer, cpu) {
1628                 struct buffer_page *bpage, *tmp;
1629
1630                 cpu_buffer = buffer->buffers[cpu];
1631                 cpu_buffer->nr_pages_to_update = 0;
1632
1633                 if (list_empty(&cpu_buffer->new_pages))
1634                         continue;
1635
1636                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1637                                         list) {
1638                         list_del_init(&bpage->list);
1639                         free_buffer_page(bpage);
1640                 }
1641         }
1642         mutex_unlock(&buffer->mutex);
1643         return err;
1644 }
1645 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1646
1647 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1648 {
1649         mutex_lock(&buffer->mutex);
1650         if (val)
1651                 buffer->flags |= RB_FL_OVERWRITE;
1652         else
1653                 buffer->flags &= ~RB_FL_OVERWRITE;
1654         mutex_unlock(&buffer->mutex);
1655 }
1656 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1657
1658 static inline void *
1659 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1660 {
1661         return bpage->data + index;
1662 }
1663
1664 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1665 {
1666         return bpage->page->data + index;
1667 }
1668
1669 static inline struct ring_buffer_event *
1670 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1671 {
1672         return __rb_page_index(cpu_buffer->reader_page,
1673                                cpu_buffer->reader_page->read);
1674 }
1675
1676 static inline struct ring_buffer_event *
1677 rb_iter_head_event(struct ring_buffer_iter *iter)
1678 {
1679         return __rb_page_index(iter->head_page, iter->head);
1680 }
1681
1682 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1683 {
1684         return local_read(&bpage->page->commit);
1685 }
1686
1687 /* Size is determined by what has been committed */
1688 static inline unsigned rb_page_size(struct buffer_page *bpage)
1689 {
1690         return rb_page_commit(bpage);
1691 }
1692
1693 static inline unsigned
1694 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1695 {
1696         return rb_page_commit(cpu_buffer->commit_page);
1697 }
1698
1699 static inline unsigned
1700 rb_event_index(struct ring_buffer_event *event)
1701 {
1702         unsigned long addr = (unsigned long)event;
1703
1704         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1705 }
1706
1707 static inline int
1708 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1709                    struct ring_buffer_event *event)
1710 {
1711         unsigned long addr = (unsigned long)event;
1712         unsigned long index;
1713
1714         index = rb_event_index(event);
1715         addr &= PAGE_MASK;
1716
1717         return cpu_buffer->commit_page->page == (void *)addr &&
1718                 rb_commit_index(cpu_buffer) == index;
1719 }
1720
1721 static void
1722 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1723 {
1724         unsigned long max_count;
1725
1726         /*
1727          * We only race with interrupts and NMIs on this CPU.
1728          * If we own the commit event, then we can commit
1729          * all others that interrupted us, since the interruptions
1730          * are in stack format (they finish before they come
1731          * back to us). This allows us to do a simple loop to
1732          * assign the commit to the tail.
1733          */
1734  again:
1735         max_count = cpu_buffer->nr_pages * 100;
1736
1737         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1738                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1739                         return;
1740                 if (RB_WARN_ON(cpu_buffer,
1741                                rb_is_reader_page(cpu_buffer->tail_page)))
1742                         return;
1743                 local_set(&cpu_buffer->commit_page->page->commit,
1744                           rb_page_write(cpu_buffer->commit_page));
1745                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1746                 cpu_buffer->write_stamp =
1747                         cpu_buffer->commit_page->page->time_stamp;
1748                 /* add barrier to keep gcc from optimizing too much */
1749                 barrier();
1750         }
1751         while (rb_commit_index(cpu_buffer) !=
1752                rb_page_write(cpu_buffer->commit_page)) {
1753
1754                 local_set(&cpu_buffer->commit_page->page->commit,
1755                           rb_page_write(cpu_buffer->commit_page));
1756                 RB_WARN_ON(cpu_buffer,
1757                            local_read(&cpu_buffer->commit_page->page->commit) &
1758                            ~RB_WRITE_MASK);
1759                 barrier();
1760         }
1761
1762         /* again, keep gcc from optimizing */
1763         barrier();
1764
1765         /*
1766          * If an interrupt came in just after the first while loop
1767          * and pushed the tail page forward, we will be left with
1768          * a dangling commit that will never go forward.
1769          */
1770         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1771                 goto again;
1772 }
1773
1774 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1775 {
1776         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1777         cpu_buffer->reader_page->read = 0;
1778 }
1779
1780 static void rb_inc_iter(struct ring_buffer_iter *iter)
1781 {
1782         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1783
1784         /*
1785          * The iterator could be on the reader page (it starts there).
1786          * But the head could have moved, since the reader was
1787          * found. Check for this case and assign the iterator
1788          * to the head page instead of next.
1789          */
1790         if (iter->head_page == cpu_buffer->reader_page)
1791                 iter->head_page = rb_set_head_page(cpu_buffer);
1792         else
1793                 rb_inc_page(cpu_buffer, &iter->head_page);
1794
1795         iter->read_stamp = iter->head_page->page->time_stamp;
1796         iter->head = 0;
1797 }
1798
1799 /* Slow path, do not inline */
1800 static noinline struct ring_buffer_event *
1801 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1802 {
1803         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1804
1805         /* Not the first event on the page? */
1806         if (rb_event_index(event)) {
1807                 event->time_delta = delta & TS_MASK;
1808                 event->array[0] = delta >> TS_SHIFT;
1809         } else {
1810                 /* nope, just zero it */
1811                 event->time_delta = 0;
1812                 event->array[0] = 0;
1813         }
1814
1815         return skip_time_extend(event);
1816 }
1817
1818 /**
1819  * ring_buffer_update_event - update event type and data
1820  * @event: the even to update
1821  * @type: the type of event
1822  * @length: the size of the event field in the ring buffer
1823  *
1824  * Update the type and data fields of the event. The length
1825  * is the actual size that is written to the ring buffer,
1826  * and with this, we can determine what to place into the
1827  * data field.
1828  */
1829 static void
1830 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1831                 struct ring_buffer_event *event, unsigned length,
1832                 int add_timestamp, u64 delta)
1833 {
1834         /* Only a commit updates the timestamp */
1835         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1836                 delta = 0;
1837
1838         /*
1839          * If we need to add a timestamp, then we
1840          * add it to the start of the resevered space.
1841          */
1842         if (unlikely(add_timestamp)) {
1843                 event = rb_add_time_stamp(event, delta);
1844                 length -= RB_LEN_TIME_EXTEND;
1845                 delta = 0;
1846         }
1847
1848         event->time_delta = delta;
1849         length -= RB_EVNT_HDR_SIZE;
1850         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1851                 event->type_len = 0;
1852                 event->array[0] = length;
1853         } else
1854                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1855 }
1856
1857 /*
1858  * rb_handle_head_page - writer hit the head page
1859  *
1860  * Returns: +1 to retry page
1861  *           0 to continue
1862  *          -1 on error
1863  */
1864 static int
1865 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1866                     struct buffer_page *tail_page,
1867                     struct buffer_page *next_page)
1868 {
1869         struct buffer_page *new_head;
1870         int entries;
1871         int type;
1872         int ret;
1873
1874         entries = rb_page_entries(next_page);
1875
1876         /*
1877          * The hard part is here. We need to move the head
1878          * forward, and protect against both readers on
1879          * other CPUs and writers coming in via interrupts.
1880          */
1881         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1882                                        RB_PAGE_HEAD);
1883
1884         /*
1885          * type can be one of four:
1886          *  NORMAL - an interrupt already moved it for us
1887          *  HEAD   - we are the first to get here.
1888          *  UPDATE - we are the interrupt interrupting
1889          *           a current move.
1890          *  MOVED  - a reader on another CPU moved the next
1891          *           pointer to its reader page. Give up
1892          *           and try again.
1893          */
1894
1895         switch (type) {
1896         case RB_PAGE_HEAD:
1897                 /*
1898                  * We changed the head to UPDATE, thus
1899                  * it is our responsibility to update
1900                  * the counters.
1901                  */
1902                 local_add(entries, &cpu_buffer->overrun);
1903                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1904
1905                 /*
1906                  * The entries will be zeroed out when we move the
1907                  * tail page.
1908                  */
1909
1910                 /* still more to do */
1911                 break;
1912
1913         case RB_PAGE_UPDATE:
1914                 /*
1915                  * This is an interrupt that interrupt the
1916                  * previous update. Still more to do.
1917                  */
1918                 break;
1919         case RB_PAGE_NORMAL:
1920                 /*
1921                  * An interrupt came in before the update
1922                  * and processed this for us.
1923                  * Nothing left to do.
1924                  */
1925                 return 1;
1926         case RB_PAGE_MOVED:
1927                 /*
1928                  * The reader is on another CPU and just did
1929                  * a swap with our next_page.
1930                  * Try again.
1931                  */
1932                 return 1;
1933         default:
1934                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1935                 return -1;
1936         }
1937
1938         /*
1939          * Now that we are here, the old head pointer is
1940          * set to UPDATE. This will keep the reader from
1941          * swapping the head page with the reader page.
1942          * The reader (on another CPU) will spin till
1943          * we are finished.
1944          *
1945          * We just need to protect against interrupts
1946          * doing the job. We will set the next pointer
1947          * to HEAD. After that, we set the old pointer
1948          * to NORMAL, but only if it was HEAD before.
1949          * otherwise we are an interrupt, and only
1950          * want the outer most commit to reset it.
1951          */
1952         new_head = next_page;
1953         rb_inc_page(cpu_buffer, &new_head);
1954
1955         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1956                                     RB_PAGE_NORMAL);
1957
1958         /*
1959          * Valid returns are:
1960          *  HEAD   - an interrupt came in and already set it.
1961          *  NORMAL - One of two things:
1962          *            1) We really set it.
1963          *            2) A bunch of interrupts came in and moved
1964          *               the page forward again.
1965          */
1966         switch (ret) {
1967         case RB_PAGE_HEAD:
1968         case RB_PAGE_NORMAL:
1969                 /* OK */
1970                 break;
1971         default:
1972                 RB_WARN_ON(cpu_buffer, 1);
1973                 return -1;
1974         }
1975
1976         /*
1977          * It is possible that an interrupt came in,
1978          * set the head up, then more interrupts came in
1979          * and moved it again. When we get back here,
1980          * the page would have been set to NORMAL but we
1981          * just set it back to HEAD.
1982          *
1983          * How do you detect this? Well, if that happened
1984          * the tail page would have moved.
1985          */
1986         if (ret == RB_PAGE_NORMAL) {
1987                 /*
1988                  * If the tail had moved passed next, then we need
1989                  * to reset the pointer.
1990                  */
1991                 if (cpu_buffer->tail_page != tail_page &&
1992                     cpu_buffer->tail_page != next_page)
1993                         rb_head_page_set_normal(cpu_buffer, new_head,
1994                                                 next_page,
1995                                                 RB_PAGE_HEAD);
1996         }
1997
1998         /*
1999          * If this was the outer most commit (the one that
2000          * changed the original pointer from HEAD to UPDATE),
2001          * then it is up to us to reset it to NORMAL.
2002          */
2003         if (type == RB_PAGE_HEAD) {
2004                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2005                                               tail_page,
2006                                               RB_PAGE_UPDATE);
2007                 if (RB_WARN_ON(cpu_buffer,
2008                                ret != RB_PAGE_UPDATE))
2009                         return -1;
2010         }
2011
2012         return 0;
2013 }
2014
2015 static unsigned rb_calculate_event_length(unsigned length)
2016 {
2017         struct ring_buffer_event event; /* Used only for sizeof array */
2018
2019         /* zero length can cause confusions */
2020         if (!length)
2021                 length = 1;
2022
2023         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2024                 length += sizeof(event.array[0]);
2025
2026         length += RB_EVNT_HDR_SIZE;
2027         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2028
2029         return length;
2030 }
2031
2032 static inline void
2033 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2034               struct buffer_page *tail_page,
2035               unsigned long tail, unsigned long length)
2036 {
2037         struct ring_buffer_event *event;
2038
2039         /*
2040          * Only the event that crossed the page boundary
2041          * must fill the old tail_page with padding.
2042          */
2043         if (tail >= BUF_PAGE_SIZE) {
2044                 /*
2045                  * If the page was filled, then we still need
2046                  * to update the real_end. Reset it to zero
2047                  * and the reader will ignore it.
2048                  */
2049                 if (tail == BUF_PAGE_SIZE)
2050                         tail_page->real_end = 0;
2051
2052                 local_sub(length, &tail_page->write);
2053                 return;
2054         }
2055
2056         event = __rb_page_index(tail_page, tail);
2057         kmemcheck_annotate_bitfield(event, bitfield);
2058
2059         /* account for padding bytes */
2060         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2061
2062         /*
2063          * Save the original length to the meta data.
2064          * This will be used by the reader to add lost event
2065          * counter.
2066          */
2067         tail_page->real_end = tail;
2068
2069         /*
2070          * If this event is bigger than the minimum size, then
2071          * we need to be careful that we don't subtract the
2072          * write counter enough to allow another writer to slip
2073          * in on this page.
2074          * We put in a discarded commit instead, to make sure
2075          * that this space is not used again.
2076          *
2077          * If we are less than the minimum size, we don't need to
2078          * worry about it.
2079          */
2080         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2081                 /* No room for any events */
2082
2083                 /* Mark the rest of the page with padding */
2084                 rb_event_set_padding(event);
2085
2086                 /* Set the write back to the previous setting */
2087                 local_sub(length, &tail_page->write);
2088                 return;
2089         }
2090
2091         /* Put in a discarded event */
2092         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2093         event->type_len = RINGBUF_TYPE_PADDING;
2094         /* time delta must be non zero */
2095         event->time_delta = 1;
2096
2097         /* Set write to end of buffer */
2098         length = (tail + length) - BUF_PAGE_SIZE;
2099         local_sub(length, &tail_page->write);
2100 }
2101
2102 /*
2103  * This is the slow path, force gcc not to inline it.
2104  */
2105 static noinline struct ring_buffer_event *
2106 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2107              unsigned long length, unsigned long tail,
2108              struct buffer_page *tail_page, u64 ts)
2109 {
2110         struct buffer_page *commit_page = cpu_buffer->commit_page;
2111         struct ring_buffer *buffer = cpu_buffer->buffer;
2112         struct buffer_page *next_page;
2113         int ret;
2114
2115         next_page = tail_page;
2116
2117         rb_inc_page(cpu_buffer, &next_page);
2118
2119         /*
2120          * If for some reason, we had an interrupt storm that made
2121          * it all the way around the buffer, bail, and warn
2122          * about it.
2123          */
2124         if (unlikely(next_page == commit_page)) {
2125                 local_inc(&cpu_buffer->commit_overrun);
2126                 goto out_reset;
2127         }
2128
2129         /*
2130          * This is where the fun begins!
2131          *
2132          * We are fighting against races between a reader that
2133          * could be on another CPU trying to swap its reader
2134          * page with the buffer head.
2135          *
2136          * We are also fighting against interrupts coming in and
2137          * moving the head or tail on us as well.
2138          *
2139          * If the next page is the head page then we have filled
2140          * the buffer, unless the commit page is still on the
2141          * reader page.
2142          */
2143         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2144
2145                 /*
2146                  * If the commit is not on the reader page, then
2147                  * move the header page.
2148                  */
2149                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2150                         /*
2151                          * If we are not in overwrite mode,
2152                          * this is easy, just stop here.
2153                          */
2154                         if (!(buffer->flags & RB_FL_OVERWRITE))
2155                                 goto out_reset;
2156
2157                         ret = rb_handle_head_page(cpu_buffer,
2158                                                   tail_page,
2159                                                   next_page);
2160                         if (ret < 0)
2161                                 goto out_reset;
2162                         if (ret)
2163                                 goto out_again;
2164                 } else {
2165                         /*
2166                          * We need to be careful here too. The
2167                          * commit page could still be on the reader
2168                          * page. We could have a small buffer, and
2169                          * have filled up the buffer with events
2170                          * from interrupts and such, and wrapped.
2171                          *
2172                          * Note, if the tail page is also the on the
2173                          * reader_page, we let it move out.
2174                          */
2175                         if (unlikely((cpu_buffer->commit_page !=
2176                                       cpu_buffer->tail_page) &&
2177                                      (cpu_buffer->commit_page ==
2178                                       cpu_buffer->reader_page))) {
2179                                 local_inc(&cpu_buffer->commit_overrun);
2180                                 goto out_reset;
2181                         }
2182                 }
2183         }
2184
2185         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2186         if (ret) {
2187                 /*
2188                  * Nested commits always have zero deltas, so
2189                  * just reread the time stamp
2190                  */
2191                 ts = rb_time_stamp(buffer);
2192                 next_page->page->time_stamp = ts;
2193         }
2194
2195  out_again:
2196
2197         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2198
2199         /* fail and let the caller try again */
2200         return ERR_PTR(-EAGAIN);
2201
2202  out_reset:
2203         /* reset write */
2204         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2205
2206         return NULL;
2207 }
2208
2209 static struct ring_buffer_event *
2210 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2211                   unsigned long length, u64 ts,
2212                   u64 delta, int add_timestamp)
2213 {
2214         struct buffer_page *tail_page;
2215         struct ring_buffer_event *event;
2216         unsigned long tail, write;
2217
2218         /*
2219          * If the time delta since the last event is too big to
2220          * hold in the time field of the event, then we append a
2221          * TIME EXTEND event ahead of the data event.
2222          */
2223         if (unlikely(add_timestamp))
2224                 length += RB_LEN_TIME_EXTEND;
2225
2226         tail_page = cpu_buffer->tail_page;
2227         write = local_add_return(length, &tail_page->write);
2228
2229         /* set write to only the index of the write */
2230         write &= RB_WRITE_MASK;
2231         tail = write - length;
2232
2233         /* See if we shot pass the end of this buffer page */
2234         if (unlikely(write > BUF_PAGE_SIZE))
2235                 return rb_move_tail(cpu_buffer, length, tail,
2236                                     tail_page, ts);
2237
2238         /* We reserved something on the buffer */
2239
2240         event = __rb_page_index(tail_page, tail);
2241         kmemcheck_annotate_bitfield(event, bitfield);
2242         rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2243
2244         local_inc(&tail_page->entries);
2245
2246         /*
2247          * If this is the first commit on the page, then update
2248          * its timestamp.
2249          */
2250         if (!tail)
2251                 tail_page->page->time_stamp = ts;
2252
2253         /* account for these added bytes */
2254         local_add(length, &cpu_buffer->entries_bytes);
2255
2256         return event;
2257 }
2258
2259 static inline int
2260 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2261                   struct ring_buffer_event *event)
2262 {
2263         unsigned long new_index, old_index;
2264         struct buffer_page *bpage;
2265         unsigned long index;
2266         unsigned long addr;
2267
2268         new_index = rb_event_index(event);
2269         old_index = new_index + rb_event_ts_length(event);
2270         addr = (unsigned long)event;
2271         addr &= PAGE_MASK;
2272
2273         bpage = cpu_buffer->tail_page;
2274
2275         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2276                 unsigned long write_mask =
2277                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2278                 unsigned long event_length = rb_event_length(event);
2279                 /*
2280                  * This is on the tail page. It is possible that
2281                  * a write could come in and move the tail page
2282                  * and write to the next page. That is fine
2283                  * because we just shorten what is on this page.
2284                  */
2285                 old_index += write_mask;
2286                 new_index += write_mask;
2287                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2288                 if (index == old_index) {
2289                         /* update counters */
2290                         local_sub(event_length, &cpu_buffer->entries_bytes);
2291                         return 1;
2292                 }
2293         }
2294
2295         /* could not discard */
2296         return 0;
2297 }
2298
2299 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2300 {
2301         local_inc(&cpu_buffer->committing);
2302         local_inc(&cpu_buffer->commits);
2303 }
2304
2305 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2306 {
2307         unsigned long commits;
2308
2309         if (RB_WARN_ON(cpu_buffer,
2310                        !local_read(&cpu_buffer->committing)))
2311                 return;
2312
2313  again:
2314         commits = local_read(&cpu_buffer->commits);
2315         /* synchronize with interrupts */
2316         barrier();
2317         if (local_read(&cpu_buffer->committing) == 1)
2318                 rb_set_commit_to_write(cpu_buffer);
2319
2320         local_dec(&cpu_buffer->committing);
2321
2322         /* synchronize with interrupts */
2323         barrier();
2324
2325         /*
2326          * Need to account for interrupts coming in between the
2327          * updating of the commit page and the clearing of the
2328          * committing counter.
2329          */
2330         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2331             !local_read(&cpu_buffer->committing)) {
2332                 local_inc(&cpu_buffer->committing);
2333                 goto again;
2334         }
2335 }
2336
2337 static struct ring_buffer_event *
2338 rb_reserve_next_event(struct ring_buffer *buffer,
2339                       struct ring_buffer_per_cpu *cpu_buffer,
2340                       unsigned long length)
2341 {
2342         struct ring_buffer_event *event;
2343         u64 ts, delta;
2344         int nr_loops = 0;
2345         int add_timestamp;
2346         u64 diff;
2347
2348         rb_start_commit(cpu_buffer);
2349
2350 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2351         /*
2352          * Due to the ability to swap a cpu buffer from a buffer
2353          * it is possible it was swapped before we committed.
2354          * (committing stops a swap). We check for it here and
2355          * if it happened, we have to fail the write.
2356          */
2357         barrier();
2358         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2359                 local_dec(&cpu_buffer->committing);
2360                 local_dec(&cpu_buffer->commits);
2361                 return NULL;
2362         }
2363 #endif
2364
2365         length = rb_calculate_event_length(length);
2366  again:
2367         add_timestamp = 0;
2368         delta = 0;
2369
2370         /*
2371          * We allow for interrupts to reenter here and do a trace.
2372          * If one does, it will cause this original code to loop
2373          * back here. Even with heavy interrupts happening, this
2374          * should only happen a few times in a row. If this happens
2375          * 1000 times in a row, there must be either an interrupt
2376          * storm or we have something buggy.
2377          * Bail!
2378          */
2379         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2380                 goto out_fail;
2381
2382         ts = rb_time_stamp(cpu_buffer->buffer);
2383         diff = ts - cpu_buffer->write_stamp;
2384
2385         /* make sure this diff is calculated here */
2386         barrier();
2387
2388         /* Did the write stamp get updated already? */
2389         if (likely(ts >= cpu_buffer->write_stamp)) {
2390                 delta = diff;
2391                 if (unlikely(test_time_stamp(delta))) {
2392                         int local_clock_stable = 1;
2393 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2394                         local_clock_stable = sched_clock_stable;
2395 #endif
2396                         WARN_ONCE(delta > (1ULL << 59),
2397                                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2398                                   (unsigned long long)delta,
2399                                   (unsigned long long)ts,
2400                                   (unsigned long long)cpu_buffer->write_stamp,
2401                                   local_clock_stable ? "" :
2402                                   "If you just came from a suspend/resume,\n"
2403                                   "please switch to the trace global clock:\n"
2404                                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2405                         add_timestamp = 1;
2406                 }
2407         }
2408
2409         event = __rb_reserve_next(cpu_buffer, length, ts,
2410                                   delta, add_timestamp);
2411         if (unlikely(PTR_ERR(event) == -EAGAIN))
2412                 goto again;
2413
2414         if (!event)
2415                 goto out_fail;
2416
2417         return event;
2418
2419  out_fail:
2420         rb_end_commit(cpu_buffer);
2421         return NULL;
2422 }
2423
2424 #ifdef CONFIG_TRACING
2425
2426 #define TRACE_RECURSIVE_DEPTH 16
2427
2428 /* Keep this code out of the fast path cache */
2429 static noinline void trace_recursive_fail(void)
2430 {
2431         /* Disable all tracing before we do anything else */
2432         tracing_off_permanent();
2433
2434         printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2435                     "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2436                     trace_recursion_buffer(),
2437                     hardirq_count() >> HARDIRQ_SHIFT,
2438                     softirq_count() >> SOFTIRQ_SHIFT,
2439                     in_nmi());
2440
2441         WARN_ON_ONCE(1);
2442 }
2443
2444 static inline int trace_recursive_lock(void)
2445 {
2446         trace_recursion_inc();
2447
2448         if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
2449                 return 0;
2450
2451         trace_recursive_fail();
2452
2453         return -1;
2454 }
2455
2456 static inline void trace_recursive_unlock(void)
2457 {
2458         WARN_ON_ONCE(!trace_recursion_buffer());
2459
2460         trace_recursion_dec();
2461 }
2462
2463 #else
2464
2465 #define trace_recursive_lock()          (0)
2466 #define trace_recursive_unlock()        do { } while (0)
2467
2468 #endif
2469
2470 /**
2471  * ring_buffer_lock_reserve - reserve a part of the buffer
2472  * @buffer: the ring buffer to reserve from
2473  * @length: the length of the data to reserve (excluding event header)
2474  *
2475  * Returns a reseverd event on the ring buffer to copy directly to.
2476  * The user of this interface will need to get the body to write into
2477  * and can use the ring_buffer_event_data() interface.
2478  *
2479  * The length is the length of the data needed, not the event length
2480  * which also includes the event header.
2481  *
2482  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2483  * If NULL is returned, then nothing has been allocated or locked.
2484  */
2485 struct ring_buffer_event *
2486 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2487 {
2488         struct ring_buffer_per_cpu *cpu_buffer;
2489         struct ring_buffer_event *event;
2490         int cpu;
2491
2492         if (ring_buffer_flags != RB_BUFFERS_ON)
2493                 return NULL;
2494
2495         /* If we are tracing schedule, we don't want to recurse */
2496         preempt_disable_notrace();
2497
2498         if (atomic_read(&buffer->record_disabled))
2499                 goto out_nocheck;
2500
2501         if (trace_recursive_lock())
2502                 goto out_nocheck;
2503
2504         cpu = raw_smp_processor_id();
2505
2506         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2507                 goto out;
2508
2509         cpu_buffer = buffer->buffers[cpu];
2510
2511         if (atomic_read(&cpu_buffer->record_disabled))
2512                 goto out;
2513
2514         if (length > BUF_MAX_DATA_SIZE)
2515                 goto out;
2516
2517         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2518         if (!event)
2519                 goto out;
2520
2521         return event;
2522
2523  out:
2524         trace_recursive_unlock();
2525
2526  out_nocheck:
2527         preempt_enable_notrace();
2528         return NULL;
2529 }
2530 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2531
2532 static void
2533 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2534                       struct ring_buffer_event *event)
2535 {
2536         u64 delta;
2537
2538         /*
2539          * The event first in the commit queue updates the
2540          * time stamp.
2541          */
2542         if (rb_event_is_commit(cpu_buffer, event)) {
2543                 /*
2544                  * A commit event that is first on a page
2545                  * updates the write timestamp with the page stamp
2546                  */
2547                 if (!rb_event_index(event))
2548                         cpu_buffer->write_stamp =
2549                                 cpu_buffer->commit_page->page->time_stamp;
2550                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2551                         delta = event->array[0];
2552                         delta <<= TS_SHIFT;
2553                         delta += event->time_delta;
2554                         cpu_buffer->write_stamp += delta;
2555                 } else
2556                         cpu_buffer->write_stamp += event->time_delta;
2557         }
2558 }
2559
2560 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2561                       struct ring_buffer_event *event)
2562 {
2563         local_inc(&cpu_buffer->entries);
2564         rb_update_write_stamp(cpu_buffer, event);
2565         rb_end_commit(cpu_buffer);
2566 }
2567
2568 /**
2569  * ring_buffer_unlock_commit - commit a reserved
2570  * @buffer: The buffer to commit to
2571  * @event: The event pointer to commit.
2572  *
2573  * This commits the data to the ring buffer, and releases any locks held.
2574  *
2575  * Must be paired with ring_buffer_lock_reserve.
2576  */
2577 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2578                               struct ring_buffer_event *event)
2579 {
2580         struct ring_buffer_per_cpu *cpu_buffer;
2581         int cpu = raw_smp_processor_id();
2582
2583         cpu_buffer = buffer->buffers[cpu];
2584
2585         rb_commit(cpu_buffer, event);
2586
2587         trace_recursive_unlock();
2588
2589         preempt_enable_notrace();
2590
2591         return 0;
2592 }
2593 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2594
2595 static inline void rb_event_discard(struct ring_buffer_event *event)
2596 {
2597         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2598                 event = skip_time_extend(event);
2599
2600         /* array[0] holds the actual length for the discarded event */
2601         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2602         event->type_len = RINGBUF_TYPE_PADDING;
2603         /* time delta must be non zero */
2604         if (!event->time_delta)
2605                 event->time_delta = 1;
2606 }
2607
2608 /*
2609  * Decrement the entries to the page that an event is on.
2610  * The event does not even need to exist, only the pointer
2611  * to the page it is on. This may only be called before the commit
2612  * takes place.
2613  */
2614 static inline void
2615 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2616                    struct ring_buffer_event *event)
2617 {
2618         unsigned long addr = (unsigned long)event;
2619         struct buffer_page *bpage = cpu_buffer->commit_page;
2620         struct buffer_page *start;
2621
2622         addr &= PAGE_MASK;
2623
2624         /* Do the likely case first */
2625         if (likely(bpage->page == (void *)addr)) {
2626                 local_dec(&bpage->entries);
2627                 return;
2628         }
2629
2630         /*
2631          * Because the commit page may be on the reader page we
2632          * start with the next page and check the end loop there.
2633          */
2634         rb_inc_page(cpu_buffer, &bpage);
2635         start = bpage;
2636         do {
2637                 if (bpage->page == (void *)addr) {
2638                         local_dec(&bpage->entries);
2639                         return;
2640                 }
2641                 rb_inc_page(cpu_buffer, &bpage);
2642         } while (bpage != start);
2643
2644         /* commit not part of this buffer?? */
2645         RB_WARN_ON(cpu_buffer, 1);
2646 }
2647
2648 /**
2649  * ring_buffer_commit_discard - discard an event that has not been committed
2650  * @buffer: the ring buffer
2651  * @event: non committed event to discard
2652  *
2653  * Sometimes an event that is in the ring buffer needs to be ignored.
2654  * This function lets the user discard an event in the ring buffer
2655  * and then that event will not be read later.
2656  *
2657  * This function only works if it is called before the the item has been
2658  * committed. It will try to free the event from the ring buffer
2659  * if another event has not been added behind it.
2660  *
2661  * If another event has been added behind it, it will set the event
2662  * up as discarded, and perform the commit.
2663  *
2664  * If this function is called, do not call ring_buffer_unlock_commit on
2665  * the event.
2666  */
2667 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2668                                 struct ring_buffer_event *event)
2669 {
2670         struct ring_buffer_per_cpu *cpu_buffer;
2671         int cpu;
2672
2673         /* The event is discarded regardless */
2674         rb_event_discard(event);
2675
2676         cpu = smp_processor_id();
2677         cpu_buffer = buffer->buffers[cpu];
2678
2679         /*
2680          * This must only be called if the event has not been
2681          * committed yet. Thus we can assume that preemption
2682          * is still disabled.
2683          */
2684         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2685
2686         rb_decrement_entry(cpu_buffer, event);
2687         if (rb_try_to_discard(cpu_buffer, event))
2688                 goto out;
2689
2690         /*
2691          * The commit is still visible by the reader, so we
2692          * must still update the timestamp.
2693          */
2694         rb_update_write_stamp(cpu_buffer, event);
2695  out:
2696         rb_end_commit(cpu_buffer);
2697
2698         trace_recursive_unlock();
2699
2700         preempt_enable_notrace();
2701
2702 }
2703 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2704
2705 /**
2706  * ring_buffer_write - write data to the buffer without reserving
2707  * @buffer: The ring buffer to write to.
2708  * @length: The length of the data being written (excluding the event header)
2709  * @data: The data to write to the buffer.
2710  *
2711  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2712  * one function. If you already have the data to write to the buffer, it
2713  * may be easier to simply call this function.
2714  *
2715  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2716  * and not the length of the event which would hold the header.
2717  */
2718 int ring_buffer_write(struct ring_buffer *buffer,
2719                         unsigned long length,
2720                         void *data)
2721 {
2722         struct ring_buffer_per_cpu *cpu_buffer;
2723         struct ring_buffer_event *event;
2724         void *body;
2725         int ret = -EBUSY;
2726         int cpu;
2727
2728         if (ring_buffer_flags != RB_BUFFERS_ON)
2729                 return -EBUSY;
2730
2731         preempt_disable_notrace();
2732
2733         if (atomic_read(&buffer->record_disabled))
2734                 goto out;
2735
2736         cpu = raw_smp_processor_id();
2737
2738         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2739                 goto out;
2740
2741         cpu_buffer = buffer->buffers[cpu];
2742
2743         if (atomic_read(&cpu_buffer->record_disabled))
2744                 goto out;
2745
2746         if (length > BUF_MAX_DATA_SIZE)
2747                 goto out;
2748
2749         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2750         if (!event)
2751                 goto out;
2752
2753         body = rb_event_data(event);
2754
2755         memcpy(body, data, length);
2756
2757         rb_commit(cpu_buffer, event);
2758
2759         ret = 0;
2760  out:
2761         preempt_enable_notrace();
2762
2763         return ret;
2764 }
2765 EXPORT_SYMBOL_GPL(ring_buffer_write);
2766
2767 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2768 {
2769         struct buffer_page *reader = cpu_buffer->reader_page;
2770         struct buffer_page *head = rb_set_head_page(cpu_buffer);
2771         struct buffer_page *commit = cpu_buffer->commit_page;
2772
2773         /* In case of error, head will be NULL */
2774         if (unlikely(!head))
2775                 return 1;
2776
2777         return reader->read == rb_page_commit(reader) &&
2778                 (commit == reader ||
2779                  (commit == head &&
2780                   head->read == rb_page_commit(commit)));
2781 }
2782
2783 /**
2784  * ring_buffer_record_disable - stop all writes into the buffer
2785  * @buffer: The ring buffer to stop writes to.
2786  *
2787  * This prevents all writes to the buffer. Any attempt to write
2788  * to the buffer after this will fail and return NULL.
2789  *
2790  * The caller should call synchronize_sched() after this.
2791  */
2792 void ring_buffer_record_disable(struct ring_buffer *buffer)
2793 {
2794         atomic_inc(&buffer->record_disabled);
2795 }
2796 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2797
2798 /**
2799  * ring_buffer_record_enable - enable writes to the buffer
2800  * @buffer: The ring buffer to enable writes
2801  *
2802  * Note, multiple disables will need the same number of enables
2803  * to truly enable the writing (much like preempt_disable).
2804  */
2805 void ring_buffer_record_enable(struct ring_buffer *buffer)
2806 {
2807         atomic_dec(&buffer->record_disabled);
2808 }
2809 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2810
2811 /**
2812  * ring_buffer_record_off - stop all writes into the buffer
2813  * @buffer: The ring buffer to stop writes to.
2814  *
2815  * This prevents all writes to the buffer. Any attempt to write
2816  * to the buffer after this will fail and return NULL.
2817  *
2818  * This is different than ring_buffer_record_disable() as
2819  * it works like an on/off switch, where as the disable() verison
2820  * must be paired with a enable().
2821  */
2822 void ring_buffer_record_off(struct ring_buffer *buffer)
2823 {
2824         unsigned int rd;
2825         unsigned int new_rd;
2826
2827         do {
2828                 rd = atomic_read(&buffer->record_disabled);
2829                 new_rd = rd | RB_BUFFER_OFF;
2830         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2831 }
2832 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2833
2834 /**
2835  * ring_buffer_record_on - restart writes into the buffer
2836  * @buffer: The ring buffer to start writes to.
2837  *
2838  * This enables all writes to the buffer that was disabled by
2839  * ring_buffer_record_off().
2840  *
2841  * This is different than ring_buffer_record_enable() as
2842  * it works like an on/off switch, where as the enable() verison
2843  * must be paired with a disable().
2844  */
2845 void ring_buffer_record_on(struct ring_buffer *buffer)
2846 {
2847         unsigned int rd;
2848         unsigned int new_rd;
2849
2850         do {
2851                 rd = atomic_read(&buffer->record_disabled);
2852                 new_rd = rd & ~RB_BUFFER_OFF;
2853         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2854 }
2855 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2856
2857 /**
2858  * ring_buffer_record_is_on - return true if the ring buffer can write
2859  * @buffer: The ring buffer to see if write is enabled
2860  *
2861  * Returns true if the ring buffer is in a state that it accepts writes.
2862  */
2863 int ring_buffer_record_is_on(struct ring_buffer *buffer)
2864 {
2865         return !atomic_read(&buffer->record_disabled);
2866 }
2867
2868 /**
2869  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2870  * @buffer: The ring buffer to stop writes to.
2871  * @cpu: The CPU buffer to stop
2872  *
2873  * This prevents all writes to the buffer. Any attempt to write
2874  * to the buffer after this will fail and return NULL.
2875  *
2876  * The caller should call synchronize_sched() after this.
2877  */
2878 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2879 {
2880         struct ring_buffer_per_cpu *cpu_buffer;
2881
2882         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2883                 return;
2884
2885         cpu_buffer = buffer->buffers[cpu];
2886         atomic_inc(&cpu_buffer->record_disabled);
2887 }
2888 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2889
2890 /**
2891  * ring_buffer_record_enable_cpu - enable writes to the buffer
2892  * @buffer: The ring buffer to enable writes
2893  * @cpu: The CPU to enable.
2894  *
2895  * Note, multiple disables will need the same number of enables
2896  * to truly enable the writing (much like preempt_disable).
2897  */
2898 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2899 {
2900         struct ring_buffer_per_cpu *cpu_buffer;
2901
2902         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2903                 return;
2904
2905         cpu_buffer = buffer->buffers[cpu];
2906         atomic_dec(&cpu_buffer->record_disabled);
2907 }
2908 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2909
2910 /*
2911  * The total entries in the ring buffer is the running counter
2912  * of entries entered into the ring buffer, minus the sum of
2913  * the entries read from the ring buffer and the number of
2914  * entries that were overwritten.
2915  */
2916 static inline unsigned long
2917 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2918 {
2919         return local_read(&cpu_buffer->entries) -
2920                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2921 }
2922
2923 /**
2924  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2925  * @buffer: The ring buffer
2926  * @cpu: The per CPU buffer to read from.
2927  */
2928 unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2929 {
2930         unsigned long flags;
2931         struct ring_buffer_per_cpu *cpu_buffer;
2932         struct buffer_page *bpage;
2933         unsigned long ret;
2934
2935         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2936                 return 0;
2937
2938         cpu_buffer = buffer->buffers[cpu];
2939         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2940         /*
2941          * if the tail is on reader_page, oldest time stamp is on the reader
2942          * page
2943          */
2944         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2945                 bpage = cpu_buffer->reader_page;
2946         else
2947                 bpage = rb_set_head_page(cpu_buffer);
2948         ret = bpage->page->time_stamp;
2949         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2950
2951         return ret;
2952 }
2953 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2954
2955 /**
2956  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2957  * @buffer: The ring buffer
2958  * @cpu: The per CPU buffer to read from.
2959  */
2960 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
2961 {
2962         struct ring_buffer_per_cpu *cpu_buffer;
2963         unsigned long ret;
2964
2965         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2966                 return 0;
2967
2968         cpu_buffer = buffer->buffers[cpu];
2969         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
2970
2971         return ret;
2972 }
2973 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
2974
2975 /**
2976  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2977  * @buffer: The ring buffer
2978  * @cpu: The per CPU buffer to get the entries from.
2979  */
2980 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2981 {
2982         struct ring_buffer_per_cpu *cpu_buffer;
2983
2984         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2985                 return 0;
2986
2987         cpu_buffer = buffer->buffers[cpu];
2988
2989         return rb_num_of_entries(cpu_buffer);
2990 }
2991 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2992
2993 /**
2994  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2995  * @buffer: The ring buffer
2996  * @cpu: The per CPU buffer to get the number of overruns from
2997  */
2998 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2999 {
3000         struct ring_buffer_per_cpu *cpu_buffer;
3001         unsigned long ret;
3002
3003         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3004                 return 0;
3005
3006         cpu_buffer = buffer->buffers[cpu];
3007         ret = local_read(&cpu_buffer->overrun);
3008
3009         return ret;
3010 }
3011 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3012
3013 /**
3014  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
3015  * @buffer: The ring buffer
3016  * @cpu: The per CPU buffer to get the number of overruns from
3017  */
3018 unsigned long
3019 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3020 {
3021         struct ring_buffer_per_cpu *cpu_buffer;
3022         unsigned long ret;
3023
3024         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3025                 return 0;
3026
3027         cpu_buffer = buffer->buffers[cpu];
3028         ret = local_read(&cpu_buffer->commit_overrun);
3029
3030         return ret;
3031 }
3032 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3033
3034 /**
3035  * ring_buffer_entries - get the number of entries in a buffer
3036  * @buffer: The ring buffer
3037  *
3038  * Returns the total number of entries in the ring buffer
3039  * (all CPU entries)
3040  */
3041 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3042 {
3043         struct ring_buffer_per_cpu *cpu_buffer;
3044         unsigned long entries = 0;
3045         int cpu;
3046
3047         /* if you care about this being correct, lock the buffer */
3048         for_each_buffer_cpu(buffer, cpu) {
3049                 cpu_buffer = buffer->buffers[cpu];
3050                 entries += rb_num_of_entries(cpu_buffer);
3051         }
3052
3053         return entries;
3054 }
3055 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3056
3057 /**
3058  * ring_buffer_overruns - get the number of overruns in buffer
3059  * @buffer: The ring buffer
3060  *
3061  * Returns the total number of overruns in the ring buffer
3062  * (all CPU entries)
3063  */
3064 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3065 {
3066         struct ring_buffer_per_cpu *cpu_buffer;
3067         unsigned long overruns = 0;
3068         int cpu;
3069
3070         /* if you care about this being correct, lock the buffer */
3071         for_each_buffer_cpu(buffer, cpu) {
3072                 cpu_buffer = buffer->buffers[cpu];
3073                 overruns += local_read(&cpu_buffer->overrun);
3074         }
3075
3076         return overruns;
3077 }
3078 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3079
3080 static void rb_iter_reset(struct ring_buffer_iter *iter)
3081 {
3082         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3083
3084         /* Iterator usage is expected to have record disabled */
3085         if (list_empty(&cpu_buffer->reader_page->list)) {
3086                 iter->head_page = rb_set_head_page(cpu_buffer);
3087                 if (unlikely(!iter->head_page))
3088                         return;
3089                 iter->head = iter->head_page->read;
3090         } else {
3091                 iter->head_page = cpu_buffer->reader_page;
3092                 iter->head = cpu_buffer->reader_page->read;
3093         }
3094         if (iter->head)
3095                 iter->read_stamp = cpu_buffer->read_stamp;
3096         else
3097                 iter->read_stamp = iter->head_page->page->time_stamp;
3098         iter->cache_reader_page = cpu_buffer->reader_page;
3099         iter->cache_read = cpu_buffer->read;
3100 }
3101
3102 /**
3103  * ring_buffer_iter_reset - reset an iterator
3104  * @iter: The iterator to reset
3105  *
3106  * Resets the iterator, so that it will start from the beginning
3107  * again.
3108  */
3109 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3110 {
3111         struct ring_buffer_per_cpu *cpu_buffer;
3112         unsigned long flags;
3113
3114         if (!iter)
3115                 return;
3116
3117         cpu_buffer = iter->cpu_buffer;
3118
3119         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3120         rb_iter_reset(iter);
3121         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3122 }
3123 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3124
3125 /**
3126  * ring_buffer_iter_empty - check if an iterator has no more to read
3127  * @iter: The iterator to check
3128  */
3129 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3130 {
3131         struct ring_buffer_per_cpu *cpu_buffer;
3132
3133         cpu_buffer = iter->cpu_buffer;
3134
3135         return iter->head_page == cpu_buffer->commit_page &&
3136                 iter->head == rb_commit_index(cpu_buffer);
3137 }
3138 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3139
3140 static void
3141 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3142                      struct ring_buffer_event *event)
3143 {
3144         u64 delta;
3145
3146         switch (event->type_len) {
3147         case RINGBUF_TYPE_PADDING:
3148                 return;
3149
3150         case RINGBUF_TYPE_TIME_EXTEND:
3151                 delta = event->array[0];
3152                 delta <<= TS_SHIFT;
3153                 delta += event->time_delta;
3154                 cpu_buffer->read_stamp += delta;
3155                 return;
3156
3157         case RINGBUF_TYPE_TIME_STAMP:
3158                 /* FIXME: not implemented */
3159                 return;
3160
3161         case RINGBUF_TYPE_DATA:
3162                 cpu_buffer->read_stamp += event->time_delta;
3163                 return;
3164
3165         default:
3166                 BUG();
3167         }
3168         return;
3169 }
3170
3171 static void
3172 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3173                           struct ring_buffer_event *event)
3174 {
3175         u64 delta;
3176
3177         switch (event->type_len) {
3178         case RINGBUF_TYPE_PADDING:
3179                 return;
3180
3181         case RINGBUF_TYPE_TIME_EXTEND:
3182                 delta = event->array[0];
3183                 delta <<= TS_SHIFT;
3184                 delta += event->time_delta;
3185                 iter->read_stamp += delta;
3186                 return;
3187
3188         case RINGBUF_TYPE_TIME_STAMP:
3189                 /* FIXME: not implemented */
3190                 return;
3191
3192         case RINGBUF_TYPE_DATA:
3193                 iter->read_stamp += event->time_delta;
3194                 return;
3195
3196         default:
3197                 BUG();
3198         }
3199         return;
3200 }
3201
3202 static struct buffer_page *
3203 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3204 {
3205         struct buffer_page *reader = NULL;
3206         unsigned long overwrite;
3207         unsigned long flags;
3208         int nr_loops = 0;
3209         int ret;
3210
3211         local_irq_save(flags);
3212         arch_spin_lock(&cpu_buffer->lock);
3213
3214  again:
3215         /*
3216          * This should normally only loop twice. But because the
3217          * start of the reader inserts an empty page, it causes
3218          * a case where we will loop three times. There should be no
3219          * reason to loop four times (that I know of).
3220          */
3221         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3222                 reader = NULL;
3223                 goto out;
3224         }
3225
3226         reader = cpu_buffer->reader_page;
3227
3228         /* If there's more to read, return this page */
3229         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3230                 goto out;
3231
3232         /* Never should we have an index greater than the size */
3233         if (RB_WARN_ON(cpu_buffer,
3234                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3235                 goto out;
3236
3237         /* check if we caught up to the tail */
3238         reader = NULL;
3239         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3240                 goto out;
3241
3242         /*
3243          * Reset the reader page to size zero.
3244          */
3245         local_set(&cpu_buffer->reader_page->write, 0);
3246         local_set(&cpu_buffer->reader_page->entries, 0);
3247         local_set(&cpu_buffer->reader_page->page->commit, 0);
3248         cpu_buffer->reader_page->real_end = 0;
3249
3250  spin:
3251         /*
3252          * Splice the empty reader page into the list around the head.
3253          */
3254         reader = rb_set_head_page(cpu_buffer);
3255         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3256         cpu_buffer->reader_page->list.prev = reader->list.prev;
3257
3258         /*
3259          * cpu_buffer->pages just needs to point to the buffer, it
3260          *  has no specific buffer page to point to. Lets move it out
3261          *  of our way so we don't accidentally swap it.
3262          */
3263         cpu_buffer->pages = reader->list.prev;
3264
3265         /* The reader page will be pointing to the new head */
3266         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3267
3268         /*
3269          * We want to make sure we read the overruns after we set up our
3270          * pointers to the next object. The writer side does a
3271          * cmpxchg to cross pages which acts as the mb on the writer
3272          * side. Note, the reader will constantly fail the swap
3273          * while the writer is updating the pointers, so this
3274          * guarantees that the overwrite recorded here is the one we
3275          * want to compare with the last_overrun.
3276          */
3277         smp_mb();
3278         overwrite = local_read(&(cpu_buffer->overrun));
3279
3280         /*
3281          * Here's the tricky part.
3282          *
3283          * We need to move the pointer past the header page.
3284          * But we can only do that if a writer is not currently
3285          * moving it. The page before the header page has the
3286          * flag bit '1' set if it is pointing to the page we want.
3287          * but if the writer is in the process of moving it
3288          * than it will be '2' or already moved '0'.
3289          */
3290
3291         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3292
3293         /*
3294          * If we did not convert it, then we must try again.
3295          */
3296         if (!ret)
3297                 goto spin;
3298
3299         /*
3300          * Yeah! We succeeded in replacing the page.
3301          *
3302          * Now make the new head point back to the reader page.
3303          */
3304         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3305         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3306
3307         /* Finally update the reader page to the new head */
3308         cpu_buffer->reader_page = reader;
3309         rb_reset_reader_page(cpu_buffer);
3310
3311         if (overwrite != cpu_buffer->last_overrun) {
3312                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3313                 cpu_buffer->last_overrun = overwrite;
3314         }
3315
3316         goto again;
3317
3318  out:
3319         arch_spin_unlock(&cpu_buffer->lock);
3320         local_irq_restore(flags);
3321
3322         return reader;
3323 }
3324
3325 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3326 {
3327         struct ring_buffer_event *event;
3328         struct buffer_page *reader;
3329         unsigned length;
3330
3331         reader = rb_get_reader_page(cpu_buffer);
3332
3333         /* This function should not be called when buffer is empty */
3334         if (RB_WARN_ON(cpu_buffer, !reader))
3335                 return;
3336
3337         event = rb_reader_event(cpu_buffer);
3338
3339         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3340                 cpu_buffer->read++;
3341
3342         rb_update_read_stamp(cpu_buffer, event);
3343
3344         length = rb_event_length(event);
3345         cpu_buffer->reader_page->read += length;
3346 }
3347
3348 static void rb_advance_iter(struct ring_buffer_iter *iter)
3349 {
3350         struct ring_buffer_per_cpu *cpu_buffer;
3351         struct ring_buffer_event *event;
3352         unsigned length;
3353
3354         cpu_buffer = iter->cpu_buffer;
3355
3356         /*
3357          * Check if we are at the end of the buffer.
3358          */
3359         if (iter->head >= rb_page_size(iter->head_page)) {
3360                 /* discarded commits can make the page empty */
3361                 if (iter->head_page == cpu_buffer->commit_page)
3362                         return;
3363                 rb_inc_iter(iter);
3364                 return;
3365         }
3366
3367         event = rb_iter_head_event(iter);
3368
3369         length = rb_event_length(event);
3370
3371         /*
3372          * This should not be called to advance the header if we are
3373          * at the tail of the buffer.
3374          */
3375         if (RB_WARN_ON(cpu_buffer,
3376                        (iter->head_page == cpu_buffer->commit_page) &&
3377                        (iter->head + length > rb_commit_index(cpu_buffer))))
3378                 return;
3379
3380         rb_update_iter_read_stamp(iter, event);
3381
3382         iter->head += length;
3383
3384         /* check for end of page padding */
3385         if ((iter->head >= rb_page_size(iter->head_page)) &&
3386             (iter->head_page != cpu_buffer->commit_page))
3387                 rb_advance_iter(iter);
3388 }
3389
3390 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3391 {
3392         return cpu_buffer->lost_events;
3393 }
3394
3395 static struct ring_buffer_event *
3396 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3397                unsigned long *lost_events)
3398 {
3399         struct ring_buffer_event *event;
3400         struct buffer_page *reader;
3401         int nr_loops = 0;
3402
3403  again:
3404         /*
3405          * We repeat when a time extend is encountered.
3406          * Since the time extend is always attached to a data event,
3407          * we should never loop more than once.
3408          * (We never hit the following condition more than twice).
3409          */
3410         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3411                 return NULL;
3412
3413         reader = rb_get_reader_page(cpu_buffer);
3414         if (!reader)
3415                 return NULL;
3416
3417         event = rb_reader_event(cpu_buffer);
3418
3419         switch (event->type_len) {
3420         case RINGBUF_TYPE_PADDING:
3421                 if (rb_null_event(event))
3422                         RB_WARN_ON(cpu_buffer, 1);
3423                 /*
3424                  * Because the writer could be discarding every
3425                  * event it creates (which would probably be bad)
3426                  * if we were to go back to "again" then we may never
3427                  * catch up, and will trigger the warn on, or lock
3428                  * the box. Return the padding, and we will release
3429                  * the current locks, and try again.
3430                  */
3431                 return event;
3432
3433         case RINGBUF_TYPE_TIME_EXTEND:
3434                 /* Internal data, OK to advance */
3435                 rb_advance_reader(cpu_buffer);
3436                 goto again;
3437
3438         case RINGBUF_TYPE_TIME_STAMP:
3439                 /* FIXME: not implemented */
3440                 rb_advance_reader(cpu_buffer);
3441                 goto again;
3442
3443         case RINGBUF_TYPE_DATA:
3444                 if (ts) {
3445                         *ts = cpu_buffer->read_stamp + event->time_delta;
3446                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3447                                                          cpu_buffer->cpu, ts);
3448                 }
3449                 if (lost_events)
3450                         *lost_events = rb_lost_events(cpu_buffer);
3451                 return event;
3452
3453         default:
3454                 BUG();
3455         }
3456
3457         return NULL;
3458 }
3459 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3460
3461 static struct ring_buffer_event *
3462 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3463 {
3464         struct ring_buffer *buffer;
3465         struct ring_buffer_per_cpu *cpu_buffer;
3466         struct ring_buffer_event *event;
3467         int nr_loops = 0;
3468
3469         cpu_buffer = iter->cpu_buffer;
3470         buffer = cpu_buffer->buffer;
3471
3472         /*
3473          * Check if someone performed a consuming read to
3474          * the buffer. A consuming read invalidates the iterator
3475          * and we need to reset the iterator in this case.
3476          */
3477         if (unlikely(iter->cache_read != cpu_buffer->read ||
3478                      iter->cache_reader_page != cpu_buffer->reader_page))
3479                 rb_iter_reset(iter);
3480
3481  again:
3482         if (ring_buffer_iter_empty(iter))
3483                 return NULL;
3484
3485         /*
3486          * We repeat when a time extend is encountered.
3487          * Since the time extend is always attached to a data event,
3488          * we should never loop more than once.
3489          * (We never hit the following condition more than twice).
3490          */
3491         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3492                 return NULL;
3493
3494         if (rb_per_cpu_empty(cpu_buffer))
3495                 return NULL;
3496
3497         if (iter->head >= local_read(&iter->head_page->page->commit)) {
3498                 rb_inc_iter(iter);
3499                 goto again;
3500         }
3501
3502         event = rb_iter_head_event(iter);
3503
3504         switch (event->type_len) {
3505         case RINGBUF_TYPE_PADDING:
3506                 if (rb_null_event(event)) {
3507                         rb_inc_iter(iter);
3508                         goto again;
3509                 }
3510                 rb_advance_iter(iter);
3511                 return event;
3512
3513         case RINGBUF_TYPE_TIME_EXTEND:
3514                 /* Internal data, OK to advance */
3515                 rb_advance_iter(iter);
3516                 goto again;
3517
3518         case RINGBUF_TYPE_TIME_STAMP:
3519                 /* FIXME: not implemented */
3520                 rb_advance_iter(iter);
3521                 goto again;
3522
3523         case RINGBUF_TYPE_DATA:
3524                 if (ts) {
3525                         *ts = iter->read_stamp + event->time_delta;
3526                         ring_buffer_normalize_time_stamp(buffer,
3527                                                          cpu_buffer->cpu, ts);
3528                 }
3529                 return event;
3530
3531         default:
3532                 BUG();
3533         }
3534
3535         return NULL;
3536 }
3537 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3538
3539 static inline int rb_ok_to_lock(void)
3540 {
3541         /*
3542          * If an NMI die dumps out the content of the ring buffer
3543          * do not grab locks. We also permanently disable the ring
3544          * buffer too. A one time deal is all you get from reading
3545          * the ring buffer from an NMI.
3546          */
3547         if (likely(!in_nmi()))
3548                 return 1;
3549
3550         tracing_off_permanent();
3551         return 0;
3552 }
3553
3554 /**
3555  * ring_buffer_peek - peek at the next event to be read
3556  * @buffer: The ring buffer to read
3557  * @cpu: The cpu to peak at
3558  * @ts: The timestamp counter of this event.
3559  * @lost_events: a variable to store if events were lost (may be NULL)
3560  *
3561  * This will return the event that will be read next, but does
3562  * not consume the data.
3563  */
3564 struct ring_buffer_event *
3565 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3566                  unsigned long *lost_events)
3567 {
3568         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3569         struct ring_buffer_event *event;
3570         unsigned long flags;
3571         int dolock;
3572
3573         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3574                 return NULL;
3575
3576         dolock = rb_ok_to_lock();
3577  again:
3578         local_irq_save(flags);
3579         if (dolock)
3580                 raw_spin_lock(&cpu_buffer->reader_lock);
3581         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3582         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3583                 rb_advance_reader(cpu_buffer);
3584         if (dolock)
3585                 raw_spin_unlock(&cpu_buffer->reader_lock);
3586         local_irq_restore(flags);
3587
3588         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3589                 goto again;
3590
3591         return event;
3592 }
3593
3594 /**
3595  * ring_buffer_iter_peek - peek at the next event to be read
3596  * @iter: The ring buffer iterator
3597  * @ts: The timestamp counter of this event.
3598  *
3599  * This will return the event that will be read next, but does
3600  * not increment the iterator.
3601  */
3602 struct ring_buffer_event *
3603 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3604 {
3605         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3606         struct ring_buffer_event *event;
3607         unsigned long flags;
3608
3609  again:
3610         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3611         event = rb_iter_peek(iter, ts);
3612         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3613
3614         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3615                 goto again;
3616
3617         return event;
3618 }
3619
3620 /**
3621  * ring_buffer_consume - return an event and consume it
3622  * @buffer: The ring buffer to get the next event from
3623  * @cpu: the cpu to read the buffer from
3624  * @ts: a variable to store the timestamp (may be NULL)
3625  * @lost_events: a variable to store if events were lost (may be NULL)
3626  *
3627  * Returns the next event in the ring buffer, and that event is consumed.
3628  * Meaning, that sequential reads will keep returning a different event,
3629  * and eventually empty the ring buffer if the producer is slower.
3630  */
3631 struct ring_buffer_event *
3632 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3633                     unsigned long *lost_events)
3634 {
3635         struct ring_buffer_per_cpu *cpu_buffer;
3636         struct ring_buffer_event *event = NULL;
3637         unsigned long flags;
3638         int dolock;
3639
3640         dolock = rb_ok_to_lock();
3641
3642  again:
3643         /* might be called in atomic */
3644         preempt_disable();
3645
3646         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3647                 goto out;
3648
3649         cpu_buffer = buffer->buffers[cpu];
3650         local_irq_save(flags);
3651         if (dolock)
3652                 raw_spin_lock(&cpu_buffer->reader_lock);
3653
3654         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3655         if (event) {
3656                 cpu_buffer->lost_events = 0;
3657                 rb_advance_reader(cpu_buffer);
3658         }
3659
3660         if (dolock)
3661                 raw_spin_unlock(&cpu_buffer->reader_lock);
3662         local_irq_restore(flags);
3663
3664  out:
3665         preempt_enable();
3666
3667         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3668                 goto again;
3669
3670         return event;
3671 }
3672 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3673
3674 /**
3675  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3676  * @buffer: The ring buffer to read from
3677  * @cpu: The cpu buffer to iterate over
3678  *
3679  * This performs the initial preparations necessary to iterate
3680  * through the buffer.  Memory is allocated, buffer recording
3681  * is disabled, and the iterator pointer is returned to the caller.
3682  *
3683  * Disabling buffer recordng prevents the reading from being
3684  * corrupted. This is not a consuming read, so a producer is not
3685  * expected.
3686  *
3687  * After a sequence of ring_buffer_read_prepare calls, the user is
3688  * expected to make at least one call to ring_buffer_prepare_sync.
3689  * Afterwards, ring_buffer_read_start is invoked to get things going
3690  * for real.
3691  *
3692  * This overall must be paired with ring_buffer_finish.
3693  */
3694 struct ring_buffer_iter *
3695 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3696 {
3697         struct ring_buffer_per_cpu *cpu_buffer;
3698         struct ring_buffer_iter *iter;
3699
3700         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3701                 return NULL;
3702
3703         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3704         if (!iter)
3705                 return NULL;
3706
3707         cpu_buffer = buffer->buffers[cpu];
3708
3709         iter->cpu_buffer = cpu_buffer;
3710
3711         atomic_inc(&buffer->resize_disabled);
3712         atomic_inc(&cpu_buffer->record_disabled);
3713
3714         return iter;
3715 }
3716 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3717
3718 /**
3719  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3720  *
3721  * All previously invoked ring_buffer_read_prepare calls to prepare
3722  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3723  * calls on those iterators are allowed.
3724  */
3725 void
3726 ring_buffer_read_prepare_sync(void)
3727 {
3728         synchronize_sched();
3729 }
3730 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3731
3732 /**
3733  * ring_buffer_read_start - start a non consuming read of the buffer
3734  * @iter: The iterator returned by ring_buffer_read_prepare
3735  *
3736  * This finalizes the startup of an iteration through the buffer.
3737  * The iterator comes from a call to ring_buffer_read_prepare and
3738  * an intervening ring_buffer_read_prepare_sync must have been
3739  * performed.
3740  *
3741  * Must be paired with ring_buffer_finish.
3742  */
3743 void
3744 ring_buffer_read_start(struct ring_buffer_iter *iter)
3745 {
3746         struct ring_buffer_per_cpu *cpu_buffer;
3747         unsigned long flags;
3748
3749         if (!iter)
3750                 return;
3751
3752         cpu_buffer = iter->cpu_buffer;
3753
3754         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3755         arch_spin_lock(&cpu_buffer->lock);
3756         rb_iter_reset(iter);
3757         arch_spin_unlock(&cpu_buffer->lock);
3758         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3759 }
3760 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3761
3762 /**
3763  * ring_buffer_finish - finish reading the iterator of the buffer
3764  * @iter: The iterator retrieved by ring_buffer_start
3765  *
3766  * This re-enables the recording to the buffer, and frees the
3767  * iterator.
3768  */
3769 void
3770 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3771 {
3772         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3773
3774         /*
3775          * Ring buffer is disabled from recording, here's a good place
3776          * to check the integrity of the ring buffer. 
3777          */
3778         rb_check_pages(cpu_buffer);
3779
3780         atomic_dec(&cpu_buffer->record_disabled);
3781         atomic_dec(&cpu_buffer->buffer->resize_disabled);
3782         kfree(iter);
3783 }
3784 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3785
3786 /**
3787  * ring_buffer_read - read the next item in the ring buffer by the iterator
3788  * @iter: The ring buffer iterator
3789  * @ts: The time stamp of the event read.
3790  *
3791  * This reads the next event in the ring buffer and increments the iterator.
3792  */
3793 struct ring_buffer_event *
3794 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3795 {
3796         struct ring_buffer_event *event;
3797         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3798         unsigned long flags;
3799
3800         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3801  again:
3802         event = rb_iter_peek(iter, ts);
3803         if (!event)
3804                 goto out;
3805
3806         if (event->type_len == RINGBUF_TYPE_PADDING)
3807                 goto again;
3808
3809         rb_advance_iter(iter);
3810  out:
3811         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3812
3813         return event;
3814 }
3815 EXPORT_SYMBOL_GPL(ring_buffer_read);
3816
3817 /**
3818  * ring_buffer_size - return the size of the ring buffer (in bytes)
3819  * @buffer: The ring buffer.
3820  */
3821 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
3822 {
3823         /*
3824          * Earlier, this method returned
3825          *      BUF_PAGE_SIZE * buffer->nr_pages
3826          * Since the nr_pages field is now removed, we have converted this to
3827          * return the per cpu buffer value.
3828          */
3829         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3830                 return 0;
3831
3832         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
3833 }
3834 EXPORT_SYMBOL_GPL(ring_buffer_size);
3835
3836 static void
3837 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3838 {
3839         rb_head_page_deactivate(cpu_buffer);
3840
3841         cpu_buffer->head_page
3842                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3843         local_set(&cpu_buffer->head_page->write, 0);
3844         local_set(&cpu_buffer->head_page->entries, 0);
3845         local_set(&cpu_buffer->head_page->page->commit, 0);
3846
3847         cpu_buffer->head_page->read = 0;
3848
3849         cpu_buffer->tail_page = cpu_buffer->head_page;
3850         cpu_buffer->commit_page = cpu_buffer->head_page;
3851
3852         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3853         INIT_LIST_HEAD(&cpu_buffer->new_pages);
3854         local_set(&cpu_buffer->reader_page->write, 0);
3855         local_set(&cpu_buffer->reader_page->entries, 0);
3856         local_set(&cpu_buffer->reader_page->page->commit, 0);
3857         cpu_buffer->reader_page->read = 0;
3858
3859         local_set(&cpu_buffer->commit_overrun, 0);
3860         local_set(&cpu_buffer->entries_bytes, 0);
3861         local_set(&cpu_buffer->overrun, 0);
3862         local_set(&cpu_buffer->entries, 0);
3863         local_set(&cpu_buffer->committing, 0);
3864         local_set(&cpu_buffer->commits, 0);
3865         cpu_buffer->read = 0;
3866         cpu_buffer->read_bytes = 0;
3867
3868         cpu_buffer->write_stamp = 0;
3869         cpu_buffer->read_stamp = 0;
3870
3871         cpu_buffer->lost_events = 0;
3872         cpu_buffer->last_overrun = 0;
3873
3874         rb_head_page_activate(cpu_buffer);
3875 }
3876
3877 /**
3878  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3879  * @buffer: The ring buffer to reset a per cpu buffer of
3880  * @cpu: The CPU buffer to be reset
3881  */
3882 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3883 {
3884         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3885         unsigned long flags;
3886
3887         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3888                 return;
3889
3890         atomic_inc(&buffer->resize_disabled);
3891         atomic_inc(&cpu_buffer->record_disabled);
3892
3893         /* Make sure all commits have finished */
3894         synchronize_sched();
3895
3896         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3897
3898         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3899                 goto out;
3900
3901         arch_spin_lock(&cpu_buffer->lock);
3902
3903         rb_reset_cpu(cpu_buffer);
3904
3905         arch_spin_unlock(&cpu_buffer->lock);
3906
3907  out:
3908         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3909
3910         atomic_dec(&cpu_buffer->record_disabled);
3911         atomic_dec(&buffer->resize_disabled);
3912 }
3913 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3914
3915 /**
3916  * ring_buffer_reset - reset a ring buffer
3917  * @buffer: The ring buffer to reset all cpu buffers
3918  */
3919 void ring_buffer_reset(struct ring_buffer *buffer)
3920 {
3921         int cpu;
3922
3923         for_each_buffer_cpu(buffer, cpu)
3924                 ring_buffer_reset_cpu(buffer, cpu);
3925 }
3926 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3927
3928 /**
3929  * rind_buffer_empty - is the ring buffer empty?
3930  * @buffer: The ring buffer to test
3931  */
3932 int ring_buffer_empty(struct ring_buffer *buffer)
3933 {
3934         struct ring_buffer_per_cpu *cpu_buffer;
3935         unsigned long flags;
3936         int dolock;
3937         int cpu;
3938         int ret;
3939
3940         dolock = rb_ok_to_lock();
3941
3942         /* yes this is racy, but if you don't like the race, lock the buffer */
3943         for_each_buffer_cpu(buffer, cpu) {
3944                 cpu_buffer = buffer->buffers[cpu];
3945                 local_irq_save(flags);
3946                 if (dolock)
3947                         raw_spin_lock(&cpu_buffer->reader_lock);
3948                 ret = rb_per_cpu_empty(cpu_buffer);
3949                 if (dolock)
3950                         raw_spin_unlock(&cpu_buffer->reader_lock);
3951                 local_irq_restore(flags);
3952
3953                 if (!ret)
3954                         return 0;
3955         }
3956
3957         return 1;
3958 }
3959 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3960
3961 /**
3962  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3963  * @buffer: The ring buffer
3964  * @cpu: The CPU buffer to test
3965  */
3966 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3967 {
3968         struct ring_buffer_per_cpu *cpu_buffer;
3969         unsigned long flags;
3970         int dolock;
3971         int ret;
3972
3973         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3974                 return 1;
3975
3976         dolock = rb_ok_to_lock();
3977
3978         cpu_buffer = buffer->buffers[cpu];
3979         local_irq_save(flags);
3980         if (dolock)
3981                 raw_spin_lock(&cpu_buffer->reader_lock);
3982         ret = rb_per_cpu_empty(cpu_buffer);
3983         if (dolock)
3984                 raw_spin_unlock(&cpu_buffer->reader_lock);
3985         local_irq_restore(flags);
3986
3987         return ret;
3988 }
3989 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3990
3991 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3992 /**
3993  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3994  * @buffer_a: One buffer to swap with
3995  * @buffer_b: The other buffer to swap with
3996  *
3997  * This function is useful for tracers that want to take a "snapshot"
3998  * of a CPU buffer and has another back up buffer lying around.
3999  * it is expected that the tracer handles the cpu buffer not being
4000  * used at the moment.
4001  */
4002 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4003                          struct ring_buffer *buffer_b, int cpu)
4004 {
4005         struct ring_buffer_per_cpu *cpu_buffer_a;
4006         struct ring_buffer_per_cpu *cpu_buffer_b;
4007         int ret = -EINVAL;
4008
4009         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4010             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4011                 goto out;
4012
4013         cpu_buffer_a = buffer_a->buffers[cpu];
4014         cpu_buffer_b = buffer_b->buffers[cpu];
4015
4016         /* At least make sure the two buffers are somewhat the same */
4017         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4018                 goto out;
4019
4020         ret = -EAGAIN;
4021
4022         if (ring_buffer_flags != RB_BUFFERS_ON)
4023                 goto out;
4024
4025         if (atomic_read(&buffer_a->record_disabled))
4026                 goto out;
4027
4028         if (atomic_read(&buffer_b->record_disabled))
4029                 goto out;
4030
4031         if (atomic_read(&cpu_buffer_a->record_disabled))
4032                 goto out;
4033
4034         if (atomic_read(&cpu_buffer_b->record_disabled))
4035                 goto out;
4036
4037         /*
4038          * We can't do a synchronize_sched here because this
4039          * function can be called in atomic context.
4040          * Normally this will be called from the same CPU as cpu.
4041          * If not it's up to the caller to protect this.
4042          */
4043         atomic_inc(&cpu_buffer_a->record_disabled);
4044         atomic_inc(&cpu_buffer_b->record_disabled);
4045
4046         ret = -EBUSY;
4047         if (local_read(&cpu_buffer_a->committing))
4048                 goto out_dec;
4049         if (local_read(&cpu_buffer_b->committing))
4050                 goto out_dec;
4051
4052         buffer_a->buffers[cpu] = cpu_buffer_b;
4053         buffer_b->buffers[cpu] = cpu_buffer_a;
4054
4055         cpu_buffer_b->buffer = buffer_a;
4056         cpu_buffer_a->buffer = buffer_b;
4057
4058         ret = 0;
4059
4060 out_dec:
4061         atomic_dec(&cpu_buffer_a->record_disabled);
4062         atomic_dec(&cpu_buffer_b->record_disabled);
4063 out:
4064         return ret;
4065 }
4066 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4067 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4068
4069 /**
4070  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4071  * @buffer: the buffer to allocate for.
4072  *
4073  * This function is used in conjunction with ring_buffer_read_page.
4074  * When reading a full page from the ring buffer, these functions
4075  * can be used to speed up the process. The calling function should
4076  * allocate a few pages first with this function. Then when it
4077  * needs to get pages from the ring buffer, it passes the result
4078  * of this function into ring_buffer_read_page, which will swap
4079  * the page that was allocated, with the read page of the buffer.
4080  *
4081  * Returns:
4082  *  The page allocated, or NULL on error.
4083  */
4084 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4085 {
4086         struct buffer_data_page *bpage;
4087         struct page *page;
4088
4089         page = alloc_pages_node(cpu_to_node(cpu),
4090                                 GFP_KERNEL | __GFP_NORETRY, 0);
4091         if (!page)
4092                 return NULL;
4093
4094         bpage = page_address(page);
4095
4096         rb_init_page(bpage);
4097
4098         return bpage;
4099 }
4100 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4101
4102 /**
4103  * ring_buffer_free_read_page - free an allocated read page
4104  * @buffer: the buffer the page was allocate for
4105  * @data: the page to free
4106  *
4107  * Free a page allocated from ring_buffer_alloc_read_page.
4108  */
4109 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4110 {
4111         free_page((unsigned long)data);
4112 }
4113 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4114
4115 /**
4116  * ring_buffer_read_page - extract a page from the ring buffer
4117  * @buffer: buffer to extract from
4118  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4119  * @len: amount to extract
4120  * @cpu: the cpu of the buffer to extract
4121  * @full: should the extraction only happen when the page is full.
4122  *
4123  * This function will pull out a page from the ring buffer and consume it.
4124  * @data_page must be the address of the variable that was returned
4125  * from ring_buffer_alloc_read_page. This is because the page might be used
4126  * to swap with a page in the ring buffer.
4127  *
4128  * for example:
4129  *      rpage = ring_buffer_alloc_read_page(buffer);
4130  *      if (!rpage)
4131  *              return error;
4132  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4133  *      if (ret >= 0)
4134  *              process_page(rpage, ret);
4135  *
4136  * When @full is set, the function will not return true unless
4137  * the writer is off the reader page.
4138  *
4139  * Note: it is up to the calling functions to handle sleeps and wakeups.
4140  *  The ring buffer can be used anywhere in the kernel and can not
4141  *  blindly call wake_up. The layer that uses the ring buffer must be
4142  *  responsible for that.
4143  *
4144  * Returns:
4145  *  >=0 if data has been transferred, returns the offset of consumed data.
4146  *  <0 if no data has been transferred.
4147  */
4148 int ring_buffer_read_page(struct ring_buffer *buffer,
4149                           void **data_page, size_t len, int cpu, int full)
4150 {
4151         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4152         struct ring_buffer_event *event;
4153         struct buffer_data_page *bpage;
4154         struct buffer_page *reader;
4155         unsigned long missed_events;
4156         unsigned long flags;
4157         unsigned int commit;
4158         unsigned int read;
4159         u64 save_timestamp;
4160         int ret = -1;
4161
4162         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4163                 goto out;
4164
4165         /*
4166          * If len is not big enough to hold the page header, then
4167          * we can not copy anything.
4168          */
4169         if (len <= BUF_PAGE_HDR_SIZE)
4170                 goto out;
4171
4172         len -= BUF_PAGE_HDR_SIZE;
4173
4174         if (!data_page)
4175                 goto out;
4176
4177         bpage = *data_page;
4178         if (!bpage)
4179                 goto out;
4180
4181         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4182
4183         reader = rb_get_reader_page(cpu_buffer);
4184         if (!reader)
4185                 goto out_unlock;
4186
4187         event = rb_reader_event(cpu_buffer);
4188
4189         read = reader->read;
4190         commit = rb_page_commit(reader);
4191
4192         /* Check if any events were dropped */
4193         missed_events = cpu_buffer->lost_events;
4194
4195         /*
4196          * If this page has been partially read or
4197          * if len is not big enough to read the rest of the page or
4198          * a writer is still on the page, then
4199          * we must copy the data from the page to the buffer.
4200          * Otherwise, we can simply swap the page with the one passed in.
4201          */
4202         if (read || (len < (commit - read)) ||
4203             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4204                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4205                 unsigned int rpos = read;
4206                 unsigned int pos = 0;
4207                 unsigned int size;
4208
4209                 if (full)
4210                         goto out_unlock;
4211
4212                 if (len > (commit - read))
4213                         len = (commit - read);
4214
4215                 /* Always keep the time extend and data together */
4216                 size = rb_event_ts_length(event);
4217
4218                 if (len < size)
4219                         goto out_unlock;
4220
4221                 /* save the current timestamp, since the user will need it */
4222                 save_timestamp = cpu_buffer->read_stamp;
4223
4224                 /* Need to copy one event at a time */
4225                 do {
4226                         /* We need the size of one event, because
4227                          * rb_advance_reader only advances by one event,
4228                          * whereas rb_event_ts_length may include the size of
4229                          * one or two events.
4230                          * We have already ensured there's enough space if this
4231                          * is a time extend. */
4232                         size = rb_event_length(event);
4233                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4234
4235                         len -= size;
4236
4237                         rb_advance_reader(cpu_buffer);
4238                         rpos = reader->read;
4239                         pos += size;
4240
4241                         if (rpos >= commit)
4242                                 break;
4243
4244                         event = rb_reader_event(cpu_buffer);
4245                         /* Always keep the time extend and data together */
4246                         size = rb_event_ts_length(event);
4247                 } while (len >= size);
4248
4249                 /* update bpage */
4250                 local_set(&bpage->commit, pos);
4251                 bpage->time_stamp = save_timestamp;
4252
4253                 /* we copied everything to the beginning */
4254                 read = 0;
4255         } else {
4256                 /* update the entry counter */
4257                 cpu_buffer->read += rb_page_entries(reader);
4258                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4259
4260                 /* swap the pages */
4261                 rb_init_page(bpage);
4262                 bpage = reader->page;
4263                 reader->page = *data_page;
4264                 local_set(&reader->write, 0);
4265                 local_set(&reader->entries, 0);
4266                 reader->read = 0;
4267                 *data_page = bpage;
4268
4269                 /*
4270                  * Use the real_end for the data size,
4271                  * This gives us a chance to store the lost events
4272                  * on the page.
4273                  */
4274                 if (reader->real_end)
4275                         local_set(&bpage->commit, reader->real_end);
4276         }
4277         ret = read;
4278
4279         cpu_buffer->lost_events = 0;
4280
4281         commit = local_read(&bpage->commit);
4282         /*
4283          * Set a flag in the commit field if we lost events
4284          */
4285         if (missed_events) {
4286                 /* If there is room at the end of the page to save the
4287                  * missed events, then record it there.
4288                  */
4289                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4290                         memcpy(&bpage->data[commit], &missed_events,
4291                                sizeof(missed_events));
4292                         local_add(RB_MISSED_STORED, &bpage->commit);
4293                         commit += sizeof(missed_events);
4294                 }
4295                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4296         }
4297
4298         /*
4299          * This page may be off to user land. Zero it out here.
4300          */
4301         if (commit < BUF_PAGE_SIZE)
4302                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4303
4304  out_unlock:
4305         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4306
4307  out:
4308         return ret;
4309 }
4310 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4311
4312 #ifdef CONFIG_HOTPLUG_CPU
4313 static int rb_cpu_notify(struct notifier_block *self,
4314                          unsigned long action, void *hcpu)
4315 {
4316         struct ring_buffer *buffer =
4317                 container_of(self, struct ring_buffer, cpu_notify);
4318         long cpu = (long)hcpu;
4319         int cpu_i, nr_pages_same;
4320         unsigned int nr_pages;
4321
4322         switch (action) {
4323         case CPU_UP_PREPARE:
4324         case CPU_UP_PREPARE_FROZEN:
4325                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4326                         return NOTIFY_OK;
4327
4328                 nr_pages = 0;
4329                 nr_pages_same = 1;
4330                 /* check if all cpu sizes are same */
4331                 for_each_buffer_cpu(buffer, cpu_i) {
4332                         /* fill in the size from first enabled cpu */
4333                         if (nr_pages == 0)
4334                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4335                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4336                                 nr_pages_same = 0;
4337                                 break;
4338                         }
4339                 }
4340                 /* allocate minimum pages, user can later expand it */
4341                 if (!nr_pages_same)
4342                         nr_pages = 2;
4343                 buffer->buffers[cpu] =
4344                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4345                 if (!buffer->buffers[cpu]) {
4346                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4347                              cpu);
4348                         return NOTIFY_OK;
4349                 }
4350                 smp_wmb();
4351                 cpumask_set_cpu(cpu, buffer->cpumask);
4352                 break;
4353         case CPU_DOWN_PREPARE:
4354         case CPU_DOWN_PREPARE_FROZEN:
4355                 /*
4356                  * Do nothing.
4357                  *  If we were to free the buffer, then the user would
4358                  *  lose any trace that was in the buffer.
4359                  */
4360                 break;
4361         default:
4362                 break;
4363         }
4364         return NOTIFY_OK;
4365 }
4366 #endif