ntp: Access tick_length variable via ntp_tick_length()
[pandora-kernel.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26         /* Current clocksource used for timekeeping. */
27         struct clocksource *clock;
28         /* The shift value of the current clocksource. */
29         int     shift;
30
31         /* Number of clock cycles in one NTP interval. */
32         cycle_t cycle_interval;
33         /* Number of clock shifted nano seconds in one NTP interval. */
34         u64     xtime_interval;
35         /* shifted nano seconds left over when rounding cycle_interval */
36         s64     xtime_remainder;
37         /* Raw nano seconds accumulated per NTP interval. */
38         u32     raw_interval;
39
40         /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
41         u64     xtime_nsec;
42         /* Difference between accumulated time and NTP time in ntp
43          * shifted nano seconds. */
44         s64     ntp_error;
45         /* Shift conversion between clock shifted nano seconds and
46          * ntp shifted nano seconds. */
47         int     ntp_error_shift;
48         /* NTP adjusted clock multiplier */
49         u32     mult;
50
51         /* The current time */
52         struct timespec xtime;
53         /*
54          * wall_to_monotonic is what we need to add to xtime (or xtime corrected
55          * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
56          * at zero at system boot time, so wall_to_monotonic will be negative,
57          * however, we will ALWAYS keep the tv_nsec part positive so we can use
58          * the usual normalization.
59          *
60          * wall_to_monotonic is moved after resume from suspend for the
61          * monotonic time not to jump. We need to add total_sleep_time to
62          * wall_to_monotonic to get the real boot based time offset.
63          *
64          * - wall_to_monotonic is no longer the boot time, getboottime must be
65          * used instead.
66          */
67         struct timespec wall_to_monotonic;
68         /* time spent in suspend */
69         struct timespec total_sleep_time;
70         /* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
71         struct timespec raw_time;
72
73         /* Seqlock for all timekeeper values */
74         seqlock_t lock;
75 };
76
77 static struct timekeeper timekeeper;
78
79 /*
80  * This read-write spinlock protects us from races in SMP while
81  * playing with xtime.
82  */
83 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
84
85
86 /* flag for if timekeeping is suspended */
87 int __read_mostly timekeeping_suspended;
88
89
90
91 /**
92  * timekeeper_setup_internals - Set up internals to use clocksource clock.
93  *
94  * @clock:              Pointer to clocksource.
95  *
96  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
97  * pair and interval request.
98  *
99  * Unless you're the timekeeping code, you should not be using this!
100  */
101 static void timekeeper_setup_internals(struct clocksource *clock)
102 {
103         cycle_t interval;
104         u64 tmp, ntpinterval;
105
106         timekeeper.clock = clock;
107         clock->cycle_last = clock->read(clock);
108
109         /* Do the ns -> cycle conversion first, using original mult */
110         tmp = NTP_INTERVAL_LENGTH;
111         tmp <<= clock->shift;
112         ntpinterval = tmp;
113         tmp += clock->mult/2;
114         do_div(tmp, clock->mult);
115         if (tmp == 0)
116                 tmp = 1;
117
118         interval = (cycle_t) tmp;
119         timekeeper.cycle_interval = interval;
120
121         /* Go back from cycles -> shifted ns */
122         timekeeper.xtime_interval = (u64) interval * clock->mult;
123         timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
124         timekeeper.raw_interval =
125                 ((u64) interval * clock->mult) >> clock->shift;
126
127         timekeeper.xtime_nsec = 0;
128         timekeeper.shift = clock->shift;
129
130         timekeeper.ntp_error = 0;
131         timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
132
133         /*
134          * The timekeeper keeps its own mult values for the currently
135          * active clocksource. These value will be adjusted via NTP
136          * to counteract clock drifting.
137          */
138         timekeeper.mult = clock->mult;
139 }
140
141 /* Timekeeper helper functions. */
142 static inline s64 timekeeping_get_ns(void)
143 {
144         cycle_t cycle_now, cycle_delta;
145         struct clocksource *clock;
146
147         /* read clocksource: */
148         clock = timekeeper.clock;
149         cycle_now = clock->read(clock);
150
151         /* calculate the delta since the last update_wall_time: */
152         cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
153
154         /* return delta convert to nanoseconds using ntp adjusted mult. */
155         return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
156                                   timekeeper.shift);
157 }
158
159 static inline s64 timekeeping_get_ns_raw(void)
160 {
161         cycle_t cycle_now, cycle_delta;
162         struct clocksource *clock;
163
164         /* read clocksource: */
165         clock = timekeeper.clock;
166         cycle_now = clock->read(clock);
167
168         /* calculate the delta since the last update_wall_time: */
169         cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
170
171         /* return delta convert to nanoseconds. */
172         return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
173 }
174
175 /* must hold xtime_lock */
176 void timekeeping_leap_insert(int leapsecond)
177 {
178         unsigned long flags;
179
180         write_seqlock_irqsave(&timekeeper.lock, flags);
181
182         timekeeper.xtime.tv_sec += leapsecond;
183         timekeeper.wall_to_monotonic.tv_sec -= leapsecond;
184         update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
185                          timekeeper.clock, timekeeper.mult);
186
187         write_sequnlock_irqrestore(&timekeeper.lock, flags);
188
189 }
190
191 /**
192  * timekeeping_forward_now - update clock to the current time
193  *
194  * Forward the current clock to update its state since the last call to
195  * update_wall_time(). This is useful before significant clock changes,
196  * as it avoids having to deal with this time offset explicitly.
197  */
198 static void timekeeping_forward_now(void)
199 {
200         cycle_t cycle_now, cycle_delta;
201         struct clocksource *clock;
202         s64 nsec;
203
204         clock = timekeeper.clock;
205         cycle_now = clock->read(clock);
206         cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
207         clock->cycle_last = cycle_now;
208
209         nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
210                                   timekeeper.shift);
211
212         /* If arch requires, add in gettimeoffset() */
213         nsec += arch_gettimeoffset();
214
215         timespec_add_ns(&timekeeper.xtime, nsec);
216
217         nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
218         timespec_add_ns(&timekeeper.raw_time, nsec);
219 }
220
221 /**
222  * getnstimeofday - Returns the time of day in a timespec
223  * @ts:         pointer to the timespec to be set
224  *
225  * Returns the time of day in a timespec.
226  */
227 void getnstimeofday(struct timespec *ts)
228 {
229         unsigned long seq;
230         s64 nsecs;
231
232         WARN_ON(timekeeping_suspended);
233
234         do {
235                 seq = read_seqbegin(&timekeeper.lock);
236
237                 *ts = timekeeper.xtime;
238                 nsecs = timekeeping_get_ns();
239
240                 /* If arch requires, add in gettimeoffset() */
241                 nsecs += arch_gettimeoffset();
242
243         } while (read_seqretry(&timekeeper.lock, seq));
244
245         timespec_add_ns(ts, nsecs);
246 }
247
248 EXPORT_SYMBOL(getnstimeofday);
249
250 ktime_t ktime_get(void)
251 {
252         unsigned int seq;
253         s64 secs, nsecs;
254
255         WARN_ON(timekeeping_suspended);
256
257         do {
258                 seq = read_seqbegin(&timekeeper.lock);
259                 secs = timekeeper.xtime.tv_sec +
260                                 timekeeper.wall_to_monotonic.tv_sec;
261                 nsecs = timekeeper.xtime.tv_nsec +
262                                 timekeeper.wall_to_monotonic.tv_nsec;
263                 nsecs += timekeeping_get_ns();
264                 /* If arch requires, add in gettimeoffset() */
265                 nsecs += arch_gettimeoffset();
266
267         } while (read_seqretry(&timekeeper.lock, seq));
268         /*
269          * Use ktime_set/ktime_add_ns to create a proper ktime on
270          * 32-bit architectures without CONFIG_KTIME_SCALAR.
271          */
272         return ktime_add_ns(ktime_set(secs, 0), nsecs);
273 }
274 EXPORT_SYMBOL_GPL(ktime_get);
275
276 /**
277  * ktime_get_ts - get the monotonic clock in timespec format
278  * @ts:         pointer to timespec variable
279  *
280  * The function calculates the monotonic clock from the realtime
281  * clock and the wall_to_monotonic offset and stores the result
282  * in normalized timespec format in the variable pointed to by @ts.
283  */
284 void ktime_get_ts(struct timespec *ts)
285 {
286         struct timespec tomono;
287         unsigned int seq;
288         s64 nsecs;
289
290         WARN_ON(timekeeping_suspended);
291
292         do {
293                 seq = read_seqbegin(&timekeeper.lock);
294                 *ts = timekeeper.xtime;
295                 tomono = timekeeper.wall_to_monotonic;
296                 nsecs = timekeeping_get_ns();
297                 /* If arch requires, add in gettimeoffset() */
298                 nsecs += arch_gettimeoffset();
299
300         } while (read_seqretry(&timekeeper.lock, seq));
301
302         set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
303                                 ts->tv_nsec + tomono.tv_nsec + nsecs);
304 }
305 EXPORT_SYMBOL_GPL(ktime_get_ts);
306
307 #ifdef CONFIG_NTP_PPS
308
309 /**
310  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
311  * @ts_raw:     pointer to the timespec to be set to raw monotonic time
312  * @ts_real:    pointer to the timespec to be set to the time of day
313  *
314  * This function reads both the time of day and raw monotonic time at the
315  * same time atomically and stores the resulting timestamps in timespec
316  * format.
317  */
318 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
319 {
320         unsigned long seq;
321         s64 nsecs_raw, nsecs_real;
322
323         WARN_ON_ONCE(timekeeping_suspended);
324
325         do {
326                 u32 arch_offset;
327
328                 seq = read_seqbegin(&timekeeper.lock);
329
330                 *ts_raw = timekeeper.raw_time;
331                 *ts_real = timekeeper.xtime;
332
333                 nsecs_raw = timekeeping_get_ns_raw();
334                 nsecs_real = timekeeping_get_ns();
335
336                 /* If arch requires, add in gettimeoffset() */
337                 arch_offset = arch_gettimeoffset();
338                 nsecs_raw += arch_offset;
339                 nsecs_real += arch_offset;
340
341         } while (read_seqretry(&timekeeper.lock, seq));
342
343         timespec_add_ns(ts_raw, nsecs_raw);
344         timespec_add_ns(ts_real, nsecs_real);
345 }
346 EXPORT_SYMBOL(getnstime_raw_and_real);
347
348 #endif /* CONFIG_NTP_PPS */
349
350 /**
351  * do_gettimeofday - Returns the time of day in a timeval
352  * @tv:         pointer to the timeval to be set
353  *
354  * NOTE: Users should be converted to using getnstimeofday()
355  */
356 void do_gettimeofday(struct timeval *tv)
357 {
358         struct timespec now;
359
360         getnstimeofday(&now);
361         tv->tv_sec = now.tv_sec;
362         tv->tv_usec = now.tv_nsec/1000;
363 }
364
365 EXPORT_SYMBOL(do_gettimeofday);
366 /**
367  * do_settimeofday - Sets the time of day
368  * @tv:         pointer to the timespec variable containing the new time
369  *
370  * Sets the time of day to the new time and update NTP and notify hrtimers
371  */
372 int do_settimeofday(const struct timespec *tv)
373 {
374         struct timespec ts_delta;
375         unsigned long flags1,flags2;
376
377         if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
378                 return -EINVAL;
379
380         write_seqlock_irqsave(&xtime_lock, flags1);
381         write_seqlock_irqsave(&timekeeper.lock, flags2);
382
383         timekeeping_forward_now();
384
385         ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec;
386         ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec;
387         timekeeper.wall_to_monotonic =
388                         timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
389
390         timekeeper.xtime = *tv;
391
392         timekeeper.ntp_error = 0;
393         ntp_clear();
394
395         update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
396                         timekeeper.clock, timekeeper.mult);
397
398         write_sequnlock_irqrestore(&timekeeper.lock, flags2);
399         write_sequnlock_irqrestore(&xtime_lock, flags1);
400
401         /* signal hrtimers about time change */
402         clock_was_set();
403
404         return 0;
405 }
406
407 EXPORT_SYMBOL(do_settimeofday);
408
409
410 /**
411  * timekeeping_inject_offset - Adds or subtracts from the current time.
412  * @tv:         pointer to the timespec variable containing the offset
413  *
414  * Adds or subtracts an offset value from the current time.
415  */
416 int timekeeping_inject_offset(struct timespec *ts)
417 {
418         unsigned long flags1,flags2;
419
420         if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
421                 return -EINVAL;
422
423         write_seqlock_irqsave(&xtime_lock, flags1);
424         write_seqlock_irqsave(&timekeeper.lock, flags2);
425
426         timekeeping_forward_now();
427
428         timekeeper.xtime = timespec_add(timekeeper.xtime, *ts);
429         timekeeper.wall_to_monotonic =
430                                 timespec_sub(timekeeper.wall_to_monotonic, *ts);
431
432         timekeeper.ntp_error = 0;
433         ntp_clear();
434
435         update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
436                         timekeeper.clock, timekeeper.mult);
437
438         write_sequnlock_irqrestore(&timekeeper.lock, flags2);
439         write_sequnlock_irqrestore(&xtime_lock, flags1);
440
441         /* signal hrtimers about time change */
442         clock_was_set();
443
444         return 0;
445 }
446 EXPORT_SYMBOL(timekeeping_inject_offset);
447
448 /**
449  * change_clocksource - Swaps clocksources if a new one is available
450  *
451  * Accumulates current time interval and initializes new clocksource
452  */
453 static int change_clocksource(void *data)
454 {
455         struct clocksource *new, *old;
456
457         new = (struct clocksource *) data;
458
459         timekeeping_forward_now();
460         if (!new->enable || new->enable(new) == 0) {
461                 old = timekeeper.clock;
462                 timekeeper_setup_internals(new);
463                 if (old->disable)
464                         old->disable(old);
465         }
466         return 0;
467 }
468
469 /**
470  * timekeeping_notify - Install a new clock source
471  * @clock:              pointer to the clock source
472  *
473  * This function is called from clocksource.c after a new, better clock
474  * source has been registered. The caller holds the clocksource_mutex.
475  */
476 void timekeeping_notify(struct clocksource *clock)
477 {
478         if (timekeeper.clock == clock)
479                 return;
480         stop_machine(change_clocksource, clock, NULL);
481         tick_clock_notify();
482 }
483
484 /**
485  * ktime_get_real - get the real (wall-) time in ktime_t format
486  *
487  * returns the time in ktime_t format
488  */
489 ktime_t ktime_get_real(void)
490 {
491         struct timespec now;
492
493         getnstimeofday(&now);
494
495         return timespec_to_ktime(now);
496 }
497 EXPORT_SYMBOL_GPL(ktime_get_real);
498
499 /**
500  * getrawmonotonic - Returns the raw monotonic time in a timespec
501  * @ts:         pointer to the timespec to be set
502  *
503  * Returns the raw monotonic time (completely un-modified by ntp)
504  */
505 void getrawmonotonic(struct timespec *ts)
506 {
507         unsigned long seq;
508         s64 nsecs;
509
510         do {
511                 seq = read_seqbegin(&timekeeper.lock);
512                 nsecs = timekeeping_get_ns_raw();
513                 *ts = timekeeper.raw_time;
514
515         } while (read_seqretry(&timekeeper.lock, seq));
516
517         timespec_add_ns(ts, nsecs);
518 }
519 EXPORT_SYMBOL(getrawmonotonic);
520
521
522 /**
523  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
524  */
525 int timekeeping_valid_for_hres(void)
526 {
527         unsigned long seq;
528         int ret;
529
530         do {
531                 seq = read_seqbegin(&timekeeper.lock);
532
533                 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
534
535         } while (read_seqretry(&timekeeper.lock, seq));
536
537         return ret;
538 }
539
540 /**
541  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
542  */
543 u64 timekeeping_max_deferment(void)
544 {
545         unsigned long seq;
546         u64 ret;
547         do {
548                 seq = read_seqbegin(&timekeeper.lock);
549
550                 ret = timekeeper.clock->max_idle_ns;
551
552         } while (read_seqretry(&timekeeper.lock, seq));
553
554         return ret;
555 }
556
557 /**
558  * read_persistent_clock -  Return time from the persistent clock.
559  *
560  * Weak dummy function for arches that do not yet support it.
561  * Reads the time from the battery backed persistent clock.
562  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
563  *
564  *  XXX - Do be sure to remove it once all arches implement it.
565  */
566 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
567 {
568         ts->tv_sec = 0;
569         ts->tv_nsec = 0;
570 }
571
572 /**
573  * read_boot_clock -  Return time of the system start.
574  *
575  * Weak dummy function for arches that do not yet support it.
576  * Function to read the exact time the system has been started.
577  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
578  *
579  *  XXX - Do be sure to remove it once all arches implement it.
580  */
581 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
582 {
583         ts->tv_sec = 0;
584         ts->tv_nsec = 0;
585 }
586
587 /*
588  * timekeeping_init - Initializes the clocksource and common timekeeping values
589  */
590 void __init timekeeping_init(void)
591 {
592         struct clocksource *clock;
593         unsigned long flags;
594         struct timespec now, boot;
595
596         read_persistent_clock(&now);
597         read_boot_clock(&boot);
598
599         seqlock_init(&timekeeper.lock);
600
601         write_seqlock_irqsave(&xtime_lock, flags);
602         ntp_init();
603         write_sequnlock_irqrestore(&xtime_lock, flags);
604
605         write_seqlock_irqsave(&timekeeper.lock, flags);
606         clock = clocksource_default_clock();
607         if (clock->enable)
608                 clock->enable(clock);
609         timekeeper_setup_internals(clock);
610
611         timekeeper.xtime.tv_sec = now.tv_sec;
612         timekeeper.xtime.tv_nsec = now.tv_nsec;
613         timekeeper.raw_time.tv_sec = 0;
614         timekeeper.raw_time.tv_nsec = 0;
615         if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
616                 boot.tv_sec = timekeeper.xtime.tv_sec;
617                 boot.tv_nsec = timekeeper.xtime.tv_nsec;
618         }
619         set_normalized_timespec(&timekeeper.wall_to_monotonic,
620                                 -boot.tv_sec, -boot.tv_nsec);
621         timekeeper.total_sleep_time.tv_sec = 0;
622         timekeeper.total_sleep_time.tv_nsec = 0;
623         write_sequnlock_irqrestore(&timekeeper.lock, flags);
624 }
625
626 /* time in seconds when suspend began */
627 static struct timespec timekeeping_suspend_time;
628
629 /**
630  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
631  * @delta: pointer to a timespec delta value
632  *
633  * Takes a timespec offset measuring a suspend interval and properly
634  * adds the sleep offset to the timekeeping variables.
635  */
636 static void __timekeeping_inject_sleeptime(struct timespec *delta)
637 {
638         if (!timespec_valid(delta)) {
639                 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
640                                         "sleep delta value!\n");
641                 return;
642         }
643
644         timekeeper.xtime = timespec_add(timekeeper.xtime, *delta);
645         timekeeper.wall_to_monotonic =
646                         timespec_sub(timekeeper.wall_to_monotonic, *delta);
647         timekeeper.total_sleep_time = timespec_add(
648                                         timekeeper.total_sleep_time, *delta);
649 }
650
651
652 /**
653  * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
654  * @delta: pointer to a timespec delta value
655  *
656  * This hook is for architectures that cannot support read_persistent_clock
657  * because their RTC/persistent clock is only accessible when irqs are enabled.
658  *
659  * This function should only be called by rtc_resume(), and allows
660  * a suspend offset to be injected into the timekeeping values.
661  */
662 void timekeeping_inject_sleeptime(struct timespec *delta)
663 {
664         unsigned long flags1,flags2;
665         struct timespec ts;
666
667         /* Make sure we don't set the clock twice */
668         read_persistent_clock(&ts);
669         if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
670                 return;
671
672         write_seqlock_irqsave(&xtime_lock, flags1);
673         write_seqlock_irqsave(&timekeeper.lock, flags2);
674
675         timekeeping_forward_now();
676
677         __timekeeping_inject_sleeptime(delta);
678
679         timekeeper.ntp_error = 0;
680         ntp_clear();
681         update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
682                         timekeeper.clock, timekeeper.mult);
683
684         write_sequnlock_irqrestore(&timekeeper.lock, flags2);
685         write_sequnlock_irqrestore(&xtime_lock, flags1);
686
687         /* signal hrtimers about time change */
688         clock_was_set();
689 }
690
691
692 /**
693  * timekeeping_resume - Resumes the generic timekeeping subsystem.
694  *
695  * This is for the generic clocksource timekeeping.
696  * xtime/wall_to_monotonic/jiffies/etc are
697  * still managed by arch specific suspend/resume code.
698  */
699 static void timekeeping_resume(void)
700 {
701         unsigned long flags1,flags2;
702         struct timespec ts;
703
704         read_persistent_clock(&ts);
705
706         clocksource_resume();
707
708         write_seqlock_irqsave(&xtime_lock, flags1);
709         write_seqlock_irqsave(&timekeeper.lock, flags2);
710
711         if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
712                 ts = timespec_sub(ts, timekeeping_suspend_time);
713                 __timekeeping_inject_sleeptime(&ts);
714         }
715         /* re-base the last cycle value */
716         timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
717         timekeeper.ntp_error = 0;
718         timekeeping_suspended = 0;
719         write_sequnlock_irqrestore(&timekeeper.lock, flags2);
720         write_sequnlock_irqrestore(&xtime_lock, flags1);
721
722         touch_softlockup_watchdog();
723
724         clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
725
726         /* Resume hrtimers */
727         hrtimers_resume();
728 }
729
730 static int timekeeping_suspend(void)
731 {
732         unsigned long flags1,flags2;
733         struct timespec         delta, delta_delta;
734         static struct timespec  old_delta;
735
736         read_persistent_clock(&timekeeping_suspend_time);
737
738         write_seqlock_irqsave(&xtime_lock, flags1);
739         write_seqlock_irqsave(&timekeeper.lock, flags2);
740         timekeeping_forward_now();
741         timekeeping_suspended = 1;
742
743         /*
744          * To avoid drift caused by repeated suspend/resumes,
745          * which each can add ~1 second drift error,
746          * try to compensate so the difference in system time
747          * and persistent_clock time stays close to constant.
748          */
749         delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time);
750         delta_delta = timespec_sub(delta, old_delta);
751         if (abs(delta_delta.tv_sec)  >= 2) {
752                 /*
753                  * if delta_delta is too large, assume time correction
754                  * has occured and set old_delta to the current delta.
755                  */
756                 old_delta = delta;
757         } else {
758                 /* Otherwise try to adjust old_system to compensate */
759                 timekeeping_suspend_time =
760                         timespec_add(timekeeping_suspend_time, delta_delta);
761         }
762         write_sequnlock_irqrestore(&timekeeper.lock, flags2);
763         write_sequnlock_irqrestore(&xtime_lock, flags1);
764
765         clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
766         clocksource_suspend();
767
768         return 0;
769 }
770
771 /* sysfs resume/suspend bits for timekeeping */
772 static struct syscore_ops timekeeping_syscore_ops = {
773         .resume         = timekeeping_resume,
774         .suspend        = timekeeping_suspend,
775 };
776
777 static int __init timekeeping_init_ops(void)
778 {
779         register_syscore_ops(&timekeeping_syscore_ops);
780         return 0;
781 }
782
783 device_initcall(timekeeping_init_ops);
784
785 /*
786  * If the error is already larger, we look ahead even further
787  * to compensate for late or lost adjustments.
788  */
789 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
790                                                  s64 *offset)
791 {
792         s64 tick_error, i;
793         u32 look_ahead, adj;
794         s32 error2, mult;
795
796         /*
797          * Use the current error value to determine how much to look ahead.
798          * The larger the error the slower we adjust for it to avoid problems
799          * with losing too many ticks, otherwise we would overadjust and
800          * produce an even larger error.  The smaller the adjustment the
801          * faster we try to adjust for it, as lost ticks can do less harm
802          * here.  This is tuned so that an error of about 1 msec is adjusted
803          * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
804          */
805         error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
806         error2 = abs(error2);
807         for (look_ahead = 0; error2 > 0; look_ahead++)
808                 error2 >>= 2;
809
810         /*
811          * Now calculate the error in (1 << look_ahead) ticks, but first
812          * remove the single look ahead already included in the error.
813          */
814         tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1);
815         tick_error -= timekeeper.xtime_interval >> 1;
816         error = ((error - tick_error) >> look_ahead) + tick_error;
817
818         /* Finally calculate the adjustment shift value.  */
819         i = *interval;
820         mult = 1;
821         if (error < 0) {
822                 error = -error;
823                 *interval = -*interval;
824                 *offset = -*offset;
825                 mult = -1;
826         }
827         for (adj = 0; error > i; adj++)
828                 error >>= 1;
829
830         *interval <<= adj;
831         *offset <<= adj;
832         return mult << adj;
833 }
834
835 /*
836  * Adjust the multiplier to reduce the error value,
837  * this is optimized for the most common adjustments of -1,0,1,
838  * for other values we can do a bit more work.
839  */
840 static void timekeeping_adjust(s64 offset)
841 {
842         s64 error, interval = timekeeper.cycle_interval;
843         int adj;
844
845         /*
846          * The point of this is to check if the error is greater then half
847          * an interval.
848          *
849          * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
850          *
851          * Note we subtract one in the shift, so that error is really error*2.
852          * This "saves" dividing(shifting) interval twice, but keeps the
853          * (error > interval) comparison as still measuring if error is
854          * larger then half an interval.
855          *
856          * Note: It does not "save" on aggravation when reading the code.
857          */
858         error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
859         if (error > interval) {
860                 /*
861                  * We now divide error by 4(via shift), which checks if
862                  * the error is greater then twice the interval.
863                  * If it is greater, we need a bigadjust, if its smaller,
864                  * we can adjust by 1.
865                  */
866                 error >>= 2;
867                 /*
868                  * XXX - In update_wall_time, we round up to the next
869                  * nanosecond, and store the amount rounded up into
870                  * the error. This causes the likely below to be unlikely.
871                  *
872                  * The proper fix is to avoid rounding up by using
873                  * the high precision timekeeper.xtime_nsec instead of
874                  * xtime.tv_nsec everywhere. Fixing this will take some
875                  * time.
876                  */
877                 if (likely(error <= interval))
878                         adj = 1;
879                 else
880                         adj = timekeeping_bigadjust(error, &interval, &offset);
881         } else if (error < -interval) {
882                 /* See comment above, this is just switched for the negative */
883                 error >>= 2;
884                 if (likely(error >= -interval)) {
885                         adj = -1;
886                         interval = -interval;
887                         offset = -offset;
888                 } else
889                         adj = timekeeping_bigadjust(error, &interval, &offset);
890         } else /* No adjustment needed */
891                 return;
892
893         WARN_ONCE(timekeeper.clock->maxadj &&
894                         (timekeeper.mult + adj > timekeeper.clock->mult +
895                                                 timekeeper.clock->maxadj),
896                         "Adjusting %s more then 11%% (%ld vs %ld)\n",
897                         timekeeper.clock->name, (long)timekeeper.mult + adj,
898                         (long)timekeeper.clock->mult +
899                                 timekeeper.clock->maxadj);
900         /*
901          * So the following can be confusing.
902          *
903          * To keep things simple, lets assume adj == 1 for now.
904          *
905          * When adj != 1, remember that the interval and offset values
906          * have been appropriately scaled so the math is the same.
907          *
908          * The basic idea here is that we're increasing the multiplier
909          * by one, this causes the xtime_interval to be incremented by
910          * one cycle_interval. This is because:
911          *      xtime_interval = cycle_interval * mult
912          * So if mult is being incremented by one:
913          *      xtime_interval = cycle_interval * (mult + 1)
914          * Its the same as:
915          *      xtime_interval = (cycle_interval * mult) + cycle_interval
916          * Which can be shortened to:
917          *      xtime_interval += cycle_interval
918          *
919          * So offset stores the non-accumulated cycles. Thus the current
920          * time (in shifted nanoseconds) is:
921          *      now = (offset * adj) + xtime_nsec
922          * Now, even though we're adjusting the clock frequency, we have
923          * to keep time consistent. In other words, we can't jump back
924          * in time, and we also want to avoid jumping forward in time.
925          *
926          * So given the same offset value, we need the time to be the same
927          * both before and after the freq adjustment.
928          *      now = (offset * adj_1) + xtime_nsec_1
929          *      now = (offset * adj_2) + xtime_nsec_2
930          * So:
931          *      (offset * adj_1) + xtime_nsec_1 =
932          *              (offset * adj_2) + xtime_nsec_2
933          * And we know:
934          *      adj_2 = adj_1 + 1
935          * So:
936          *      (offset * adj_1) + xtime_nsec_1 =
937          *              (offset * (adj_1+1)) + xtime_nsec_2
938          *      (offset * adj_1) + xtime_nsec_1 =
939          *              (offset * adj_1) + offset + xtime_nsec_2
940          * Canceling the sides:
941          *      xtime_nsec_1 = offset + xtime_nsec_2
942          * Which gives us:
943          *      xtime_nsec_2 = xtime_nsec_1 - offset
944          * Which simplfies to:
945          *      xtime_nsec -= offset
946          *
947          * XXX - TODO: Doc ntp_error calculation.
948          */
949         timekeeper.mult += adj;
950         timekeeper.xtime_interval += interval;
951         timekeeper.xtime_nsec -= offset;
952         timekeeper.ntp_error -= (interval - offset) <<
953                                 timekeeper.ntp_error_shift;
954 }
955
956
957 /**
958  * logarithmic_accumulation - shifted accumulation of cycles
959  *
960  * This functions accumulates a shifted interval of cycles into
961  * into a shifted interval nanoseconds. Allows for O(log) accumulation
962  * loop.
963  *
964  * Returns the unconsumed cycles.
965  */
966 static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
967 {
968         u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
969         u64 raw_nsecs;
970
971         /* If the offset is smaller then a shifted interval, do nothing */
972         if (offset < timekeeper.cycle_interval<<shift)
973                 return offset;
974
975         /* Accumulate one shifted interval */
976         offset -= timekeeper.cycle_interval << shift;
977         timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
978
979         timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
980         while (timekeeper.xtime_nsec >= nsecps) {
981                 timekeeper.xtime_nsec -= nsecps;
982                 timekeeper.xtime.tv_sec++;
983                 second_overflow();
984         }
985
986         /* Accumulate raw time */
987         raw_nsecs = timekeeper.raw_interval << shift;
988         raw_nsecs += timekeeper.raw_time.tv_nsec;
989         if (raw_nsecs >= NSEC_PER_SEC) {
990                 u64 raw_secs = raw_nsecs;
991                 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
992                 timekeeper.raw_time.tv_sec += raw_secs;
993         }
994         timekeeper.raw_time.tv_nsec = raw_nsecs;
995
996         /* Accumulate error between NTP and clock interval */
997         timekeeper.ntp_error += ntp_tick_length() << shift;
998         timekeeper.ntp_error -=
999             (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
1000                                 (timekeeper.ntp_error_shift + shift);
1001
1002         return offset;
1003 }
1004
1005
1006 /**
1007  * update_wall_time - Uses the current clocksource to increment the wall time
1008  *
1009  * Called from the timer interrupt, must hold a write on xtime_lock.
1010  */
1011 static void update_wall_time(void)
1012 {
1013         struct clocksource *clock;
1014         cycle_t offset;
1015         int shift = 0, maxshift;
1016         unsigned long flags;
1017
1018         write_seqlock_irqsave(&timekeeper.lock, flags);
1019
1020         /* Make sure we're fully resumed: */
1021         if (unlikely(timekeeping_suspended))
1022                 goto out;
1023
1024         clock = timekeeper.clock;
1025
1026 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1027         offset = timekeeper.cycle_interval;
1028 #else
1029         offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1030 #endif
1031         timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec <<
1032                                                 timekeeper.shift;
1033
1034         /*
1035          * With NO_HZ we may have to accumulate many cycle_intervals
1036          * (think "ticks") worth of time at once. To do this efficiently,
1037          * we calculate the largest doubling multiple of cycle_intervals
1038          * that is smaller then the offset. We then accumulate that
1039          * chunk in one go, and then try to consume the next smaller
1040          * doubled multiple.
1041          */
1042         shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
1043         shift = max(0, shift);
1044         /* Bound shift to one less then what overflows tick_length */
1045         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1046         shift = min(shift, maxshift);
1047         while (offset >= timekeeper.cycle_interval) {
1048                 offset = logarithmic_accumulation(offset, shift);
1049                 if(offset < timekeeper.cycle_interval<<shift)
1050                         shift--;
1051         }
1052
1053         /* correct the clock when NTP error is too big */
1054         timekeeping_adjust(offset);
1055
1056         /*
1057          * Since in the loop above, we accumulate any amount of time
1058          * in xtime_nsec over a second into xtime.tv_sec, its possible for
1059          * xtime_nsec to be fairly small after the loop. Further, if we're
1060          * slightly speeding the clocksource up in timekeeping_adjust(),
1061          * its possible the required corrective factor to xtime_nsec could
1062          * cause it to underflow.
1063          *
1064          * Now, we cannot simply roll the accumulated second back, since
1065          * the NTP subsystem has been notified via second_overflow. So
1066          * instead we push xtime_nsec forward by the amount we underflowed,
1067          * and add that amount into the error.
1068          *
1069          * We'll correct this error next time through this function, when
1070          * xtime_nsec is not as small.
1071          */
1072         if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
1073                 s64 neg = -(s64)timekeeper.xtime_nsec;
1074                 timekeeper.xtime_nsec = 0;
1075                 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
1076         }
1077
1078
1079         /*
1080          * Store full nanoseconds into xtime after rounding it up and
1081          * add the remainder to the error difference.
1082          */
1083         timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >>
1084                                                 timekeeper.shift) + 1;
1085         timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec <<
1086                                                 timekeeper.shift;
1087         timekeeper.ntp_error += timekeeper.xtime_nsec <<
1088                                 timekeeper.ntp_error_shift;
1089
1090         /*
1091          * Finally, make sure that after the rounding
1092          * xtime.tv_nsec isn't larger then NSEC_PER_SEC
1093          */
1094         if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) {
1095                 timekeeper.xtime.tv_nsec -= NSEC_PER_SEC;
1096                 timekeeper.xtime.tv_sec++;
1097                 second_overflow();
1098         }
1099
1100         /* check to see if there is a new clocksource to use */
1101         update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
1102                         timekeeper.clock, timekeeper.mult);
1103
1104 out:
1105         write_sequnlock_irqrestore(&timekeeper.lock, flags);
1106
1107 }
1108
1109 /**
1110  * getboottime - Return the real time of system boot.
1111  * @ts:         pointer to the timespec to be set
1112  *
1113  * Returns the wall-time of boot in a timespec.
1114  *
1115  * This is based on the wall_to_monotonic offset and the total suspend
1116  * time. Calls to settimeofday will affect the value returned (which
1117  * basically means that however wrong your real time clock is at boot time,
1118  * you get the right time here).
1119  */
1120 void getboottime(struct timespec *ts)
1121 {
1122         struct timespec boottime = {
1123                 .tv_sec = timekeeper.wall_to_monotonic.tv_sec +
1124                                 timekeeper.total_sleep_time.tv_sec,
1125                 .tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
1126                                 timekeeper.total_sleep_time.tv_nsec
1127         };
1128
1129         set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1130 }
1131 EXPORT_SYMBOL_GPL(getboottime);
1132
1133
1134 /**
1135  * get_monotonic_boottime - Returns monotonic time since boot
1136  * @ts:         pointer to the timespec to be set
1137  *
1138  * Returns the monotonic time since boot in a timespec.
1139  *
1140  * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1141  * includes the time spent in suspend.
1142  */
1143 void get_monotonic_boottime(struct timespec *ts)
1144 {
1145         struct timespec tomono, sleep;
1146         unsigned int seq;
1147         s64 nsecs;
1148
1149         WARN_ON(timekeeping_suspended);
1150
1151         do {
1152                 seq = read_seqbegin(&timekeeper.lock);
1153                 *ts = timekeeper.xtime;
1154                 tomono = timekeeper.wall_to_monotonic;
1155                 sleep = timekeeper.total_sleep_time;
1156                 nsecs = timekeeping_get_ns();
1157
1158         } while (read_seqretry(&timekeeper.lock, seq));
1159
1160         set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1161                         ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
1162 }
1163 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1164
1165 /**
1166  * ktime_get_boottime - Returns monotonic time since boot in a ktime
1167  *
1168  * Returns the monotonic time since boot in a ktime
1169  *
1170  * This is similar to CLOCK_MONTONIC/ktime_get, but also
1171  * includes the time spent in suspend.
1172  */
1173 ktime_t ktime_get_boottime(void)
1174 {
1175         struct timespec ts;
1176
1177         get_monotonic_boottime(&ts);
1178         return timespec_to_ktime(ts);
1179 }
1180 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1181
1182 /**
1183  * monotonic_to_bootbased - Convert the monotonic time to boot based.
1184  * @ts:         pointer to the timespec to be converted
1185  */
1186 void monotonic_to_bootbased(struct timespec *ts)
1187 {
1188         *ts = timespec_add(*ts, timekeeper.total_sleep_time);
1189 }
1190 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1191
1192 unsigned long get_seconds(void)
1193 {
1194         return timekeeper.xtime.tv_sec;
1195 }
1196 EXPORT_SYMBOL(get_seconds);
1197
1198 struct timespec __current_kernel_time(void)
1199 {
1200         return timekeeper.xtime;
1201 }
1202
1203 struct timespec current_kernel_time(void)
1204 {
1205         struct timespec now;
1206         unsigned long seq;
1207
1208         do {
1209                 seq = read_seqbegin(&timekeeper.lock);
1210
1211                 now = timekeeper.xtime;
1212         } while (read_seqretry(&timekeeper.lock, seq));
1213
1214         return now;
1215 }
1216 EXPORT_SYMBOL(current_kernel_time);
1217
1218 struct timespec get_monotonic_coarse(void)
1219 {
1220         struct timespec now, mono;
1221         unsigned long seq;
1222
1223         do {
1224                 seq = read_seqbegin(&timekeeper.lock);
1225
1226                 now = timekeeper.xtime;
1227                 mono = timekeeper.wall_to_monotonic;
1228         } while (read_seqretry(&timekeeper.lock, seq));
1229
1230         set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1231                                 now.tv_nsec + mono.tv_nsec);
1232         return now;
1233 }
1234
1235 /*
1236  * The 64-bit jiffies value is not atomic - you MUST NOT read it
1237  * without sampling the sequence number in xtime_lock.
1238  * jiffies is defined in the linker script...
1239  */
1240 void do_timer(unsigned long ticks)
1241 {
1242         jiffies_64 += ticks;
1243         update_wall_time();
1244         calc_global_load(ticks);
1245 }
1246
1247 /**
1248  * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1249  *    and sleep offsets.
1250  * @xtim:       pointer to timespec to be set with xtime
1251  * @wtom:       pointer to timespec to be set with wall_to_monotonic
1252  * @sleep:      pointer to timespec to be set with time in suspend
1253  */
1254 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1255                                 struct timespec *wtom, struct timespec *sleep)
1256 {
1257         unsigned long seq;
1258
1259         do {
1260                 seq = read_seqbegin(&timekeeper.lock);
1261                 *xtim = timekeeper.xtime;
1262                 *wtom = timekeeper.wall_to_monotonic;
1263                 *sleep = timekeeper.total_sleep_time;
1264         } while (read_seqretry(&timekeeper.lock, seq));
1265 }
1266
1267 /**
1268  * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1269  */
1270 ktime_t ktime_get_monotonic_offset(void)
1271 {
1272         unsigned long seq;
1273         struct timespec wtom;
1274
1275         do {
1276                 seq = read_seqbegin(&timekeeper.lock);
1277                 wtom = timekeeper.wall_to_monotonic;
1278         } while (read_seqretry(&timekeeper.lock, seq));
1279
1280         return timespec_to_ktime(wtom);
1281 }
1282
1283 /**
1284  * xtime_update() - advances the timekeeping infrastructure
1285  * @ticks:      number of ticks, that have elapsed since the last call.
1286  *
1287  * Must be called with interrupts disabled.
1288  */
1289 void xtime_update(unsigned long ticks)
1290 {
1291         write_seqlock(&xtime_lock);
1292         do_timer(ticks);
1293         write_sequnlock(&xtime_lock);
1294 }