sched, rt: Update rq clock when unthrottling of an otherwise idle CPU
[pandora-kernel.git] / kernel / sched_rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 #ifdef CONFIG_RT_GROUP_SCHED
7
8 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
9
10 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
11 {
12 #ifdef CONFIG_SCHED_DEBUG
13         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
14 #endif
15         return container_of(rt_se, struct task_struct, rt);
16 }
17
18 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
19 {
20         return rt_rq->rq;
21 }
22
23 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
24 {
25         return rt_se->rt_rq;
26 }
27
28 #else /* CONFIG_RT_GROUP_SCHED */
29
30 #define rt_entity_is_task(rt_se) (1)
31
32 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
33 {
34         return container_of(rt_se, struct task_struct, rt);
35 }
36
37 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
38 {
39         return container_of(rt_rq, struct rq, rt);
40 }
41
42 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
43 {
44         struct task_struct *p = rt_task_of(rt_se);
45         struct rq *rq = task_rq(p);
46
47         return &rq->rt;
48 }
49
50 #endif /* CONFIG_RT_GROUP_SCHED */
51
52 #ifdef CONFIG_SMP
53
54 static inline int rt_overloaded(struct rq *rq)
55 {
56         return atomic_read(&rq->rd->rto_count);
57 }
58
59 static inline void rt_set_overload(struct rq *rq)
60 {
61         if (!rq->online)
62                 return;
63
64         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
65         /*
66          * Make sure the mask is visible before we set
67          * the overload count. That is checked to determine
68          * if we should look at the mask. It would be a shame
69          * if we looked at the mask, but the mask was not
70          * updated yet.
71          */
72         wmb();
73         atomic_inc(&rq->rd->rto_count);
74 }
75
76 static inline void rt_clear_overload(struct rq *rq)
77 {
78         if (!rq->online)
79                 return;
80
81         /* the order here really doesn't matter */
82         atomic_dec(&rq->rd->rto_count);
83         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
84 }
85
86 static void update_rt_migration(struct rt_rq *rt_rq)
87 {
88         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
89                 if (!rt_rq->overloaded) {
90                         rt_set_overload(rq_of_rt_rq(rt_rq));
91                         rt_rq->overloaded = 1;
92                 }
93         } else if (rt_rq->overloaded) {
94                 rt_clear_overload(rq_of_rt_rq(rt_rq));
95                 rt_rq->overloaded = 0;
96         }
97 }
98
99 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
100 {
101         if (!rt_entity_is_task(rt_se))
102                 return;
103
104         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
105
106         rt_rq->rt_nr_total++;
107         if (rt_se->nr_cpus_allowed > 1)
108                 rt_rq->rt_nr_migratory++;
109
110         update_rt_migration(rt_rq);
111 }
112
113 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
114 {
115         if (!rt_entity_is_task(rt_se))
116                 return;
117
118         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
119
120         rt_rq->rt_nr_total--;
121         if (rt_se->nr_cpus_allowed > 1)
122                 rt_rq->rt_nr_migratory--;
123
124         update_rt_migration(rt_rq);
125 }
126
127 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
128 {
129         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
130         plist_node_init(&p->pushable_tasks, p->prio);
131         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
132 }
133
134 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
135 {
136         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
137 }
138
139 static inline int has_pushable_tasks(struct rq *rq)
140 {
141         return !plist_head_empty(&rq->rt.pushable_tasks);
142 }
143
144 #else
145
146 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
147 {
148 }
149
150 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
151 {
152 }
153
154 static inline
155 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
156 {
157 }
158
159 static inline
160 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
161 {
162 }
163
164 #endif /* CONFIG_SMP */
165
166 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
167 {
168         return !list_empty(&rt_se->run_list);
169 }
170
171 #ifdef CONFIG_RT_GROUP_SCHED
172
173 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
174 {
175         if (!rt_rq->tg)
176                 return RUNTIME_INF;
177
178         return rt_rq->rt_runtime;
179 }
180
181 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
182 {
183         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
184 }
185
186 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
187 {
188         list_add_rcu(&rt_rq->leaf_rt_rq_list,
189                         &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
190 }
191
192 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
193 {
194         list_del_rcu(&rt_rq->leaf_rt_rq_list);
195 }
196
197 #define for_each_leaf_rt_rq(rt_rq, rq) \
198         list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
199
200 #define for_each_sched_rt_entity(rt_se) \
201         for (; rt_se; rt_se = rt_se->parent)
202
203 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
204 {
205         return rt_se->my_q;
206 }
207
208 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
209 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
210
211 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
212 {
213         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
214         struct sched_rt_entity *rt_se;
215
216         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
217
218         rt_se = rt_rq->tg->rt_se[cpu];
219
220         if (rt_rq->rt_nr_running) {
221                 if (rt_se && !on_rt_rq(rt_se))
222                         enqueue_rt_entity(rt_se, false);
223                 if (rt_rq->highest_prio.curr < curr->prio)
224                         resched_task(curr);
225         }
226 }
227
228 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
229 {
230         struct sched_rt_entity *rt_se;
231         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
232
233         rt_se = rt_rq->tg->rt_se[cpu];
234
235         if (rt_se && on_rt_rq(rt_se))
236                 dequeue_rt_entity(rt_se);
237 }
238
239 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
240 {
241         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
242 }
243
244 static int rt_se_boosted(struct sched_rt_entity *rt_se)
245 {
246         struct rt_rq *rt_rq = group_rt_rq(rt_se);
247         struct task_struct *p;
248
249         if (rt_rq)
250                 return !!rt_rq->rt_nr_boosted;
251
252         p = rt_task_of(rt_se);
253         return p->prio != p->normal_prio;
254 }
255
256 #ifdef CONFIG_SMP
257 static inline const struct cpumask *sched_rt_period_mask(void)
258 {
259         return cpu_rq(smp_processor_id())->rd->span;
260 }
261 #else
262 static inline const struct cpumask *sched_rt_period_mask(void)
263 {
264         return cpu_online_mask;
265 }
266 #endif
267
268 static inline
269 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
270 {
271         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
272 }
273
274 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
275 {
276         return &rt_rq->tg->rt_bandwidth;
277 }
278
279 #else /* !CONFIG_RT_GROUP_SCHED */
280
281 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
282 {
283         return rt_rq->rt_runtime;
284 }
285
286 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
287 {
288         return ktime_to_ns(def_rt_bandwidth.rt_period);
289 }
290
291 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
292 {
293 }
294
295 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
296 {
297 }
298
299 #define for_each_leaf_rt_rq(rt_rq, rq) \
300         for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
301
302 #define for_each_sched_rt_entity(rt_se) \
303         for (; rt_se; rt_se = NULL)
304
305 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
306 {
307         return NULL;
308 }
309
310 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
311 {
312         if (rt_rq->rt_nr_running)
313                 resched_task(rq_of_rt_rq(rt_rq)->curr);
314 }
315
316 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
317 {
318 }
319
320 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
321 {
322         return rt_rq->rt_throttled;
323 }
324
325 static inline const struct cpumask *sched_rt_period_mask(void)
326 {
327         return cpu_online_mask;
328 }
329
330 static inline
331 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
332 {
333         return &cpu_rq(cpu)->rt;
334 }
335
336 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
337 {
338         return &def_rt_bandwidth;
339 }
340
341 #endif /* CONFIG_RT_GROUP_SCHED */
342
343 #ifdef CONFIG_SMP
344 /*
345  * We ran out of runtime, see if we can borrow some from our neighbours.
346  */
347 static int do_balance_runtime(struct rt_rq *rt_rq)
348 {
349         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
350         struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
351         int i, weight, more = 0;
352         u64 rt_period;
353
354         weight = cpumask_weight(rd->span);
355
356         raw_spin_lock(&rt_b->rt_runtime_lock);
357         rt_period = ktime_to_ns(rt_b->rt_period);
358         for_each_cpu(i, rd->span) {
359                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
360                 s64 diff;
361
362                 if (iter == rt_rq)
363                         continue;
364
365                 raw_spin_lock(&iter->rt_runtime_lock);
366                 /*
367                  * Either all rqs have inf runtime and there's nothing to steal
368                  * or __disable_runtime() below sets a specific rq to inf to
369                  * indicate its been disabled and disalow stealing.
370                  */
371                 if (iter->rt_runtime == RUNTIME_INF)
372                         goto next;
373
374                 /*
375                  * From runqueues with spare time, take 1/n part of their
376                  * spare time, but no more than our period.
377                  */
378                 diff = iter->rt_runtime - iter->rt_time;
379                 if (diff > 0) {
380                         diff = div_u64((u64)diff, weight);
381                         if (rt_rq->rt_runtime + diff > rt_period)
382                                 diff = rt_period - rt_rq->rt_runtime;
383                         iter->rt_runtime -= diff;
384                         rt_rq->rt_runtime += diff;
385                         more = 1;
386                         if (rt_rq->rt_runtime == rt_period) {
387                                 raw_spin_unlock(&iter->rt_runtime_lock);
388                                 break;
389                         }
390                 }
391 next:
392                 raw_spin_unlock(&iter->rt_runtime_lock);
393         }
394         raw_spin_unlock(&rt_b->rt_runtime_lock);
395
396         return more;
397 }
398
399 /*
400  * Ensure this RQ takes back all the runtime it lend to its neighbours.
401  */
402 static void __disable_runtime(struct rq *rq)
403 {
404         struct root_domain *rd = rq->rd;
405         struct rt_rq *rt_rq;
406
407         if (unlikely(!scheduler_running))
408                 return;
409
410         for_each_leaf_rt_rq(rt_rq, rq) {
411                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
412                 s64 want;
413                 int i;
414
415                 raw_spin_lock(&rt_b->rt_runtime_lock);
416                 raw_spin_lock(&rt_rq->rt_runtime_lock);
417                 /*
418                  * Either we're all inf and nobody needs to borrow, or we're
419                  * already disabled and thus have nothing to do, or we have
420                  * exactly the right amount of runtime to take out.
421                  */
422                 if (rt_rq->rt_runtime == RUNTIME_INF ||
423                                 rt_rq->rt_runtime == rt_b->rt_runtime)
424                         goto balanced;
425                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
426
427                 /*
428                  * Calculate the difference between what we started out with
429                  * and what we current have, that's the amount of runtime
430                  * we lend and now have to reclaim.
431                  */
432                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
433
434                 /*
435                  * Greedy reclaim, take back as much as we can.
436                  */
437                 for_each_cpu(i, rd->span) {
438                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
439                         s64 diff;
440
441                         /*
442                          * Can't reclaim from ourselves or disabled runqueues.
443                          */
444                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
445                                 continue;
446
447                         raw_spin_lock(&iter->rt_runtime_lock);
448                         if (want > 0) {
449                                 diff = min_t(s64, iter->rt_runtime, want);
450                                 iter->rt_runtime -= diff;
451                                 want -= diff;
452                         } else {
453                                 iter->rt_runtime -= want;
454                                 want -= want;
455                         }
456                         raw_spin_unlock(&iter->rt_runtime_lock);
457
458                         if (!want)
459                                 break;
460                 }
461
462                 raw_spin_lock(&rt_rq->rt_runtime_lock);
463                 /*
464                  * We cannot be left wanting - that would mean some runtime
465                  * leaked out of the system.
466                  */
467                 BUG_ON(want);
468 balanced:
469                 /*
470                  * Disable all the borrow logic by pretending we have inf
471                  * runtime - in which case borrowing doesn't make sense.
472                  */
473                 rt_rq->rt_runtime = RUNTIME_INF;
474                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
475                 raw_spin_unlock(&rt_b->rt_runtime_lock);
476         }
477 }
478
479 static void disable_runtime(struct rq *rq)
480 {
481         unsigned long flags;
482
483         raw_spin_lock_irqsave(&rq->lock, flags);
484         __disable_runtime(rq);
485         raw_spin_unlock_irqrestore(&rq->lock, flags);
486 }
487
488 static void __enable_runtime(struct rq *rq)
489 {
490         struct rt_rq *rt_rq;
491
492         if (unlikely(!scheduler_running))
493                 return;
494
495         /*
496          * Reset each runqueue's bandwidth settings
497          */
498         for_each_leaf_rt_rq(rt_rq, rq) {
499                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
500
501                 raw_spin_lock(&rt_b->rt_runtime_lock);
502                 raw_spin_lock(&rt_rq->rt_runtime_lock);
503                 rt_rq->rt_runtime = rt_b->rt_runtime;
504                 rt_rq->rt_time = 0;
505                 rt_rq->rt_throttled = 0;
506                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
507                 raw_spin_unlock(&rt_b->rt_runtime_lock);
508         }
509 }
510
511 static void enable_runtime(struct rq *rq)
512 {
513         unsigned long flags;
514
515         raw_spin_lock_irqsave(&rq->lock, flags);
516         __enable_runtime(rq);
517         raw_spin_unlock_irqrestore(&rq->lock, flags);
518 }
519
520 static int balance_runtime(struct rt_rq *rt_rq)
521 {
522         int more = 0;
523
524         if (rt_rq->rt_time > rt_rq->rt_runtime) {
525                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
526                 more = do_balance_runtime(rt_rq);
527                 raw_spin_lock(&rt_rq->rt_runtime_lock);
528         }
529
530         return more;
531 }
532 #else /* !CONFIG_SMP */
533 static inline int balance_runtime(struct rt_rq *rt_rq)
534 {
535         return 0;
536 }
537 #endif /* CONFIG_SMP */
538
539 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
540 {
541         int i, idle = 1;
542         const struct cpumask *span;
543
544         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
545                 return 1;
546
547         span = sched_rt_period_mask();
548         for_each_cpu(i, span) {
549                 int enqueue = 0;
550                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
551                 struct rq *rq = rq_of_rt_rq(rt_rq);
552
553                 raw_spin_lock(&rq->lock);
554                 if (rt_rq->rt_time) {
555                         u64 runtime;
556
557                         raw_spin_lock(&rt_rq->rt_runtime_lock);
558                         if (rt_rq->rt_throttled)
559                                 balance_runtime(rt_rq);
560                         runtime = rt_rq->rt_runtime;
561                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
562                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
563                                 rt_rq->rt_throttled = 0;
564                                 enqueue = 1;
565
566                                 /*
567                                  * Force a clock update if the CPU was idle,
568                                  * lest wakeup -> unthrottle time accumulate.
569                                  */
570                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
571                                         rq->skip_clock_update = -1;
572                         }
573                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
574                                 idle = 0;
575                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
576                 } else if (rt_rq->rt_nr_running) {
577                         idle = 0;
578                         if (!rt_rq_throttled(rt_rq))
579                                 enqueue = 1;
580                 }
581
582                 if (enqueue)
583                         sched_rt_rq_enqueue(rt_rq);
584                 raw_spin_unlock(&rq->lock);
585         }
586
587         return idle;
588 }
589
590 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
591 {
592 #ifdef CONFIG_RT_GROUP_SCHED
593         struct rt_rq *rt_rq = group_rt_rq(rt_se);
594
595         if (rt_rq)
596                 return rt_rq->highest_prio.curr;
597 #endif
598
599         return rt_task_of(rt_se)->prio;
600 }
601
602 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
603 {
604         u64 runtime = sched_rt_runtime(rt_rq);
605
606         if (rt_rq->rt_throttled)
607                 return rt_rq_throttled(rt_rq);
608
609         if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
610                 return 0;
611
612         balance_runtime(rt_rq);
613         runtime = sched_rt_runtime(rt_rq);
614         if (runtime == RUNTIME_INF)
615                 return 0;
616
617         if (rt_rq->rt_time > runtime) {
618                 rt_rq->rt_throttled = 1;
619                 if (rt_rq_throttled(rt_rq)) {
620                         sched_rt_rq_dequeue(rt_rq);
621                         return 1;
622                 }
623         }
624
625         return 0;
626 }
627
628 /*
629  * Update the current task's runtime statistics. Skip current tasks that
630  * are not in our scheduling class.
631  */
632 static void update_curr_rt(struct rq *rq)
633 {
634         struct task_struct *curr = rq->curr;
635         struct sched_rt_entity *rt_se = &curr->rt;
636         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
637         u64 delta_exec;
638
639         if (curr->sched_class != &rt_sched_class)
640                 return;
641
642         delta_exec = rq->clock_task - curr->se.exec_start;
643         if (unlikely((s64)delta_exec < 0))
644                 delta_exec = 0;
645
646         schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
647
648         curr->se.sum_exec_runtime += delta_exec;
649         account_group_exec_runtime(curr, delta_exec);
650
651         curr->se.exec_start = rq->clock_task;
652         cpuacct_charge(curr, delta_exec);
653
654         sched_rt_avg_update(rq, delta_exec);
655
656         if (!rt_bandwidth_enabled())
657                 return;
658
659         for_each_sched_rt_entity(rt_se) {
660                 rt_rq = rt_rq_of_se(rt_se);
661
662                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
663                         raw_spin_lock(&rt_rq->rt_runtime_lock);
664                         rt_rq->rt_time += delta_exec;
665                         if (sched_rt_runtime_exceeded(rt_rq))
666                                 resched_task(curr);
667                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
668                 }
669         }
670 }
671
672 #if defined CONFIG_SMP
673
674 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
675
676 static inline int next_prio(struct rq *rq)
677 {
678         struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
679
680         if (next && rt_prio(next->prio))
681                 return next->prio;
682         else
683                 return MAX_RT_PRIO;
684 }
685
686 static void
687 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
688 {
689         struct rq *rq = rq_of_rt_rq(rt_rq);
690
691         if (prio < prev_prio) {
692
693                 /*
694                  * If the new task is higher in priority than anything on the
695                  * run-queue, we know that the previous high becomes our
696                  * next-highest.
697                  */
698                 rt_rq->highest_prio.next = prev_prio;
699
700                 if (rq->online)
701                         cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
702
703         } else if (prio == rt_rq->highest_prio.curr)
704                 /*
705                  * If the next task is equal in priority to the highest on
706                  * the run-queue, then we implicitly know that the next highest
707                  * task cannot be any lower than current
708                  */
709                 rt_rq->highest_prio.next = prio;
710         else if (prio < rt_rq->highest_prio.next)
711                 /*
712                  * Otherwise, we need to recompute next-highest
713                  */
714                 rt_rq->highest_prio.next = next_prio(rq);
715 }
716
717 static void
718 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
719 {
720         struct rq *rq = rq_of_rt_rq(rt_rq);
721
722         if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
723                 rt_rq->highest_prio.next = next_prio(rq);
724
725         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
726                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
727 }
728
729 #else /* CONFIG_SMP */
730
731 static inline
732 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
733 static inline
734 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
735
736 #endif /* CONFIG_SMP */
737
738 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
739 static void
740 inc_rt_prio(struct rt_rq *rt_rq, int prio)
741 {
742         int prev_prio = rt_rq->highest_prio.curr;
743
744         if (prio < prev_prio)
745                 rt_rq->highest_prio.curr = prio;
746
747         inc_rt_prio_smp(rt_rq, prio, prev_prio);
748 }
749
750 static void
751 dec_rt_prio(struct rt_rq *rt_rq, int prio)
752 {
753         int prev_prio = rt_rq->highest_prio.curr;
754
755         if (rt_rq->rt_nr_running) {
756
757                 WARN_ON(prio < prev_prio);
758
759                 /*
760                  * This may have been our highest task, and therefore
761                  * we may have some recomputation to do
762                  */
763                 if (prio == prev_prio) {
764                         struct rt_prio_array *array = &rt_rq->active;
765
766                         rt_rq->highest_prio.curr =
767                                 sched_find_first_bit(array->bitmap);
768                 }
769
770         } else
771                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
772
773         dec_rt_prio_smp(rt_rq, prio, prev_prio);
774 }
775
776 #else
777
778 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
779 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
780
781 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
782
783 #ifdef CONFIG_RT_GROUP_SCHED
784
785 static void
786 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
787 {
788         if (rt_se_boosted(rt_se))
789                 rt_rq->rt_nr_boosted++;
790
791         if (rt_rq->tg)
792                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
793 }
794
795 static void
796 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
797 {
798         if (rt_se_boosted(rt_se))
799                 rt_rq->rt_nr_boosted--;
800
801         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
802 }
803
804 #else /* CONFIG_RT_GROUP_SCHED */
805
806 static void
807 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
808 {
809         start_rt_bandwidth(&def_rt_bandwidth);
810 }
811
812 static inline
813 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
814
815 #endif /* CONFIG_RT_GROUP_SCHED */
816
817 static inline
818 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
819 {
820         int prio = rt_se_prio(rt_se);
821
822         WARN_ON(!rt_prio(prio));
823         rt_rq->rt_nr_running++;
824
825         inc_rt_prio(rt_rq, prio);
826         inc_rt_migration(rt_se, rt_rq);
827         inc_rt_group(rt_se, rt_rq);
828 }
829
830 static inline
831 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
832 {
833         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
834         WARN_ON(!rt_rq->rt_nr_running);
835         rt_rq->rt_nr_running--;
836
837         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
838         dec_rt_migration(rt_se, rt_rq);
839         dec_rt_group(rt_se, rt_rq);
840 }
841
842 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
843 {
844         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
845         struct rt_prio_array *array = &rt_rq->active;
846         struct rt_rq *group_rq = group_rt_rq(rt_se);
847         struct list_head *queue = array->queue + rt_se_prio(rt_se);
848
849         /*
850          * Don't enqueue the group if its throttled, or when empty.
851          * The latter is a consequence of the former when a child group
852          * get throttled and the current group doesn't have any other
853          * active members.
854          */
855         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
856                 return;
857
858         if (!rt_rq->rt_nr_running)
859                 list_add_leaf_rt_rq(rt_rq);
860
861         if (head)
862                 list_add(&rt_se->run_list, queue);
863         else
864                 list_add_tail(&rt_se->run_list, queue);
865         __set_bit(rt_se_prio(rt_se), array->bitmap);
866
867         inc_rt_tasks(rt_se, rt_rq);
868 }
869
870 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
871 {
872         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
873         struct rt_prio_array *array = &rt_rq->active;
874
875         list_del_init(&rt_se->run_list);
876         if (list_empty(array->queue + rt_se_prio(rt_se)))
877                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
878
879         dec_rt_tasks(rt_se, rt_rq);
880         if (!rt_rq->rt_nr_running)
881                 list_del_leaf_rt_rq(rt_rq);
882 }
883
884 /*
885  * Because the prio of an upper entry depends on the lower
886  * entries, we must remove entries top - down.
887  */
888 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
889 {
890         struct sched_rt_entity *back = NULL;
891
892         for_each_sched_rt_entity(rt_se) {
893                 rt_se->back = back;
894                 back = rt_se;
895         }
896
897         for (rt_se = back; rt_se; rt_se = rt_se->back) {
898                 if (on_rt_rq(rt_se))
899                         __dequeue_rt_entity(rt_se);
900         }
901 }
902
903 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
904 {
905         dequeue_rt_stack(rt_se);
906         for_each_sched_rt_entity(rt_se)
907                 __enqueue_rt_entity(rt_se, head);
908 }
909
910 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
911 {
912         dequeue_rt_stack(rt_se);
913
914         for_each_sched_rt_entity(rt_se) {
915                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
916
917                 if (rt_rq && rt_rq->rt_nr_running)
918                         __enqueue_rt_entity(rt_se, false);
919         }
920 }
921
922 /*
923  * Adding/removing a task to/from a priority array:
924  */
925 static void
926 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
927 {
928         struct sched_rt_entity *rt_se = &p->rt;
929
930         if (flags & ENQUEUE_WAKEUP)
931                 rt_se->timeout = 0;
932
933         enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
934
935         if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
936                 enqueue_pushable_task(rq, p);
937 }
938
939 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
940 {
941         struct sched_rt_entity *rt_se = &p->rt;
942
943         update_curr_rt(rq);
944         dequeue_rt_entity(rt_se);
945
946         dequeue_pushable_task(rq, p);
947 }
948
949 /*
950  * Put task to the end of the run list without the overhead of dequeue
951  * followed by enqueue.
952  */
953 static void
954 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
955 {
956         if (on_rt_rq(rt_se)) {
957                 struct rt_prio_array *array = &rt_rq->active;
958                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
959
960                 if (head)
961                         list_move(&rt_se->run_list, queue);
962                 else
963                         list_move_tail(&rt_se->run_list, queue);
964         }
965 }
966
967 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
968 {
969         struct sched_rt_entity *rt_se = &p->rt;
970         struct rt_rq *rt_rq;
971
972         for_each_sched_rt_entity(rt_se) {
973                 rt_rq = rt_rq_of_se(rt_se);
974                 requeue_rt_entity(rt_rq, rt_se, head);
975         }
976 }
977
978 static void yield_task_rt(struct rq *rq)
979 {
980         requeue_task_rt(rq, rq->curr, 0);
981 }
982
983 #ifdef CONFIG_SMP
984 static int find_lowest_rq(struct task_struct *task);
985
986 static int
987 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
988 {
989         struct task_struct *curr;
990         struct rq *rq;
991         int cpu;
992
993         if (sd_flag != SD_BALANCE_WAKE)
994                 return smp_processor_id();
995
996         cpu = task_cpu(p);
997         rq = cpu_rq(cpu);
998
999         rcu_read_lock();
1000         curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1001
1002         /*
1003          * If the current task on @p's runqueue is an RT task, then
1004          * try to see if we can wake this RT task up on another
1005          * runqueue. Otherwise simply start this RT task
1006          * on its current runqueue.
1007          *
1008          * We want to avoid overloading runqueues. If the woken
1009          * task is a higher priority, then it will stay on this CPU
1010          * and the lower prio task should be moved to another CPU.
1011          * Even though this will probably make the lower prio task
1012          * lose its cache, we do not want to bounce a higher task
1013          * around just because it gave up its CPU, perhaps for a
1014          * lock?
1015          *
1016          * For equal prio tasks, we just let the scheduler sort it out.
1017          *
1018          * Otherwise, just let it ride on the affined RQ and the
1019          * post-schedule router will push the preempted task away
1020          *
1021          * This test is optimistic, if we get it wrong the load-balancer
1022          * will have to sort it out.
1023          */
1024         if (curr && unlikely(rt_task(curr)) &&
1025             (curr->rt.nr_cpus_allowed < 2 ||
1026              curr->prio < p->prio) &&
1027             (p->rt.nr_cpus_allowed > 1)) {
1028                 int target = find_lowest_rq(p);
1029
1030                 if (target != -1)
1031                         cpu = target;
1032         }
1033         rcu_read_unlock();
1034
1035         return cpu;
1036 }
1037
1038 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1039 {
1040         if (rq->curr->rt.nr_cpus_allowed == 1)
1041                 return;
1042
1043         if (p->rt.nr_cpus_allowed != 1
1044             && cpupri_find(&rq->rd->cpupri, p, NULL))
1045                 return;
1046
1047         if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1048                 return;
1049
1050         /*
1051          * There appears to be other cpus that can accept
1052          * current and none to run 'p', so lets reschedule
1053          * to try and push current away:
1054          */
1055         requeue_task_rt(rq, p, 1);
1056         resched_task(rq->curr);
1057 }
1058
1059 #endif /* CONFIG_SMP */
1060
1061 /*
1062  * Preempt the current task with a newly woken task if needed:
1063  */
1064 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1065 {
1066         if (p->prio < rq->curr->prio) {
1067                 resched_task(rq->curr);
1068                 return;
1069         }
1070
1071 #ifdef CONFIG_SMP
1072         /*
1073          * If:
1074          *
1075          * - the newly woken task is of equal priority to the current task
1076          * - the newly woken task is non-migratable while current is migratable
1077          * - current will be preempted on the next reschedule
1078          *
1079          * we should check to see if current can readily move to a different
1080          * cpu.  If so, we will reschedule to allow the push logic to try
1081          * to move current somewhere else, making room for our non-migratable
1082          * task.
1083          */
1084         if (p->prio == rq->curr->prio && !need_resched())
1085                 check_preempt_equal_prio(rq, p);
1086 #endif
1087 }
1088
1089 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1090                                                    struct rt_rq *rt_rq)
1091 {
1092         struct rt_prio_array *array = &rt_rq->active;
1093         struct sched_rt_entity *next = NULL;
1094         struct list_head *queue;
1095         int idx;
1096
1097         idx = sched_find_first_bit(array->bitmap);
1098         BUG_ON(idx >= MAX_RT_PRIO);
1099
1100         queue = array->queue + idx;
1101         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1102
1103         return next;
1104 }
1105
1106 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1107 {
1108         struct sched_rt_entity *rt_se;
1109         struct task_struct *p;
1110         struct rt_rq *rt_rq;
1111
1112         rt_rq = &rq->rt;
1113
1114         if (unlikely(!rt_rq->rt_nr_running))
1115                 return NULL;
1116
1117         if (rt_rq_throttled(rt_rq))
1118                 return NULL;
1119
1120         do {
1121                 rt_se = pick_next_rt_entity(rq, rt_rq);
1122                 BUG_ON(!rt_se);
1123                 rt_rq = group_rt_rq(rt_se);
1124         } while (rt_rq);
1125
1126         p = rt_task_of(rt_se);
1127         p->se.exec_start = rq->clock_task;
1128
1129         return p;
1130 }
1131
1132 static struct task_struct *pick_next_task_rt(struct rq *rq)
1133 {
1134         struct task_struct *p = _pick_next_task_rt(rq);
1135
1136         /* The running task is never eligible for pushing */
1137         if (p)
1138                 dequeue_pushable_task(rq, p);
1139
1140 #ifdef CONFIG_SMP
1141         /*
1142          * We detect this state here so that we can avoid taking the RQ
1143          * lock again later if there is no need to push
1144          */
1145         rq->post_schedule = has_pushable_tasks(rq);
1146 #endif
1147
1148         return p;
1149 }
1150
1151 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1152 {
1153         update_curr_rt(rq);
1154         p->se.exec_start = 0;
1155
1156         /*
1157          * The previous task needs to be made eligible for pushing
1158          * if it is still active
1159          */
1160         if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
1161                 enqueue_pushable_task(rq, p);
1162 }
1163
1164 #ifdef CONFIG_SMP
1165
1166 /* Only try algorithms three times */
1167 #define RT_MAX_TRIES 3
1168
1169 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1170
1171 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1172 {
1173         if (!task_running(rq, p) &&
1174             (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
1175             (p->rt.nr_cpus_allowed > 1))
1176                 return 1;
1177         return 0;
1178 }
1179
1180 /* Return the second highest RT task, NULL otherwise */
1181 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1182 {
1183         struct task_struct *next = NULL;
1184         struct sched_rt_entity *rt_se;
1185         struct rt_prio_array *array;
1186         struct rt_rq *rt_rq;
1187         int idx;
1188
1189         for_each_leaf_rt_rq(rt_rq, rq) {
1190                 array = &rt_rq->active;
1191                 idx = sched_find_first_bit(array->bitmap);
1192 next_idx:
1193                 if (idx >= MAX_RT_PRIO)
1194                         continue;
1195                 if (next && next->prio < idx)
1196                         continue;
1197                 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1198                         struct task_struct *p;
1199
1200                         if (!rt_entity_is_task(rt_se))
1201                                 continue;
1202
1203                         p = rt_task_of(rt_se);
1204                         if (pick_rt_task(rq, p, cpu)) {
1205                                 next = p;
1206                                 break;
1207                         }
1208                 }
1209                 if (!next) {
1210                         idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1211                         goto next_idx;
1212                 }
1213         }
1214
1215         return next;
1216 }
1217
1218 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1219
1220 static int find_lowest_rq(struct task_struct *task)
1221 {
1222         struct sched_domain *sd;
1223         struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1224         int this_cpu = smp_processor_id();
1225         int cpu      = task_cpu(task);
1226
1227         if (task->rt.nr_cpus_allowed == 1)
1228                 return -1; /* No other targets possible */
1229
1230         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1231                 return -1; /* No targets found */
1232
1233         /*
1234          * At this point we have built a mask of cpus representing the
1235          * lowest priority tasks in the system.  Now we want to elect
1236          * the best one based on our affinity and topology.
1237          *
1238          * We prioritize the last cpu that the task executed on since
1239          * it is most likely cache-hot in that location.
1240          */
1241         if (cpumask_test_cpu(cpu, lowest_mask))
1242                 return cpu;
1243
1244         /*
1245          * Otherwise, we consult the sched_domains span maps to figure
1246          * out which cpu is logically closest to our hot cache data.
1247          */
1248         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1249                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1250
1251         for_each_domain(cpu, sd) {
1252                 if (sd->flags & SD_WAKE_AFFINE) {
1253                         int best_cpu;
1254
1255                         /*
1256                          * "this_cpu" is cheaper to preempt than a
1257                          * remote processor.
1258                          */
1259                         if (this_cpu != -1 &&
1260                             cpumask_test_cpu(this_cpu, sched_domain_span(sd)))
1261                                 return this_cpu;
1262
1263                         best_cpu = cpumask_first_and(lowest_mask,
1264                                                      sched_domain_span(sd));
1265                         if (best_cpu < nr_cpu_ids)
1266                                 return best_cpu;
1267                 }
1268         }
1269
1270         /*
1271          * And finally, if there were no matches within the domains
1272          * just give the caller *something* to work with from the compatible
1273          * locations.
1274          */
1275         if (this_cpu != -1)
1276                 return this_cpu;
1277
1278         cpu = cpumask_any(lowest_mask);
1279         if (cpu < nr_cpu_ids)
1280                 return cpu;
1281         return -1;
1282 }
1283
1284 /* Will lock the rq it finds */
1285 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1286 {
1287         struct rq *lowest_rq = NULL;
1288         int tries;
1289         int cpu;
1290
1291         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1292                 cpu = find_lowest_rq(task);
1293
1294                 if ((cpu == -1) || (cpu == rq->cpu))
1295                         break;
1296
1297                 lowest_rq = cpu_rq(cpu);
1298
1299                 /* if the prio of this runqueue changed, try again */
1300                 if (double_lock_balance(rq, lowest_rq)) {
1301                         /*
1302                          * We had to unlock the run queue. In
1303                          * the mean time, task could have
1304                          * migrated already or had its affinity changed.
1305                          * Also make sure that it wasn't scheduled on its rq.
1306                          */
1307                         if (unlikely(task_rq(task) != rq ||
1308                                      !cpumask_test_cpu(lowest_rq->cpu,
1309                                                        &task->cpus_allowed) ||
1310                                      task_running(rq, task) ||
1311                                      !task->on_rq)) {
1312
1313                                 raw_spin_unlock(&lowest_rq->lock);
1314                                 lowest_rq = NULL;
1315                                 break;
1316                         }
1317                 }
1318
1319                 /* If this rq is still suitable use it. */
1320                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1321                         break;
1322
1323                 /* try again */
1324                 double_unlock_balance(rq, lowest_rq);
1325                 lowest_rq = NULL;
1326         }
1327
1328         return lowest_rq;
1329 }
1330
1331 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1332 {
1333         struct task_struct *p;
1334
1335         if (!has_pushable_tasks(rq))
1336                 return NULL;
1337
1338         p = plist_first_entry(&rq->rt.pushable_tasks,
1339                               struct task_struct, pushable_tasks);
1340
1341         BUG_ON(rq->cpu != task_cpu(p));
1342         BUG_ON(task_current(rq, p));
1343         BUG_ON(p->rt.nr_cpus_allowed <= 1);
1344
1345         BUG_ON(!p->on_rq);
1346         BUG_ON(!rt_task(p));
1347
1348         return p;
1349 }
1350
1351 /*
1352  * If the current CPU has more than one RT task, see if the non
1353  * running task can migrate over to a CPU that is running a task
1354  * of lesser priority.
1355  */
1356 static int push_rt_task(struct rq *rq)
1357 {
1358         struct task_struct *next_task;
1359         struct rq *lowest_rq;
1360
1361         if (!rq->rt.overloaded)
1362                 return 0;
1363
1364         next_task = pick_next_pushable_task(rq);
1365         if (!next_task)
1366                 return 0;
1367
1368 retry:
1369         if (unlikely(next_task == rq->curr)) {
1370                 WARN_ON(1);
1371                 return 0;
1372         }
1373
1374         /*
1375          * It's possible that the next_task slipped in of
1376          * higher priority than current. If that's the case
1377          * just reschedule current.
1378          */
1379         if (unlikely(next_task->prio < rq->curr->prio)) {
1380                 resched_task(rq->curr);
1381                 return 0;
1382         }
1383
1384         /* We might release rq lock */
1385         get_task_struct(next_task);
1386
1387         /* find_lock_lowest_rq locks the rq if found */
1388         lowest_rq = find_lock_lowest_rq(next_task, rq);
1389         if (!lowest_rq) {
1390                 struct task_struct *task;
1391                 /*
1392                  * find lock_lowest_rq releases rq->lock
1393                  * so it is possible that next_task has migrated.
1394                  *
1395                  * We need to make sure that the task is still on the same
1396                  * run-queue and is also still the next task eligible for
1397                  * pushing.
1398                  */
1399                 task = pick_next_pushable_task(rq);
1400                 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1401                         /*
1402                          * If we get here, the task hasn't moved at all, but
1403                          * it has failed to push.  We will not try again,
1404                          * since the other cpus will pull from us when they
1405                          * are ready.
1406                          */
1407                         dequeue_pushable_task(rq, next_task);
1408                         goto out;
1409                 }
1410
1411                 if (!task)
1412                         /* No more tasks, just exit */
1413                         goto out;
1414
1415                 /*
1416                  * Something has shifted, try again.
1417                  */
1418                 put_task_struct(next_task);
1419                 next_task = task;
1420                 goto retry;
1421         }
1422
1423         deactivate_task(rq, next_task, 0);
1424         set_task_cpu(next_task, lowest_rq->cpu);
1425         activate_task(lowest_rq, next_task, 0);
1426
1427         resched_task(lowest_rq->curr);
1428
1429         double_unlock_balance(rq, lowest_rq);
1430
1431 out:
1432         put_task_struct(next_task);
1433
1434         return 1;
1435 }
1436
1437 static void push_rt_tasks(struct rq *rq)
1438 {
1439         /* push_rt_task will return true if it moved an RT */
1440         while (push_rt_task(rq))
1441                 ;
1442 }
1443
1444 static int pull_rt_task(struct rq *this_rq)
1445 {
1446         int this_cpu = this_rq->cpu, ret = 0, cpu;
1447         struct task_struct *p;
1448         struct rq *src_rq;
1449
1450         if (likely(!rt_overloaded(this_rq)))
1451                 return 0;
1452
1453         for_each_cpu(cpu, this_rq->rd->rto_mask) {
1454                 if (this_cpu == cpu)
1455                         continue;
1456
1457                 src_rq = cpu_rq(cpu);
1458
1459                 /*
1460                  * Don't bother taking the src_rq->lock if the next highest
1461                  * task is known to be lower-priority than our current task.
1462                  * This may look racy, but if this value is about to go
1463                  * logically higher, the src_rq will push this task away.
1464                  * And if its going logically lower, we do not care
1465                  */
1466                 if (src_rq->rt.highest_prio.next >=
1467                     this_rq->rt.highest_prio.curr)
1468                         continue;
1469
1470                 /*
1471                  * We can potentially drop this_rq's lock in
1472                  * double_lock_balance, and another CPU could
1473                  * alter this_rq
1474                  */
1475                 double_lock_balance(this_rq, src_rq);
1476
1477                 /*
1478                  * Are there still pullable RT tasks?
1479                  */
1480                 if (src_rq->rt.rt_nr_running <= 1)
1481                         goto skip;
1482
1483                 p = pick_next_highest_task_rt(src_rq, this_cpu);
1484
1485                 /*
1486                  * Do we have an RT task that preempts
1487                  * the to-be-scheduled task?
1488                  */
1489                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1490                         WARN_ON(p == src_rq->curr);
1491                         WARN_ON(!p->on_rq);
1492
1493                         /*
1494                          * There's a chance that p is higher in priority
1495                          * than what's currently running on its cpu.
1496                          * This is just that p is wakeing up and hasn't
1497                          * had a chance to schedule. We only pull
1498                          * p if it is lower in priority than the
1499                          * current task on the run queue
1500                          */
1501                         if (p->prio < src_rq->curr->prio)
1502                                 goto skip;
1503
1504                         ret = 1;
1505
1506                         deactivate_task(src_rq, p, 0);
1507                         set_task_cpu(p, this_cpu);
1508                         activate_task(this_rq, p, 0);
1509                         /*
1510                          * We continue with the search, just in
1511                          * case there's an even higher prio task
1512                          * in another runqueue. (low likelihood
1513                          * but possible)
1514                          */
1515                 }
1516 skip:
1517                 double_unlock_balance(this_rq, src_rq);
1518         }
1519
1520         return ret;
1521 }
1522
1523 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1524 {
1525         /* Try to pull RT tasks here if we lower this rq's prio */
1526         if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
1527                 pull_rt_task(rq);
1528 }
1529
1530 static void post_schedule_rt(struct rq *rq)
1531 {
1532         push_rt_tasks(rq);
1533 }
1534
1535 /*
1536  * If we are not running and we are not going to reschedule soon, we should
1537  * try to push tasks away now
1538  */
1539 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1540 {
1541         if (!task_running(rq, p) &&
1542             !test_tsk_need_resched(rq->curr) &&
1543             has_pushable_tasks(rq) &&
1544             p->rt.nr_cpus_allowed > 1 &&
1545             rt_task(rq->curr) &&
1546             (rq->curr->rt.nr_cpus_allowed < 2 ||
1547              rq->curr->prio < p->prio))
1548                 push_rt_tasks(rq);
1549 }
1550
1551 static void set_cpus_allowed_rt(struct task_struct *p,
1552                                 const struct cpumask *new_mask)
1553 {
1554         int weight = cpumask_weight(new_mask);
1555
1556         BUG_ON(!rt_task(p));
1557
1558         /*
1559          * Update the migration status of the RQ if we have an RT task
1560          * which is running AND changing its weight value.
1561          */
1562         if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
1563                 struct rq *rq = task_rq(p);
1564
1565                 if (!task_current(rq, p)) {
1566                         /*
1567                          * Make sure we dequeue this task from the pushable list
1568                          * before going further.  It will either remain off of
1569                          * the list because we are no longer pushable, or it
1570                          * will be requeued.
1571                          */
1572                         if (p->rt.nr_cpus_allowed > 1)
1573                                 dequeue_pushable_task(rq, p);
1574
1575                         /*
1576                          * Requeue if our weight is changing and still > 1
1577                          */
1578                         if (weight > 1)
1579                                 enqueue_pushable_task(rq, p);
1580
1581                 }
1582
1583                 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1584                         rq->rt.rt_nr_migratory++;
1585                 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1586                         BUG_ON(!rq->rt.rt_nr_migratory);
1587                         rq->rt.rt_nr_migratory--;
1588                 }
1589
1590                 update_rt_migration(&rq->rt);
1591         }
1592
1593         cpumask_copy(&p->cpus_allowed, new_mask);
1594         p->rt.nr_cpus_allowed = weight;
1595 }
1596
1597 /* Assumes rq->lock is held */
1598 static void rq_online_rt(struct rq *rq)
1599 {
1600         if (rq->rt.overloaded)
1601                 rt_set_overload(rq);
1602
1603         __enable_runtime(rq);
1604
1605         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1606 }
1607
1608 /* Assumes rq->lock is held */
1609 static void rq_offline_rt(struct rq *rq)
1610 {
1611         if (rq->rt.overloaded)
1612                 rt_clear_overload(rq);
1613
1614         __disable_runtime(rq);
1615
1616         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1617 }
1618
1619 /*
1620  * When switch from the rt queue, we bring ourselves to a position
1621  * that we might want to pull RT tasks from other runqueues.
1622  */
1623 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1624 {
1625         /*
1626          * If there are other RT tasks then we will reschedule
1627          * and the scheduling of the other RT tasks will handle
1628          * the balancing. But if we are the last RT task
1629          * we may need to handle the pulling of RT tasks
1630          * now.
1631          */
1632         if (p->on_rq && !rq->rt.rt_nr_running)
1633                 pull_rt_task(rq);
1634 }
1635
1636 static inline void init_sched_rt_class(void)
1637 {
1638         unsigned int i;
1639
1640         for_each_possible_cpu(i)
1641                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1642                                         GFP_KERNEL, cpu_to_node(i));
1643 }
1644 #endif /* CONFIG_SMP */
1645
1646 /*
1647  * When switching a task to RT, we may overload the runqueue
1648  * with RT tasks. In this case we try to push them off to
1649  * other runqueues.
1650  */
1651 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1652 {
1653         int check_resched = 1;
1654
1655         /*
1656          * If we are already running, then there's nothing
1657          * that needs to be done. But if we are not running
1658          * we may need to preempt the current running task.
1659          * If that current running task is also an RT task
1660          * then see if we can move to another run queue.
1661          */
1662         if (p->on_rq && rq->curr != p) {
1663 #ifdef CONFIG_SMP
1664                 if (rq->rt.overloaded && push_rt_task(rq) &&
1665                     /* Don't resched if we changed runqueues */
1666                     rq != task_rq(p))
1667                         check_resched = 0;
1668 #endif /* CONFIG_SMP */
1669                 if (check_resched && p->prio < rq->curr->prio)
1670                         resched_task(rq->curr);
1671         }
1672 }
1673
1674 /*
1675  * Priority of the task has changed. This may cause
1676  * us to initiate a push or pull.
1677  */
1678 static void
1679 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1680 {
1681         if (!p->on_rq)
1682                 return;
1683
1684         if (rq->curr == p) {
1685 #ifdef CONFIG_SMP
1686                 /*
1687                  * If our priority decreases while running, we
1688                  * may need to pull tasks to this runqueue.
1689                  */
1690                 if (oldprio < p->prio)
1691                         pull_rt_task(rq);
1692                 /*
1693                  * If there's a higher priority task waiting to run
1694                  * then reschedule. Note, the above pull_rt_task
1695                  * can release the rq lock and p could migrate.
1696                  * Only reschedule if p is still on the same runqueue.
1697                  */
1698                 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1699                         resched_task(p);
1700 #else
1701                 /* For UP simply resched on drop of prio */
1702                 if (oldprio < p->prio)
1703                         resched_task(p);
1704 #endif /* CONFIG_SMP */
1705         } else {
1706                 /*
1707                  * This task is not running, but if it is
1708                  * greater than the current running task
1709                  * then reschedule.
1710                  */
1711                 if (p->prio < rq->curr->prio)
1712                         resched_task(rq->curr);
1713         }
1714 }
1715
1716 static void watchdog(struct rq *rq, struct task_struct *p)
1717 {
1718         unsigned long soft, hard;
1719
1720         /* max may change after cur was read, this will be fixed next tick */
1721         soft = task_rlimit(p, RLIMIT_RTTIME);
1722         hard = task_rlimit_max(p, RLIMIT_RTTIME);
1723
1724         if (soft != RLIM_INFINITY) {
1725                 unsigned long next;
1726
1727                 p->rt.timeout++;
1728                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1729                 if (p->rt.timeout > next)
1730                         p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1731         }
1732 }
1733
1734 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1735 {
1736         update_curr_rt(rq);
1737
1738         watchdog(rq, p);
1739
1740         /*
1741          * RR tasks need a special form of timeslice management.
1742          * FIFO tasks have no timeslices.
1743          */
1744         if (p->policy != SCHED_RR)
1745                 return;
1746
1747         if (--p->rt.time_slice)
1748                 return;
1749
1750         p->rt.time_slice = DEF_TIMESLICE;
1751
1752         /*
1753          * Requeue to the end of queue if we are not the only element
1754          * on the queue:
1755          */
1756         if (p->rt.run_list.prev != p->rt.run_list.next) {
1757                 requeue_task_rt(rq, p, 0);
1758                 set_tsk_need_resched(p);
1759         }
1760 }
1761
1762 static void set_curr_task_rt(struct rq *rq)
1763 {
1764         struct task_struct *p = rq->curr;
1765
1766         p->se.exec_start = rq->clock_task;
1767
1768         /* The running task is never eligible for pushing */
1769         dequeue_pushable_task(rq, p);
1770 }
1771
1772 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1773 {
1774         /*
1775          * Time slice is 0 for SCHED_FIFO tasks
1776          */
1777         if (task->policy == SCHED_RR)
1778                 return DEF_TIMESLICE;
1779         else
1780                 return 0;
1781 }
1782
1783 static const struct sched_class rt_sched_class = {
1784         .next                   = &fair_sched_class,
1785         .enqueue_task           = enqueue_task_rt,
1786         .dequeue_task           = dequeue_task_rt,
1787         .yield_task             = yield_task_rt,
1788
1789         .check_preempt_curr     = check_preempt_curr_rt,
1790
1791         .pick_next_task         = pick_next_task_rt,
1792         .put_prev_task          = put_prev_task_rt,
1793
1794 #ifdef CONFIG_SMP
1795         .select_task_rq         = select_task_rq_rt,
1796
1797         .set_cpus_allowed       = set_cpus_allowed_rt,
1798         .rq_online              = rq_online_rt,
1799         .rq_offline             = rq_offline_rt,
1800         .pre_schedule           = pre_schedule_rt,
1801         .post_schedule          = post_schedule_rt,
1802         .task_woken             = task_woken_rt,
1803         .switched_from          = switched_from_rt,
1804 #endif
1805
1806         .set_curr_task          = set_curr_task_rt,
1807         .task_tick              = task_tick_rt,
1808
1809         .get_rr_interval        = get_rr_interval_rt,
1810
1811         .prio_changed           = prio_changed_rt,
1812         .switched_to            = switched_to_rt,
1813 };
1814
1815 #ifdef CONFIG_SCHED_DEBUG
1816 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1817
1818 static void print_rt_stats(struct seq_file *m, int cpu)
1819 {
1820         struct rt_rq *rt_rq;
1821
1822         rcu_read_lock();
1823         for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1824                 print_rt_rq(m, cpu, rt_rq);
1825         rcu_read_unlock();
1826 }
1827 #endif /* CONFIG_SCHED_DEBUG */
1828