[PATCH] sched: balance timers
[pandora-kernel.git] / kernel / sched.c
1 /*
2  *  kernel/sched.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
51
52 #include <asm/unistd.h>
53
54 /*
55  * Convert user-nice values [ -20 ... 0 ... 19 ]
56  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57  * and back.
58  */
59 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
62
63 /*
64  * 'User priority' is the nice value converted to something we
65  * can work with better when scaling various scheduler parameters,
66  * it's a [ 0 ... 39 ] range.
67  */
68 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
71
72 /*
73  * Some helpers for converting nanosecond timing to jiffy resolution
74  */
75 #define NS_TO_JIFFIES(TIME)     ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME)     ((TIME) * (1000000000 / HZ))
77
78 /*
79  * These are the 'tuning knobs' of the scheduler:
80  *
81  * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82  * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83  * Timeslices get refilled after they expire.
84  */
85 #define MIN_TIMESLICE           max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE           (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT       30
88 #define CHILD_PENALTY            95
89 #define PARENT_PENALTY          100
90 #define EXIT_WEIGHT               3
91 #define PRIO_BONUS_RATIO         25
92 #define MAX_BONUS               (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA         2
94 #define MAX_SLEEP_AVG           (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT        (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG        (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98 /*
99  * If a task is 'interactive' then we reinsert it in the active
100  * array after it has expired its current timeslice. (it will not
101  * continue to run immediately, it will still roundrobin with
102  * other interactive tasks.)
103  *
104  * This part scales the interactivity limit depending on niceness.
105  *
106  * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107  * Here are a few examples of different nice levels:
108  *
109  *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110  *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111  *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
112  *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113  *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114  *
115  * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116  *  priority range a task can explore, a value of '1' means the
117  *  task is rated interactive.)
118  *
119  * Ie. nice +19 tasks can never get 'interactive' enough to be
120  * reinserted into the active array. And only heavily CPU-hog nice -20
121  * tasks will be expired. Default nice 0 tasks are somewhere between,
122  * it takes some effort for them to get interactive, but it's not
123  * too hard.
124  */
125
126 #define CURRENT_BONUS(p) \
127         (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128                 MAX_SLEEP_AVG)
129
130 #define GRANULARITY     (10 * HZ / 1000 ? : 1)
131
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
134                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135                         num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
138                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
140
141 #define SCALE(v1,v1_max,v2_max) \
142         (v1) * (v2_max) / (v1_max)
143
144 #define DELTA(p) \
145         (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147 #define TASK_INTERACTIVE(p) \
148         ((p)->prio <= (p)->static_prio - DELTA(p))
149
150 #define INTERACTIVE_SLEEP(p) \
151         (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152                 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154 #define TASK_PREEMPTS_CURR(p, rq) \
155         ((p)->prio < (rq)->curr->prio)
156
157 /*
158  * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159  * to time slice values: [800ms ... 100ms ... 5ms]
160  *
161  * The higher a thread's priority, the bigger timeslices
162  * it gets during one round of execution. But even the lowest
163  * priority thread gets MIN_TIMESLICE worth of execution time.
164  */
165
166 #define SCALE_PRIO(x, prio) \
167         max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
169 static inline unsigned int task_timeslice(task_t *p)
170 {
171         if (p->static_prio < NICE_TO_PRIO(0))
172                 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173         else
174                 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175 }
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)       \
177                                 < (long long) (sd)->cache_hot_time)
178
179 /*
180  * These are the runqueue data structures:
181  */
182
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185 typedef struct runqueue runqueue_t;
186
187 struct prio_array {
188         unsigned int nr_active;
189         unsigned long bitmap[BITMAP_SIZE];
190         struct list_head queue[MAX_PRIO];
191 };
192
193 /*
194  * This is the main, per-CPU runqueue data structure.
195  *
196  * Locking rule: those places that want to lock multiple runqueues
197  * (such as the load balancing or the thread migration code), lock
198  * acquire operations must be ordered by ascending &runqueue.
199  */
200 struct runqueue {
201         spinlock_t lock;
202
203         /*
204          * nr_running and cpu_load should be in the same cacheline because
205          * remote CPUs use both these fields when doing load calculation.
206          */
207         unsigned long nr_running;
208 #ifdef CONFIG_SMP
209         unsigned long cpu_load[3];
210 #endif
211         unsigned long long nr_switches;
212
213         /*
214          * This is part of a global counter where only the total sum
215          * over all CPUs matters. A task can increase this counter on
216          * one CPU and if it got migrated afterwards it may decrease
217          * it on another CPU. Always updated under the runqueue lock:
218          */
219         unsigned long nr_uninterruptible;
220
221         unsigned long expired_timestamp;
222         unsigned long long timestamp_last_tick;
223         task_t *curr, *idle;
224         struct mm_struct *prev_mm;
225         prio_array_t *active, *expired, arrays[2];
226         int best_expired_prio;
227         atomic_t nr_iowait;
228
229 #ifdef CONFIG_SMP
230         struct sched_domain *sd;
231
232         /* For active balancing */
233         int active_balance;
234         int push_cpu;
235
236         task_t *migration_thread;
237         struct list_head migration_queue;
238 #endif
239
240 #ifdef CONFIG_SCHEDSTATS
241         /* latency stats */
242         struct sched_info rq_sched_info;
243
244         /* sys_sched_yield() stats */
245         unsigned long yld_exp_empty;
246         unsigned long yld_act_empty;
247         unsigned long yld_both_empty;
248         unsigned long yld_cnt;
249
250         /* schedule() stats */
251         unsigned long sched_switch;
252         unsigned long sched_cnt;
253         unsigned long sched_goidle;
254
255         /* try_to_wake_up() stats */
256         unsigned long ttwu_cnt;
257         unsigned long ttwu_local;
258 #endif
259 };
260
261 static DEFINE_PER_CPU(struct runqueue, runqueues);
262
263 #define for_each_domain(cpu, domain) \
264         for (domain = cpu_rq(cpu)->sd; domain; domain = domain->parent)
265
266 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
267 #define this_rq()               (&__get_cpu_var(runqueues))
268 #define task_rq(p)              cpu_rq(task_cpu(p))
269 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
270
271 /*
272  * Default context-switch locking:
273  */
274 #ifndef prepare_arch_switch
275 # define prepare_arch_switch(rq, next)  do { } while (0)
276 # define finish_arch_switch(rq, next)   spin_unlock_irq(&(rq)->lock)
277 # define task_running(rq, p)            ((rq)->curr == (p))
278 #endif
279
280 /*
281  * task_rq_lock - lock the runqueue a given task resides on and disable
282  * interrupts.  Note the ordering: we can safely lookup the task_rq without
283  * explicitly disabling preemption.
284  */
285 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
286         __acquires(rq->lock)
287 {
288         struct runqueue *rq;
289
290 repeat_lock_task:
291         local_irq_save(*flags);
292         rq = task_rq(p);
293         spin_lock(&rq->lock);
294         if (unlikely(rq != task_rq(p))) {
295                 spin_unlock_irqrestore(&rq->lock, *flags);
296                 goto repeat_lock_task;
297         }
298         return rq;
299 }
300
301 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
302         __releases(rq->lock)
303 {
304         spin_unlock_irqrestore(&rq->lock, *flags);
305 }
306
307 #ifdef CONFIG_SCHEDSTATS
308 /*
309  * bump this up when changing the output format or the meaning of an existing
310  * format, so that tools can adapt (or abort)
311  */
312 #define SCHEDSTAT_VERSION 11
313
314 static int show_schedstat(struct seq_file *seq, void *v)
315 {
316         int cpu;
317
318         seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
319         seq_printf(seq, "timestamp %lu\n", jiffies);
320         for_each_online_cpu(cpu) {
321                 runqueue_t *rq = cpu_rq(cpu);
322 #ifdef CONFIG_SMP
323                 struct sched_domain *sd;
324                 int dcnt = 0;
325 #endif
326
327                 /* runqueue-specific stats */
328                 seq_printf(seq,
329                     "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
330                     cpu, rq->yld_both_empty,
331                     rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
332                     rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
333                     rq->ttwu_cnt, rq->ttwu_local,
334                     rq->rq_sched_info.cpu_time,
335                     rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
336
337                 seq_printf(seq, "\n");
338
339 #ifdef CONFIG_SMP
340                 /* domain-specific stats */
341                 for_each_domain(cpu, sd) {
342                         enum idle_type itype;
343                         char mask_str[NR_CPUS];
344
345                         cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
346                         seq_printf(seq, "domain%d %s", dcnt++, mask_str);
347                         for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
348                                         itype++) {
349                                 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
350                                     sd->lb_cnt[itype],
351                                     sd->lb_balanced[itype],
352                                     sd->lb_failed[itype],
353                                     sd->lb_imbalance[itype],
354                                     sd->lb_gained[itype],
355                                     sd->lb_hot_gained[itype],
356                                     sd->lb_nobusyq[itype],
357                                     sd->lb_nobusyg[itype]);
358                         }
359                         seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu\n",
360                             sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
361                             sd->sbe_pushed, sd->sbe_attempts,
362                             sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
363                 }
364 #endif
365         }
366         return 0;
367 }
368
369 static int schedstat_open(struct inode *inode, struct file *file)
370 {
371         unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
372         char *buf = kmalloc(size, GFP_KERNEL);
373         struct seq_file *m;
374         int res;
375
376         if (!buf)
377                 return -ENOMEM;
378         res = single_open(file, show_schedstat, NULL);
379         if (!res) {
380                 m = file->private_data;
381                 m->buf = buf;
382                 m->size = size;
383         } else
384                 kfree(buf);
385         return res;
386 }
387
388 struct file_operations proc_schedstat_operations = {
389         .open    = schedstat_open,
390         .read    = seq_read,
391         .llseek  = seq_lseek,
392         .release = single_release,
393 };
394
395 # define schedstat_inc(rq, field)       do { (rq)->field++; } while (0)
396 # define schedstat_add(rq, field, amt)  do { (rq)->field += (amt); } while (0)
397 #else /* !CONFIG_SCHEDSTATS */
398 # define schedstat_inc(rq, field)       do { } while (0)
399 # define schedstat_add(rq, field, amt)  do { } while (0)
400 #endif
401
402 /*
403  * rq_lock - lock a given runqueue and disable interrupts.
404  */
405 static inline runqueue_t *this_rq_lock(void)
406         __acquires(rq->lock)
407 {
408         runqueue_t *rq;
409
410         local_irq_disable();
411         rq = this_rq();
412         spin_lock(&rq->lock);
413
414         return rq;
415 }
416
417 #ifdef CONFIG_SCHED_SMT
418 static int cpu_and_siblings_are_idle(int cpu)
419 {
420         int sib;
421         for_each_cpu_mask(sib, cpu_sibling_map[cpu]) {
422                 if (idle_cpu(sib))
423                         continue;
424                 return 0;
425         }
426
427         return 1;
428 }
429 #else
430 #define cpu_and_siblings_are_idle(A) idle_cpu(A)
431 #endif
432
433 #ifdef CONFIG_SCHEDSTATS
434 /*
435  * Called when a process is dequeued from the active array and given
436  * the cpu.  We should note that with the exception of interactive
437  * tasks, the expired queue will become the active queue after the active
438  * queue is empty, without explicitly dequeuing and requeuing tasks in the
439  * expired queue.  (Interactive tasks may be requeued directly to the
440  * active queue, thus delaying tasks in the expired queue from running;
441  * see scheduler_tick()).
442  *
443  * This function is only called from sched_info_arrive(), rather than
444  * dequeue_task(). Even though a task may be queued and dequeued multiple
445  * times as it is shuffled about, we're really interested in knowing how
446  * long it was from the *first* time it was queued to the time that it
447  * finally hit a cpu.
448  */
449 static inline void sched_info_dequeued(task_t *t)
450 {
451         t->sched_info.last_queued = 0;
452 }
453
454 /*
455  * Called when a task finally hits the cpu.  We can now calculate how
456  * long it was waiting to run.  We also note when it began so that we
457  * can keep stats on how long its timeslice is.
458  */
459 static inline void sched_info_arrive(task_t *t)
460 {
461         unsigned long now = jiffies, diff = 0;
462         struct runqueue *rq = task_rq(t);
463
464         if (t->sched_info.last_queued)
465                 diff = now - t->sched_info.last_queued;
466         sched_info_dequeued(t);
467         t->sched_info.run_delay += diff;
468         t->sched_info.last_arrival = now;
469         t->sched_info.pcnt++;
470
471         if (!rq)
472                 return;
473
474         rq->rq_sched_info.run_delay += diff;
475         rq->rq_sched_info.pcnt++;
476 }
477
478 /*
479  * Called when a process is queued into either the active or expired
480  * array.  The time is noted and later used to determine how long we
481  * had to wait for us to reach the cpu.  Since the expired queue will
482  * become the active queue after active queue is empty, without dequeuing
483  * and requeuing any tasks, we are interested in queuing to either. It
484  * is unusual but not impossible for tasks to be dequeued and immediately
485  * requeued in the same or another array: this can happen in sched_yield(),
486  * set_user_nice(), and even load_balance() as it moves tasks from runqueue
487  * to runqueue.
488  *
489  * This function is only called from enqueue_task(), but also only updates
490  * the timestamp if it is already not set.  It's assumed that
491  * sched_info_dequeued() will clear that stamp when appropriate.
492  */
493 static inline void sched_info_queued(task_t *t)
494 {
495         if (!t->sched_info.last_queued)
496                 t->sched_info.last_queued = jiffies;
497 }
498
499 /*
500  * Called when a process ceases being the active-running process, either
501  * voluntarily or involuntarily.  Now we can calculate how long we ran.
502  */
503 static inline void sched_info_depart(task_t *t)
504 {
505         struct runqueue *rq = task_rq(t);
506         unsigned long diff = jiffies - t->sched_info.last_arrival;
507
508         t->sched_info.cpu_time += diff;
509
510         if (rq)
511                 rq->rq_sched_info.cpu_time += diff;
512 }
513
514 /*
515  * Called when tasks are switched involuntarily due, typically, to expiring
516  * their time slice.  (This may also be called when switching to or from
517  * the idle task.)  We are only called when prev != next.
518  */
519 static inline void sched_info_switch(task_t *prev, task_t *next)
520 {
521         struct runqueue *rq = task_rq(prev);
522
523         /*
524          * prev now departs the cpu.  It's not interesting to record
525          * stats about how efficient we were at scheduling the idle
526          * process, however.
527          */
528         if (prev != rq->idle)
529                 sched_info_depart(prev);
530
531         if (next != rq->idle)
532                 sched_info_arrive(next);
533 }
534 #else
535 #define sched_info_queued(t)            do { } while (0)
536 #define sched_info_switch(t, next)      do { } while (0)
537 #endif /* CONFIG_SCHEDSTATS */
538
539 /*
540  * Adding/removing a task to/from a priority array:
541  */
542 static void dequeue_task(struct task_struct *p, prio_array_t *array)
543 {
544         array->nr_active--;
545         list_del(&p->run_list);
546         if (list_empty(array->queue + p->prio))
547                 __clear_bit(p->prio, array->bitmap);
548 }
549
550 static void enqueue_task(struct task_struct *p, prio_array_t *array)
551 {
552         sched_info_queued(p);
553         list_add_tail(&p->run_list, array->queue + p->prio);
554         __set_bit(p->prio, array->bitmap);
555         array->nr_active++;
556         p->array = array;
557 }
558
559 /*
560  * Put task to the end of the run list without the overhead of dequeue
561  * followed by enqueue.
562  */
563 static void requeue_task(struct task_struct *p, prio_array_t *array)
564 {
565         list_move_tail(&p->run_list, array->queue + p->prio);
566 }
567
568 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
569 {
570         list_add(&p->run_list, array->queue + p->prio);
571         __set_bit(p->prio, array->bitmap);
572         array->nr_active++;
573         p->array = array;
574 }
575
576 /*
577  * effective_prio - return the priority that is based on the static
578  * priority but is modified by bonuses/penalties.
579  *
580  * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
581  * into the -5 ... 0 ... +5 bonus/penalty range.
582  *
583  * We use 25% of the full 0...39 priority range so that:
584  *
585  * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
586  * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
587  *
588  * Both properties are important to certain workloads.
589  */
590 static int effective_prio(task_t *p)
591 {
592         int bonus, prio;
593
594         if (rt_task(p))
595                 return p->prio;
596
597         bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
598
599         prio = p->static_prio - bonus;
600         if (prio < MAX_RT_PRIO)
601                 prio = MAX_RT_PRIO;
602         if (prio > MAX_PRIO-1)
603                 prio = MAX_PRIO-1;
604         return prio;
605 }
606
607 /*
608  * __activate_task - move a task to the runqueue.
609  */
610 static inline void __activate_task(task_t *p, runqueue_t *rq)
611 {
612         enqueue_task(p, rq->active);
613         rq->nr_running++;
614 }
615
616 /*
617  * __activate_idle_task - move idle task to the _front_ of runqueue.
618  */
619 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
620 {
621         enqueue_task_head(p, rq->active);
622         rq->nr_running++;
623 }
624
625 static void recalc_task_prio(task_t *p, unsigned long long now)
626 {
627         /* Caller must always ensure 'now >= p->timestamp' */
628         unsigned long long __sleep_time = now - p->timestamp;
629         unsigned long sleep_time;
630
631         if (__sleep_time > NS_MAX_SLEEP_AVG)
632                 sleep_time = NS_MAX_SLEEP_AVG;
633         else
634                 sleep_time = (unsigned long)__sleep_time;
635
636         if (likely(sleep_time > 0)) {
637                 /*
638                  * User tasks that sleep a long time are categorised as
639                  * idle and will get just interactive status to stay active &
640                  * prevent them suddenly becoming cpu hogs and starving
641                  * other processes.
642                  */
643                 if (p->mm && p->activated != -1 &&
644                         sleep_time > INTERACTIVE_SLEEP(p)) {
645                                 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
646                                                 DEF_TIMESLICE);
647                 } else {
648                         /*
649                          * The lower the sleep avg a task has the more
650                          * rapidly it will rise with sleep time.
651                          */
652                         sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
653
654                         /*
655                          * Tasks waking from uninterruptible sleep are
656                          * limited in their sleep_avg rise as they
657                          * are likely to be waiting on I/O
658                          */
659                         if (p->activated == -1 && p->mm) {
660                                 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
661                                         sleep_time = 0;
662                                 else if (p->sleep_avg + sleep_time >=
663                                                 INTERACTIVE_SLEEP(p)) {
664                                         p->sleep_avg = INTERACTIVE_SLEEP(p);
665                                         sleep_time = 0;
666                                 }
667                         }
668
669                         /*
670                          * This code gives a bonus to interactive tasks.
671                          *
672                          * The boost works by updating the 'average sleep time'
673                          * value here, based on ->timestamp. The more time a
674                          * task spends sleeping, the higher the average gets -
675                          * and the higher the priority boost gets as well.
676                          */
677                         p->sleep_avg += sleep_time;
678
679                         if (p->sleep_avg > NS_MAX_SLEEP_AVG)
680                                 p->sleep_avg = NS_MAX_SLEEP_AVG;
681                 }
682         }
683
684         p->prio = effective_prio(p);
685 }
686
687 /*
688  * activate_task - move a task to the runqueue and do priority recalculation
689  *
690  * Update all the scheduling statistics stuff. (sleep average
691  * calculation, priority modifiers, etc.)
692  */
693 static void activate_task(task_t *p, runqueue_t *rq, int local)
694 {
695         unsigned long long now;
696
697         now = sched_clock();
698 #ifdef CONFIG_SMP
699         if (!local) {
700                 /* Compensate for drifting sched_clock */
701                 runqueue_t *this_rq = this_rq();
702                 now = (now - this_rq->timestamp_last_tick)
703                         + rq->timestamp_last_tick;
704         }
705 #endif
706
707         recalc_task_prio(p, now);
708
709         /*
710          * This checks to make sure it's not an uninterruptible task
711          * that is now waking up.
712          */
713         if (!p->activated) {
714                 /*
715                  * Tasks which were woken up by interrupts (ie. hw events)
716                  * are most likely of interactive nature. So we give them
717                  * the credit of extending their sleep time to the period
718                  * of time they spend on the runqueue, waiting for execution
719                  * on a CPU, first time around:
720                  */
721                 if (in_interrupt())
722                         p->activated = 2;
723                 else {
724                         /*
725                          * Normal first-time wakeups get a credit too for
726                          * on-runqueue time, but it will be weighted down:
727                          */
728                         p->activated = 1;
729                 }
730         }
731         p->timestamp = now;
732
733         __activate_task(p, rq);
734 }
735
736 /*
737  * deactivate_task - remove a task from the runqueue.
738  */
739 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
740 {
741         rq->nr_running--;
742         dequeue_task(p, p->array);
743         p->array = NULL;
744 }
745
746 /*
747  * resched_task - mark a task 'to be rescheduled now'.
748  *
749  * On UP this means the setting of the need_resched flag, on SMP it
750  * might also involve a cross-CPU call to trigger the scheduler on
751  * the target CPU.
752  */
753 #ifdef CONFIG_SMP
754 static void resched_task(task_t *p)
755 {
756         int need_resched, nrpolling;
757
758         assert_spin_locked(&task_rq(p)->lock);
759
760         /* minimise the chance of sending an interrupt to poll_idle() */
761         nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
762         need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
763         nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
764
765         if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
766                 smp_send_reschedule(task_cpu(p));
767 }
768 #else
769 static inline void resched_task(task_t *p)
770 {
771         set_tsk_need_resched(p);
772 }
773 #endif
774
775 /**
776  * task_curr - is this task currently executing on a CPU?
777  * @p: the task in question.
778  */
779 inline int task_curr(const task_t *p)
780 {
781         return cpu_curr(task_cpu(p)) == p;
782 }
783
784 #ifdef CONFIG_SMP
785 enum request_type {
786         REQ_MOVE_TASK,
787         REQ_SET_DOMAIN,
788 };
789
790 typedef struct {
791         struct list_head list;
792         enum request_type type;
793
794         /* For REQ_MOVE_TASK */
795         task_t *task;
796         int dest_cpu;
797
798         /* For REQ_SET_DOMAIN */
799         struct sched_domain *sd;
800
801         struct completion done;
802 } migration_req_t;
803
804 /*
805  * The task's runqueue lock must be held.
806  * Returns true if you have to wait for migration thread.
807  */
808 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
809 {
810         runqueue_t *rq = task_rq(p);
811
812         /*
813          * If the task is not on a runqueue (and not running), then
814          * it is sufficient to simply update the task's cpu field.
815          */
816         if (!p->array && !task_running(rq, p)) {
817                 set_task_cpu(p, dest_cpu);
818                 return 0;
819         }
820
821         init_completion(&req->done);
822         req->type = REQ_MOVE_TASK;
823         req->task = p;
824         req->dest_cpu = dest_cpu;
825         list_add(&req->list, &rq->migration_queue);
826         return 1;
827 }
828
829 /*
830  * wait_task_inactive - wait for a thread to unschedule.
831  *
832  * The caller must ensure that the task *will* unschedule sometime soon,
833  * else this function might spin for a *long* time. This function can't
834  * be called with interrupts off, or it may introduce deadlock with
835  * smp_call_function() if an IPI is sent by the same process we are
836  * waiting to become inactive.
837  */
838 void wait_task_inactive(task_t * p)
839 {
840         unsigned long flags;
841         runqueue_t *rq;
842         int preempted;
843
844 repeat:
845         rq = task_rq_lock(p, &flags);
846         /* Must be off runqueue entirely, not preempted. */
847         if (unlikely(p->array || task_running(rq, p))) {
848                 /* If it's preempted, we yield.  It could be a while. */
849                 preempted = !task_running(rq, p);
850                 task_rq_unlock(rq, &flags);
851                 cpu_relax();
852                 if (preempted)
853                         yield();
854                 goto repeat;
855         }
856         task_rq_unlock(rq, &flags);
857 }
858
859 /***
860  * kick_process - kick a running thread to enter/exit the kernel
861  * @p: the to-be-kicked thread
862  *
863  * Cause a process which is running on another CPU to enter
864  * kernel-mode, without any delay. (to get signals handled.)
865  *
866  * NOTE: this function doesnt have to take the runqueue lock,
867  * because all it wants to ensure is that the remote task enters
868  * the kernel. If the IPI races and the task has been migrated
869  * to another CPU then no harm is done and the purpose has been
870  * achieved as well.
871  */
872 void kick_process(task_t *p)
873 {
874         int cpu;
875
876         preempt_disable();
877         cpu = task_cpu(p);
878         if ((cpu != smp_processor_id()) && task_curr(p))
879                 smp_send_reschedule(cpu);
880         preempt_enable();
881 }
882
883 /*
884  * Return a low guess at the load of a migration-source cpu.
885  *
886  * We want to under-estimate the load of migration sources, to
887  * balance conservatively.
888  */
889 static inline unsigned long source_load(int cpu, int type)
890 {
891         runqueue_t *rq = cpu_rq(cpu);
892         unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
893         if (type == 0)
894                 return load_now;
895
896         return min(rq->cpu_load[type-1], load_now);
897 }
898
899 /*
900  * Return a high guess at the load of a migration-target cpu
901  */
902 static inline unsigned long target_load(int cpu, int type)
903 {
904         runqueue_t *rq = cpu_rq(cpu);
905         unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
906         if (type == 0)
907                 return load_now;
908
909         return max(rq->cpu_load[type-1], load_now);
910 }
911
912 #endif
913
914 /*
915  * wake_idle() will wake a task on an idle cpu if task->cpu is
916  * not idle and an idle cpu is available.  The span of cpus to
917  * search starts with cpus closest then further out as needed,
918  * so we always favor a closer, idle cpu.
919  *
920  * Returns the CPU we should wake onto.
921  */
922 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
923 static int wake_idle(int cpu, task_t *p)
924 {
925         cpumask_t tmp;
926         struct sched_domain *sd;
927         int i;
928
929         if (idle_cpu(cpu))
930                 return cpu;
931
932         for_each_domain(cpu, sd) {
933                 if (sd->flags & SD_WAKE_IDLE) {
934                         cpus_and(tmp, sd->span, p->cpus_allowed);
935                         for_each_cpu_mask(i, tmp) {
936                                 if (idle_cpu(i))
937                                         return i;
938                         }
939                 }
940                 else
941                         break;
942         }
943         return cpu;
944 }
945 #else
946 static inline int wake_idle(int cpu, task_t *p)
947 {
948         return cpu;
949 }
950 #endif
951
952 /***
953  * try_to_wake_up - wake up a thread
954  * @p: the to-be-woken-up thread
955  * @state: the mask of task states that can be woken
956  * @sync: do a synchronous wakeup?
957  *
958  * Put it on the run-queue if it's not already there. The "current"
959  * thread is always on the run-queue (except when the actual
960  * re-schedule is in progress), and as such you're allowed to do
961  * the simpler "current->state = TASK_RUNNING" to mark yourself
962  * runnable without the overhead of this.
963  *
964  * returns failure only if the task is already active.
965  */
966 static int try_to_wake_up(task_t * p, unsigned int state, int sync)
967 {
968         int cpu, this_cpu, success = 0;
969         unsigned long flags;
970         long old_state;
971         runqueue_t *rq;
972 #ifdef CONFIG_SMP
973         unsigned long load, this_load;
974         struct sched_domain *sd, *this_sd = NULL;
975         int new_cpu;
976 #endif
977
978         rq = task_rq_lock(p, &flags);
979         old_state = p->state;
980         if (!(old_state & state))
981                 goto out;
982
983         if (p->array)
984                 goto out_running;
985
986         cpu = task_cpu(p);
987         this_cpu = smp_processor_id();
988
989 #ifdef CONFIG_SMP
990         if (unlikely(task_running(rq, p)))
991                 goto out_activate;
992
993         new_cpu = cpu;
994
995         schedstat_inc(rq, ttwu_cnt);
996         if (cpu == this_cpu) {
997                 schedstat_inc(rq, ttwu_local);
998                 goto out_set_cpu;
999         }
1000
1001         for_each_domain(this_cpu, sd) {
1002                 if (cpu_isset(cpu, sd->span)) {
1003                         schedstat_inc(sd, ttwu_wake_remote);
1004                         this_sd = sd;
1005                         break;
1006                 }
1007         }
1008
1009         if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1010                 goto out_set_cpu;
1011
1012         /*
1013          * Check for affine wakeup and passive balancing possibilities.
1014          */
1015         if (this_sd) {
1016                 int idx = this_sd->wake_idx;
1017                 unsigned int imbalance;
1018
1019                 load = source_load(cpu, idx);
1020                 this_load = target_load(this_cpu, idx);
1021
1022                 /*
1023                  * If sync wakeup then subtract the (maximum possible) effect of
1024                  * the currently running task from the load of the current CPU:
1025                  */
1026                 if (sync)
1027                         this_load -= SCHED_LOAD_SCALE;
1028
1029                  /* Don't pull the task off an idle CPU to a busy one */
1030                 if (load < SCHED_LOAD_SCALE/2 && this_load > SCHED_LOAD_SCALE/2)
1031                         goto out_set_cpu;
1032
1033                 new_cpu = this_cpu; /* Wake to this CPU if we can */
1034
1035                 if ((this_sd->flags & SD_WAKE_AFFINE) &&
1036                         !task_hot(p, rq->timestamp_last_tick, this_sd)) {
1037                         /*
1038                          * This domain has SD_WAKE_AFFINE and p is cache cold
1039                          * in this domain.
1040                          */
1041                         schedstat_inc(this_sd, ttwu_move_affine);
1042                         goto out_set_cpu;
1043                 } else if ((this_sd->flags & SD_WAKE_BALANCE) &&
1044                                 imbalance*this_load <= 100*load) {
1045                         /*
1046                          * This domain has SD_WAKE_BALANCE and there is
1047                          * an imbalance.
1048                          */
1049                         schedstat_inc(this_sd, ttwu_move_balance);
1050                         goto out_set_cpu;
1051                 }
1052         }
1053
1054         new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1055 out_set_cpu:
1056         new_cpu = wake_idle(new_cpu, p);
1057         if (new_cpu != cpu) {
1058                 set_task_cpu(p, new_cpu);
1059                 task_rq_unlock(rq, &flags);
1060                 /* might preempt at this point */
1061                 rq = task_rq_lock(p, &flags);
1062                 old_state = p->state;
1063                 if (!(old_state & state))
1064                         goto out;
1065                 if (p->array)
1066                         goto out_running;
1067
1068                 this_cpu = smp_processor_id();
1069                 cpu = task_cpu(p);
1070         }
1071
1072 out_activate:
1073 #endif /* CONFIG_SMP */
1074         if (old_state == TASK_UNINTERRUPTIBLE) {
1075                 rq->nr_uninterruptible--;
1076                 /*
1077                  * Tasks on involuntary sleep don't earn
1078                  * sleep_avg beyond just interactive state.
1079                  */
1080                 p->activated = -1;
1081         }
1082
1083         /*
1084          * Sync wakeups (i.e. those types of wakeups where the waker
1085          * has indicated that it will leave the CPU in short order)
1086          * don't trigger a preemption, if the woken up task will run on
1087          * this cpu. (in this case the 'I will reschedule' promise of
1088          * the waker guarantees that the freshly woken up task is going
1089          * to be considered on this CPU.)
1090          */
1091         activate_task(p, rq, cpu == this_cpu);
1092         if (!sync || cpu != this_cpu) {
1093                 if (TASK_PREEMPTS_CURR(p, rq))
1094                         resched_task(rq->curr);
1095         }
1096         success = 1;
1097
1098 out_running:
1099         p->state = TASK_RUNNING;
1100 out:
1101         task_rq_unlock(rq, &flags);
1102
1103         return success;
1104 }
1105
1106 int fastcall wake_up_process(task_t * p)
1107 {
1108         return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1109                                  TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1110 }
1111
1112 EXPORT_SYMBOL(wake_up_process);
1113
1114 int fastcall wake_up_state(task_t *p, unsigned int state)
1115 {
1116         return try_to_wake_up(p, state, 0);
1117 }
1118
1119 #ifdef CONFIG_SMP
1120 static int find_idlest_cpu(struct task_struct *p, int this_cpu,
1121                            struct sched_domain *sd);
1122 #endif
1123
1124 /*
1125  * Perform scheduler related setup for a newly forked process p.
1126  * p is forked by current.
1127  */
1128 void fastcall sched_fork(task_t *p)
1129 {
1130         /*
1131          * We mark the process as running here, but have not actually
1132          * inserted it onto the runqueue yet. This guarantees that
1133          * nobody will actually run it, and a signal or other external
1134          * event cannot wake it up and insert it on the runqueue either.
1135          */
1136         p->state = TASK_RUNNING;
1137         INIT_LIST_HEAD(&p->run_list);
1138         p->array = NULL;
1139         spin_lock_init(&p->switch_lock);
1140 #ifdef CONFIG_SCHEDSTATS
1141         memset(&p->sched_info, 0, sizeof(p->sched_info));
1142 #endif
1143 #ifdef CONFIG_PREEMPT
1144         /*
1145          * During context-switch we hold precisely one spinlock, which
1146          * schedule_tail drops. (in the common case it's this_rq()->lock,
1147          * but it also can be p->switch_lock.) So we compensate with a count
1148          * of 1. Also, we want to start with kernel preemption disabled.
1149          */
1150         p->thread_info->preempt_count = 1;
1151 #endif
1152         /*
1153          * Share the timeslice between parent and child, thus the
1154          * total amount of pending timeslices in the system doesn't change,
1155          * resulting in more scheduling fairness.
1156          */
1157         local_irq_disable();
1158         p->time_slice = (current->time_slice + 1) >> 1;
1159         /*
1160          * The remainder of the first timeslice might be recovered by
1161          * the parent if the child exits early enough.
1162          */
1163         p->first_time_slice = 1;
1164         current->time_slice >>= 1;
1165         p->timestamp = sched_clock();
1166         if (unlikely(!current->time_slice)) {
1167                 /*
1168                  * This case is rare, it happens when the parent has only
1169                  * a single jiffy left from its timeslice. Taking the
1170                  * runqueue lock is not a problem.
1171                  */
1172                 current->time_slice = 1;
1173                 preempt_disable();
1174                 scheduler_tick();
1175                 local_irq_enable();
1176                 preempt_enable();
1177         } else
1178                 local_irq_enable();
1179 }
1180
1181 /*
1182  * wake_up_new_task - wake up a newly created task for the first time.
1183  *
1184  * This function will do some initial scheduler statistics housekeeping
1185  * that must be done for every newly created context, then puts the task
1186  * on the runqueue and wakes it.
1187  */
1188 void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags)
1189 {
1190         unsigned long flags;
1191         int this_cpu, cpu;
1192         runqueue_t *rq, *this_rq;
1193
1194         rq = task_rq_lock(p, &flags);
1195         cpu = task_cpu(p);
1196         this_cpu = smp_processor_id();
1197
1198         BUG_ON(p->state != TASK_RUNNING);
1199
1200         /*
1201          * We decrease the sleep average of forking parents
1202          * and children as well, to keep max-interactive tasks
1203          * from forking tasks that are max-interactive. The parent
1204          * (current) is done further down, under its lock.
1205          */
1206         p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1207                 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1208
1209         p->prio = effective_prio(p);
1210
1211         if (likely(cpu == this_cpu)) {
1212                 if (!(clone_flags & CLONE_VM)) {
1213                         /*
1214                          * The VM isn't cloned, so we're in a good position to
1215                          * do child-runs-first in anticipation of an exec. This
1216                          * usually avoids a lot of COW overhead.
1217                          */
1218                         if (unlikely(!current->array))
1219                                 __activate_task(p, rq);
1220                         else {
1221                                 p->prio = current->prio;
1222                                 list_add_tail(&p->run_list, &current->run_list);
1223                                 p->array = current->array;
1224                                 p->array->nr_active++;
1225                                 rq->nr_running++;
1226                         }
1227                         set_need_resched();
1228                 } else
1229                         /* Run child last */
1230                         __activate_task(p, rq);
1231                 /*
1232                  * We skip the following code due to cpu == this_cpu
1233                  *
1234                  *   task_rq_unlock(rq, &flags);
1235                  *   this_rq = task_rq_lock(current, &flags);
1236                  */
1237                 this_rq = rq;
1238         } else {
1239                 this_rq = cpu_rq(this_cpu);
1240
1241                 /*
1242                  * Not the local CPU - must adjust timestamp. This should
1243                  * get optimised away in the !CONFIG_SMP case.
1244                  */
1245                 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1246                                         + rq->timestamp_last_tick;
1247                 __activate_task(p, rq);
1248                 if (TASK_PREEMPTS_CURR(p, rq))
1249                         resched_task(rq->curr);
1250
1251                 /*
1252                  * Parent and child are on different CPUs, now get the
1253                  * parent runqueue to update the parent's ->sleep_avg:
1254                  */
1255                 task_rq_unlock(rq, &flags);
1256                 this_rq = task_rq_lock(current, &flags);
1257         }
1258         current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1259                 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1260         task_rq_unlock(this_rq, &flags);
1261 }
1262
1263 /*
1264  * Potentially available exiting-child timeslices are
1265  * retrieved here - this way the parent does not get
1266  * penalized for creating too many threads.
1267  *
1268  * (this cannot be used to 'generate' timeslices
1269  * artificially, because any timeslice recovered here
1270  * was given away by the parent in the first place.)
1271  */
1272 void fastcall sched_exit(task_t * p)
1273 {
1274         unsigned long flags;
1275         runqueue_t *rq;
1276
1277         /*
1278          * If the child was a (relative-) CPU hog then decrease
1279          * the sleep_avg of the parent as well.
1280          */
1281         rq = task_rq_lock(p->parent, &flags);
1282         if (p->first_time_slice) {
1283                 p->parent->time_slice += p->time_slice;
1284                 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1285                         p->parent->time_slice = task_timeslice(p);
1286         }
1287         if (p->sleep_avg < p->parent->sleep_avg)
1288                 p->parent->sleep_avg = p->parent->sleep_avg /
1289                 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1290                 (EXIT_WEIGHT + 1);
1291         task_rq_unlock(rq, &flags);
1292 }
1293
1294 /**
1295  * finish_task_switch - clean up after a task-switch
1296  * @prev: the thread we just switched away from.
1297  *
1298  * We enter this with the runqueue still locked, and finish_arch_switch()
1299  * will unlock it along with doing any other architecture-specific cleanup
1300  * actions.
1301  *
1302  * Note that we may have delayed dropping an mm in context_switch(). If
1303  * so, we finish that here outside of the runqueue lock.  (Doing it
1304  * with the lock held can cause deadlocks; see schedule() for
1305  * details.)
1306  */
1307 static inline void finish_task_switch(task_t *prev)
1308         __releases(rq->lock)
1309 {
1310         runqueue_t *rq = this_rq();
1311         struct mm_struct *mm = rq->prev_mm;
1312         unsigned long prev_task_flags;
1313
1314         rq->prev_mm = NULL;
1315
1316         /*
1317          * A task struct has one reference for the use as "current".
1318          * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1319          * calls schedule one last time. The schedule call will never return,
1320          * and the scheduled task must drop that reference.
1321          * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1322          * still held, otherwise prev could be scheduled on another cpu, die
1323          * there before we look at prev->state, and then the reference would
1324          * be dropped twice.
1325          *              Manfred Spraul <manfred@colorfullife.com>
1326          */
1327         prev_task_flags = prev->flags;
1328         finish_arch_switch(rq, prev);
1329         if (mm)
1330                 mmdrop(mm);
1331         if (unlikely(prev_task_flags & PF_DEAD))
1332                 put_task_struct(prev);
1333 }
1334
1335 /**
1336  * schedule_tail - first thing a freshly forked thread must call.
1337  * @prev: the thread we just switched away from.
1338  */
1339 asmlinkage void schedule_tail(task_t *prev)
1340         __releases(rq->lock)
1341 {
1342         finish_task_switch(prev);
1343
1344         if (current->set_child_tid)
1345                 put_user(current->pid, current->set_child_tid);
1346 }
1347
1348 /*
1349  * context_switch - switch to the new MM and the new
1350  * thread's register state.
1351  */
1352 static inline
1353 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1354 {
1355         struct mm_struct *mm = next->mm;
1356         struct mm_struct *oldmm = prev->active_mm;
1357
1358         if (unlikely(!mm)) {
1359                 next->active_mm = oldmm;
1360                 atomic_inc(&oldmm->mm_count);
1361                 enter_lazy_tlb(oldmm, next);
1362         } else
1363                 switch_mm(oldmm, mm, next);
1364
1365         if (unlikely(!prev->mm)) {
1366                 prev->active_mm = NULL;
1367                 WARN_ON(rq->prev_mm);
1368                 rq->prev_mm = oldmm;
1369         }
1370
1371         /* Here we just switch the register state and the stack. */
1372         switch_to(prev, next, prev);
1373
1374         return prev;
1375 }
1376
1377 /*
1378  * nr_running, nr_uninterruptible and nr_context_switches:
1379  *
1380  * externally visible scheduler statistics: current number of runnable
1381  * threads, current number of uninterruptible-sleeping threads, total
1382  * number of context switches performed since bootup.
1383  */
1384 unsigned long nr_running(void)
1385 {
1386         unsigned long i, sum = 0;
1387
1388         for_each_online_cpu(i)
1389                 sum += cpu_rq(i)->nr_running;
1390
1391         return sum;
1392 }
1393
1394 unsigned long nr_uninterruptible(void)
1395 {
1396         unsigned long i, sum = 0;
1397
1398         for_each_cpu(i)
1399                 sum += cpu_rq(i)->nr_uninterruptible;
1400
1401         /*
1402          * Since we read the counters lockless, it might be slightly
1403          * inaccurate. Do not allow it to go below zero though:
1404          */
1405         if (unlikely((long)sum < 0))
1406                 sum = 0;
1407
1408         return sum;
1409 }
1410
1411 unsigned long long nr_context_switches(void)
1412 {
1413         unsigned long long i, sum = 0;
1414
1415         for_each_cpu(i)
1416                 sum += cpu_rq(i)->nr_switches;
1417
1418         return sum;
1419 }
1420
1421 unsigned long nr_iowait(void)
1422 {
1423         unsigned long i, sum = 0;
1424
1425         for_each_cpu(i)
1426                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1427
1428         return sum;
1429 }
1430
1431 #ifdef CONFIG_SMP
1432
1433 /*
1434  * double_rq_lock - safely lock two runqueues
1435  *
1436  * Note this does not disable interrupts like task_rq_lock,
1437  * you need to do so manually before calling.
1438  */
1439 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1440         __acquires(rq1->lock)
1441         __acquires(rq2->lock)
1442 {
1443         if (rq1 == rq2) {
1444                 spin_lock(&rq1->lock);
1445                 __acquire(rq2->lock);   /* Fake it out ;) */
1446         } else {
1447                 if (rq1 < rq2) {
1448                         spin_lock(&rq1->lock);
1449                         spin_lock(&rq2->lock);
1450                 } else {
1451                         spin_lock(&rq2->lock);
1452                         spin_lock(&rq1->lock);
1453                 }
1454         }
1455 }
1456
1457 /*
1458  * double_rq_unlock - safely unlock two runqueues
1459  *
1460  * Note this does not restore interrupts like task_rq_unlock,
1461  * you need to do so manually after calling.
1462  */
1463 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1464         __releases(rq1->lock)
1465         __releases(rq2->lock)
1466 {
1467         spin_unlock(&rq1->lock);
1468         if (rq1 != rq2)
1469                 spin_unlock(&rq2->lock);
1470         else
1471                 __release(rq2->lock);
1472 }
1473
1474 /*
1475  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1476  */
1477 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1478         __releases(this_rq->lock)
1479         __acquires(busiest->lock)
1480         __acquires(this_rq->lock)
1481 {
1482         if (unlikely(!spin_trylock(&busiest->lock))) {
1483                 if (busiest < this_rq) {
1484                         spin_unlock(&this_rq->lock);
1485                         spin_lock(&busiest->lock);
1486                         spin_lock(&this_rq->lock);
1487                 } else
1488                         spin_lock(&busiest->lock);
1489         }
1490 }
1491
1492 /*
1493  * find_idlest_cpu - find the least busy runqueue.
1494  */
1495 static int find_idlest_cpu(struct task_struct *p, int this_cpu,
1496                            struct sched_domain *sd)
1497 {
1498         unsigned long load, min_load, this_load;
1499         int i, min_cpu;
1500         cpumask_t mask;
1501
1502         min_cpu = UINT_MAX;
1503         min_load = ULONG_MAX;
1504
1505         cpus_and(mask, sd->span, p->cpus_allowed);
1506
1507         for_each_cpu_mask(i, mask) {
1508                 load = target_load(i, sd->wake_idx);
1509
1510                 if (load < min_load) {
1511                         min_cpu = i;
1512                         min_load = load;
1513
1514                         /* break out early on an idle CPU: */
1515                         if (!min_load)
1516                                 break;
1517                 }
1518         }
1519
1520         /* add +1 to account for the new task */
1521         this_load = source_load(this_cpu, sd->wake_idx) + SCHED_LOAD_SCALE;
1522
1523         /*
1524          * Would with the addition of the new task to the
1525          * current CPU there be an imbalance between this
1526          * CPU and the idlest CPU?
1527          *
1528          * Use half of the balancing threshold - new-context is
1529          * a good opportunity to balance.
1530          */
1531         if (min_load*(100 + (sd->imbalance_pct-100)/2) < this_load*100)
1532                 return min_cpu;
1533
1534         return this_cpu;
1535 }
1536
1537 /*
1538  * If dest_cpu is allowed for this process, migrate the task to it.
1539  * This is accomplished by forcing the cpu_allowed mask to only
1540  * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
1541  * the cpu_allowed mask is restored.
1542  */
1543 static void sched_migrate_task(task_t *p, int dest_cpu)
1544 {
1545         migration_req_t req;
1546         runqueue_t *rq;
1547         unsigned long flags;
1548
1549         rq = task_rq_lock(p, &flags);
1550         if (!cpu_isset(dest_cpu, p->cpus_allowed)
1551             || unlikely(cpu_is_offline(dest_cpu)))
1552                 goto out;
1553
1554         /* force the process onto the specified CPU */
1555         if (migrate_task(p, dest_cpu, &req)) {
1556                 /* Need to wait for migration thread (might exit: take ref). */
1557                 struct task_struct *mt = rq->migration_thread;
1558                 get_task_struct(mt);
1559                 task_rq_unlock(rq, &flags);
1560                 wake_up_process(mt);
1561                 put_task_struct(mt);
1562                 wait_for_completion(&req.done);
1563                 return;
1564         }
1565 out:
1566         task_rq_unlock(rq, &flags);
1567 }
1568
1569 /*
1570  * sched_exec(): find the highest-level, exec-balance-capable
1571  * domain and try to migrate the task to the least loaded CPU.
1572  *
1573  * execve() is a valuable balancing opportunity, because at this point
1574  * the task has the smallest effective memory and cache footprint.
1575  */
1576 void sched_exec(void)
1577 {
1578         struct sched_domain *tmp, *sd = NULL;
1579         int new_cpu, this_cpu = get_cpu();
1580
1581         /* Prefer the current CPU if there's only this task running */
1582         if (this_rq()->nr_running <= 1)
1583                 goto out;
1584
1585         for_each_domain(this_cpu, tmp)
1586                 if (tmp->flags & SD_BALANCE_EXEC)
1587                         sd = tmp;
1588
1589         if (sd) {
1590                 schedstat_inc(sd, sbe_attempts);
1591                 new_cpu = find_idlest_cpu(current, this_cpu, sd);
1592                 if (new_cpu != this_cpu) {
1593                         schedstat_inc(sd, sbe_pushed);
1594                         put_cpu();
1595                         sched_migrate_task(current, new_cpu);
1596                         return;
1597                 }
1598         }
1599 out:
1600         put_cpu();
1601 }
1602
1603 /*
1604  * pull_task - move a task from a remote runqueue to the local runqueue.
1605  * Both runqueues must be locked.
1606  */
1607 static inline
1608 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1609                runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1610 {
1611         dequeue_task(p, src_array);
1612         src_rq->nr_running--;
1613         set_task_cpu(p, this_cpu);
1614         this_rq->nr_running++;
1615         enqueue_task(p, this_array);
1616         p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1617                                 + this_rq->timestamp_last_tick;
1618         /*
1619          * Note that idle threads have a prio of MAX_PRIO, for this test
1620          * to be always true for them.
1621          */
1622         if (TASK_PREEMPTS_CURR(p, this_rq))
1623                 resched_task(this_rq->curr);
1624 }
1625
1626 /*
1627  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1628  */
1629 static inline
1630 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1631              struct sched_domain *sd, enum idle_type idle, int *all_pinned)
1632 {
1633         /*
1634          * We do not migrate tasks that are:
1635          * 1) running (obviously), or
1636          * 2) cannot be migrated to this CPU due to cpus_allowed, or
1637          * 3) are cache-hot on their current CPU.
1638          */
1639         if (!cpu_isset(this_cpu, p->cpus_allowed))
1640                 return 0;
1641         *all_pinned = 0;
1642
1643         if (task_running(rq, p))
1644                 return 0;
1645
1646         /*
1647          * Aggressive migration if:
1648          * 1) the [whole] cpu is idle, or
1649          * 2) too many balance attempts have failed.
1650          */
1651
1652         if (cpu_and_siblings_are_idle(this_cpu) || \
1653                         sd->nr_balance_failed > sd->cache_nice_tries)
1654                 return 1;
1655
1656         if (task_hot(p, rq->timestamp_last_tick, sd))
1657                 return 0;
1658         return 1;
1659 }
1660
1661 /*
1662  * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1663  * as part of a balancing operation within "domain". Returns the number of
1664  * tasks moved.
1665  *
1666  * Called with both runqueues locked.
1667  */
1668 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1669                       unsigned long max_nr_move, struct sched_domain *sd,
1670                       enum idle_type idle, int *all_pinned)
1671 {
1672         prio_array_t *array, *dst_array;
1673         struct list_head *head, *curr;
1674         int idx, pulled = 0, pinned = 0;
1675         task_t *tmp;
1676
1677         if (max_nr_move == 0)
1678                 goto out;
1679
1680         pinned = 1;
1681
1682         /*
1683          * We first consider expired tasks. Those will likely not be
1684          * executed in the near future, and they are most likely to
1685          * be cache-cold, thus switching CPUs has the least effect
1686          * on them.
1687          */
1688         if (busiest->expired->nr_active) {
1689                 array = busiest->expired;
1690                 dst_array = this_rq->expired;
1691         } else {
1692                 array = busiest->active;
1693                 dst_array = this_rq->active;
1694         }
1695
1696 new_array:
1697         /* Start searching at priority 0: */
1698         idx = 0;
1699 skip_bitmap:
1700         if (!idx)
1701                 idx = sched_find_first_bit(array->bitmap);
1702         else
1703                 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1704         if (idx >= MAX_PRIO) {
1705                 if (array == busiest->expired && busiest->active->nr_active) {
1706                         array = busiest->active;
1707                         dst_array = this_rq->active;
1708                         goto new_array;
1709                 }
1710                 goto out;
1711         }
1712
1713         head = array->queue + idx;
1714         curr = head->prev;
1715 skip_queue:
1716         tmp = list_entry(curr, task_t, run_list);
1717
1718         curr = curr->prev;
1719
1720         if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1721                 if (curr != head)
1722                         goto skip_queue;
1723                 idx++;
1724                 goto skip_bitmap;
1725         }
1726
1727 #ifdef CONFIG_SCHEDSTATS
1728         if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1729                 schedstat_inc(sd, lb_hot_gained[idle]);
1730 #endif
1731
1732         pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1733         pulled++;
1734
1735         /* We only want to steal up to the prescribed number of tasks. */
1736         if (pulled < max_nr_move) {
1737                 if (curr != head)
1738                         goto skip_queue;
1739                 idx++;
1740                 goto skip_bitmap;
1741         }
1742 out:
1743         /*
1744          * Right now, this is the only place pull_task() is called,
1745          * so we can safely collect pull_task() stats here rather than
1746          * inside pull_task().
1747          */
1748         schedstat_add(sd, lb_gained[idle], pulled);
1749
1750         if (all_pinned)
1751                 *all_pinned = pinned;
1752         return pulled;
1753 }
1754
1755 /*
1756  * find_busiest_group finds and returns the busiest CPU group within the
1757  * domain. It calculates and returns the number of tasks which should be
1758  * moved to restore balance via the imbalance parameter.
1759  */
1760 static struct sched_group *
1761 find_busiest_group(struct sched_domain *sd, int this_cpu,
1762                    unsigned long *imbalance, enum idle_type idle)
1763 {
1764         struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1765         unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1766         int load_idx;
1767
1768         max_load = this_load = total_load = total_pwr = 0;
1769         if (idle == NOT_IDLE)
1770                 load_idx = sd->busy_idx;
1771         else if (idle == NEWLY_IDLE)
1772                 load_idx = sd->newidle_idx;
1773         else
1774                 load_idx = sd->idle_idx;
1775
1776         do {
1777                 unsigned long load;
1778                 int local_group;
1779                 int i;
1780
1781                 local_group = cpu_isset(this_cpu, group->cpumask);
1782
1783                 /* Tally up the load of all CPUs in the group */
1784                 avg_load = 0;
1785
1786                 for_each_cpu_mask(i, group->cpumask) {
1787                         /* Bias balancing toward cpus of our domain */
1788                         if (local_group)
1789                                 load = target_load(i, load_idx);
1790                         else
1791                                 load = source_load(i, load_idx);
1792
1793                         avg_load += load;
1794                 }
1795
1796                 total_load += avg_load;
1797                 total_pwr += group->cpu_power;
1798
1799                 /* Adjust by relative CPU power of the group */
1800                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1801
1802                 if (local_group) {
1803                         this_load = avg_load;
1804                         this = group;
1805                         goto nextgroup;
1806                 } else if (avg_load > max_load) {
1807                         max_load = avg_load;
1808                         busiest = group;
1809                 }
1810 nextgroup:
1811                 group = group->next;
1812         } while (group != sd->groups);
1813
1814         if (!busiest || this_load >= max_load)
1815                 goto out_balanced;
1816
1817         avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1818
1819         if (this_load >= avg_load ||
1820                         100*max_load <= sd->imbalance_pct*this_load)
1821                 goto out_balanced;
1822
1823         /*
1824          * We're trying to get all the cpus to the average_load, so we don't
1825          * want to push ourselves above the average load, nor do we wish to
1826          * reduce the max loaded cpu below the average load, as either of these
1827          * actions would just result in more rebalancing later, and ping-pong
1828          * tasks around. Thus we look for the minimum possible imbalance.
1829          * Negative imbalances (*we* are more loaded than anyone else) will
1830          * be counted as no imbalance for these purposes -- we can't fix that
1831          * by pulling tasks to us.  Be careful of negative numbers as they'll
1832          * appear as very large values with unsigned longs.
1833          */
1834         /* How much load to actually move to equalise the imbalance */
1835         *imbalance = min((max_load - avg_load) * busiest->cpu_power,
1836                                 (avg_load - this_load) * this->cpu_power)
1837                         / SCHED_LOAD_SCALE;
1838
1839         if (*imbalance < SCHED_LOAD_SCALE) {
1840                 unsigned long pwr_now = 0, pwr_move = 0;
1841                 unsigned long tmp;
1842
1843                 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
1844                         *imbalance = 1;
1845                         return busiest;
1846                 }
1847
1848                 /*
1849                  * OK, we don't have enough imbalance to justify moving tasks,
1850                  * however we may be able to increase total CPU power used by
1851                  * moving them.
1852                  */
1853
1854                 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
1855                 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
1856                 pwr_now /= SCHED_LOAD_SCALE;
1857
1858                 /* Amount of load we'd subtract */
1859                 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
1860                 if (max_load > tmp)
1861                         pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
1862                                                         max_load - tmp);
1863
1864                 /* Amount of load we'd add */
1865                 if (max_load*busiest->cpu_power <
1866                                 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
1867                         tmp = max_load*busiest->cpu_power/this->cpu_power;
1868                 else
1869                         tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
1870                 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
1871                 pwr_move /= SCHED_LOAD_SCALE;
1872
1873                 /* Move if we gain throughput */
1874                 if (pwr_move <= pwr_now)
1875                         goto out_balanced;
1876
1877                 *imbalance = 1;
1878                 return busiest;
1879         }
1880
1881         /* Get rid of the scaling factor, rounding down as we divide */
1882         *imbalance = *imbalance / SCHED_LOAD_SCALE;
1883         return busiest;
1884
1885 out_balanced:
1886
1887         *imbalance = 0;
1888         return NULL;
1889 }
1890
1891 /*
1892  * find_busiest_queue - find the busiest runqueue among the cpus in group.
1893  */
1894 static runqueue_t *find_busiest_queue(struct sched_group *group)
1895 {
1896         unsigned long load, max_load = 0;
1897         runqueue_t *busiest = NULL;
1898         int i;
1899
1900         for_each_cpu_mask(i, group->cpumask) {
1901                 load = source_load(i, 0);
1902
1903                 if (load > max_load) {
1904                         max_load = load;
1905                         busiest = cpu_rq(i);
1906                 }
1907         }
1908
1909         return busiest;
1910 }
1911
1912 /*
1913  * Check this_cpu to ensure it is balanced within domain. Attempt to move
1914  * tasks if there is an imbalance.
1915  *
1916  * Called with this_rq unlocked.
1917  */
1918 static int load_balance(int this_cpu, runqueue_t *this_rq,
1919                         struct sched_domain *sd, enum idle_type idle)
1920 {
1921         struct sched_group *group;
1922         runqueue_t *busiest;
1923         unsigned long imbalance;
1924         int nr_moved, all_pinned;
1925         int active_balance = 0;
1926
1927         spin_lock(&this_rq->lock);
1928         schedstat_inc(sd, lb_cnt[idle]);
1929
1930         group = find_busiest_group(sd, this_cpu, &imbalance, idle);
1931         if (!group) {
1932                 schedstat_inc(sd, lb_nobusyg[idle]);
1933                 goto out_balanced;
1934         }
1935
1936         busiest = find_busiest_queue(group);
1937         if (!busiest) {
1938                 schedstat_inc(sd, lb_nobusyq[idle]);
1939                 goto out_balanced;
1940         }
1941
1942         BUG_ON(busiest == this_rq);
1943
1944         schedstat_add(sd, lb_imbalance[idle], imbalance);
1945
1946         nr_moved = 0;
1947         if (busiest->nr_running > 1) {
1948                 /*
1949                  * Attempt to move tasks. If find_busiest_group has found
1950                  * an imbalance but busiest->nr_running <= 1, the group is
1951                  * still unbalanced. nr_moved simply stays zero, so it is
1952                  * correctly treated as an imbalance.
1953                  */
1954                 double_lock_balance(this_rq, busiest);
1955                 nr_moved = move_tasks(this_rq, this_cpu, busiest,
1956                                                 imbalance, sd, idle,
1957                                                 &all_pinned);
1958                 spin_unlock(&busiest->lock);
1959
1960                 /* All tasks on this runqueue were pinned by CPU affinity */
1961                 if (unlikely(all_pinned))
1962                         goto out_balanced;
1963         }
1964
1965         spin_unlock(&this_rq->lock);
1966
1967         if (!nr_moved) {
1968                 schedstat_inc(sd, lb_failed[idle]);
1969                 sd->nr_balance_failed++;
1970
1971                 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1972
1973                         spin_lock(&busiest->lock);
1974                         if (!busiest->active_balance) {
1975                                 busiest->active_balance = 1;
1976                                 busiest->push_cpu = this_cpu;
1977                                 active_balance = 1;
1978                         }
1979                         spin_unlock(&busiest->lock);
1980                         if (active_balance)
1981                                 wake_up_process(busiest->migration_thread);
1982
1983                         /*
1984                          * We've kicked active balancing, reset the failure
1985                          * counter.
1986                          */
1987                         sd->nr_balance_failed = sd->cache_nice_tries+1;
1988                 }
1989         } else
1990                 sd->nr_balance_failed = 0;
1991
1992         if (likely(!active_balance)) {
1993                 /* We were unbalanced, so reset the balancing interval */
1994                 sd->balance_interval = sd->min_interval;
1995         } else {
1996                 /*
1997                  * If we've begun active balancing, start to back off. This
1998                  * case may not be covered by the all_pinned logic if there
1999                  * is only 1 task on the busy runqueue (because we don't call
2000                  * move_tasks).
2001                  */
2002                 if (sd->balance_interval < sd->max_interval)
2003                         sd->balance_interval *= 2;
2004         }
2005
2006         return nr_moved;
2007
2008 out_balanced:
2009         spin_unlock(&this_rq->lock);
2010
2011         schedstat_inc(sd, lb_balanced[idle]);
2012
2013         sd->nr_balance_failed = 0;
2014         /* tune up the balancing interval */
2015         if (sd->balance_interval < sd->max_interval)
2016                 sd->balance_interval *= 2;
2017
2018         return 0;
2019 }
2020
2021 /*
2022  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2023  * tasks if there is an imbalance.
2024  *
2025  * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2026  * this_rq is locked.
2027  */
2028 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2029                                 struct sched_domain *sd)
2030 {
2031         struct sched_group *group;
2032         runqueue_t *busiest = NULL;
2033         unsigned long imbalance;
2034         int nr_moved = 0;
2035
2036         schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2037         group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
2038         if (!group) {
2039                 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2040                 goto out_balanced;
2041         }
2042
2043         busiest = find_busiest_queue(group);
2044         if (!busiest) {
2045                 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2046                 goto out_balanced;
2047         }
2048
2049         BUG_ON(busiest == this_rq);
2050
2051         /* Attempt to move tasks */
2052         double_lock_balance(this_rq, busiest);
2053
2054         schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2055         nr_moved = move_tasks(this_rq, this_cpu, busiest,
2056                                         imbalance, sd, NEWLY_IDLE, NULL);
2057         if (!nr_moved)
2058                 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2059         else
2060                 sd->nr_balance_failed = 0;
2061
2062         spin_unlock(&busiest->lock);
2063         return nr_moved;
2064
2065 out_balanced:
2066         schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2067         sd->nr_balance_failed = 0;
2068         return 0;
2069 }
2070
2071 /*
2072  * idle_balance is called by schedule() if this_cpu is about to become
2073  * idle. Attempts to pull tasks from other CPUs.
2074  */
2075 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2076 {
2077         struct sched_domain *sd;
2078
2079         for_each_domain(this_cpu, sd) {
2080                 if (sd->flags & SD_BALANCE_NEWIDLE) {
2081                         if (load_balance_newidle(this_cpu, this_rq, sd)) {
2082                                 /* We've pulled tasks over so stop searching */
2083                                 break;
2084                         }
2085                 }
2086         }
2087 }
2088
2089 /*
2090  * active_load_balance is run by migration threads. It pushes running tasks
2091  * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2092  * running on each physical CPU where possible, and avoids physical /
2093  * logical imbalances.
2094  *
2095  * Called with busiest_rq locked.
2096  */
2097 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2098 {
2099         struct sched_domain *sd;
2100         runqueue_t *target_rq;
2101         int target_cpu = busiest_rq->push_cpu;
2102
2103         if (busiest_rq->nr_running <= 1)
2104                 /* no task to move */
2105                 return;
2106
2107         target_rq = cpu_rq(target_cpu);
2108
2109         /*
2110          * This condition is "impossible", if it occurs
2111          * we need to fix it.  Originally reported by
2112          * Bjorn Helgaas on a 128-cpu setup.
2113          */
2114         BUG_ON(busiest_rq == target_rq);
2115
2116         /* move a task from busiest_rq to target_rq */
2117         double_lock_balance(busiest_rq, target_rq);
2118
2119         /* Search for an sd spanning us and the target CPU. */
2120         for_each_domain(target_cpu, sd)
2121                 if ((sd->flags & SD_LOAD_BALANCE) &&
2122                         cpu_isset(busiest_cpu, sd->span))
2123                                 break;
2124
2125         if (unlikely(sd == NULL))
2126                 goto out;
2127
2128         schedstat_inc(sd, alb_cnt);
2129
2130         if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2131                 schedstat_inc(sd, alb_pushed);
2132         else
2133                 schedstat_inc(sd, alb_failed);
2134 out:
2135         spin_unlock(&target_rq->lock);
2136 }
2137
2138 /*
2139  * rebalance_tick will get called every timer tick, on every CPU.
2140  *
2141  * It checks each scheduling domain to see if it is due to be balanced,
2142  * and initiates a balancing operation if so.
2143  *
2144  * Balancing parameters are set up in arch_init_sched_domains.
2145  */
2146
2147 /* Don't have all balancing operations going off at once */
2148 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2149
2150 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2151                            enum idle_type idle)
2152 {
2153         unsigned long old_load, this_load;
2154         unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2155         struct sched_domain *sd;
2156         int i;
2157
2158         this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2159         /* Update our load */
2160         for (i = 0; i < 3; i++) {
2161                 unsigned long new_load = this_load;
2162                 int scale = 1 << i;
2163                 old_load = this_rq->cpu_load[i];
2164                 /*
2165                  * Round up the averaging division if load is increasing. This
2166                  * prevents us from getting stuck on 9 if the load is 10, for
2167                  * example.
2168                  */
2169                 if (new_load > old_load)
2170                         new_load += scale-1;
2171                 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2172         }
2173
2174         for_each_domain(this_cpu, sd) {
2175                 unsigned long interval;
2176
2177                 if (!(sd->flags & SD_LOAD_BALANCE))
2178                         continue;
2179
2180                 interval = sd->balance_interval;
2181                 if (idle != SCHED_IDLE)
2182                         interval *= sd->busy_factor;
2183
2184                 /* scale ms to jiffies */
2185                 interval = msecs_to_jiffies(interval);
2186                 if (unlikely(!interval))
2187                         interval = 1;
2188
2189                 if (j - sd->last_balance >= interval) {
2190                         if (load_balance(this_cpu, this_rq, sd, idle)) {
2191                                 /* We've pulled tasks over so no longer idle */
2192                                 idle = NOT_IDLE;
2193                         }
2194                         sd->last_balance += interval;
2195                 }
2196         }
2197 }
2198 #else
2199 /*
2200  * on UP we do not need to balance between CPUs:
2201  */
2202 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2203 {
2204 }
2205 static inline void idle_balance(int cpu, runqueue_t *rq)
2206 {
2207 }
2208 #endif
2209
2210 static inline int wake_priority_sleeper(runqueue_t *rq)
2211 {
2212         int ret = 0;
2213 #ifdef CONFIG_SCHED_SMT
2214         spin_lock(&rq->lock);
2215         /*
2216          * If an SMT sibling task has been put to sleep for priority
2217          * reasons reschedule the idle task to see if it can now run.
2218          */
2219         if (rq->nr_running) {
2220                 resched_task(rq->idle);
2221                 ret = 1;
2222         }
2223         spin_unlock(&rq->lock);
2224 #endif
2225         return ret;
2226 }
2227
2228 DEFINE_PER_CPU(struct kernel_stat, kstat);
2229
2230 EXPORT_PER_CPU_SYMBOL(kstat);
2231
2232 /*
2233  * This is called on clock ticks and on context switches.
2234  * Bank in p->sched_time the ns elapsed since the last tick or switch.
2235  */
2236 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2237                                     unsigned long long now)
2238 {
2239         unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2240         p->sched_time += now - last;
2241 }
2242
2243 /*
2244  * Return current->sched_time plus any more ns on the sched_clock
2245  * that have not yet been banked.
2246  */
2247 unsigned long long current_sched_time(const task_t *tsk)
2248 {
2249         unsigned long long ns;
2250         unsigned long flags;
2251         local_irq_save(flags);
2252         ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2253         ns = tsk->sched_time + (sched_clock() - ns);
2254         local_irq_restore(flags);
2255         return ns;
2256 }
2257
2258 /*
2259  * We place interactive tasks back into the active array, if possible.
2260  *
2261  * To guarantee that this does not starve expired tasks we ignore the
2262  * interactivity of a task if the first expired task had to wait more
2263  * than a 'reasonable' amount of time. This deadline timeout is
2264  * load-dependent, as the frequency of array switched decreases with
2265  * increasing number of running tasks. We also ignore the interactivity
2266  * if a better static_prio task has expired:
2267  */
2268 #define EXPIRED_STARVING(rq) \
2269         ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2270                 (jiffies - (rq)->expired_timestamp >= \
2271                         STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2272                         ((rq)->curr->static_prio > (rq)->best_expired_prio))
2273
2274 /*
2275  * Account user cpu time to a process.
2276  * @p: the process that the cpu time gets accounted to
2277  * @hardirq_offset: the offset to subtract from hardirq_count()
2278  * @cputime: the cpu time spent in user space since the last update
2279  */
2280 void account_user_time(struct task_struct *p, cputime_t cputime)
2281 {
2282         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2283         cputime64_t tmp;
2284
2285         p->utime = cputime_add(p->utime, cputime);
2286
2287         /* Add user time to cpustat. */
2288         tmp = cputime_to_cputime64(cputime);
2289         if (TASK_NICE(p) > 0)
2290                 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2291         else
2292                 cpustat->user = cputime64_add(cpustat->user, tmp);
2293 }
2294
2295 /*
2296  * Account system cpu time to a process.
2297  * @p: the process that the cpu time gets accounted to
2298  * @hardirq_offset: the offset to subtract from hardirq_count()
2299  * @cputime: the cpu time spent in kernel space since the last update
2300  */
2301 void account_system_time(struct task_struct *p, int hardirq_offset,
2302                          cputime_t cputime)
2303 {
2304         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2305         runqueue_t *rq = this_rq();
2306         cputime64_t tmp;
2307
2308         p->stime = cputime_add(p->stime, cputime);
2309
2310         /* Add system time to cpustat. */
2311         tmp = cputime_to_cputime64(cputime);
2312         if (hardirq_count() - hardirq_offset)
2313                 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2314         else if (softirq_count())
2315                 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2316         else if (p != rq->idle)
2317                 cpustat->system = cputime64_add(cpustat->system, tmp);
2318         else if (atomic_read(&rq->nr_iowait) > 0)
2319                 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2320         else
2321                 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2322         /* Account for system time used */
2323         acct_update_integrals(p);
2324         /* Update rss highwater mark */
2325         update_mem_hiwater(p);
2326 }
2327
2328 /*
2329  * Account for involuntary wait time.
2330  * @p: the process from which the cpu time has been stolen
2331  * @steal: the cpu time spent in involuntary wait
2332  */
2333 void account_steal_time(struct task_struct *p, cputime_t steal)
2334 {
2335         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2336         cputime64_t tmp = cputime_to_cputime64(steal);
2337         runqueue_t *rq = this_rq();
2338
2339         if (p == rq->idle) {
2340                 p->stime = cputime_add(p->stime, steal);
2341                 if (atomic_read(&rq->nr_iowait) > 0)
2342                         cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2343                 else
2344                         cpustat->idle = cputime64_add(cpustat->idle, tmp);
2345         } else
2346                 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2347 }
2348
2349 /*
2350  * This function gets called by the timer code, with HZ frequency.
2351  * We call it with interrupts disabled.
2352  *
2353  * It also gets called by the fork code, when changing the parent's
2354  * timeslices.
2355  */
2356 void scheduler_tick(void)
2357 {
2358         int cpu = smp_processor_id();
2359         runqueue_t *rq = this_rq();
2360         task_t *p = current;
2361         unsigned long long now = sched_clock();
2362
2363         update_cpu_clock(p, rq, now);
2364
2365         rq->timestamp_last_tick = now;
2366
2367         if (p == rq->idle) {
2368                 if (wake_priority_sleeper(rq))
2369                         goto out;
2370                 rebalance_tick(cpu, rq, SCHED_IDLE);
2371                 return;
2372         }
2373
2374         /* Task might have expired already, but not scheduled off yet */
2375         if (p->array != rq->active) {
2376                 set_tsk_need_resched(p);
2377                 goto out;
2378         }
2379         spin_lock(&rq->lock);
2380         /*
2381          * The task was running during this tick - update the
2382          * time slice counter. Note: we do not update a thread's
2383          * priority until it either goes to sleep or uses up its
2384          * timeslice. This makes it possible for interactive tasks
2385          * to use up their timeslices at their highest priority levels.
2386          */
2387         if (rt_task(p)) {
2388                 /*
2389                  * RR tasks need a special form of timeslice management.
2390                  * FIFO tasks have no timeslices.
2391                  */
2392                 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2393                         p->time_slice = task_timeslice(p);
2394                         p->first_time_slice = 0;
2395                         set_tsk_need_resched(p);
2396
2397                         /* put it at the end of the queue: */
2398                         requeue_task(p, rq->active);
2399                 }
2400                 goto out_unlock;
2401         }
2402         if (!--p->time_slice) {
2403                 dequeue_task(p, rq->active);
2404                 set_tsk_need_resched(p);
2405                 p->prio = effective_prio(p);
2406                 p->time_slice = task_timeslice(p);
2407                 p->first_time_slice = 0;
2408
2409                 if (!rq->expired_timestamp)
2410                         rq->expired_timestamp = jiffies;
2411                 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2412                         enqueue_task(p, rq->expired);
2413                         if (p->static_prio < rq->best_expired_prio)
2414                                 rq->best_expired_prio = p->static_prio;
2415                 } else
2416                         enqueue_task(p, rq->active);
2417         } else {
2418                 /*
2419                  * Prevent a too long timeslice allowing a task to monopolize
2420                  * the CPU. We do this by splitting up the timeslice into
2421                  * smaller pieces.
2422                  *
2423                  * Note: this does not mean the task's timeslices expire or
2424                  * get lost in any way, they just might be preempted by
2425                  * another task of equal priority. (one with higher
2426                  * priority would have preempted this task already.) We
2427                  * requeue this task to the end of the list on this priority
2428                  * level, which is in essence a round-robin of tasks with
2429                  * equal priority.
2430                  *
2431                  * This only applies to tasks in the interactive
2432                  * delta range with at least TIMESLICE_GRANULARITY to requeue.
2433                  */
2434                 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2435                         p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2436                         (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2437                         (p->array == rq->active)) {
2438
2439                         requeue_task(p, rq->active);
2440                         set_tsk_need_resched(p);
2441                 }
2442         }
2443 out_unlock:
2444         spin_unlock(&rq->lock);
2445 out:
2446         rebalance_tick(cpu, rq, NOT_IDLE);
2447 }
2448
2449 #ifdef CONFIG_SCHED_SMT
2450 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2451 {
2452         struct sched_domain *sd = this_rq->sd;
2453         cpumask_t sibling_map;
2454         int i;
2455
2456         if (!(sd->flags & SD_SHARE_CPUPOWER))
2457                 return;
2458
2459         /*
2460          * Unlock the current runqueue because we have to lock in
2461          * CPU order to avoid deadlocks. Caller knows that we might
2462          * unlock. We keep IRQs disabled.
2463          */
2464         spin_unlock(&this_rq->lock);
2465
2466         sibling_map = sd->span;
2467
2468         for_each_cpu_mask(i, sibling_map)
2469                 spin_lock(&cpu_rq(i)->lock);
2470         /*
2471          * We clear this CPU from the mask. This both simplifies the
2472          * inner loop and keps this_rq locked when we exit:
2473          */
2474         cpu_clear(this_cpu, sibling_map);
2475
2476         for_each_cpu_mask(i, sibling_map) {
2477                 runqueue_t *smt_rq = cpu_rq(i);
2478
2479                 /*
2480                  * If an SMT sibling task is sleeping due to priority
2481                  * reasons wake it up now.
2482                  */
2483                 if (smt_rq->curr == smt_rq->idle && smt_rq->nr_running)
2484                         resched_task(smt_rq->idle);
2485         }
2486
2487         for_each_cpu_mask(i, sibling_map)
2488                 spin_unlock(&cpu_rq(i)->lock);
2489         /*
2490          * We exit with this_cpu's rq still held and IRQs
2491          * still disabled:
2492          */
2493 }
2494
2495 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2496 {
2497         struct sched_domain *sd = this_rq->sd;
2498         cpumask_t sibling_map;
2499         prio_array_t *array;
2500         int ret = 0, i;
2501         task_t *p;
2502
2503         if (!(sd->flags & SD_SHARE_CPUPOWER))
2504                 return 0;
2505
2506         /*
2507          * The same locking rules and details apply as for
2508          * wake_sleeping_dependent():
2509          */
2510         spin_unlock(&this_rq->lock);
2511         sibling_map = sd->span;
2512         for_each_cpu_mask(i, sibling_map)
2513                 spin_lock(&cpu_rq(i)->lock);
2514         cpu_clear(this_cpu, sibling_map);
2515
2516         /*
2517          * Establish next task to be run - it might have gone away because
2518          * we released the runqueue lock above:
2519          */
2520         if (!this_rq->nr_running)
2521                 goto out_unlock;
2522         array = this_rq->active;
2523         if (!array->nr_active)
2524                 array = this_rq->expired;
2525         BUG_ON(!array->nr_active);
2526
2527         p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2528                 task_t, run_list);
2529
2530         for_each_cpu_mask(i, sibling_map) {
2531                 runqueue_t *smt_rq = cpu_rq(i);
2532                 task_t *smt_curr = smt_rq->curr;
2533
2534                 /*
2535                  * If a user task with lower static priority than the
2536                  * running task on the SMT sibling is trying to schedule,
2537                  * delay it till there is proportionately less timeslice
2538                  * left of the sibling task to prevent a lower priority
2539                  * task from using an unfair proportion of the
2540                  * physical cpu's resources. -ck
2541                  */
2542                 if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) / 100) >
2543                         task_timeslice(p) || rt_task(smt_curr)) &&
2544                         p->mm && smt_curr->mm && !rt_task(p))
2545                                 ret = 1;
2546
2547                 /*
2548                  * Reschedule a lower priority task on the SMT sibling,
2549                  * or wake it up if it has been put to sleep for priority
2550                  * reasons.
2551                  */
2552                 if ((((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
2553                         task_timeslice(smt_curr) || rt_task(p)) &&
2554                         smt_curr->mm && p->mm && !rt_task(smt_curr)) ||
2555                         (smt_curr == smt_rq->idle && smt_rq->nr_running))
2556                                 resched_task(smt_curr);
2557         }
2558 out_unlock:
2559         for_each_cpu_mask(i, sibling_map)
2560                 spin_unlock(&cpu_rq(i)->lock);
2561         return ret;
2562 }
2563 #else
2564 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2565 {
2566 }
2567
2568 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2569 {
2570         return 0;
2571 }
2572 #endif
2573
2574 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2575
2576 void fastcall add_preempt_count(int val)
2577 {
2578         /*
2579          * Underflow?
2580          */
2581         BUG_ON((preempt_count() < 0));
2582         preempt_count() += val;
2583         /*
2584          * Spinlock count overflowing soon?
2585          */
2586         BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2587 }
2588 EXPORT_SYMBOL(add_preempt_count);
2589
2590 void fastcall sub_preempt_count(int val)
2591 {
2592         /*
2593          * Underflow?
2594          */
2595         BUG_ON(val > preempt_count());
2596         /*
2597          * Is the spinlock portion underflowing?
2598          */
2599         BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2600         preempt_count() -= val;
2601 }
2602 EXPORT_SYMBOL(sub_preempt_count);
2603
2604 #endif
2605
2606 /*
2607  * schedule() is the main scheduler function.
2608  */
2609 asmlinkage void __sched schedule(void)
2610 {
2611         long *switch_count;
2612         task_t *prev, *next;
2613         runqueue_t *rq;
2614         prio_array_t *array;
2615         struct list_head *queue;
2616         unsigned long long now;
2617         unsigned long run_time;
2618         int cpu, idx;
2619
2620         /*
2621          * Test if we are atomic.  Since do_exit() needs to call into
2622          * schedule() atomically, we ignore that path for now.
2623          * Otherwise, whine if we are scheduling when we should not be.
2624          */
2625         if (likely(!current->exit_state)) {
2626                 if (unlikely(in_atomic())) {
2627                         printk(KERN_ERR "scheduling while atomic: "
2628                                 "%s/0x%08x/%d\n",
2629                                 current->comm, preempt_count(), current->pid);
2630                         dump_stack();
2631                 }
2632         }
2633         profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2634
2635 need_resched:
2636         preempt_disable();
2637         prev = current;
2638         release_kernel_lock(prev);
2639 need_resched_nonpreemptible:
2640         rq = this_rq();
2641
2642         /*
2643          * The idle thread is not allowed to schedule!
2644          * Remove this check after it has been exercised a bit.
2645          */
2646         if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2647                 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2648                 dump_stack();
2649         }
2650
2651         schedstat_inc(rq, sched_cnt);
2652         now = sched_clock();
2653         if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2654                 run_time = now - prev->timestamp;
2655                 if (unlikely((long long)(now - prev->timestamp) < 0))
2656                         run_time = 0;
2657         } else
2658                 run_time = NS_MAX_SLEEP_AVG;
2659
2660         /*
2661          * Tasks charged proportionately less run_time at high sleep_avg to
2662          * delay them losing their interactive status
2663          */
2664         run_time /= (CURRENT_BONUS(prev) ? : 1);
2665
2666         spin_lock_irq(&rq->lock);
2667
2668         if (unlikely(prev->flags & PF_DEAD))
2669                 prev->state = EXIT_DEAD;
2670
2671         switch_count = &prev->nivcsw;
2672         if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2673                 switch_count = &prev->nvcsw;
2674                 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2675                                 unlikely(signal_pending(prev))))
2676                         prev->state = TASK_RUNNING;
2677                 else {
2678                         if (prev->state == TASK_UNINTERRUPTIBLE)
2679                                 rq->nr_uninterruptible++;
2680                         deactivate_task(prev, rq);
2681                 }
2682         }
2683
2684         cpu = smp_processor_id();
2685         if (unlikely(!rq->nr_running)) {
2686 go_idle:
2687                 idle_balance(cpu, rq);
2688                 if (!rq->nr_running) {
2689                         next = rq->idle;
2690                         rq->expired_timestamp = 0;
2691                         wake_sleeping_dependent(cpu, rq);
2692                         /*
2693                          * wake_sleeping_dependent() might have released
2694                          * the runqueue, so break out if we got new
2695                          * tasks meanwhile:
2696                          */
2697                         if (!rq->nr_running)
2698                                 goto switch_tasks;
2699                 }
2700         } else {
2701                 if (dependent_sleeper(cpu, rq)) {
2702                         next = rq->idle;
2703                         goto switch_tasks;
2704                 }
2705                 /*
2706                  * dependent_sleeper() releases and reacquires the runqueue
2707                  * lock, hence go into the idle loop if the rq went
2708                  * empty meanwhile:
2709                  */
2710                 if (unlikely(!rq->nr_running))
2711                         goto go_idle;
2712         }
2713
2714         array = rq->active;
2715         if (unlikely(!array->nr_active)) {
2716                 /*
2717                  * Switch the active and expired arrays.
2718                  */
2719                 schedstat_inc(rq, sched_switch);
2720                 rq->active = rq->expired;
2721                 rq->expired = array;
2722                 array = rq->active;
2723                 rq->expired_timestamp = 0;
2724                 rq->best_expired_prio = MAX_PRIO;
2725         }
2726
2727         idx = sched_find_first_bit(array->bitmap);
2728         queue = array->queue + idx;
2729         next = list_entry(queue->next, task_t, run_list);
2730
2731         if (!rt_task(next) && next->activated > 0) {
2732                 unsigned long long delta = now - next->timestamp;
2733                 if (unlikely((long long)(now - next->timestamp) < 0))
2734                         delta = 0;
2735
2736                 if (next->activated == 1)
2737                         delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2738
2739                 array = next->array;
2740                 dequeue_task(next, array);
2741                 recalc_task_prio(next, next->timestamp + delta);
2742                 enqueue_task(next, array);
2743         }
2744         next->activated = 0;
2745 switch_tasks:
2746         if (next == rq->idle)
2747                 schedstat_inc(rq, sched_goidle);
2748         prefetch(next);
2749         clear_tsk_need_resched(prev);
2750         rcu_qsctr_inc(task_cpu(prev));
2751
2752         update_cpu_clock(prev, rq, now);
2753
2754         prev->sleep_avg -= run_time;
2755         if ((long)prev->sleep_avg <= 0)
2756                 prev->sleep_avg = 0;
2757         prev->timestamp = prev->last_ran = now;
2758
2759         sched_info_switch(prev, next);
2760         if (likely(prev != next)) {
2761                 next->timestamp = now;
2762                 rq->nr_switches++;
2763                 rq->curr = next;
2764                 ++*switch_count;
2765
2766                 prepare_arch_switch(rq, next);
2767                 prev = context_switch(rq, prev, next);
2768                 barrier();
2769
2770                 finish_task_switch(prev);
2771         } else
2772                 spin_unlock_irq(&rq->lock);
2773
2774         prev = current;
2775         if (unlikely(reacquire_kernel_lock(prev) < 0))
2776                 goto need_resched_nonpreemptible;
2777         preempt_enable_no_resched();
2778         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2779                 goto need_resched;
2780 }
2781
2782 EXPORT_SYMBOL(schedule);
2783
2784 #ifdef CONFIG_PREEMPT
2785 /*
2786  * this is is the entry point to schedule() from in-kernel preemption
2787  * off of preempt_enable.  Kernel preemptions off return from interrupt
2788  * occur there and call schedule directly.
2789  */
2790 asmlinkage void __sched preempt_schedule(void)
2791 {
2792         struct thread_info *ti = current_thread_info();
2793 #ifdef CONFIG_PREEMPT_BKL
2794         struct task_struct *task = current;
2795         int saved_lock_depth;
2796 #endif
2797         /*
2798          * If there is a non-zero preempt_count or interrupts are disabled,
2799          * we do not want to preempt the current task.  Just return..
2800          */
2801         if (unlikely(ti->preempt_count || irqs_disabled()))
2802                 return;
2803
2804 need_resched:
2805         add_preempt_count(PREEMPT_ACTIVE);
2806         /*
2807          * We keep the big kernel semaphore locked, but we
2808          * clear ->lock_depth so that schedule() doesnt
2809          * auto-release the semaphore:
2810          */
2811 #ifdef CONFIG_PREEMPT_BKL
2812         saved_lock_depth = task->lock_depth;
2813         task->lock_depth = -1;
2814 #endif
2815         schedule();
2816 #ifdef CONFIG_PREEMPT_BKL
2817         task->lock_depth = saved_lock_depth;
2818 #endif
2819         sub_preempt_count(PREEMPT_ACTIVE);
2820
2821         /* we could miss a preemption opportunity between schedule and now */
2822         barrier();
2823         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2824                 goto need_resched;
2825 }
2826
2827 EXPORT_SYMBOL(preempt_schedule);
2828
2829 /*
2830  * this is is the entry point to schedule() from kernel preemption
2831  * off of irq context.
2832  * Note, that this is called and return with irqs disabled. This will
2833  * protect us against recursive calling from irq.
2834  */
2835 asmlinkage void __sched preempt_schedule_irq(void)
2836 {
2837         struct thread_info *ti = current_thread_info();
2838 #ifdef CONFIG_PREEMPT_BKL
2839         struct task_struct *task = current;
2840         int saved_lock_depth;
2841 #endif
2842         /* Catch callers which need to be fixed*/
2843         BUG_ON(ti->preempt_count || !irqs_disabled());
2844
2845 need_resched:
2846         add_preempt_count(PREEMPT_ACTIVE);
2847         /*
2848          * We keep the big kernel semaphore locked, but we
2849          * clear ->lock_depth so that schedule() doesnt
2850          * auto-release the semaphore:
2851          */
2852 #ifdef CONFIG_PREEMPT_BKL
2853         saved_lock_depth = task->lock_depth;
2854         task->lock_depth = -1;
2855 #endif
2856         local_irq_enable();
2857         schedule();
2858         local_irq_disable();
2859 #ifdef CONFIG_PREEMPT_BKL
2860         task->lock_depth = saved_lock_depth;
2861 #endif
2862         sub_preempt_count(PREEMPT_ACTIVE);
2863
2864         /* we could miss a preemption opportunity between schedule and now */
2865         barrier();
2866         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2867                 goto need_resched;
2868 }
2869
2870 #endif /* CONFIG_PREEMPT */
2871
2872 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key)
2873 {
2874         task_t *p = curr->private;
2875         return try_to_wake_up(p, mode, sync);
2876 }
2877
2878 EXPORT_SYMBOL(default_wake_function);
2879
2880 /*
2881  * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
2882  * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
2883  * number) then we wake all the non-exclusive tasks and one exclusive task.
2884  *
2885  * There are circumstances in which we can try to wake a task which has already
2886  * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
2887  * zero in this (rare) case, and we handle it by continuing to scan the queue.
2888  */
2889 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2890                              int nr_exclusive, int sync, void *key)
2891 {
2892         struct list_head *tmp, *next;
2893
2894         list_for_each_safe(tmp, next, &q->task_list) {
2895                 wait_queue_t *curr;
2896                 unsigned flags;
2897                 curr = list_entry(tmp, wait_queue_t, task_list);
2898                 flags = curr->flags;
2899                 if (curr->func(curr, mode, sync, key) &&
2900                     (flags & WQ_FLAG_EXCLUSIVE) &&
2901                     !--nr_exclusive)
2902                         break;
2903         }
2904 }
2905
2906 /**
2907  * __wake_up - wake up threads blocked on a waitqueue.
2908  * @q: the waitqueue
2909  * @mode: which threads
2910  * @nr_exclusive: how many wake-one or wake-many threads to wake up
2911  * @key: is directly passed to the wakeup function
2912  */
2913 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
2914                                 int nr_exclusive, void *key)
2915 {
2916         unsigned long flags;
2917
2918         spin_lock_irqsave(&q->lock, flags);
2919         __wake_up_common(q, mode, nr_exclusive, 0, key);
2920         spin_unlock_irqrestore(&q->lock, flags);
2921 }
2922
2923 EXPORT_SYMBOL(__wake_up);
2924
2925 /*
2926  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2927  */
2928 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
2929 {
2930         __wake_up_common(q, mode, 1, 0, NULL);
2931 }
2932
2933 /**
2934  * __wake_up_sync - wake up threads blocked on a waitqueue.
2935  * @q: the waitqueue
2936  * @mode: which threads
2937  * @nr_exclusive: how many wake-one or wake-many threads to wake up
2938  *
2939  * The sync wakeup differs that the waker knows that it will schedule
2940  * away soon, so while the target thread will be woken up, it will not
2941  * be migrated to another CPU - ie. the two threads are 'synchronized'
2942  * with each other. This can prevent needless bouncing between CPUs.
2943  *
2944  * On UP it can prevent extra preemption.
2945  */
2946 void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2947 {
2948         unsigned long flags;
2949         int sync = 1;
2950
2951         if (unlikely(!q))
2952                 return;
2953
2954         if (unlikely(!nr_exclusive))
2955                 sync = 0;
2956
2957         spin_lock_irqsave(&q->lock, flags);
2958         __wake_up_common(q, mode, nr_exclusive, sync, NULL);
2959         spin_unlock_irqrestore(&q->lock, flags);
2960 }
2961 EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
2962
2963 void fastcall complete(struct completion *x)
2964 {
2965         unsigned long flags;
2966
2967         spin_lock_irqsave(&x->wait.lock, flags);
2968         x->done++;
2969         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2970                          1, 0, NULL);
2971         spin_unlock_irqrestore(&x->wait.lock, flags);
2972 }
2973 EXPORT_SYMBOL(complete);
2974
2975 void fastcall complete_all(struct completion *x)
2976 {
2977         unsigned long flags;
2978
2979         spin_lock_irqsave(&x->wait.lock, flags);
2980         x->done += UINT_MAX/2;
2981         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2982                          0, 0, NULL);
2983         spin_unlock_irqrestore(&x->wait.lock, flags);
2984 }
2985 EXPORT_SYMBOL(complete_all);
2986
2987 void fastcall __sched wait_for_completion(struct completion *x)
2988 {
2989         might_sleep();
2990         spin_lock_irq(&x->wait.lock);
2991         if (!x->done) {
2992                 DECLARE_WAITQUEUE(wait, current);
2993
2994                 wait.flags |= WQ_FLAG_EXCLUSIVE;
2995                 __add_wait_queue_tail(&x->wait, &wait);
2996                 do {
2997                         __set_current_state(TASK_UNINTERRUPTIBLE);
2998                         spin_unlock_irq(&x->wait.lock);
2999                         schedule();
3000                         spin_lock_irq(&x->wait.lock);
3001                 } while (!x->done);
3002                 __remove_wait_queue(&x->wait, &wait);
3003         }
3004         x->done--;
3005         spin_unlock_irq(&x->wait.lock);
3006 }
3007 EXPORT_SYMBOL(wait_for_completion);
3008
3009 unsigned long fastcall __sched
3010 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3011 {
3012         might_sleep();
3013
3014         spin_lock_irq(&x->wait.lock);
3015         if (!x->done) {
3016                 DECLARE_WAITQUEUE(wait, current);
3017
3018                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3019                 __add_wait_queue_tail(&x->wait, &wait);
3020                 do {
3021                         __set_current_state(TASK_UNINTERRUPTIBLE);
3022                         spin_unlock_irq(&x->wait.lock);
3023                         timeout = schedule_timeout(timeout);
3024                         spin_lock_irq(&x->wait.lock);
3025                         if (!timeout) {
3026                                 __remove_wait_queue(&x->wait, &wait);
3027                                 goto out;
3028                         }
3029                 } while (!x->done);
3030                 __remove_wait_queue(&x->wait, &wait);
3031         }
3032         x->done--;
3033 out:
3034         spin_unlock_irq(&x->wait.lock);
3035         return timeout;
3036 }
3037 EXPORT_SYMBOL(wait_for_completion_timeout);
3038
3039 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3040 {
3041         int ret = 0;
3042
3043         might_sleep();
3044
3045         spin_lock_irq(&x->wait.lock);
3046         if (!x->done) {
3047                 DECLARE_WAITQUEUE(wait, current);
3048
3049                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3050                 __add_wait_queue_tail(&x->wait, &wait);
3051                 do {
3052                         if (signal_pending(current)) {
3053                                 ret = -ERESTARTSYS;
3054                                 __remove_wait_queue(&x->wait, &wait);
3055                                 goto out;
3056                         }
3057                         __set_current_state(TASK_INTERRUPTIBLE);
3058                         spin_unlock_irq(&x->wait.lock);
3059                         schedule();
3060                         spin_lock_irq(&x->wait.lock);
3061                 } while (!x->done);
3062                 __remove_wait_queue(&x->wait, &wait);
3063         }
3064         x->done--;
3065 out:
3066         spin_unlock_irq(&x->wait.lock);
3067
3068         return ret;
3069 }
3070 EXPORT_SYMBOL(wait_for_completion_interruptible);
3071
3072 unsigned long fastcall __sched
3073 wait_for_completion_interruptible_timeout(struct completion *x,
3074                                           unsigned long timeout)
3075 {
3076         might_sleep();
3077
3078         spin_lock_irq(&x->wait.lock);
3079         if (!x->done) {
3080                 DECLARE_WAITQUEUE(wait, current);
3081
3082                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3083                 __add_wait_queue_tail(&x->wait, &wait);
3084                 do {
3085                         if (signal_pending(current)) {
3086                                 timeout = -ERESTARTSYS;
3087                                 __remove_wait_queue(&x->wait, &wait);
3088                                 goto out;
3089                         }
3090                         __set_current_state(TASK_INTERRUPTIBLE);
3091                         spin_unlock_irq(&x->wait.lock);
3092                         timeout = schedule_timeout(timeout);
3093                         spin_lock_irq(&x->wait.lock);
3094                         if (!timeout) {
3095                                 __remove_wait_queue(&x->wait, &wait);
3096                                 goto out;
3097                         }
3098                 } while (!x->done);
3099                 __remove_wait_queue(&x->wait, &wait);
3100         }
3101         x->done--;
3102 out:
3103         spin_unlock_irq(&x->wait.lock);
3104         return timeout;
3105 }
3106 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3107
3108
3109 #define SLEEP_ON_VAR                                    \
3110         unsigned long flags;                            \
3111         wait_queue_t wait;                              \
3112         init_waitqueue_entry(&wait, current);
3113
3114 #define SLEEP_ON_HEAD                                   \
3115         spin_lock_irqsave(&q->lock,flags);              \
3116         __add_wait_queue(q, &wait);                     \
3117         spin_unlock(&q->lock);
3118
3119 #define SLEEP_ON_TAIL                                   \
3120         spin_lock_irq(&q->lock);                        \
3121         __remove_wait_queue(q, &wait);                  \
3122         spin_unlock_irqrestore(&q->lock, flags);
3123
3124 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3125 {
3126         SLEEP_ON_VAR
3127
3128         current->state = TASK_INTERRUPTIBLE;
3129
3130         SLEEP_ON_HEAD
3131         schedule();
3132         SLEEP_ON_TAIL
3133 }
3134
3135 EXPORT_SYMBOL(interruptible_sleep_on);
3136
3137 long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3138 {
3139         SLEEP_ON_VAR
3140
3141         current->state = TASK_INTERRUPTIBLE;
3142
3143         SLEEP_ON_HEAD
3144         timeout = schedule_timeout(timeout);
3145         SLEEP_ON_TAIL
3146
3147         return timeout;
3148 }
3149
3150 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3151
3152 void fastcall __sched sleep_on(wait_queue_head_t *q)
3153 {
3154         SLEEP_ON_VAR
3155
3156         current->state = TASK_UNINTERRUPTIBLE;
3157
3158         SLEEP_ON_HEAD
3159         schedule();
3160         SLEEP_ON_TAIL
3161 }
3162
3163 EXPORT_SYMBOL(sleep_on);
3164
3165 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3166 {
3167         SLEEP_ON_VAR
3168
3169         current->state = TASK_UNINTERRUPTIBLE;
3170
3171         SLEEP_ON_HEAD
3172         timeout = schedule_timeout(timeout);
3173         SLEEP_ON_TAIL
3174
3175         return timeout;
3176 }
3177
3178 EXPORT_SYMBOL(sleep_on_timeout);
3179
3180 void set_user_nice(task_t *p, long nice)
3181 {
3182         unsigned long flags;
3183         prio_array_t *array;
3184         runqueue_t *rq;
3185         int old_prio, new_prio, delta;
3186
3187         if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3188                 return;
3189         /*
3190          * We have to be careful, if called from sys_setpriority(),
3191          * the task might be in the middle of scheduling on another CPU.
3192          */
3193         rq = task_rq_lock(p, &flags);
3194         /*
3195          * The RT priorities are set via sched_setscheduler(), but we still
3196          * allow the 'normal' nice value to be set - but as expected
3197          * it wont have any effect on scheduling until the task is
3198          * not SCHED_NORMAL:
3199          */
3200         if (rt_task(p)) {
3201                 p->static_prio = NICE_TO_PRIO(nice);
3202                 goto out_unlock;
3203         }
3204         array = p->array;
3205         if (array)
3206                 dequeue_task(p, array);
3207
3208         old_prio = p->prio;
3209         new_prio = NICE_TO_PRIO(nice);
3210         delta = new_prio - old_prio;
3211         p->static_prio = NICE_TO_PRIO(nice);
3212         p->prio += delta;
3213
3214         if (array) {
3215                 enqueue_task(p, array);
3216                 /*
3217                  * If the task increased its priority or is running and
3218                  * lowered its priority, then reschedule its CPU:
3219                  */
3220                 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3221                         resched_task(rq->curr);
3222         }
3223 out_unlock:
3224         task_rq_unlock(rq, &flags);
3225 }
3226
3227 EXPORT_SYMBOL(set_user_nice);
3228
3229 /*
3230  * can_nice - check if a task can reduce its nice value
3231  * @p: task
3232  * @nice: nice value
3233  */
3234 int can_nice(const task_t *p, const int nice)
3235 {
3236         /* convert nice value [19,-20] to rlimit style value [0,39] */
3237         int nice_rlim = 19 - nice;
3238         return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3239                 capable(CAP_SYS_NICE));
3240 }
3241
3242 #ifdef __ARCH_WANT_SYS_NICE
3243
3244 /*
3245  * sys_nice - change the priority of the current process.
3246  * @increment: priority increment
3247  *
3248  * sys_setpriority is a more generic, but much slower function that
3249  * does similar things.
3250  */
3251 asmlinkage long sys_nice(int increment)
3252 {
3253         int retval;
3254         long nice;
3255
3256         /*
3257          * Setpriority might change our priority at the same moment.
3258          * We don't have to worry. Conceptually one call occurs first
3259          * and we have a single winner.
3260          */
3261         if (increment < -40)
3262                 increment = -40;
3263         if (increment > 40)
3264                 increment = 40;
3265
3266         nice = PRIO_TO_NICE(current->static_prio) + increment;
3267         if (nice < -20)
3268                 nice = -20;
3269         if (nice > 19)
3270                 nice = 19;
3271
3272         if (increment < 0 && !can_nice(current, nice))
3273                 return -EPERM;
3274
3275         retval = security_task_setnice(current, nice);
3276         if (retval)
3277                 return retval;
3278
3279         set_user_nice(current, nice);
3280         return 0;
3281 }
3282
3283 #endif
3284
3285 /**
3286  * task_prio - return the priority value of a given task.
3287  * @p: the task in question.
3288  *
3289  * This is the priority value as seen by users in /proc.
3290  * RT tasks are offset by -200. Normal tasks are centered
3291  * around 0, value goes from -16 to +15.
3292  */
3293 int task_prio(const task_t *p)
3294 {
3295         return p->prio - MAX_RT_PRIO;
3296 }
3297
3298 /**
3299  * task_nice - return the nice value of a given task.
3300  * @p: the task in question.
3301  */
3302 int task_nice(const task_t *p)
3303 {
3304         return TASK_NICE(p);
3305 }
3306
3307 /*
3308  * The only users of task_nice are binfmt_elf and binfmt_elf32.
3309  * binfmt_elf is no longer modular, but binfmt_elf32 still is.
3310  * Therefore, task_nice is needed if there is a compat_mode.
3311  */
3312 #ifdef CONFIG_COMPAT
3313 EXPORT_SYMBOL_GPL(task_nice);
3314 #endif
3315
3316 /**
3317  * idle_cpu - is a given cpu idle currently?
3318  * @cpu: the processor in question.
3319  */
3320 int idle_cpu(int cpu)
3321 {
3322         return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3323 }
3324
3325 EXPORT_SYMBOL_GPL(idle_cpu);
3326
3327 /**
3328  * idle_task - return the idle task for a given cpu.
3329  * @cpu: the processor in question.
3330  */
3331 task_t *idle_task(int cpu)
3332 {
3333         return cpu_rq(cpu)->idle;
3334 }
3335
3336 /**
3337  * find_process_by_pid - find a process with a matching PID value.
3338  * @pid: the pid in question.
3339  */
3340 static inline task_t *find_process_by_pid(pid_t pid)
3341 {
3342         return pid ? find_task_by_pid(pid) : current;
3343 }
3344
3345 /* Actually do priority change: must hold rq lock. */
3346 static void __setscheduler(struct task_struct *p, int policy, int prio)
3347 {
3348         BUG_ON(p->array);
3349         p->policy = policy;
3350         p->rt_priority = prio;
3351         if (policy != SCHED_NORMAL)
3352                 p->prio = MAX_USER_RT_PRIO-1 - p->rt_priority;
3353         else
3354                 p->prio = p->static_prio;
3355 }
3356
3357 /**
3358  * sched_setscheduler - change the scheduling policy and/or RT priority of
3359  * a thread.
3360  * @p: the task in question.
3361  * @policy: new policy.
3362  * @param: structure containing the new RT priority.
3363  */
3364 int sched_setscheduler(struct task_struct *p, int policy, struct sched_param *param)
3365 {
3366         int retval;
3367         int oldprio, oldpolicy = -1;
3368         prio_array_t *array;
3369         unsigned long flags;
3370         runqueue_t *rq;
3371
3372 recheck:
3373         /* double check policy once rq lock held */
3374         if (policy < 0)
3375                 policy = oldpolicy = p->policy;
3376         else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3377                                 policy != SCHED_NORMAL)
3378                         return -EINVAL;
3379         /*
3380          * Valid priorities for SCHED_FIFO and SCHED_RR are
3381          * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3382          */
3383         if (param->sched_priority < 0 ||
3384             param->sched_priority > MAX_USER_RT_PRIO-1)
3385                 return -EINVAL;
3386         if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3387                 return -EINVAL;
3388
3389         if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
3390             param->sched_priority > p->signal->rlim[RLIMIT_RTPRIO].rlim_cur &&
3391             !capable(CAP_SYS_NICE))
3392                 return -EPERM;
3393         if ((current->euid != p->euid) && (current->euid != p->uid) &&
3394             !capable(CAP_SYS_NICE))
3395                 return -EPERM;
3396
3397         retval = security_task_setscheduler(p, policy, param);
3398         if (retval)
3399                 return retval;
3400         /*
3401          * To be able to change p->policy safely, the apropriate
3402          * runqueue lock must be held.
3403          */
3404         rq = task_rq_lock(p, &flags);
3405         /* recheck policy now with rq lock held */
3406         if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3407                 policy = oldpolicy = -1;
3408                 task_rq_unlock(rq, &flags);
3409                 goto recheck;
3410         }
3411         array = p->array;
3412         if (array)
3413                 deactivate_task(p, rq);
3414         oldprio = p->prio;
3415         __setscheduler(p, policy, param->sched_priority);
3416         if (array) {
3417                 __activate_task(p, rq);
3418                 /*
3419                  * Reschedule if we are currently running on this runqueue and
3420                  * our priority decreased, or if we are not currently running on
3421                  * this runqueue and our priority is higher than the current's
3422                  */
3423                 if (task_running(rq, p)) {
3424                         if (p->prio > oldprio)
3425                                 resched_task(rq->curr);
3426                 } else if (TASK_PREEMPTS_CURR(p, rq))
3427                         resched_task(rq->curr);
3428         }
3429         task_rq_unlock(rq, &flags);
3430         return 0;
3431 }
3432 EXPORT_SYMBOL_GPL(sched_setscheduler);
3433
3434 static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3435 {
3436         int retval;
3437         struct sched_param lparam;
3438         struct task_struct *p;
3439
3440         if (!param || pid < 0)
3441                 return -EINVAL;
3442         if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3443                 return -EFAULT;
3444         read_lock_irq(&tasklist_lock);
3445         p = find_process_by_pid(pid);
3446         if (!p) {
3447                 read_unlock_irq(&tasklist_lock);
3448                 return -ESRCH;
3449         }
3450         retval = sched_setscheduler(p, policy, &lparam);
3451         read_unlock_irq(&tasklist_lock);
3452         return retval;
3453 }
3454
3455 /**
3456  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3457  * @pid: the pid in question.
3458  * @policy: new policy.
3459  * @param: structure containing the new RT priority.
3460  */
3461 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3462                                        struct sched_param __user *param)
3463 {
3464         return do_sched_setscheduler(pid, policy, param);
3465 }
3466
3467 /**
3468  * sys_sched_setparam - set/change the RT priority of a thread
3469  * @pid: the pid in question.
3470  * @param: structure containing the new RT priority.
3471  */
3472 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3473 {
3474         return do_sched_setscheduler(pid, -1, param);
3475 }
3476
3477 /**
3478  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3479  * @pid: the pid in question.
3480  */
3481 asmlinkage long sys_sched_getscheduler(pid_t pid)
3482 {
3483         int retval = -EINVAL;
3484         task_t *p;
3485
3486         if (pid < 0)
3487                 goto out_nounlock;
3488
3489         retval = -ESRCH;
3490         read_lock(&tasklist_lock);
3491         p = find_process_by_pid(pid);
3492         if (p) {
3493                 retval = security_task_getscheduler(p);
3494                 if (!retval)
3495                         retval = p->policy;
3496         }
3497         read_unlock(&tasklist_lock);
3498
3499 out_nounlock:
3500         return retval;
3501 }
3502
3503 /**
3504  * sys_sched_getscheduler - get the RT priority of a thread
3505  * @pid: the pid in question.
3506  * @param: structure containing the RT priority.
3507  */
3508 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3509 {
3510         struct sched_param lp;
3511         int retval = -EINVAL;
3512         task_t *p;
3513
3514         if (!param || pid < 0)
3515                 goto out_nounlock;
3516
3517         read_lock(&tasklist_lock);
3518         p = find_process_by_pid(pid);
3519         retval = -ESRCH;
3520         if (!p)
3521                 goto out_unlock;
3522
3523         retval = security_task_getscheduler(p);
3524         if (retval)
3525                 goto out_unlock;
3526
3527         lp.sched_priority = p->rt_priority;
3528         read_unlock(&tasklist_lock);
3529
3530         /*
3531          * This one might sleep, we cannot do it with a spinlock held ...
3532          */
3533         retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3534
3535 out_nounlock:
3536         return retval;
3537
3538 out_unlock:
3539         read_unlock(&tasklist_lock);
3540         return retval;
3541 }
3542
3543 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3544 {
3545         task_t *p;
3546         int retval;
3547         cpumask_t cpus_allowed;
3548
3549         lock_cpu_hotplug();
3550         read_lock(&tasklist_lock);
3551
3552         p = find_process_by_pid(pid);
3553         if (!p) {
3554                 read_unlock(&tasklist_lock);
3555                 unlock_cpu_hotplug();
3556                 return -ESRCH;
3557         }
3558
3559         /*
3560          * It is not safe to call set_cpus_allowed with the
3561          * tasklist_lock held.  We will bump the task_struct's
3562          * usage count and then drop tasklist_lock.
3563          */
3564         get_task_struct(p);
3565         read_unlock(&tasklist_lock);
3566
3567         retval = -EPERM;
3568         if ((current->euid != p->euid) && (current->euid != p->uid) &&
3569                         !capable(CAP_SYS_NICE))
3570                 goto out_unlock;
3571
3572         cpus_allowed = cpuset_cpus_allowed(p);
3573         cpus_and(new_mask, new_mask, cpus_allowed);
3574         retval = set_cpus_allowed(p, new_mask);
3575
3576 out_unlock:
3577         put_task_struct(p);
3578         unlock_cpu_hotplug();
3579         return retval;
3580 }
3581
3582 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3583                              cpumask_t *new_mask)
3584 {
3585         if (len < sizeof(cpumask_t)) {
3586                 memset(new_mask, 0, sizeof(cpumask_t));
3587         } else if (len > sizeof(cpumask_t)) {
3588                 len = sizeof(cpumask_t);
3589         }
3590         return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3591 }
3592
3593 /**
3594  * sys_sched_setaffinity - set the cpu affinity of a process
3595  * @pid: pid of the process
3596  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3597  * @user_mask_ptr: user-space pointer to the new cpu mask
3598  */
3599 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3600                                       unsigned long __user *user_mask_ptr)
3601 {
3602         cpumask_t new_mask;
3603         int retval;
3604
3605         retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3606         if (retval)
3607                 return retval;
3608
3609         return sched_setaffinity(pid, new_mask);
3610 }
3611
3612 /*
3613  * Represents all cpu's present in the system
3614  * In systems capable of hotplug, this map could dynamically grow
3615  * as new cpu's are detected in the system via any platform specific
3616  * method, such as ACPI for e.g.
3617  */
3618
3619 cpumask_t cpu_present_map;
3620 EXPORT_SYMBOL(cpu_present_map);
3621
3622 #ifndef CONFIG_SMP
3623 cpumask_t cpu_online_map = CPU_MASK_ALL;
3624 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3625 #endif
3626
3627 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3628 {
3629         int retval;
3630         task_t *p;
3631
3632         lock_cpu_hotplug();
3633         read_lock(&tasklist_lock);
3634
3635         retval = -ESRCH;
3636         p = find_process_by_pid(pid);
3637         if (!p)
3638                 goto out_unlock;
3639
3640         retval = 0;
3641         cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3642
3643 out_unlock:
3644         read_unlock(&tasklist_lock);
3645         unlock_cpu_hotplug();
3646         if (retval)
3647                 return retval;
3648
3649         return 0;
3650 }
3651
3652 /**
3653  * sys_sched_getaffinity - get the cpu affinity of a process
3654  * @pid: pid of the process
3655  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3656  * @user_mask_ptr: user-space pointer to hold the current cpu mask
3657  */
3658 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3659                                       unsigned long __user *user_mask_ptr)
3660 {
3661         int ret;
3662         cpumask_t mask;
3663
3664         if (len < sizeof(cpumask_t))
3665                 return -EINVAL;
3666
3667         ret = sched_getaffinity(pid, &mask);
3668         if (ret < 0)
3669                 return ret;
3670
3671         if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3672                 return -EFAULT;
3673
3674         return sizeof(cpumask_t);
3675 }
3676
3677 /**
3678  * sys_sched_yield - yield the current processor to other threads.
3679  *
3680  * this function yields the current CPU by moving the calling thread
3681  * to the expired array. If there are no other threads running on this
3682  * CPU then this function will return.
3683  */
3684 asmlinkage long sys_sched_yield(void)
3685 {
3686         runqueue_t *rq = this_rq_lock();
3687         prio_array_t *array = current->array;
3688         prio_array_t *target = rq->expired;
3689
3690         schedstat_inc(rq, yld_cnt);
3691         /*
3692          * We implement yielding by moving the task into the expired
3693          * queue.
3694          *
3695          * (special rule: RT tasks will just roundrobin in the active
3696          *  array.)
3697          */
3698         if (rt_task(current))
3699                 target = rq->active;
3700
3701         if (current->array->nr_active == 1) {
3702                 schedstat_inc(rq, yld_act_empty);
3703                 if (!rq->expired->nr_active)
3704                         schedstat_inc(rq, yld_both_empty);
3705         } else if (!rq->expired->nr_active)
3706                 schedstat_inc(rq, yld_exp_empty);
3707
3708         if (array != target) {
3709                 dequeue_task(current, array);
3710                 enqueue_task(current, target);
3711         } else
3712                 /*
3713                  * requeue_task is cheaper so perform that if possible.
3714                  */
3715                 requeue_task(current, array);
3716
3717         /*
3718          * Since we are going to call schedule() anyway, there's
3719          * no need to preempt or enable interrupts:
3720          */
3721         __release(rq->lock);
3722         _raw_spin_unlock(&rq->lock);
3723         preempt_enable_no_resched();
3724
3725         schedule();
3726
3727         return 0;
3728 }
3729
3730 static inline void __cond_resched(void)
3731 {
3732         do {
3733                 add_preempt_count(PREEMPT_ACTIVE);
3734                 schedule();
3735                 sub_preempt_count(PREEMPT_ACTIVE);
3736         } while (need_resched());
3737 }
3738
3739 int __sched cond_resched(void)
3740 {
3741         if (need_resched()) {
3742                 __cond_resched();
3743                 return 1;
3744         }
3745         return 0;
3746 }
3747
3748 EXPORT_SYMBOL(cond_resched);
3749
3750 /*
3751  * cond_resched_lock() - if a reschedule is pending, drop the given lock,
3752  * call schedule, and on return reacquire the lock.
3753  *
3754  * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
3755  * operations here to prevent schedule() from being called twice (once via
3756  * spin_unlock(), once by hand).
3757  */
3758 int cond_resched_lock(spinlock_t * lock)
3759 {
3760         int ret = 0;
3761
3762         if (need_lockbreak(lock)) {
3763                 spin_unlock(lock);
3764                 cpu_relax();
3765                 ret = 1;
3766                 spin_lock(lock);
3767         }
3768         if (need_resched()) {
3769                 _raw_spin_unlock(lock);
3770                 preempt_enable_no_resched();
3771                 __cond_resched();
3772                 ret = 1;
3773                 spin_lock(lock);
3774         }
3775         return ret;
3776 }
3777
3778 EXPORT_SYMBOL(cond_resched_lock);
3779
3780 int __sched cond_resched_softirq(void)
3781 {
3782         BUG_ON(!in_softirq());
3783
3784         if (need_resched()) {
3785                 __local_bh_enable();
3786                 __cond_resched();
3787                 local_bh_disable();
3788                 return 1;
3789         }
3790         return 0;
3791 }
3792
3793 EXPORT_SYMBOL(cond_resched_softirq);
3794
3795
3796 /**
3797  * yield - yield the current processor to other threads.
3798  *
3799  * this is a shortcut for kernel-space yielding - it marks the
3800  * thread runnable and calls sys_sched_yield().
3801  */
3802 void __sched yield(void)
3803 {
3804         set_current_state(TASK_RUNNING);
3805         sys_sched_yield();
3806 }
3807
3808 EXPORT_SYMBOL(yield);
3809
3810 /*
3811  * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
3812  * that process accounting knows that this is a task in IO wait state.
3813  *
3814  * But don't do that if it is a deliberate, throttling IO wait (this task
3815  * has set its backing_dev_info: the queue against which it should throttle)
3816  */
3817 void __sched io_schedule(void)
3818 {
3819         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
3820
3821         atomic_inc(&rq->nr_iowait);
3822         schedule();
3823         atomic_dec(&rq->nr_iowait);
3824 }
3825
3826 EXPORT_SYMBOL(io_schedule);
3827
3828 long __sched io_schedule_timeout(long timeout)
3829 {
3830         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
3831         long ret;
3832
3833         atomic_inc(&rq->nr_iowait);
3834         ret = schedule_timeout(timeout);
3835         atomic_dec(&rq->nr_iowait);
3836         return ret;
3837 }
3838
3839 /**
3840  * sys_sched_get_priority_max - return maximum RT priority.
3841  * @policy: scheduling class.
3842  *
3843  * this syscall returns the maximum rt_priority that can be used
3844  * by a given scheduling class.
3845  */
3846 asmlinkage long sys_sched_get_priority_max(int policy)
3847 {
3848         int ret = -EINVAL;
3849
3850         switch (policy) {
3851         case SCHED_FIFO:
3852         case SCHED_RR:
3853                 ret = MAX_USER_RT_PRIO-1;
3854                 break;
3855         case SCHED_NORMAL:
3856                 ret = 0;
3857                 break;
3858         }
3859         return ret;
3860 }
3861
3862 /**
3863  * sys_sched_get_priority_min - return minimum RT priority.
3864  * @policy: scheduling class.
3865  *
3866  * this syscall returns the minimum rt_priority that can be used
3867  * by a given scheduling class.
3868  */
3869 asmlinkage long sys_sched_get_priority_min(int policy)
3870 {
3871         int ret = -EINVAL;
3872
3873         switch (policy) {
3874         case SCHED_FIFO:
3875         case SCHED_RR:
3876                 ret = 1;
3877                 break;
3878         case SCHED_NORMAL:
3879                 ret = 0;
3880         }
3881         return ret;
3882 }
3883
3884 /**
3885  * sys_sched_rr_get_interval - return the default timeslice of a process.
3886  * @pid: pid of the process.
3887  * @interval: userspace pointer to the timeslice value.
3888  *
3889  * this syscall writes the default timeslice value of a given process
3890  * into the user-space timespec buffer. A value of '0' means infinity.
3891  */
3892 asmlinkage
3893 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
3894 {
3895         int retval = -EINVAL;
3896         struct timespec t;
3897         task_t *p;
3898
3899         if (pid < 0)
3900                 goto out_nounlock;
3901
3902         retval = -ESRCH;
3903         read_lock(&tasklist_lock);
3904         p = find_process_by_pid(pid);
3905         if (!p)
3906                 goto out_unlock;
3907
3908         retval = security_task_getscheduler(p);
3909         if (retval)
3910                 goto out_unlock;
3911
3912         jiffies_to_timespec(p->policy & SCHED_FIFO ?
3913                                 0 : task_timeslice(p), &t);
3914         read_unlock(&tasklist_lock);
3915         retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
3916 out_nounlock:
3917         return retval;
3918 out_unlock:
3919         read_unlock(&tasklist_lock);
3920         return retval;
3921 }
3922
3923 static inline struct task_struct *eldest_child(struct task_struct *p)
3924 {
3925         if (list_empty(&p->children)) return NULL;
3926         return list_entry(p->children.next,struct task_struct,sibling);
3927 }
3928
3929 static inline struct task_struct *older_sibling(struct task_struct *p)
3930 {
3931         if (p->sibling.prev==&p->parent->children) return NULL;
3932         return list_entry(p->sibling.prev,struct task_struct,sibling);
3933 }
3934
3935 static inline struct task_struct *younger_sibling(struct task_struct *p)
3936 {
3937         if (p->sibling.next==&p->parent->children) return NULL;
3938         return list_entry(p->sibling.next,struct task_struct,sibling);
3939 }
3940
3941 static void show_task(task_t * p)
3942 {
3943         task_t *relative;
3944         unsigned state;
3945         unsigned long free = 0;
3946         static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
3947
3948         printk("%-13.13s ", p->comm);
3949         state = p->state ? __ffs(p->state) + 1 : 0;
3950         if (state < ARRAY_SIZE(stat_nam))
3951                 printk(stat_nam[state]);
3952         else
3953                 printk("?");
3954 #if (BITS_PER_LONG == 32)
3955         if (state == TASK_RUNNING)
3956                 printk(" running ");
3957         else
3958                 printk(" %08lX ", thread_saved_pc(p));
3959 #else
3960         if (state == TASK_RUNNING)
3961                 printk("  running task   ");
3962         else
3963                 printk(" %016lx ", thread_saved_pc(p));
3964 #endif
3965 #ifdef CONFIG_DEBUG_STACK_USAGE
3966         {
3967                 unsigned long * n = (unsigned long *) (p->thread_info+1);
3968                 while (!*n)
3969                         n++;
3970                 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
3971         }
3972 #endif
3973         printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
3974         if ((relative = eldest_child(p)))
3975                 printk("%5d ", relative->pid);
3976         else
3977                 printk("      ");
3978         if ((relative = younger_sibling(p)))
3979                 printk("%7d", relative->pid);
3980         else
3981                 printk("       ");
3982         if ((relative = older_sibling(p)))
3983                 printk(" %5d", relative->pid);
3984         else
3985                 printk("      ");
3986         if (!p->mm)
3987                 printk(" (L-TLB)\n");
3988         else
3989                 printk(" (NOTLB)\n");
3990
3991         if (state != TASK_RUNNING)
3992                 show_stack(p, NULL);
3993 }
3994
3995 void show_state(void)
3996 {
3997         task_t *g, *p;
3998
3999 #if (BITS_PER_LONG == 32)
4000         printk("\n"
4001                "                                               sibling\n");
4002         printk("  task             PC      pid father child younger older\n");
4003 #else
4004         printk("\n"
4005                "                                                       sibling\n");
4006         printk("  task                 PC          pid father child younger older\n");
4007 #endif
4008         read_lock(&tasklist_lock);
4009         do_each_thread(g, p) {
4010                 /*
4011                  * reset the NMI-timeout, listing all files on a slow
4012                  * console might take alot of time:
4013                  */
4014                 touch_nmi_watchdog();
4015                 show_task(p);
4016         } while_each_thread(g, p);
4017
4018         read_unlock(&tasklist_lock);
4019 }
4020
4021 void __devinit init_idle(task_t *idle, int cpu)
4022 {
4023         runqueue_t *rq = cpu_rq(cpu);
4024         unsigned long flags;
4025
4026         idle->sleep_avg = 0;
4027         idle->array = NULL;
4028         idle->prio = MAX_PRIO;
4029         idle->state = TASK_RUNNING;
4030         idle->cpus_allowed = cpumask_of_cpu(cpu);
4031         set_task_cpu(idle, cpu);
4032
4033         spin_lock_irqsave(&rq->lock, flags);
4034         rq->curr = rq->idle = idle;
4035         set_tsk_need_resched(idle);
4036         spin_unlock_irqrestore(&rq->lock, flags);
4037
4038         /* Set the preempt count _outside_ the spinlocks! */
4039 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4040         idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4041 #else
4042         idle->thread_info->preempt_count = 0;
4043 #endif
4044 }
4045
4046 /*
4047  * In a system that switches off the HZ timer nohz_cpu_mask
4048  * indicates which cpus entered this state. This is used
4049  * in the rcu update to wait only for active cpus. For system
4050  * which do not switch off the HZ timer nohz_cpu_mask should
4051  * always be CPU_MASK_NONE.
4052  */
4053 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4054
4055 #ifdef CONFIG_SMP
4056 /*
4057  * This is how migration works:
4058  *
4059  * 1) we queue a migration_req_t structure in the source CPU's
4060  *    runqueue and wake up that CPU's migration thread.
4061  * 2) we down() the locked semaphore => thread blocks.
4062  * 3) migration thread wakes up (implicitly it forces the migrated
4063  *    thread off the CPU)
4064  * 4) it gets the migration request and checks whether the migrated
4065  *    task is still in the wrong runqueue.
4066  * 5) if it's in the wrong runqueue then the migration thread removes
4067  *    it and puts it into the right queue.
4068  * 6) migration thread up()s the semaphore.
4069  * 7) we wake up and the migration is done.
4070  */
4071
4072 /*
4073  * Change a given task's CPU affinity. Migrate the thread to a
4074  * proper CPU and schedule it away if the CPU it's executing on
4075  * is removed from the allowed bitmask.
4076  *
4077  * NOTE: the caller must have a valid reference to the task, the
4078  * task must not exit() & deallocate itself prematurely.  The
4079  * call is not atomic; no spinlocks may be held.
4080  */
4081 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4082 {
4083         unsigned long flags;
4084         int ret = 0;
4085         migration_req_t req;
4086         runqueue_t *rq;
4087
4088         rq = task_rq_lock(p, &flags);
4089         if (!cpus_intersects(new_mask, cpu_online_map)) {
4090                 ret = -EINVAL;
4091                 goto out;
4092         }
4093
4094         p->cpus_allowed = new_mask;
4095         /* Can the task run on the task's current CPU? If so, we're done */
4096         if (cpu_isset(task_cpu(p), new_mask))
4097                 goto out;
4098
4099         if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4100                 /* Need help from migration thread: drop lock and wait. */
4101                 task_rq_unlock(rq, &flags);
4102                 wake_up_process(rq->migration_thread);
4103                 wait_for_completion(&req.done);
4104                 tlb_migrate_finish(p->mm);
4105                 return 0;
4106         }
4107 out:
4108         task_rq_unlock(rq, &flags);
4109         return ret;
4110 }
4111
4112 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4113
4114 /*
4115  * Move (not current) task off this cpu, onto dest cpu.  We're doing
4116  * this because either it can't run here any more (set_cpus_allowed()
4117  * away from this CPU, or CPU going down), or because we're
4118  * attempting to rebalance this task on exec (sched_exec).
4119  *
4120  * So we race with normal scheduler movements, but that's OK, as long
4121  * as the task is no longer on this CPU.
4122  */
4123 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4124 {
4125         runqueue_t *rq_dest, *rq_src;
4126
4127         if (unlikely(cpu_is_offline(dest_cpu)))
4128                 return;
4129
4130         rq_src = cpu_rq(src_cpu);
4131         rq_dest = cpu_rq(dest_cpu);
4132
4133         double_rq_lock(rq_src, rq_dest);
4134         /* Already moved. */
4135         if (task_cpu(p) != src_cpu)
4136                 goto out;
4137         /* Affinity changed (again). */
4138         if (!cpu_isset(dest_cpu, p->cpus_allowed))
4139                 goto out;
4140
4141         set_task_cpu(p, dest_cpu);
4142         if (p->array) {
4143                 /*
4144                  * Sync timestamp with rq_dest's before activating.
4145                  * The same thing could be achieved by doing this step
4146                  * afterwards, and pretending it was a local activate.
4147                  * This way is cleaner and logically correct.
4148                  */
4149                 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4150                                 + rq_dest->timestamp_last_tick;
4151                 deactivate_task(p, rq_src);
4152                 activate_task(p, rq_dest, 0);
4153                 if (TASK_PREEMPTS_CURR(p, rq_dest))
4154                         resched_task(rq_dest->curr);
4155         }
4156
4157 out:
4158         double_rq_unlock(rq_src, rq_dest);
4159 }
4160
4161 /*
4162  * migration_thread - this is a highprio system thread that performs
4163  * thread migration by bumping thread off CPU then 'pushing' onto
4164  * another runqueue.
4165  */
4166 static int migration_thread(void * data)
4167 {
4168         runqueue_t *rq;
4169         int cpu = (long)data;
4170
4171         rq = cpu_rq(cpu);
4172         BUG_ON(rq->migration_thread != current);
4173
4174         set_current_state(TASK_INTERRUPTIBLE);
4175         while (!kthread_should_stop()) {
4176                 struct list_head *head;
4177                 migration_req_t *req;
4178
4179                 if (current->flags & PF_FREEZE)
4180                         refrigerator(PF_FREEZE);
4181
4182                 spin_lock_irq(&rq->lock);
4183
4184                 if (cpu_is_offline(cpu)) {
4185                         spin_unlock_irq(&rq->lock);
4186                         goto wait_to_die;
4187                 }
4188
4189                 if (rq->active_balance) {
4190                         active_load_balance(rq, cpu);
4191                         rq->active_balance = 0;
4192                 }
4193
4194                 head = &rq->migration_queue;
4195
4196                 if (list_empty(head)) {
4197                         spin_unlock_irq(&rq->lock);
4198                         schedule();
4199                         set_current_state(TASK_INTERRUPTIBLE);
4200                         continue;
4201                 }
4202                 req = list_entry(head->next, migration_req_t, list);
4203                 list_del_init(head->next);
4204
4205                 if (req->type == REQ_MOVE_TASK) {
4206                         spin_unlock(&rq->lock);
4207                         __migrate_task(req->task, cpu, req->dest_cpu);
4208                         local_irq_enable();
4209                 } else if (req->type == REQ_SET_DOMAIN) {
4210                         rq->sd = req->sd;
4211                         spin_unlock_irq(&rq->lock);
4212                 } else {
4213                         spin_unlock_irq(&rq->lock);
4214                         WARN_ON(1);
4215                 }
4216
4217                 complete(&req->done);
4218         }
4219         __set_current_state(TASK_RUNNING);
4220         return 0;
4221
4222 wait_to_die:
4223         /* Wait for kthread_stop */
4224         set_current_state(TASK_INTERRUPTIBLE);
4225         while (!kthread_should_stop()) {
4226                 schedule();
4227                 set_current_state(TASK_INTERRUPTIBLE);
4228         }
4229         __set_current_state(TASK_RUNNING);
4230         return 0;
4231 }
4232
4233 #ifdef CONFIG_HOTPLUG_CPU
4234 /* Figure out where task on dead CPU should go, use force if neccessary. */
4235 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4236 {
4237         int dest_cpu;
4238         cpumask_t mask;
4239
4240         /* On same node? */
4241         mask = node_to_cpumask(cpu_to_node(dead_cpu));
4242         cpus_and(mask, mask, tsk->cpus_allowed);
4243         dest_cpu = any_online_cpu(mask);
4244
4245         /* On any allowed CPU? */
4246         if (dest_cpu == NR_CPUS)
4247                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4248
4249         /* No more Mr. Nice Guy. */
4250         if (dest_cpu == NR_CPUS) {
4251                 cpus_setall(tsk->cpus_allowed);
4252                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4253
4254                 /*
4255                  * Don't tell them about moving exiting tasks or
4256                  * kernel threads (both mm NULL), since they never
4257                  * leave kernel.
4258                  */
4259                 if (tsk->mm && printk_ratelimit())
4260                         printk(KERN_INFO "process %d (%s) no "
4261                                "longer affine to cpu%d\n",
4262                                tsk->pid, tsk->comm, dead_cpu);
4263         }
4264         __migrate_task(tsk, dead_cpu, dest_cpu);
4265 }
4266
4267 /*
4268  * While a dead CPU has no uninterruptible tasks queued at this point,
4269  * it might still have a nonzero ->nr_uninterruptible counter, because
4270  * for performance reasons the counter is not stricly tracking tasks to
4271  * their home CPUs. So we just add the counter to another CPU's counter,
4272  * to keep the global sum constant after CPU-down:
4273  */
4274 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4275 {
4276         runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4277         unsigned long flags;
4278
4279         local_irq_save(flags);
4280         double_rq_lock(rq_src, rq_dest);
4281         rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4282         rq_src->nr_uninterruptible = 0;
4283         double_rq_unlock(rq_src, rq_dest);
4284         local_irq_restore(flags);
4285 }
4286
4287 /* Run through task list and migrate tasks from the dead cpu. */
4288 static void migrate_live_tasks(int src_cpu)
4289 {
4290         struct task_struct *tsk, *t;
4291
4292         write_lock_irq(&tasklist_lock);
4293
4294         do_each_thread(t, tsk) {
4295                 if (tsk == current)
4296                         continue;
4297
4298                 if (task_cpu(tsk) == src_cpu)
4299                         move_task_off_dead_cpu(src_cpu, tsk);
4300         } while_each_thread(t, tsk);
4301
4302         write_unlock_irq(&tasklist_lock);
4303 }
4304
4305 /* Schedules idle task to be the next runnable task on current CPU.
4306  * It does so by boosting its priority to highest possible and adding it to
4307  * the _front_ of runqueue. Used by CPU offline code.
4308  */
4309 void sched_idle_next(void)
4310 {
4311         int cpu = smp_processor_id();
4312         runqueue_t *rq = this_rq();
4313         struct task_struct *p = rq->idle;
4314         unsigned long flags;
4315
4316         /* cpu has to be offline */
4317         BUG_ON(cpu_online(cpu));
4318
4319         /* Strictly not necessary since rest of the CPUs are stopped by now
4320          * and interrupts disabled on current cpu.
4321          */
4322         spin_lock_irqsave(&rq->lock, flags);
4323
4324         __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4325         /* Add idle task to _front_ of it's priority queue */
4326         __activate_idle_task(p, rq);
4327
4328         spin_unlock_irqrestore(&rq->lock, flags);
4329 }
4330
4331 /* Ensures that the idle task is using init_mm right before its cpu goes
4332  * offline.
4333  */
4334 void idle_task_exit(void)
4335 {
4336         struct mm_struct *mm = current->active_mm;
4337
4338         BUG_ON(cpu_online(smp_processor_id()));
4339
4340         if (mm != &init_mm)
4341                 switch_mm(mm, &init_mm, current);
4342         mmdrop(mm);
4343 }
4344
4345 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4346 {
4347         struct runqueue *rq = cpu_rq(dead_cpu);
4348
4349         /* Must be exiting, otherwise would be on tasklist. */
4350         BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4351
4352         /* Cannot have done final schedule yet: would have vanished. */
4353         BUG_ON(tsk->flags & PF_DEAD);
4354
4355         get_task_struct(tsk);
4356
4357         /*
4358          * Drop lock around migration; if someone else moves it,
4359          * that's OK.  No task can be added to this CPU, so iteration is
4360          * fine.
4361          */
4362         spin_unlock_irq(&rq->lock);
4363         move_task_off_dead_cpu(dead_cpu, tsk);
4364         spin_lock_irq(&rq->lock);
4365
4366         put_task_struct(tsk);
4367 }
4368
4369 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4370 static void migrate_dead_tasks(unsigned int dead_cpu)
4371 {
4372         unsigned arr, i;
4373         struct runqueue *rq = cpu_rq(dead_cpu);
4374
4375         for (arr = 0; arr < 2; arr++) {
4376                 for (i = 0; i < MAX_PRIO; i++) {
4377                         struct list_head *list = &rq->arrays[arr].queue[i];
4378                         while (!list_empty(list))
4379                                 migrate_dead(dead_cpu,
4380                                              list_entry(list->next, task_t,
4381                                                         run_list));
4382                 }
4383         }
4384 }
4385 #endif /* CONFIG_HOTPLUG_CPU */
4386
4387 /*
4388  * migration_call - callback that gets triggered when a CPU is added.
4389  * Here we can start up the necessary migration thread for the new CPU.
4390  */
4391 static int migration_call(struct notifier_block *nfb, unsigned long action,
4392                           void *hcpu)
4393 {
4394         int cpu = (long)hcpu;
4395         struct task_struct *p;
4396         struct runqueue *rq;
4397         unsigned long flags;
4398
4399         switch (action) {
4400         case CPU_UP_PREPARE:
4401                 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4402                 if (IS_ERR(p))
4403                         return NOTIFY_BAD;
4404                 p->flags |= PF_NOFREEZE;
4405                 kthread_bind(p, cpu);
4406                 /* Must be high prio: stop_machine expects to yield to it. */
4407                 rq = task_rq_lock(p, &flags);
4408                 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4409                 task_rq_unlock(rq, &flags);
4410                 cpu_rq(cpu)->migration_thread = p;
4411                 break;
4412         case CPU_ONLINE:
4413                 /* Strictly unneccessary, as first user will wake it. */
4414                 wake_up_process(cpu_rq(cpu)->migration_thread);
4415                 break;
4416 #ifdef CONFIG_HOTPLUG_CPU
4417         case CPU_UP_CANCELED:
4418                 /* Unbind it from offline cpu so it can run.  Fall thru. */
4419                 kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
4420                 kthread_stop(cpu_rq(cpu)->migration_thread);
4421                 cpu_rq(cpu)->migration_thread = NULL;
4422                 break;
4423         case CPU_DEAD:
4424                 migrate_live_tasks(cpu);
4425                 rq = cpu_rq(cpu);
4426                 kthread_stop(rq->migration_thread);
4427                 rq->migration_thread = NULL;
4428                 /* Idle task back to normal (off runqueue, low prio) */
4429                 rq = task_rq_lock(rq->idle, &flags);
4430                 deactivate_task(rq->idle, rq);
4431                 rq->idle->static_prio = MAX_PRIO;
4432                 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4433                 migrate_dead_tasks(cpu);
4434                 task_rq_unlock(rq, &flags);
4435                 migrate_nr_uninterruptible(rq);
4436                 BUG_ON(rq->nr_running != 0);
4437
4438                 /* No need to migrate the tasks: it was best-effort if
4439                  * they didn't do lock_cpu_hotplug().  Just wake up
4440                  * the requestors. */
4441                 spin_lock_irq(&rq->lock);
4442                 while (!list_empty(&rq->migration_queue)) {
4443                         migration_req_t *req;
4444                         req = list_entry(rq->migration_queue.next,
4445                                          migration_req_t, list);
4446                         BUG_ON(req->type != REQ_MOVE_TASK);
4447                         list_del_init(&req->list);
4448                         complete(&req->done);
4449                 }
4450                 spin_unlock_irq(&rq->lock);
4451                 break;
4452 #endif
4453         }
4454         return NOTIFY_OK;
4455 }
4456
4457 /* Register at highest priority so that task migration (migrate_all_tasks)
4458  * happens before everything else.
4459  */
4460 static struct notifier_block __devinitdata migration_notifier = {
4461         .notifier_call = migration_call,
4462         .priority = 10
4463 };
4464
4465 int __init migration_init(void)
4466 {
4467         void *cpu = (void *)(long)smp_processor_id();
4468         /* Start one for boot CPU. */
4469         migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4470         migration_call(&migration_notifier, CPU_ONLINE, cpu);
4471         register_cpu_notifier(&migration_notifier);
4472         return 0;
4473 }
4474 #endif
4475
4476 #ifdef CONFIG_SMP
4477 #define SCHED_DOMAIN_DEBUG
4478 #ifdef SCHED_DOMAIN_DEBUG
4479 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4480 {
4481         int level = 0;
4482
4483         printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4484
4485         do {
4486                 int i;
4487                 char str[NR_CPUS];
4488                 struct sched_group *group = sd->groups;
4489                 cpumask_t groupmask;
4490
4491                 cpumask_scnprintf(str, NR_CPUS, sd->span);
4492                 cpus_clear(groupmask);
4493
4494                 printk(KERN_DEBUG);
4495                 for (i = 0; i < level + 1; i++)
4496                         printk(" ");
4497                 printk("domain %d: ", level);
4498
4499                 if (!(sd->flags & SD_LOAD_BALANCE)) {
4500                         printk("does not load-balance\n");
4501                         if (sd->parent)
4502                                 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4503                         break;
4504                 }
4505
4506                 printk("span %s\n", str);
4507
4508                 if (!cpu_isset(cpu, sd->span))
4509                         printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4510                 if (!cpu_isset(cpu, group->cpumask))
4511                         printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4512
4513                 printk(KERN_DEBUG);
4514                 for (i = 0; i < level + 2; i++)
4515                         printk(" ");
4516                 printk("groups:");
4517                 do {
4518                         if (!group) {
4519                                 printk("\n");
4520                                 printk(KERN_ERR "ERROR: group is NULL\n");
4521                                 break;
4522                         }
4523
4524                         if (!group->cpu_power) {
4525                                 printk("\n");
4526                                 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4527                         }
4528
4529                         if (!cpus_weight(group->cpumask)) {
4530                                 printk("\n");
4531                                 printk(KERN_ERR "ERROR: empty group\n");
4532                         }
4533
4534                         if (cpus_intersects(groupmask, group->cpumask)) {
4535                                 printk("\n");
4536                                 printk(KERN_ERR "ERROR: repeated CPUs\n");
4537                         }
4538
4539                         cpus_or(groupmask, groupmask, group->cpumask);
4540
4541                         cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4542                         printk(" %s", str);
4543
4544                         group = group->next;
4545                 } while (group != sd->groups);
4546                 printk("\n");
4547
4548                 if (!cpus_equal(sd->span, groupmask))
4549                         printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4550
4551                 level++;
4552                 sd = sd->parent;
4553
4554                 if (sd) {
4555                         if (!cpus_subset(groupmask, sd->span))
4556                                 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4557                 }
4558
4559         } while (sd);
4560 }
4561 #else
4562 #define sched_domain_debug(sd, cpu) {}
4563 #endif
4564
4565 /*
4566  * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
4567  * hold the hotplug lock.
4568  */
4569 void __devinit cpu_attach_domain(struct sched_domain *sd, int cpu)
4570 {
4571         migration_req_t req;
4572         unsigned long flags;
4573         runqueue_t *rq = cpu_rq(cpu);
4574         int local = 1;
4575
4576         sched_domain_debug(sd, cpu);
4577
4578         spin_lock_irqsave(&rq->lock, flags);
4579
4580         if (cpu == smp_processor_id() || !cpu_online(cpu)) {
4581                 rq->sd = sd;
4582         } else {
4583                 init_completion(&req.done);
4584                 req.type = REQ_SET_DOMAIN;
4585                 req.sd = sd;
4586                 list_add(&req.list, &rq->migration_queue);
4587                 local = 0;
4588         }
4589
4590         spin_unlock_irqrestore(&rq->lock, flags);
4591
4592         if (!local) {
4593                 wake_up_process(rq->migration_thread);
4594                 wait_for_completion(&req.done);
4595         }
4596 }
4597
4598 /* cpus with isolated domains */
4599 cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4600
4601 /* Setup the mask of cpus configured for isolated domains */
4602 static int __init isolated_cpu_setup(char *str)
4603 {
4604         int ints[NR_CPUS], i;
4605
4606         str = get_options(str, ARRAY_SIZE(ints), ints);
4607         cpus_clear(cpu_isolated_map);
4608         for (i = 1; i <= ints[0]; i++)
4609                 if (ints[i] < NR_CPUS)
4610                         cpu_set(ints[i], cpu_isolated_map);
4611         return 1;
4612 }
4613
4614 __setup ("isolcpus=", isolated_cpu_setup);
4615
4616 /*
4617  * init_sched_build_groups takes an array of groups, the cpumask we wish
4618  * to span, and a pointer to a function which identifies what group a CPU
4619  * belongs to. The return value of group_fn must be a valid index into the
4620  * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4621  * keep track of groups covered with a cpumask_t).
4622  *
4623  * init_sched_build_groups will build a circular linked list of the groups
4624  * covered by the given span, and will set each group's ->cpumask correctly,
4625  * and ->cpu_power to 0.
4626  */
4627 void __devinit init_sched_build_groups(struct sched_group groups[],
4628                         cpumask_t span, int (*group_fn)(int cpu))
4629 {
4630         struct sched_group *first = NULL, *last = NULL;
4631         cpumask_t covered = CPU_MASK_NONE;
4632         int i;
4633
4634         for_each_cpu_mask(i, span) {
4635                 int group = group_fn(i);
4636                 struct sched_group *sg = &groups[group];
4637                 int j;
4638
4639                 if (cpu_isset(i, covered))
4640                         continue;
4641
4642                 sg->cpumask = CPU_MASK_NONE;
4643                 sg->cpu_power = 0;
4644
4645                 for_each_cpu_mask(j, span) {
4646                         if (group_fn(j) != group)
4647                                 continue;
4648
4649                         cpu_set(j, covered);
4650                         cpu_set(j, sg->cpumask);
4651                 }
4652                 if (!first)
4653                         first = sg;
4654                 if (last)
4655                         last->next = sg;
4656                 last = sg;
4657         }
4658         last->next = first;
4659 }
4660
4661
4662 #ifdef ARCH_HAS_SCHED_DOMAIN
4663 extern void __devinit arch_init_sched_domains(void);
4664 extern void __devinit arch_destroy_sched_domains(void);
4665 #else
4666 #ifdef CONFIG_SCHED_SMT
4667 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
4668 static struct sched_group sched_group_cpus[NR_CPUS];
4669 static int __devinit cpu_to_cpu_group(int cpu)
4670 {
4671         return cpu;
4672 }
4673 #endif
4674
4675 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
4676 static struct sched_group sched_group_phys[NR_CPUS];
4677 static int __devinit cpu_to_phys_group(int cpu)
4678 {
4679 #ifdef CONFIG_SCHED_SMT
4680         return first_cpu(cpu_sibling_map[cpu]);
4681 #else
4682         return cpu;
4683 #endif
4684 }
4685
4686 #ifdef CONFIG_NUMA
4687
4688 static DEFINE_PER_CPU(struct sched_domain, node_domains);
4689 static struct sched_group sched_group_nodes[MAX_NUMNODES];
4690 static int __devinit cpu_to_node_group(int cpu)
4691 {
4692         return cpu_to_node(cpu);
4693 }
4694 #endif
4695
4696 #if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
4697 /*
4698  * The domains setup code relies on siblings not spanning
4699  * multiple nodes. Make sure the architecture has a proper
4700  * siblings map:
4701  */
4702 static void check_sibling_maps(void)
4703 {
4704         int i, j;
4705
4706         for_each_online_cpu(i) {
4707                 for_each_cpu_mask(j, cpu_sibling_map[i]) {
4708                         if (cpu_to_node(i) != cpu_to_node(j)) {
4709                                 printk(KERN_INFO "warning: CPU %d siblings map "
4710                                         "to different node - isolating "
4711                                         "them.\n", i);
4712                                 cpu_sibling_map[i] = cpumask_of_cpu(i);
4713                                 break;
4714                         }
4715                 }
4716         }
4717 }
4718 #endif
4719
4720 /*
4721  * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
4722  */
4723 static void __devinit arch_init_sched_domains(void)
4724 {
4725         int i;
4726         cpumask_t cpu_default_map;
4727
4728 #if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
4729         check_sibling_maps();
4730 #endif
4731         /*
4732          * Setup mask for cpus without special case scheduling requirements.
4733          * For now this just excludes isolated cpus, but could be used to
4734          * exclude other special cases in the future.
4735          */
4736         cpus_complement(cpu_default_map, cpu_isolated_map);
4737         cpus_and(cpu_default_map, cpu_default_map, cpu_online_map);
4738
4739         /*
4740          * Set up domains. Isolated domains just stay on the dummy domain.
4741          */
4742         for_each_cpu_mask(i, cpu_default_map) {
4743                 int group;
4744                 struct sched_domain *sd = NULL, *p;
4745                 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
4746
4747                 cpus_and(nodemask, nodemask, cpu_default_map);
4748
4749 #ifdef CONFIG_NUMA
4750                 sd = &per_cpu(node_domains, i);
4751                 group = cpu_to_node_group(i);
4752                 *sd = SD_NODE_INIT;
4753                 sd->span = cpu_default_map;
4754                 sd->groups = &sched_group_nodes[group];
4755 #endif
4756
4757                 p = sd;
4758                 sd = &per_cpu(phys_domains, i);
4759                 group = cpu_to_phys_group(i);
4760                 *sd = SD_CPU_INIT;
4761                 sd->span = nodemask;
4762                 sd->parent = p;
4763                 sd->groups = &sched_group_phys[group];
4764
4765 #ifdef CONFIG_SCHED_SMT
4766                 p = sd;
4767                 sd = &per_cpu(cpu_domains, i);
4768                 group = cpu_to_cpu_group(i);
4769                 *sd = SD_SIBLING_INIT;
4770                 sd->span = cpu_sibling_map[i];
4771                 cpus_and(sd->span, sd->span, cpu_default_map);
4772                 sd->parent = p;
4773                 sd->groups = &sched_group_cpus[group];
4774 #endif
4775         }
4776
4777 #ifdef CONFIG_SCHED_SMT
4778         /* Set up CPU (sibling) groups */
4779         for_each_online_cpu(i) {
4780                 cpumask_t this_sibling_map = cpu_sibling_map[i];
4781                 cpus_and(this_sibling_map, this_sibling_map, cpu_default_map);
4782                 if (i != first_cpu(this_sibling_map))
4783                         continue;
4784
4785                 init_sched_build_groups(sched_group_cpus, this_sibling_map,
4786                                                 &cpu_to_cpu_group);
4787         }
4788 #endif
4789
4790         /* Set up physical groups */
4791         for (i = 0; i < MAX_NUMNODES; i++) {
4792                 cpumask_t nodemask = node_to_cpumask(i);
4793
4794                 cpus_and(nodemask, nodemask, cpu_default_map);
4795                 if (cpus_empty(nodemask))
4796                         continue;
4797
4798                 init_sched_build_groups(sched_group_phys, nodemask,
4799                                                 &cpu_to_phys_group);
4800         }
4801
4802 #ifdef CONFIG_NUMA
4803         /* Set up node groups */
4804         init_sched_build_groups(sched_group_nodes, cpu_default_map,
4805                                         &cpu_to_node_group);
4806 #endif
4807
4808         /* Calculate CPU power for physical packages and nodes */
4809         for_each_cpu_mask(i, cpu_default_map) {
4810                 int power;
4811                 struct sched_domain *sd;
4812 #ifdef CONFIG_SCHED_SMT
4813                 sd = &per_cpu(cpu_domains, i);
4814                 power = SCHED_LOAD_SCALE;
4815                 sd->groups->cpu_power = power;
4816 #endif
4817
4818                 sd = &per_cpu(phys_domains, i);
4819                 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
4820                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
4821                 sd->groups->cpu_power = power;
4822
4823 #ifdef CONFIG_NUMA
4824                 if (i == first_cpu(sd->groups->cpumask)) {
4825                         /* Only add "power" once for each physical package. */
4826                         sd = &per_cpu(node_domains, i);
4827                         sd->groups->cpu_power += power;
4828                 }
4829 #endif
4830         }
4831
4832         /* Attach the domains */
4833         for_each_online_cpu(i) {
4834                 struct sched_domain *sd;
4835 #ifdef CONFIG_SCHED_SMT
4836                 sd = &per_cpu(cpu_domains, i);
4837 #else
4838                 sd = &per_cpu(phys_domains, i);
4839 #endif
4840                 cpu_attach_domain(sd, i);
4841         }
4842 }
4843
4844 #ifdef CONFIG_HOTPLUG_CPU
4845 static void __devinit arch_destroy_sched_domains(void)
4846 {
4847         /* Do nothing: everything is statically allocated. */
4848 }
4849 #endif
4850
4851 #endif /* ARCH_HAS_SCHED_DOMAIN */
4852
4853 /*
4854  * Initial dummy domain for early boot and for hotplug cpu. Being static,
4855  * it is initialized to zero, so all balancing flags are cleared which is
4856  * what we want.
4857  */
4858 static struct sched_domain sched_domain_dummy;
4859
4860 #ifdef CONFIG_HOTPLUG_CPU
4861 /*
4862  * Force a reinitialization of the sched domains hierarchy.  The domains
4863  * and groups cannot be updated in place without racing with the balancing
4864  * code, so we temporarily attach all running cpus to a "dummy" domain
4865  * which will prevent rebalancing while the sched domains are recalculated.
4866  */
4867 static int update_sched_domains(struct notifier_block *nfb,
4868                                 unsigned long action, void *hcpu)
4869 {
4870         int i;
4871
4872         switch (action) {
4873         case CPU_UP_PREPARE:
4874         case CPU_DOWN_PREPARE:
4875                 for_each_online_cpu(i)
4876                         cpu_attach_domain(&sched_domain_dummy, i);
4877                 arch_destroy_sched_domains();
4878                 return NOTIFY_OK;
4879
4880         case CPU_UP_CANCELED:
4881         case CPU_DOWN_FAILED:
4882         case CPU_ONLINE:
4883         case CPU_DEAD:
4884                 /*
4885                  * Fall through and re-initialise the domains.
4886                  */
4887                 break;
4888         default:
4889                 return NOTIFY_DONE;
4890         }
4891
4892         /* The hotplug lock is already held by cpu_up/cpu_down */
4893         arch_init_sched_domains();
4894
4895         return NOTIFY_OK;
4896 }
4897 #endif
4898
4899 void __init sched_init_smp(void)
4900 {
4901         lock_cpu_hotplug();
4902         arch_init_sched_domains();
4903         unlock_cpu_hotplug();
4904         /* XXX: Theoretical race here - CPU may be hotplugged now */
4905         hotcpu_notifier(update_sched_domains, 0);
4906 }
4907 #else
4908 void __init sched_init_smp(void)
4909 {
4910 }
4911 #endif /* CONFIG_SMP */
4912
4913 int in_sched_functions(unsigned long addr)
4914 {
4915         /* Linker adds these: start and end of __sched functions */
4916         extern char __sched_text_start[], __sched_text_end[];
4917         return in_lock_functions(addr) ||
4918                 (addr >= (unsigned long)__sched_text_start
4919                 && addr < (unsigned long)__sched_text_end);
4920 }
4921
4922 void __init sched_init(void)
4923 {
4924         runqueue_t *rq;
4925         int i, j, k;
4926
4927         for (i = 0; i < NR_CPUS; i++) {
4928                 prio_array_t *array;
4929
4930                 rq = cpu_rq(i);
4931                 spin_lock_init(&rq->lock);
4932                 rq->nr_running = 0;
4933                 rq->active = rq->arrays;
4934                 rq->expired = rq->arrays + 1;
4935                 rq->best_expired_prio = MAX_PRIO;
4936
4937 #ifdef CONFIG_SMP
4938                 rq->sd = &sched_domain_dummy;
4939                 for (j = 1; j < 3; j++)
4940                         rq->cpu_load[j] = 0;
4941                 rq->active_balance = 0;
4942                 rq->push_cpu = 0;
4943                 rq->migration_thread = NULL;
4944                 INIT_LIST_HEAD(&rq->migration_queue);
4945 #endif
4946                 atomic_set(&rq->nr_iowait, 0);
4947
4948                 for (j = 0; j < 2; j++) {
4949                         array = rq->arrays + j;
4950                         for (k = 0; k < MAX_PRIO; k++) {
4951                                 INIT_LIST_HEAD(array->queue + k);
4952                                 __clear_bit(k, array->bitmap);
4953                         }
4954                         // delimiter for bitsearch
4955                         __set_bit(MAX_PRIO, array->bitmap);
4956                 }
4957         }
4958
4959         /*
4960          * The boot idle thread does lazy MMU switching as well:
4961          */
4962         atomic_inc(&init_mm.mm_count);
4963         enter_lazy_tlb(&init_mm, current);
4964
4965         /*
4966          * Make us the idle thread. Technically, schedule() should not be
4967          * called from this thread, however somewhere below it might be,
4968          * but because we are the idle thread, we just pick up running again
4969          * when this runqueue becomes "idle".
4970          */
4971         init_idle(current, smp_processor_id());
4972 }
4973
4974 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4975 void __might_sleep(char *file, int line)
4976 {
4977 #if defined(in_atomic)
4978         static unsigned long prev_jiffy;        /* ratelimiting */
4979
4980         if ((in_atomic() || irqs_disabled()) &&
4981             system_state == SYSTEM_RUNNING && !oops_in_progress) {
4982                 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
4983                         return;
4984                 prev_jiffy = jiffies;
4985                 printk(KERN_ERR "Debug: sleeping function called from invalid"
4986                                 " context at %s:%d\n", file, line);
4987                 printk("in_atomic():%d, irqs_disabled():%d\n",
4988                         in_atomic(), irqs_disabled());
4989                 dump_stack();
4990         }
4991 #endif
4992 }
4993 EXPORT_SYMBOL(__might_sleep);
4994 #endif
4995
4996 #ifdef CONFIG_MAGIC_SYSRQ
4997 void normalize_rt_tasks(void)
4998 {
4999         struct task_struct *p;
5000         prio_array_t *array;
5001         unsigned long flags;
5002         runqueue_t *rq;
5003
5004         read_lock_irq(&tasklist_lock);
5005         for_each_process (p) {
5006                 if (!rt_task(p))
5007                         continue;
5008
5009                 rq = task_rq_lock(p, &flags);
5010
5011                 array = p->array;
5012                 if (array)
5013                         deactivate_task(p, task_rq(p));
5014                 __setscheduler(p, SCHED_NORMAL, 0);
5015                 if (array) {
5016                         __activate_task(p, task_rq(p));
5017                         resched_task(rq->curr);
5018                 }
5019
5020                 task_rq_unlock(rq, &flags);
5021         }
5022         read_unlock_irq(&tasklist_lock);
5023 }
5024
5025 #endif /* CONFIG_MAGIC_SYSRQ */