[PATCH] sched: RCU domains
[pandora-kernel.git] / kernel / sched.c
1 /*
2  *  kernel/sched.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
51
52 #include <asm/unistd.h>
53
54 /*
55  * Convert user-nice values [ -20 ... 0 ... 19 ]
56  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57  * and back.
58  */
59 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
62
63 /*
64  * 'User priority' is the nice value converted to something we
65  * can work with better when scaling various scheduler parameters,
66  * it's a [ 0 ... 39 ] range.
67  */
68 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
71
72 /*
73  * Some helpers for converting nanosecond timing to jiffy resolution
74  */
75 #define NS_TO_JIFFIES(TIME)     ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME)     ((TIME) * (1000000000 / HZ))
77
78 /*
79  * These are the 'tuning knobs' of the scheduler:
80  *
81  * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82  * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83  * Timeslices get refilled after they expire.
84  */
85 #define MIN_TIMESLICE           max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE           (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT       30
88 #define CHILD_PENALTY            95
89 #define PARENT_PENALTY          100
90 #define EXIT_WEIGHT               3
91 #define PRIO_BONUS_RATIO         25
92 #define MAX_BONUS               (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA         2
94 #define MAX_SLEEP_AVG           (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT        (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG        (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98 /*
99  * If a task is 'interactive' then we reinsert it in the active
100  * array after it has expired its current timeslice. (it will not
101  * continue to run immediately, it will still roundrobin with
102  * other interactive tasks.)
103  *
104  * This part scales the interactivity limit depending on niceness.
105  *
106  * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107  * Here are a few examples of different nice levels:
108  *
109  *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110  *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111  *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
112  *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113  *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114  *
115  * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116  *  priority range a task can explore, a value of '1' means the
117  *  task is rated interactive.)
118  *
119  * Ie. nice +19 tasks can never get 'interactive' enough to be
120  * reinserted into the active array. And only heavily CPU-hog nice -20
121  * tasks will be expired. Default nice 0 tasks are somewhere between,
122  * it takes some effort for them to get interactive, but it's not
123  * too hard.
124  */
125
126 #define CURRENT_BONUS(p) \
127         (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128                 MAX_SLEEP_AVG)
129
130 #define GRANULARITY     (10 * HZ / 1000 ? : 1)
131
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
134                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135                         num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
138                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
140
141 #define SCALE(v1,v1_max,v2_max) \
142         (v1) * (v2_max) / (v1_max)
143
144 #define DELTA(p) \
145         (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147 #define TASK_INTERACTIVE(p) \
148         ((p)->prio <= (p)->static_prio - DELTA(p))
149
150 #define INTERACTIVE_SLEEP(p) \
151         (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152                 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154 #define TASK_PREEMPTS_CURR(p, rq) \
155         ((p)->prio < (rq)->curr->prio)
156
157 /*
158  * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159  * to time slice values: [800ms ... 100ms ... 5ms]
160  *
161  * The higher a thread's priority, the bigger timeslices
162  * it gets during one round of execution. But even the lowest
163  * priority thread gets MIN_TIMESLICE worth of execution time.
164  */
165
166 #define SCALE_PRIO(x, prio) \
167         max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
169 static unsigned int task_timeslice(task_t *p)
170 {
171         if (p->static_prio < NICE_TO_PRIO(0))
172                 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173         else
174                 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175 }
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)       \
177                                 < (long long) (sd)->cache_hot_time)
178
179 /*
180  * These are the runqueue data structures:
181  */
182
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185 typedef struct runqueue runqueue_t;
186
187 struct prio_array {
188         unsigned int nr_active;
189         unsigned long bitmap[BITMAP_SIZE];
190         struct list_head queue[MAX_PRIO];
191 };
192
193 /*
194  * This is the main, per-CPU runqueue data structure.
195  *
196  * Locking rule: those places that want to lock multiple runqueues
197  * (such as the load balancing or the thread migration code), lock
198  * acquire operations must be ordered by ascending &runqueue.
199  */
200 struct runqueue {
201         spinlock_t lock;
202
203         /*
204          * nr_running and cpu_load should be in the same cacheline because
205          * remote CPUs use both these fields when doing load calculation.
206          */
207         unsigned long nr_running;
208 #ifdef CONFIG_SMP
209         unsigned long cpu_load[3];
210 #endif
211         unsigned long long nr_switches;
212
213         /*
214          * This is part of a global counter where only the total sum
215          * over all CPUs matters. A task can increase this counter on
216          * one CPU and if it got migrated afterwards it may decrease
217          * it on another CPU. Always updated under the runqueue lock:
218          */
219         unsigned long nr_uninterruptible;
220
221         unsigned long expired_timestamp;
222         unsigned long long timestamp_last_tick;
223         task_t *curr, *idle;
224         struct mm_struct *prev_mm;
225         prio_array_t *active, *expired, arrays[2];
226         int best_expired_prio;
227         atomic_t nr_iowait;
228
229 #ifdef CONFIG_SMP
230         struct sched_domain *sd;
231
232         /* For active balancing */
233         int active_balance;
234         int push_cpu;
235
236         task_t *migration_thread;
237         struct list_head migration_queue;
238 #endif
239
240 #ifdef CONFIG_SCHEDSTATS
241         /* latency stats */
242         struct sched_info rq_sched_info;
243
244         /* sys_sched_yield() stats */
245         unsigned long yld_exp_empty;
246         unsigned long yld_act_empty;
247         unsigned long yld_both_empty;
248         unsigned long yld_cnt;
249
250         /* schedule() stats */
251         unsigned long sched_switch;
252         unsigned long sched_cnt;
253         unsigned long sched_goidle;
254
255         /* try_to_wake_up() stats */
256         unsigned long ttwu_cnt;
257         unsigned long ttwu_local;
258 #endif
259 };
260
261 static DEFINE_PER_CPU(struct runqueue, runqueues);
262
263 /*
264  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
265  * See update_sched_domains: synchronize_kernel for details.
266  *
267  * The domain tree of any CPU may only be accessed from within
268  * preempt-disabled sections.
269  */
270 #define for_each_domain(cpu, domain) \
271 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
272
273 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
274 #define this_rq()               (&__get_cpu_var(runqueues))
275 #define task_rq(p)              cpu_rq(task_cpu(p))
276 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
277
278 #ifndef prepare_arch_switch
279 # define prepare_arch_switch(next)      do { } while (0)
280 #endif
281 #ifndef finish_arch_switch
282 # define finish_arch_switch(prev)       do { } while (0)
283 #endif
284
285 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
286 static inline int task_running(runqueue_t *rq, task_t *p)
287 {
288         return rq->curr == p;
289 }
290
291 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
292 {
293 }
294
295 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
296 {
297         spin_unlock_irq(&rq->lock);
298 }
299
300 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
301 static inline int task_running(runqueue_t *rq, task_t *p)
302 {
303 #ifdef CONFIG_SMP
304         return p->oncpu;
305 #else
306         return rq->curr == p;
307 #endif
308 }
309
310 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
311 {
312 #ifdef CONFIG_SMP
313         /*
314          * We can optimise this out completely for !SMP, because the
315          * SMP rebalancing from interrupt is the only thing that cares
316          * here.
317          */
318         next->oncpu = 1;
319 #endif
320 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
321         spin_unlock_irq(&rq->lock);
322 #else
323         spin_unlock(&rq->lock);
324 #endif
325 }
326
327 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
328 {
329 #ifdef CONFIG_SMP
330         /*
331          * After ->oncpu is cleared, the task can be moved to a different CPU.
332          * We must ensure this doesn't happen until the switch is completely
333          * finished.
334          */
335         smp_wmb();
336         prev->oncpu = 0;
337 #endif
338 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
339         local_irq_enable();
340 #endif
341 }
342 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
343
344 /*
345  * task_rq_lock - lock the runqueue a given task resides on and disable
346  * interrupts.  Note the ordering: we can safely lookup the task_rq without
347  * explicitly disabling preemption.
348  */
349 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
350         __acquires(rq->lock)
351 {
352         struct runqueue *rq;
353
354 repeat_lock_task:
355         local_irq_save(*flags);
356         rq = task_rq(p);
357         spin_lock(&rq->lock);
358         if (unlikely(rq != task_rq(p))) {
359                 spin_unlock_irqrestore(&rq->lock, *flags);
360                 goto repeat_lock_task;
361         }
362         return rq;
363 }
364
365 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
366         __releases(rq->lock)
367 {
368         spin_unlock_irqrestore(&rq->lock, *flags);
369 }
370
371 #ifdef CONFIG_SCHEDSTATS
372 /*
373  * bump this up when changing the output format or the meaning of an existing
374  * format, so that tools can adapt (or abort)
375  */
376 #define SCHEDSTAT_VERSION 12
377
378 static int show_schedstat(struct seq_file *seq, void *v)
379 {
380         int cpu;
381
382         seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
383         seq_printf(seq, "timestamp %lu\n", jiffies);
384         for_each_online_cpu(cpu) {
385                 runqueue_t *rq = cpu_rq(cpu);
386 #ifdef CONFIG_SMP
387                 struct sched_domain *sd;
388                 int dcnt = 0;
389 #endif
390
391                 /* runqueue-specific stats */
392                 seq_printf(seq,
393                     "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
394                     cpu, rq->yld_both_empty,
395                     rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
396                     rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
397                     rq->ttwu_cnt, rq->ttwu_local,
398                     rq->rq_sched_info.cpu_time,
399                     rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
400
401                 seq_printf(seq, "\n");
402
403 #ifdef CONFIG_SMP
404                 /* domain-specific stats */
405                 preempt_disable();
406                 for_each_domain(cpu, sd) {
407                         enum idle_type itype;
408                         char mask_str[NR_CPUS];
409
410                         cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
411                         seq_printf(seq, "domain%d %s", dcnt++, mask_str);
412                         for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
413                                         itype++) {
414                                 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
415                                     sd->lb_cnt[itype],
416                                     sd->lb_balanced[itype],
417                                     sd->lb_failed[itype],
418                                     sd->lb_imbalance[itype],
419                                     sd->lb_gained[itype],
420                                     sd->lb_hot_gained[itype],
421                                     sd->lb_nobusyq[itype],
422                                     sd->lb_nobusyg[itype]);
423                         }
424                         seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
425                             sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
426                             sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
427                             sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
428                             sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
429                 }
430                 preempt_enable();
431 #endif
432         }
433         return 0;
434 }
435
436 static int schedstat_open(struct inode *inode, struct file *file)
437 {
438         unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
439         char *buf = kmalloc(size, GFP_KERNEL);
440         struct seq_file *m;
441         int res;
442
443         if (!buf)
444                 return -ENOMEM;
445         res = single_open(file, show_schedstat, NULL);
446         if (!res) {
447                 m = file->private_data;
448                 m->buf = buf;
449                 m->size = size;
450         } else
451                 kfree(buf);
452         return res;
453 }
454
455 struct file_operations proc_schedstat_operations = {
456         .open    = schedstat_open,
457         .read    = seq_read,
458         .llseek  = seq_lseek,
459         .release = single_release,
460 };
461
462 # define schedstat_inc(rq, field)       do { (rq)->field++; } while (0)
463 # define schedstat_add(rq, field, amt)  do { (rq)->field += (amt); } while (0)
464 #else /* !CONFIG_SCHEDSTATS */
465 # define schedstat_inc(rq, field)       do { } while (0)
466 # define schedstat_add(rq, field, amt)  do { } while (0)
467 #endif
468
469 /*
470  * rq_lock - lock a given runqueue and disable interrupts.
471  */
472 static inline runqueue_t *this_rq_lock(void)
473         __acquires(rq->lock)
474 {
475         runqueue_t *rq;
476
477         local_irq_disable();
478         rq = this_rq();
479         spin_lock(&rq->lock);
480
481         return rq;
482 }
483
484 #ifdef CONFIG_SCHEDSTATS
485 /*
486  * Called when a process is dequeued from the active array and given
487  * the cpu.  We should note that with the exception of interactive
488  * tasks, the expired queue will become the active queue after the active
489  * queue is empty, without explicitly dequeuing and requeuing tasks in the
490  * expired queue.  (Interactive tasks may be requeued directly to the
491  * active queue, thus delaying tasks in the expired queue from running;
492  * see scheduler_tick()).
493  *
494  * This function is only called from sched_info_arrive(), rather than
495  * dequeue_task(). Even though a task may be queued and dequeued multiple
496  * times as it is shuffled about, we're really interested in knowing how
497  * long it was from the *first* time it was queued to the time that it
498  * finally hit a cpu.
499  */
500 static inline void sched_info_dequeued(task_t *t)
501 {
502         t->sched_info.last_queued = 0;
503 }
504
505 /*
506  * Called when a task finally hits the cpu.  We can now calculate how
507  * long it was waiting to run.  We also note when it began so that we
508  * can keep stats on how long its timeslice is.
509  */
510 static inline void sched_info_arrive(task_t *t)
511 {
512         unsigned long now = jiffies, diff = 0;
513         struct runqueue *rq = task_rq(t);
514
515         if (t->sched_info.last_queued)
516                 diff = now - t->sched_info.last_queued;
517         sched_info_dequeued(t);
518         t->sched_info.run_delay += diff;
519         t->sched_info.last_arrival = now;
520         t->sched_info.pcnt++;
521
522         if (!rq)
523                 return;
524
525         rq->rq_sched_info.run_delay += diff;
526         rq->rq_sched_info.pcnt++;
527 }
528
529 /*
530  * Called when a process is queued into either the active or expired
531  * array.  The time is noted and later used to determine how long we
532  * had to wait for us to reach the cpu.  Since the expired queue will
533  * become the active queue after active queue is empty, without dequeuing
534  * and requeuing any tasks, we are interested in queuing to either. It
535  * is unusual but not impossible for tasks to be dequeued and immediately
536  * requeued in the same or another array: this can happen in sched_yield(),
537  * set_user_nice(), and even load_balance() as it moves tasks from runqueue
538  * to runqueue.
539  *
540  * This function is only called from enqueue_task(), but also only updates
541  * the timestamp if it is already not set.  It's assumed that
542  * sched_info_dequeued() will clear that stamp when appropriate.
543  */
544 static inline void sched_info_queued(task_t *t)
545 {
546         if (!t->sched_info.last_queued)
547                 t->sched_info.last_queued = jiffies;
548 }
549
550 /*
551  * Called when a process ceases being the active-running process, either
552  * voluntarily or involuntarily.  Now we can calculate how long we ran.
553  */
554 static inline void sched_info_depart(task_t *t)
555 {
556         struct runqueue *rq = task_rq(t);
557         unsigned long diff = jiffies - t->sched_info.last_arrival;
558
559         t->sched_info.cpu_time += diff;
560
561         if (rq)
562                 rq->rq_sched_info.cpu_time += diff;
563 }
564
565 /*
566  * Called when tasks are switched involuntarily due, typically, to expiring
567  * their time slice.  (This may also be called when switching to or from
568  * the idle task.)  We are only called when prev != next.
569  */
570 static inline void sched_info_switch(task_t *prev, task_t *next)
571 {
572         struct runqueue *rq = task_rq(prev);
573
574         /*
575          * prev now departs the cpu.  It's not interesting to record
576          * stats about how efficient we were at scheduling the idle
577          * process, however.
578          */
579         if (prev != rq->idle)
580                 sched_info_depart(prev);
581
582         if (next != rq->idle)
583                 sched_info_arrive(next);
584 }
585 #else
586 #define sched_info_queued(t)            do { } while (0)
587 #define sched_info_switch(t, next)      do { } while (0)
588 #endif /* CONFIG_SCHEDSTATS */
589
590 /*
591  * Adding/removing a task to/from a priority array:
592  */
593 static void dequeue_task(struct task_struct *p, prio_array_t *array)
594 {
595         array->nr_active--;
596         list_del(&p->run_list);
597         if (list_empty(array->queue + p->prio))
598                 __clear_bit(p->prio, array->bitmap);
599 }
600
601 static void enqueue_task(struct task_struct *p, prio_array_t *array)
602 {
603         sched_info_queued(p);
604         list_add_tail(&p->run_list, array->queue + p->prio);
605         __set_bit(p->prio, array->bitmap);
606         array->nr_active++;
607         p->array = array;
608 }
609
610 /*
611  * Put task to the end of the run list without the overhead of dequeue
612  * followed by enqueue.
613  */
614 static void requeue_task(struct task_struct *p, prio_array_t *array)
615 {
616         list_move_tail(&p->run_list, array->queue + p->prio);
617 }
618
619 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
620 {
621         list_add(&p->run_list, array->queue + p->prio);
622         __set_bit(p->prio, array->bitmap);
623         array->nr_active++;
624         p->array = array;
625 }
626
627 /*
628  * effective_prio - return the priority that is based on the static
629  * priority but is modified by bonuses/penalties.
630  *
631  * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
632  * into the -5 ... 0 ... +5 bonus/penalty range.
633  *
634  * We use 25% of the full 0...39 priority range so that:
635  *
636  * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
637  * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
638  *
639  * Both properties are important to certain workloads.
640  */
641 static int effective_prio(task_t *p)
642 {
643         int bonus, prio;
644
645         if (rt_task(p))
646                 return p->prio;
647
648         bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
649
650         prio = p->static_prio - bonus;
651         if (prio < MAX_RT_PRIO)
652                 prio = MAX_RT_PRIO;
653         if (prio > MAX_PRIO-1)
654                 prio = MAX_PRIO-1;
655         return prio;
656 }
657
658 /*
659  * __activate_task - move a task to the runqueue.
660  */
661 static inline void __activate_task(task_t *p, runqueue_t *rq)
662 {
663         enqueue_task(p, rq->active);
664         rq->nr_running++;
665 }
666
667 /*
668  * __activate_idle_task - move idle task to the _front_ of runqueue.
669  */
670 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
671 {
672         enqueue_task_head(p, rq->active);
673         rq->nr_running++;
674 }
675
676 static void recalc_task_prio(task_t *p, unsigned long long now)
677 {
678         /* Caller must always ensure 'now >= p->timestamp' */
679         unsigned long long __sleep_time = now - p->timestamp;
680         unsigned long sleep_time;
681
682         if (__sleep_time > NS_MAX_SLEEP_AVG)
683                 sleep_time = NS_MAX_SLEEP_AVG;
684         else
685                 sleep_time = (unsigned long)__sleep_time;
686
687         if (likely(sleep_time > 0)) {
688                 /*
689                  * User tasks that sleep a long time are categorised as
690                  * idle and will get just interactive status to stay active &
691                  * prevent them suddenly becoming cpu hogs and starving
692                  * other processes.
693                  */
694                 if (p->mm && p->activated != -1 &&
695                         sleep_time > INTERACTIVE_SLEEP(p)) {
696                                 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
697                                                 DEF_TIMESLICE);
698                 } else {
699                         /*
700                          * The lower the sleep avg a task has the more
701                          * rapidly it will rise with sleep time.
702                          */
703                         sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
704
705                         /*
706                          * Tasks waking from uninterruptible sleep are
707                          * limited in their sleep_avg rise as they
708                          * are likely to be waiting on I/O
709                          */
710                         if (p->activated == -1 && p->mm) {
711                                 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
712                                         sleep_time = 0;
713                                 else if (p->sleep_avg + sleep_time >=
714                                                 INTERACTIVE_SLEEP(p)) {
715                                         p->sleep_avg = INTERACTIVE_SLEEP(p);
716                                         sleep_time = 0;
717                                 }
718                         }
719
720                         /*
721                          * This code gives a bonus to interactive tasks.
722                          *
723                          * The boost works by updating the 'average sleep time'
724                          * value here, based on ->timestamp. The more time a
725                          * task spends sleeping, the higher the average gets -
726                          * and the higher the priority boost gets as well.
727                          */
728                         p->sleep_avg += sleep_time;
729
730                         if (p->sleep_avg > NS_MAX_SLEEP_AVG)
731                                 p->sleep_avg = NS_MAX_SLEEP_AVG;
732                 }
733         }
734
735         p->prio = effective_prio(p);
736 }
737
738 /*
739  * activate_task - move a task to the runqueue and do priority recalculation
740  *
741  * Update all the scheduling statistics stuff. (sleep average
742  * calculation, priority modifiers, etc.)
743  */
744 static void activate_task(task_t *p, runqueue_t *rq, int local)
745 {
746         unsigned long long now;
747
748         now = sched_clock();
749 #ifdef CONFIG_SMP
750         if (!local) {
751                 /* Compensate for drifting sched_clock */
752                 runqueue_t *this_rq = this_rq();
753                 now = (now - this_rq->timestamp_last_tick)
754                         + rq->timestamp_last_tick;
755         }
756 #endif
757
758         recalc_task_prio(p, now);
759
760         /*
761          * This checks to make sure it's not an uninterruptible task
762          * that is now waking up.
763          */
764         if (!p->activated) {
765                 /*
766                  * Tasks which were woken up by interrupts (ie. hw events)
767                  * are most likely of interactive nature. So we give them
768                  * the credit of extending their sleep time to the period
769                  * of time they spend on the runqueue, waiting for execution
770                  * on a CPU, first time around:
771                  */
772                 if (in_interrupt())
773                         p->activated = 2;
774                 else {
775                         /*
776                          * Normal first-time wakeups get a credit too for
777                          * on-runqueue time, but it will be weighted down:
778                          */
779                         p->activated = 1;
780                 }
781         }
782         p->timestamp = now;
783
784         __activate_task(p, rq);
785 }
786
787 /*
788  * deactivate_task - remove a task from the runqueue.
789  */
790 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
791 {
792         rq->nr_running--;
793         dequeue_task(p, p->array);
794         p->array = NULL;
795 }
796
797 /*
798  * resched_task - mark a task 'to be rescheduled now'.
799  *
800  * On UP this means the setting of the need_resched flag, on SMP it
801  * might also involve a cross-CPU call to trigger the scheduler on
802  * the target CPU.
803  */
804 #ifdef CONFIG_SMP
805 static void resched_task(task_t *p)
806 {
807         int need_resched, nrpolling;
808
809         assert_spin_locked(&task_rq(p)->lock);
810
811         /* minimise the chance of sending an interrupt to poll_idle() */
812         nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
813         need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
814         nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
815
816         if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
817                 smp_send_reschedule(task_cpu(p));
818 }
819 #else
820 static inline void resched_task(task_t *p)
821 {
822         set_tsk_need_resched(p);
823 }
824 #endif
825
826 /**
827  * task_curr - is this task currently executing on a CPU?
828  * @p: the task in question.
829  */
830 inline int task_curr(const task_t *p)
831 {
832         return cpu_curr(task_cpu(p)) == p;
833 }
834
835 #ifdef CONFIG_SMP
836 typedef struct {
837         struct list_head list;
838
839         task_t *task;
840         int dest_cpu;
841
842         struct completion done;
843 } migration_req_t;
844
845 /*
846  * The task's runqueue lock must be held.
847  * Returns true if you have to wait for migration thread.
848  */
849 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
850 {
851         runqueue_t *rq = task_rq(p);
852
853         /*
854          * If the task is not on a runqueue (and not running), then
855          * it is sufficient to simply update the task's cpu field.
856          */
857         if (!p->array && !task_running(rq, p)) {
858                 set_task_cpu(p, dest_cpu);
859                 return 0;
860         }
861
862         init_completion(&req->done);
863         req->task = p;
864         req->dest_cpu = dest_cpu;
865         list_add(&req->list, &rq->migration_queue);
866         return 1;
867 }
868
869 /*
870  * wait_task_inactive - wait for a thread to unschedule.
871  *
872  * The caller must ensure that the task *will* unschedule sometime soon,
873  * else this function might spin for a *long* time. This function can't
874  * be called with interrupts off, or it may introduce deadlock with
875  * smp_call_function() if an IPI is sent by the same process we are
876  * waiting to become inactive.
877  */
878 void wait_task_inactive(task_t * p)
879 {
880         unsigned long flags;
881         runqueue_t *rq;
882         int preempted;
883
884 repeat:
885         rq = task_rq_lock(p, &flags);
886         /* Must be off runqueue entirely, not preempted. */
887         if (unlikely(p->array || task_running(rq, p))) {
888                 /* If it's preempted, we yield.  It could be a while. */
889                 preempted = !task_running(rq, p);
890                 task_rq_unlock(rq, &flags);
891                 cpu_relax();
892                 if (preempted)
893                         yield();
894                 goto repeat;
895         }
896         task_rq_unlock(rq, &flags);
897 }
898
899 /***
900  * kick_process - kick a running thread to enter/exit the kernel
901  * @p: the to-be-kicked thread
902  *
903  * Cause a process which is running on another CPU to enter
904  * kernel-mode, without any delay. (to get signals handled.)
905  *
906  * NOTE: this function doesnt have to take the runqueue lock,
907  * because all it wants to ensure is that the remote task enters
908  * the kernel. If the IPI races and the task has been migrated
909  * to another CPU then no harm is done and the purpose has been
910  * achieved as well.
911  */
912 void kick_process(task_t *p)
913 {
914         int cpu;
915
916         preempt_disable();
917         cpu = task_cpu(p);
918         if ((cpu != smp_processor_id()) && task_curr(p))
919                 smp_send_reschedule(cpu);
920         preempt_enable();
921 }
922
923 /*
924  * Return a low guess at the load of a migration-source cpu.
925  *
926  * We want to under-estimate the load of migration sources, to
927  * balance conservatively.
928  */
929 static inline unsigned long source_load(int cpu, int type)
930 {
931         runqueue_t *rq = cpu_rq(cpu);
932         unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
933         if (type == 0)
934                 return load_now;
935
936         return min(rq->cpu_load[type-1], load_now);
937 }
938
939 /*
940  * Return a high guess at the load of a migration-target cpu
941  */
942 static inline unsigned long target_load(int cpu, int type)
943 {
944         runqueue_t *rq = cpu_rq(cpu);
945         unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
946         if (type == 0)
947                 return load_now;
948
949         return max(rq->cpu_load[type-1], load_now);
950 }
951
952 /*
953  * find_idlest_group finds and returns the least busy CPU group within the
954  * domain.
955  */
956 static struct sched_group *
957 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
958 {
959         struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
960         unsigned long min_load = ULONG_MAX, this_load = 0;
961         int load_idx = sd->forkexec_idx;
962         int imbalance = 100 + (sd->imbalance_pct-100)/2;
963
964         do {
965                 unsigned long load, avg_load;
966                 int local_group;
967                 int i;
968
969                 local_group = cpu_isset(this_cpu, group->cpumask);
970                 /* XXX: put a cpus allowed check */
971
972                 /* Tally up the load of all CPUs in the group */
973                 avg_load = 0;
974
975                 for_each_cpu_mask(i, group->cpumask) {
976                         /* Bias balancing toward cpus of our domain */
977                         if (local_group)
978                                 load = source_load(i, load_idx);
979                         else
980                                 load = target_load(i, load_idx);
981
982                         avg_load += load;
983                 }
984
985                 /* Adjust by relative CPU power of the group */
986                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
987
988                 if (local_group) {
989                         this_load = avg_load;
990                         this = group;
991                 } else if (avg_load < min_load) {
992                         min_load = avg_load;
993                         idlest = group;
994                 }
995                 group = group->next;
996         } while (group != sd->groups);
997
998         if (!idlest || 100*this_load < imbalance*min_load)
999                 return NULL;
1000         return idlest;
1001 }
1002
1003 /*
1004  * find_idlest_queue - find the idlest runqueue among the cpus in group.
1005  */
1006 static int find_idlest_cpu(struct sched_group *group, int this_cpu)
1007 {
1008         unsigned long load, min_load = ULONG_MAX;
1009         int idlest = -1;
1010         int i;
1011
1012         for_each_cpu_mask(i, group->cpumask) {
1013                 load = source_load(i, 0);
1014
1015                 if (load < min_load || (load == min_load && i == this_cpu)) {
1016                         min_load = load;
1017                         idlest = i;
1018                 }
1019         }
1020
1021         return idlest;
1022 }
1023
1024
1025 #endif
1026
1027 /*
1028  * wake_idle() will wake a task on an idle cpu if task->cpu is
1029  * not idle and an idle cpu is available.  The span of cpus to
1030  * search starts with cpus closest then further out as needed,
1031  * so we always favor a closer, idle cpu.
1032  *
1033  * Returns the CPU we should wake onto.
1034  */
1035 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1036 static int wake_idle(int cpu, task_t *p)
1037 {
1038         cpumask_t tmp;
1039         struct sched_domain *sd;
1040         int i;
1041
1042         if (idle_cpu(cpu))
1043                 return cpu;
1044
1045         for_each_domain(cpu, sd) {
1046                 if (sd->flags & SD_WAKE_IDLE) {
1047                         cpus_and(tmp, sd->span, p->cpus_allowed);
1048                         for_each_cpu_mask(i, tmp) {
1049                                 if (idle_cpu(i))
1050                                         return i;
1051                         }
1052                 }
1053                 else
1054                         break;
1055         }
1056         return cpu;
1057 }
1058 #else
1059 static inline int wake_idle(int cpu, task_t *p)
1060 {
1061         return cpu;
1062 }
1063 #endif
1064
1065 /***
1066  * try_to_wake_up - wake up a thread
1067  * @p: the to-be-woken-up thread
1068  * @state: the mask of task states that can be woken
1069  * @sync: do a synchronous wakeup?
1070  *
1071  * Put it on the run-queue if it's not already there. The "current"
1072  * thread is always on the run-queue (except when the actual
1073  * re-schedule is in progress), and as such you're allowed to do
1074  * the simpler "current->state = TASK_RUNNING" to mark yourself
1075  * runnable without the overhead of this.
1076  *
1077  * returns failure only if the task is already active.
1078  */
1079 static int try_to_wake_up(task_t * p, unsigned int state, int sync)
1080 {
1081         int cpu, this_cpu, success = 0;
1082         unsigned long flags;
1083         long old_state;
1084         runqueue_t *rq;
1085 #ifdef CONFIG_SMP
1086         unsigned long load, this_load;
1087         struct sched_domain *sd, *this_sd = NULL;
1088         int new_cpu;
1089 #endif
1090
1091         rq = task_rq_lock(p, &flags);
1092         old_state = p->state;
1093         if (!(old_state & state))
1094                 goto out;
1095
1096         if (p->array)
1097                 goto out_running;
1098
1099         cpu = task_cpu(p);
1100         this_cpu = smp_processor_id();
1101
1102 #ifdef CONFIG_SMP
1103         if (unlikely(task_running(rq, p)))
1104                 goto out_activate;
1105
1106         new_cpu = cpu;
1107
1108         schedstat_inc(rq, ttwu_cnt);
1109         if (cpu == this_cpu) {
1110                 schedstat_inc(rq, ttwu_local);
1111                 goto out_set_cpu;
1112         }
1113
1114         for_each_domain(this_cpu, sd) {
1115                 if (cpu_isset(cpu, sd->span)) {
1116                         schedstat_inc(sd, ttwu_wake_remote);
1117                         this_sd = sd;
1118                         break;
1119                 }
1120         }
1121
1122         if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1123                 goto out_set_cpu;
1124
1125         /*
1126          * Check for affine wakeup and passive balancing possibilities.
1127          */
1128         if (this_sd) {
1129                 int idx = this_sd->wake_idx;
1130                 unsigned int imbalance;
1131
1132                 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1133
1134                 load = source_load(cpu, idx);
1135                 this_load = target_load(this_cpu, idx);
1136
1137                 new_cpu = this_cpu; /* Wake to this CPU if we can */
1138
1139                 if (this_sd->flags & SD_WAKE_AFFINE) {
1140                         unsigned long tl = this_load;
1141                         /*
1142                          * If sync wakeup then subtract the (maximum possible)
1143                          * effect of the currently running task from the load
1144                          * of the current CPU:
1145                          */
1146                         if (sync)
1147                                 tl -= SCHED_LOAD_SCALE;
1148
1149                         if ((tl <= load &&
1150                                 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1151                                 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1152                                 /*
1153                                  * This domain has SD_WAKE_AFFINE and
1154                                  * p is cache cold in this domain, and
1155                                  * there is no bad imbalance.
1156                                  */
1157                                 schedstat_inc(this_sd, ttwu_move_affine);
1158                                 goto out_set_cpu;
1159                         }
1160                 }
1161
1162                 /*
1163                  * Start passive balancing when half the imbalance_pct
1164                  * limit is reached.
1165                  */
1166                 if (this_sd->flags & SD_WAKE_BALANCE) {
1167                         if (imbalance*this_load <= 100*load) {
1168                                 schedstat_inc(this_sd, ttwu_move_balance);
1169                                 goto out_set_cpu;
1170                         }
1171                 }
1172         }
1173
1174         new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1175 out_set_cpu:
1176         new_cpu = wake_idle(new_cpu, p);
1177         if (new_cpu != cpu) {
1178                 set_task_cpu(p, new_cpu);
1179                 task_rq_unlock(rq, &flags);
1180                 /* might preempt at this point */
1181                 rq = task_rq_lock(p, &flags);
1182                 old_state = p->state;
1183                 if (!(old_state & state))
1184                         goto out;
1185                 if (p->array)
1186                         goto out_running;
1187
1188                 this_cpu = smp_processor_id();
1189                 cpu = task_cpu(p);
1190         }
1191
1192 out_activate:
1193 #endif /* CONFIG_SMP */
1194         if (old_state == TASK_UNINTERRUPTIBLE) {
1195                 rq->nr_uninterruptible--;
1196                 /*
1197                  * Tasks on involuntary sleep don't earn
1198                  * sleep_avg beyond just interactive state.
1199                  */
1200                 p->activated = -1;
1201         }
1202
1203         /*
1204          * Sync wakeups (i.e. those types of wakeups where the waker
1205          * has indicated that it will leave the CPU in short order)
1206          * don't trigger a preemption, if the woken up task will run on
1207          * this cpu. (in this case the 'I will reschedule' promise of
1208          * the waker guarantees that the freshly woken up task is going
1209          * to be considered on this CPU.)
1210          */
1211         activate_task(p, rq, cpu == this_cpu);
1212         if (!sync || cpu != this_cpu) {
1213                 if (TASK_PREEMPTS_CURR(p, rq))
1214                         resched_task(rq->curr);
1215         }
1216         success = 1;
1217
1218 out_running:
1219         p->state = TASK_RUNNING;
1220 out:
1221         task_rq_unlock(rq, &flags);
1222
1223         return success;
1224 }
1225
1226 int fastcall wake_up_process(task_t * p)
1227 {
1228         return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1229                                  TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1230 }
1231
1232 EXPORT_SYMBOL(wake_up_process);
1233
1234 int fastcall wake_up_state(task_t *p, unsigned int state)
1235 {
1236         return try_to_wake_up(p, state, 0);
1237 }
1238
1239 /*
1240  * Perform scheduler related setup for a newly forked process p.
1241  * p is forked by current.
1242  */
1243 void fastcall sched_fork(task_t *p)
1244 {
1245         /*
1246          * We mark the process as running here, but have not actually
1247          * inserted it onto the runqueue yet. This guarantees that
1248          * nobody will actually run it, and a signal or other external
1249          * event cannot wake it up and insert it on the runqueue either.
1250          */
1251         p->state = TASK_RUNNING;
1252         INIT_LIST_HEAD(&p->run_list);
1253         p->array = NULL;
1254 #ifdef CONFIG_SCHEDSTATS
1255         memset(&p->sched_info, 0, sizeof(p->sched_info));
1256 #endif
1257 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1258         p->oncpu = 0;
1259 #endif
1260 #ifdef CONFIG_PREEMPT
1261         /* Want to start with kernel preemption disabled. */
1262         p->thread_info->preempt_count = 1;
1263 #endif
1264         /*
1265          * Share the timeslice between parent and child, thus the
1266          * total amount of pending timeslices in the system doesn't change,
1267          * resulting in more scheduling fairness.
1268          */
1269         local_irq_disable();
1270         p->time_slice = (current->time_slice + 1) >> 1;
1271         /*
1272          * The remainder of the first timeslice might be recovered by
1273          * the parent if the child exits early enough.
1274          */
1275         p->first_time_slice = 1;
1276         current->time_slice >>= 1;
1277         p->timestamp = sched_clock();
1278         if (unlikely(!current->time_slice)) {
1279                 /*
1280                  * This case is rare, it happens when the parent has only
1281                  * a single jiffy left from its timeslice. Taking the
1282                  * runqueue lock is not a problem.
1283                  */
1284                 current->time_slice = 1;
1285                 preempt_disable();
1286                 scheduler_tick();
1287                 local_irq_enable();
1288                 preempt_enable();
1289         } else
1290                 local_irq_enable();
1291 }
1292
1293 /*
1294  * wake_up_new_task - wake up a newly created task for the first time.
1295  *
1296  * This function will do some initial scheduler statistics housekeeping
1297  * that must be done for every newly created context, then puts the task
1298  * on the runqueue and wakes it.
1299  */
1300 void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags)
1301 {
1302         unsigned long flags;
1303         int this_cpu, cpu;
1304         runqueue_t *rq, *this_rq;
1305 #ifdef CONFIG_SMP
1306         struct sched_domain *tmp, *sd = NULL;
1307 #endif
1308
1309         rq = task_rq_lock(p, &flags);
1310         BUG_ON(p->state != TASK_RUNNING);
1311         this_cpu = smp_processor_id();
1312         cpu = task_cpu(p);
1313
1314 #ifdef CONFIG_SMP
1315         for_each_domain(cpu, tmp)
1316                 if (tmp->flags & SD_BALANCE_FORK)
1317                         sd = tmp;
1318
1319         if (sd) {
1320                 cpumask_t span;
1321                 int new_cpu;
1322                 struct sched_group *group;
1323
1324 again:
1325                 schedstat_inc(sd, sbf_cnt);
1326                 span = sd->span;
1327                 cpu = task_cpu(p);
1328                 group = find_idlest_group(sd, p, cpu);
1329                 if (!group) {
1330                         schedstat_inc(sd, sbf_balanced);
1331                         goto nextlevel;
1332                 }
1333
1334                 new_cpu = find_idlest_cpu(group, cpu);
1335                 if (new_cpu == -1 || new_cpu == cpu) {
1336                         schedstat_inc(sd, sbf_balanced);
1337                         goto nextlevel;
1338                 }
1339
1340                 if (cpu_isset(new_cpu, p->cpus_allowed)) {
1341                         schedstat_inc(sd, sbf_pushed);
1342                         set_task_cpu(p, new_cpu);
1343                         task_rq_unlock(rq, &flags);
1344                         rq = task_rq_lock(p, &flags);
1345                         cpu = task_cpu(p);
1346                 }
1347
1348                 /* Now try balancing at a lower domain level */
1349 nextlevel:
1350                 sd = NULL;
1351                 for_each_domain(cpu, tmp) {
1352                         if (cpus_subset(span, tmp->span))
1353                                 break;
1354                         if (tmp->flags & SD_BALANCE_FORK)
1355                                 sd = tmp;
1356                 }
1357
1358                 if (sd)
1359                         goto again;
1360         }
1361
1362 #endif
1363         /*
1364          * We decrease the sleep average of forking parents
1365          * and children as well, to keep max-interactive tasks
1366          * from forking tasks that are max-interactive. The parent
1367          * (current) is done further down, under its lock.
1368          */
1369         p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1370                 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1371
1372         p->prio = effective_prio(p);
1373
1374         if (likely(cpu == this_cpu)) {
1375                 if (!(clone_flags & CLONE_VM)) {
1376                         /*
1377                          * The VM isn't cloned, so we're in a good position to
1378                          * do child-runs-first in anticipation of an exec. This
1379                          * usually avoids a lot of COW overhead.
1380                          */
1381                         if (unlikely(!current->array))
1382                                 __activate_task(p, rq);
1383                         else {
1384                                 p->prio = current->prio;
1385                                 list_add_tail(&p->run_list, &current->run_list);
1386                                 p->array = current->array;
1387                                 p->array->nr_active++;
1388                                 rq->nr_running++;
1389                         }
1390                         set_need_resched();
1391                 } else
1392                         /* Run child last */
1393                         __activate_task(p, rq);
1394                 /*
1395                  * We skip the following code due to cpu == this_cpu
1396                  *
1397                  *   task_rq_unlock(rq, &flags);
1398                  *   this_rq = task_rq_lock(current, &flags);
1399                  */
1400                 this_rq = rq;
1401         } else {
1402                 this_rq = cpu_rq(this_cpu);
1403
1404                 /*
1405                  * Not the local CPU - must adjust timestamp. This should
1406                  * get optimised away in the !CONFIG_SMP case.
1407                  */
1408                 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1409                                         + rq->timestamp_last_tick;
1410                 __activate_task(p, rq);
1411                 if (TASK_PREEMPTS_CURR(p, rq))
1412                         resched_task(rq->curr);
1413
1414                 /*
1415                  * Parent and child are on different CPUs, now get the
1416                  * parent runqueue to update the parent's ->sleep_avg:
1417                  */
1418                 task_rq_unlock(rq, &flags);
1419                 this_rq = task_rq_lock(current, &flags);
1420         }
1421         current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1422                 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1423         task_rq_unlock(this_rq, &flags);
1424 }
1425
1426 /*
1427  * Potentially available exiting-child timeslices are
1428  * retrieved here - this way the parent does not get
1429  * penalized for creating too many threads.
1430  *
1431  * (this cannot be used to 'generate' timeslices
1432  * artificially, because any timeslice recovered here
1433  * was given away by the parent in the first place.)
1434  */
1435 void fastcall sched_exit(task_t * p)
1436 {
1437         unsigned long flags;
1438         runqueue_t *rq;
1439
1440         /*
1441          * If the child was a (relative-) CPU hog then decrease
1442          * the sleep_avg of the parent as well.
1443          */
1444         rq = task_rq_lock(p->parent, &flags);
1445         if (p->first_time_slice) {
1446                 p->parent->time_slice += p->time_slice;
1447                 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1448                         p->parent->time_slice = task_timeslice(p);
1449         }
1450         if (p->sleep_avg < p->parent->sleep_avg)
1451                 p->parent->sleep_avg = p->parent->sleep_avg /
1452                 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1453                 (EXIT_WEIGHT + 1);
1454         task_rq_unlock(rq, &flags);
1455 }
1456
1457 /**
1458  * prepare_task_switch - prepare to switch tasks
1459  * @rq: the runqueue preparing to switch
1460  * @next: the task we are going to switch to.
1461  *
1462  * This is called with the rq lock held and interrupts off. It must
1463  * be paired with a subsequent finish_task_switch after the context
1464  * switch.
1465  *
1466  * prepare_task_switch sets up locking and calls architecture specific
1467  * hooks.
1468  */
1469 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1470 {
1471         prepare_lock_switch(rq, next);
1472         prepare_arch_switch(next);
1473 }
1474
1475 /**
1476  * finish_task_switch - clean up after a task-switch
1477  * @prev: the thread we just switched away from.
1478  *
1479  * finish_task_switch must be called after the context switch, paired
1480  * with a prepare_task_switch call before the context switch.
1481  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1482  * and do any other architecture-specific cleanup actions.
1483  *
1484  * Note that we may have delayed dropping an mm in context_switch(). If
1485  * so, we finish that here outside of the runqueue lock.  (Doing it
1486  * with the lock held can cause deadlocks; see schedule() for
1487  * details.)
1488  */
1489 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1490         __releases(rq->lock)
1491 {
1492         struct mm_struct *mm = rq->prev_mm;
1493         unsigned long prev_task_flags;
1494
1495         rq->prev_mm = NULL;
1496
1497         /*
1498          * A task struct has one reference for the use as "current".
1499          * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1500          * calls schedule one last time. The schedule call will never return,
1501          * and the scheduled task must drop that reference.
1502          * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1503          * still held, otherwise prev could be scheduled on another cpu, die
1504          * there before we look at prev->state, and then the reference would
1505          * be dropped twice.
1506          *              Manfred Spraul <manfred@colorfullife.com>
1507          */
1508         prev_task_flags = prev->flags;
1509         finish_arch_switch(prev);
1510         finish_lock_switch(rq, prev);
1511         if (mm)
1512                 mmdrop(mm);
1513         if (unlikely(prev_task_flags & PF_DEAD))
1514                 put_task_struct(prev);
1515 }
1516
1517 /**
1518  * schedule_tail - first thing a freshly forked thread must call.
1519  * @prev: the thread we just switched away from.
1520  */
1521 asmlinkage void schedule_tail(task_t *prev)
1522         __releases(rq->lock)
1523 {
1524         runqueue_t *rq = this_rq();
1525         finish_task_switch(rq, prev);
1526 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1527         /* In this case, finish_task_switch does not reenable preemption */
1528         preempt_enable();
1529 #endif
1530         if (current->set_child_tid)
1531                 put_user(current->pid, current->set_child_tid);
1532 }
1533
1534 /*
1535  * context_switch - switch to the new MM and the new
1536  * thread's register state.
1537  */
1538 static inline
1539 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1540 {
1541         struct mm_struct *mm = next->mm;
1542         struct mm_struct *oldmm = prev->active_mm;
1543
1544         if (unlikely(!mm)) {
1545                 next->active_mm = oldmm;
1546                 atomic_inc(&oldmm->mm_count);
1547                 enter_lazy_tlb(oldmm, next);
1548         } else
1549                 switch_mm(oldmm, mm, next);
1550
1551         if (unlikely(!prev->mm)) {
1552                 prev->active_mm = NULL;
1553                 WARN_ON(rq->prev_mm);
1554                 rq->prev_mm = oldmm;
1555         }
1556
1557         /* Here we just switch the register state and the stack. */
1558         switch_to(prev, next, prev);
1559
1560         return prev;
1561 }
1562
1563 /*
1564  * nr_running, nr_uninterruptible and nr_context_switches:
1565  *
1566  * externally visible scheduler statistics: current number of runnable
1567  * threads, current number of uninterruptible-sleeping threads, total
1568  * number of context switches performed since bootup.
1569  */
1570 unsigned long nr_running(void)
1571 {
1572         unsigned long i, sum = 0;
1573
1574         for_each_online_cpu(i)
1575                 sum += cpu_rq(i)->nr_running;
1576
1577         return sum;
1578 }
1579
1580 unsigned long nr_uninterruptible(void)
1581 {
1582         unsigned long i, sum = 0;
1583
1584         for_each_cpu(i)
1585                 sum += cpu_rq(i)->nr_uninterruptible;
1586
1587         /*
1588          * Since we read the counters lockless, it might be slightly
1589          * inaccurate. Do not allow it to go below zero though:
1590          */
1591         if (unlikely((long)sum < 0))
1592                 sum = 0;
1593
1594         return sum;
1595 }
1596
1597 unsigned long long nr_context_switches(void)
1598 {
1599         unsigned long long i, sum = 0;
1600
1601         for_each_cpu(i)
1602                 sum += cpu_rq(i)->nr_switches;
1603
1604         return sum;
1605 }
1606
1607 unsigned long nr_iowait(void)
1608 {
1609         unsigned long i, sum = 0;
1610
1611         for_each_cpu(i)
1612                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1613
1614         return sum;
1615 }
1616
1617 #ifdef CONFIG_SMP
1618
1619 /*
1620  * double_rq_lock - safely lock two runqueues
1621  *
1622  * Note this does not disable interrupts like task_rq_lock,
1623  * you need to do so manually before calling.
1624  */
1625 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1626         __acquires(rq1->lock)
1627         __acquires(rq2->lock)
1628 {
1629         if (rq1 == rq2) {
1630                 spin_lock(&rq1->lock);
1631                 __acquire(rq2->lock);   /* Fake it out ;) */
1632         } else {
1633                 if (rq1 < rq2) {
1634                         spin_lock(&rq1->lock);
1635                         spin_lock(&rq2->lock);
1636                 } else {
1637                         spin_lock(&rq2->lock);
1638                         spin_lock(&rq1->lock);
1639                 }
1640         }
1641 }
1642
1643 /*
1644  * double_rq_unlock - safely unlock two runqueues
1645  *
1646  * Note this does not restore interrupts like task_rq_unlock,
1647  * you need to do so manually after calling.
1648  */
1649 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1650         __releases(rq1->lock)
1651         __releases(rq2->lock)
1652 {
1653         spin_unlock(&rq1->lock);
1654         if (rq1 != rq2)
1655                 spin_unlock(&rq2->lock);
1656         else
1657                 __release(rq2->lock);
1658 }
1659
1660 /*
1661  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1662  */
1663 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1664         __releases(this_rq->lock)
1665         __acquires(busiest->lock)
1666         __acquires(this_rq->lock)
1667 {
1668         if (unlikely(!spin_trylock(&busiest->lock))) {
1669                 if (busiest < this_rq) {
1670                         spin_unlock(&this_rq->lock);
1671                         spin_lock(&busiest->lock);
1672                         spin_lock(&this_rq->lock);
1673                 } else
1674                         spin_lock(&busiest->lock);
1675         }
1676 }
1677
1678 /*
1679  * If dest_cpu is allowed for this process, migrate the task to it.
1680  * This is accomplished by forcing the cpu_allowed mask to only
1681  * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
1682  * the cpu_allowed mask is restored.
1683  */
1684 static void sched_migrate_task(task_t *p, int dest_cpu)
1685 {
1686         migration_req_t req;
1687         runqueue_t *rq;
1688         unsigned long flags;
1689
1690         rq = task_rq_lock(p, &flags);
1691         if (!cpu_isset(dest_cpu, p->cpus_allowed)
1692             || unlikely(cpu_is_offline(dest_cpu)))
1693                 goto out;
1694
1695         /* force the process onto the specified CPU */
1696         if (migrate_task(p, dest_cpu, &req)) {
1697                 /* Need to wait for migration thread (might exit: take ref). */
1698                 struct task_struct *mt = rq->migration_thread;
1699                 get_task_struct(mt);
1700                 task_rq_unlock(rq, &flags);
1701                 wake_up_process(mt);
1702                 put_task_struct(mt);
1703                 wait_for_completion(&req.done);
1704                 return;
1705         }
1706 out:
1707         task_rq_unlock(rq, &flags);
1708 }
1709
1710 /*
1711  * sched_exec(): find the highest-level, exec-balance-capable
1712  * domain and try to migrate the task to the least loaded CPU.
1713  *
1714  * execve() is a valuable balancing opportunity, because at this point
1715  * the task has the smallest effective memory and cache footprint.
1716  */
1717 void sched_exec(void)
1718 {
1719         struct sched_domain *tmp, *sd = NULL;
1720         int new_cpu, this_cpu = get_cpu();
1721
1722         for_each_domain(this_cpu, tmp)
1723                 if (tmp->flags & SD_BALANCE_EXEC)
1724                         sd = tmp;
1725
1726         if (sd) {
1727                 cpumask_t span;
1728                 struct sched_group *group;
1729 again:
1730                 schedstat_inc(sd, sbe_cnt);
1731                 span = sd->span;
1732                 group = find_idlest_group(sd, current, this_cpu);
1733                 if (!group) {
1734                         schedstat_inc(sd, sbe_balanced);
1735                         goto nextlevel;
1736                 }
1737                 new_cpu = find_idlest_cpu(group, this_cpu);
1738                 if (new_cpu == -1 || new_cpu == this_cpu) {
1739                         schedstat_inc(sd, sbe_balanced);
1740                         goto nextlevel;
1741                 }
1742
1743                 schedstat_inc(sd, sbe_pushed);
1744                 put_cpu();
1745                 sched_migrate_task(current, new_cpu);
1746
1747                 /* Now try balancing at a lower domain level */
1748                 this_cpu = get_cpu();
1749 nextlevel:
1750                 sd = NULL;
1751                 for_each_domain(this_cpu, tmp) {
1752                         if (cpus_subset(span, tmp->span))
1753                                 break;
1754                         if (tmp->flags & SD_BALANCE_EXEC)
1755                                 sd = tmp;
1756                 }
1757
1758                 if (sd)
1759                         goto again;
1760         }
1761
1762         put_cpu();
1763 }
1764
1765 /*
1766  * pull_task - move a task from a remote runqueue to the local runqueue.
1767  * Both runqueues must be locked.
1768  */
1769 static inline
1770 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1771                runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1772 {
1773         dequeue_task(p, src_array);
1774         src_rq->nr_running--;
1775         set_task_cpu(p, this_cpu);
1776         this_rq->nr_running++;
1777         enqueue_task(p, this_array);
1778         p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1779                                 + this_rq->timestamp_last_tick;
1780         /*
1781          * Note that idle threads have a prio of MAX_PRIO, for this test
1782          * to be always true for them.
1783          */
1784         if (TASK_PREEMPTS_CURR(p, this_rq))
1785                 resched_task(this_rq->curr);
1786 }
1787
1788 /*
1789  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1790  */
1791 static inline
1792 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1793              struct sched_domain *sd, enum idle_type idle, int *all_pinned)
1794 {
1795         /*
1796          * We do not migrate tasks that are:
1797          * 1) running (obviously), or
1798          * 2) cannot be migrated to this CPU due to cpus_allowed, or
1799          * 3) are cache-hot on their current CPU.
1800          */
1801         if (!cpu_isset(this_cpu, p->cpus_allowed))
1802                 return 0;
1803         *all_pinned = 0;
1804
1805         if (task_running(rq, p))
1806                 return 0;
1807
1808         /*
1809          * Aggressive migration if:
1810          * 1) task is cache cold, or
1811          * 2) too many balance attempts have failed.
1812          */
1813
1814         if (sd->nr_balance_failed > sd->cache_nice_tries)
1815                 return 1;
1816
1817         if (task_hot(p, rq->timestamp_last_tick, sd))
1818                 return 0;
1819         return 1;
1820 }
1821
1822 /*
1823  * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1824  * as part of a balancing operation within "domain". Returns the number of
1825  * tasks moved.
1826  *
1827  * Called with both runqueues locked.
1828  */
1829 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1830                       unsigned long max_nr_move, struct sched_domain *sd,
1831                       enum idle_type idle, int *all_pinned)
1832 {
1833         prio_array_t *array, *dst_array;
1834         struct list_head *head, *curr;
1835         int idx, pulled = 0, pinned = 0;
1836         task_t *tmp;
1837
1838         if (max_nr_move == 0)
1839                 goto out;
1840
1841         pinned = 1;
1842
1843         /*
1844          * We first consider expired tasks. Those will likely not be
1845          * executed in the near future, and they are most likely to
1846          * be cache-cold, thus switching CPUs has the least effect
1847          * on them.
1848          */
1849         if (busiest->expired->nr_active) {
1850                 array = busiest->expired;
1851                 dst_array = this_rq->expired;
1852         } else {
1853                 array = busiest->active;
1854                 dst_array = this_rq->active;
1855         }
1856
1857 new_array:
1858         /* Start searching at priority 0: */
1859         idx = 0;
1860 skip_bitmap:
1861         if (!idx)
1862                 idx = sched_find_first_bit(array->bitmap);
1863         else
1864                 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1865         if (idx >= MAX_PRIO) {
1866                 if (array == busiest->expired && busiest->active->nr_active) {
1867                         array = busiest->active;
1868                         dst_array = this_rq->active;
1869                         goto new_array;
1870                 }
1871                 goto out;
1872         }
1873
1874         head = array->queue + idx;
1875         curr = head->prev;
1876 skip_queue:
1877         tmp = list_entry(curr, task_t, run_list);
1878
1879         curr = curr->prev;
1880
1881         if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1882                 if (curr != head)
1883                         goto skip_queue;
1884                 idx++;
1885                 goto skip_bitmap;
1886         }
1887
1888 #ifdef CONFIG_SCHEDSTATS
1889         if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1890                 schedstat_inc(sd, lb_hot_gained[idle]);
1891 #endif
1892
1893         pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1894         pulled++;
1895
1896         /* We only want to steal up to the prescribed number of tasks. */
1897         if (pulled < max_nr_move) {
1898                 if (curr != head)
1899                         goto skip_queue;
1900                 idx++;
1901                 goto skip_bitmap;
1902         }
1903 out:
1904         /*
1905          * Right now, this is the only place pull_task() is called,
1906          * so we can safely collect pull_task() stats here rather than
1907          * inside pull_task().
1908          */
1909         schedstat_add(sd, lb_gained[idle], pulled);
1910
1911         if (all_pinned)
1912                 *all_pinned = pinned;
1913         return pulled;
1914 }
1915
1916 /*
1917  * find_busiest_group finds and returns the busiest CPU group within the
1918  * domain. It calculates and returns the number of tasks which should be
1919  * moved to restore balance via the imbalance parameter.
1920  */
1921 static struct sched_group *
1922 find_busiest_group(struct sched_domain *sd, int this_cpu,
1923                    unsigned long *imbalance, enum idle_type idle)
1924 {
1925         struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1926         unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1927         int load_idx;
1928
1929         max_load = this_load = total_load = total_pwr = 0;
1930         if (idle == NOT_IDLE)
1931                 load_idx = sd->busy_idx;
1932         else if (idle == NEWLY_IDLE)
1933                 load_idx = sd->newidle_idx;
1934         else
1935                 load_idx = sd->idle_idx;
1936
1937         do {
1938                 unsigned long load;
1939                 int local_group;
1940                 int i;
1941
1942                 local_group = cpu_isset(this_cpu, group->cpumask);
1943
1944                 /* Tally up the load of all CPUs in the group */
1945                 avg_load = 0;
1946
1947                 for_each_cpu_mask(i, group->cpumask) {
1948                         /* Bias balancing toward cpus of our domain */
1949                         if (local_group)
1950                                 load = target_load(i, load_idx);
1951                         else
1952                                 load = source_load(i, load_idx);
1953
1954                         avg_load += load;
1955                 }
1956
1957                 total_load += avg_load;
1958                 total_pwr += group->cpu_power;
1959
1960                 /* Adjust by relative CPU power of the group */
1961                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1962
1963                 if (local_group) {
1964                         this_load = avg_load;
1965                         this = group;
1966                 } else if (avg_load > max_load) {
1967                         max_load = avg_load;
1968                         busiest = group;
1969                 }
1970                 group = group->next;
1971         } while (group != sd->groups);
1972
1973         if (!busiest || this_load >= max_load)
1974                 goto out_balanced;
1975
1976         avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1977
1978         if (this_load >= avg_load ||
1979                         100*max_load <= sd->imbalance_pct*this_load)
1980                 goto out_balanced;
1981
1982         /*
1983          * We're trying to get all the cpus to the average_load, so we don't
1984          * want to push ourselves above the average load, nor do we wish to
1985          * reduce the max loaded cpu below the average load, as either of these
1986          * actions would just result in more rebalancing later, and ping-pong
1987          * tasks around. Thus we look for the minimum possible imbalance.
1988          * Negative imbalances (*we* are more loaded than anyone else) will
1989          * be counted as no imbalance for these purposes -- we can't fix that
1990          * by pulling tasks to us.  Be careful of negative numbers as they'll
1991          * appear as very large values with unsigned longs.
1992          */
1993         /* How much load to actually move to equalise the imbalance */
1994         *imbalance = min((max_load - avg_load) * busiest->cpu_power,
1995                                 (avg_load - this_load) * this->cpu_power)
1996                         / SCHED_LOAD_SCALE;
1997
1998         if (*imbalance < SCHED_LOAD_SCALE) {
1999                 unsigned long pwr_now = 0, pwr_move = 0;
2000                 unsigned long tmp;
2001
2002                 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2003                         *imbalance = 1;
2004                         return busiest;
2005                 }
2006
2007                 /*
2008                  * OK, we don't have enough imbalance to justify moving tasks,
2009                  * however we may be able to increase total CPU power used by
2010                  * moving them.
2011                  */
2012
2013                 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2014                 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2015                 pwr_now /= SCHED_LOAD_SCALE;
2016
2017                 /* Amount of load we'd subtract */
2018                 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2019                 if (max_load > tmp)
2020                         pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2021                                                         max_load - tmp);
2022
2023                 /* Amount of load we'd add */
2024                 if (max_load*busiest->cpu_power <
2025                                 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2026                         tmp = max_load*busiest->cpu_power/this->cpu_power;
2027                 else
2028                         tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2029                 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2030                 pwr_move /= SCHED_LOAD_SCALE;
2031
2032                 /* Move if we gain throughput */
2033                 if (pwr_move <= pwr_now)
2034                         goto out_balanced;
2035
2036                 *imbalance = 1;
2037                 return busiest;
2038         }
2039
2040         /* Get rid of the scaling factor, rounding down as we divide */
2041         *imbalance = *imbalance / SCHED_LOAD_SCALE;
2042         return busiest;
2043
2044 out_balanced:
2045
2046         *imbalance = 0;
2047         return NULL;
2048 }
2049
2050 /*
2051  * find_busiest_queue - find the busiest runqueue among the cpus in group.
2052  */
2053 static runqueue_t *find_busiest_queue(struct sched_group *group)
2054 {
2055         unsigned long load, max_load = 0;
2056         runqueue_t *busiest = NULL;
2057         int i;
2058
2059         for_each_cpu_mask(i, group->cpumask) {
2060                 load = source_load(i, 0);
2061
2062                 if (load > max_load) {
2063                         max_load = load;
2064                         busiest = cpu_rq(i);
2065                 }
2066         }
2067
2068         return busiest;
2069 }
2070
2071 /*
2072  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2073  * tasks if there is an imbalance.
2074  *
2075  * Called with this_rq unlocked.
2076  */
2077 static int load_balance(int this_cpu, runqueue_t *this_rq,
2078                         struct sched_domain *sd, enum idle_type idle)
2079 {
2080         struct sched_group *group;
2081         runqueue_t *busiest;
2082         unsigned long imbalance;
2083         int nr_moved, all_pinned;
2084         int active_balance = 0;
2085
2086         spin_lock(&this_rq->lock);
2087         schedstat_inc(sd, lb_cnt[idle]);
2088
2089         group = find_busiest_group(sd, this_cpu, &imbalance, idle);
2090         if (!group) {
2091                 schedstat_inc(sd, lb_nobusyg[idle]);
2092                 goto out_balanced;
2093         }
2094
2095         busiest = find_busiest_queue(group);
2096         if (!busiest) {
2097                 schedstat_inc(sd, lb_nobusyq[idle]);
2098                 goto out_balanced;
2099         }
2100
2101         BUG_ON(busiest == this_rq);
2102
2103         schedstat_add(sd, lb_imbalance[idle], imbalance);
2104
2105         nr_moved = 0;
2106         if (busiest->nr_running > 1) {
2107                 /*
2108                  * Attempt to move tasks. If find_busiest_group has found
2109                  * an imbalance but busiest->nr_running <= 1, the group is
2110                  * still unbalanced. nr_moved simply stays zero, so it is
2111                  * correctly treated as an imbalance.
2112                  */
2113                 double_lock_balance(this_rq, busiest);
2114                 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2115                                                 imbalance, sd, idle,
2116                                                 &all_pinned);
2117                 spin_unlock(&busiest->lock);
2118
2119                 /* All tasks on this runqueue were pinned by CPU affinity */
2120                 if (unlikely(all_pinned))
2121                         goto out_balanced;
2122         }
2123
2124         spin_unlock(&this_rq->lock);
2125
2126         if (!nr_moved) {
2127                 schedstat_inc(sd, lb_failed[idle]);
2128                 sd->nr_balance_failed++;
2129
2130                 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2131
2132                         spin_lock(&busiest->lock);
2133                         if (!busiest->active_balance) {
2134                                 busiest->active_balance = 1;
2135                                 busiest->push_cpu = this_cpu;
2136                                 active_balance = 1;
2137                         }
2138                         spin_unlock(&busiest->lock);
2139                         if (active_balance)
2140                                 wake_up_process(busiest->migration_thread);
2141
2142                         /*
2143                          * We've kicked active balancing, reset the failure
2144                          * counter.
2145                          */
2146                         sd->nr_balance_failed = sd->cache_nice_tries+1;
2147                 }
2148         } else
2149                 sd->nr_balance_failed = 0;
2150
2151         if (likely(!active_balance)) {
2152                 /* We were unbalanced, so reset the balancing interval */
2153                 sd->balance_interval = sd->min_interval;
2154         } else {
2155                 /*
2156                  * If we've begun active balancing, start to back off. This
2157                  * case may not be covered by the all_pinned logic if there
2158                  * is only 1 task on the busy runqueue (because we don't call
2159                  * move_tasks).
2160                  */
2161                 if (sd->balance_interval < sd->max_interval)
2162                         sd->balance_interval *= 2;
2163         }
2164
2165         return nr_moved;
2166
2167 out_balanced:
2168         spin_unlock(&this_rq->lock);
2169
2170         schedstat_inc(sd, lb_balanced[idle]);
2171
2172         sd->nr_balance_failed = 0;
2173         /* tune up the balancing interval */
2174         if (sd->balance_interval < sd->max_interval)
2175                 sd->balance_interval *= 2;
2176
2177         return 0;
2178 }
2179
2180 /*
2181  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2182  * tasks if there is an imbalance.
2183  *
2184  * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2185  * this_rq is locked.
2186  */
2187 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2188                                 struct sched_domain *sd)
2189 {
2190         struct sched_group *group;
2191         runqueue_t *busiest = NULL;
2192         unsigned long imbalance;
2193         int nr_moved = 0;
2194
2195         schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2196         group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
2197         if (!group) {
2198                 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2199                 goto out_balanced;
2200         }
2201
2202         busiest = find_busiest_queue(group);
2203         if (!busiest) {
2204                 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2205                 goto out_balanced;
2206         }
2207
2208         BUG_ON(busiest == this_rq);
2209
2210         /* Attempt to move tasks */
2211         double_lock_balance(this_rq, busiest);
2212
2213         schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2214         nr_moved = move_tasks(this_rq, this_cpu, busiest,
2215                                         imbalance, sd, NEWLY_IDLE, NULL);
2216         if (!nr_moved)
2217                 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2218         else
2219                 sd->nr_balance_failed = 0;
2220
2221         spin_unlock(&busiest->lock);
2222         return nr_moved;
2223
2224 out_balanced:
2225         schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2226         sd->nr_balance_failed = 0;
2227         return 0;
2228 }
2229
2230 /*
2231  * idle_balance is called by schedule() if this_cpu is about to become
2232  * idle. Attempts to pull tasks from other CPUs.
2233  */
2234 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2235 {
2236         struct sched_domain *sd;
2237
2238         for_each_domain(this_cpu, sd) {
2239                 if (sd->flags & SD_BALANCE_NEWIDLE) {
2240                         if (load_balance_newidle(this_cpu, this_rq, sd)) {
2241                                 /* We've pulled tasks over so stop searching */
2242                                 break;
2243                         }
2244                 }
2245         }
2246 }
2247
2248 /*
2249  * active_load_balance is run by migration threads. It pushes running tasks
2250  * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2251  * running on each physical CPU where possible, and avoids physical /
2252  * logical imbalances.
2253  *
2254  * Called with busiest_rq locked.
2255  */
2256 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2257 {
2258         struct sched_domain *sd;
2259         runqueue_t *target_rq;
2260         int target_cpu = busiest_rq->push_cpu;
2261
2262         if (busiest_rq->nr_running <= 1)
2263                 /* no task to move */
2264                 return;
2265
2266         target_rq = cpu_rq(target_cpu);
2267
2268         /*
2269          * This condition is "impossible", if it occurs
2270          * we need to fix it.  Originally reported by
2271          * Bjorn Helgaas on a 128-cpu setup.
2272          */
2273         BUG_ON(busiest_rq == target_rq);
2274
2275         /* move a task from busiest_rq to target_rq */
2276         double_lock_balance(busiest_rq, target_rq);
2277
2278         /* Search for an sd spanning us and the target CPU. */
2279         for_each_domain(target_cpu, sd)
2280                 if ((sd->flags & SD_LOAD_BALANCE) &&
2281                         cpu_isset(busiest_cpu, sd->span))
2282                                 break;
2283
2284         if (unlikely(sd == NULL))
2285                 goto out;
2286
2287         schedstat_inc(sd, alb_cnt);
2288
2289         if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2290                 schedstat_inc(sd, alb_pushed);
2291         else
2292                 schedstat_inc(sd, alb_failed);
2293 out:
2294         spin_unlock(&target_rq->lock);
2295 }
2296
2297 /*
2298  * rebalance_tick will get called every timer tick, on every CPU.
2299  *
2300  * It checks each scheduling domain to see if it is due to be balanced,
2301  * and initiates a balancing operation if so.
2302  *
2303  * Balancing parameters are set up in arch_init_sched_domains.
2304  */
2305
2306 /* Don't have all balancing operations going off at once */
2307 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2308
2309 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2310                            enum idle_type idle)
2311 {
2312         unsigned long old_load, this_load;
2313         unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2314         struct sched_domain *sd;
2315         int i;
2316
2317         this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2318         /* Update our load */
2319         for (i = 0; i < 3; i++) {
2320                 unsigned long new_load = this_load;
2321                 int scale = 1 << i;
2322                 old_load = this_rq->cpu_load[i];
2323                 /*
2324                  * Round up the averaging division if load is increasing. This
2325                  * prevents us from getting stuck on 9 if the load is 10, for
2326                  * example.
2327                  */
2328                 if (new_load > old_load)
2329                         new_load += scale-1;
2330                 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2331         }
2332
2333         for_each_domain(this_cpu, sd) {
2334                 unsigned long interval;
2335
2336                 if (!(sd->flags & SD_LOAD_BALANCE))
2337                         continue;
2338
2339                 interval = sd->balance_interval;
2340                 if (idle != SCHED_IDLE)
2341                         interval *= sd->busy_factor;
2342
2343                 /* scale ms to jiffies */
2344                 interval = msecs_to_jiffies(interval);
2345                 if (unlikely(!interval))
2346                         interval = 1;
2347
2348                 if (j - sd->last_balance >= interval) {
2349                         if (load_balance(this_cpu, this_rq, sd, idle)) {
2350                                 /* We've pulled tasks over so no longer idle */
2351                                 idle = NOT_IDLE;
2352                         }
2353                         sd->last_balance += interval;
2354                 }
2355         }
2356 }
2357 #else
2358 /*
2359  * on UP we do not need to balance between CPUs:
2360  */
2361 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2362 {
2363 }
2364 static inline void idle_balance(int cpu, runqueue_t *rq)
2365 {
2366 }
2367 #endif
2368
2369 static inline int wake_priority_sleeper(runqueue_t *rq)
2370 {
2371         int ret = 0;
2372 #ifdef CONFIG_SCHED_SMT
2373         spin_lock(&rq->lock);
2374         /*
2375          * If an SMT sibling task has been put to sleep for priority
2376          * reasons reschedule the idle task to see if it can now run.
2377          */
2378         if (rq->nr_running) {
2379                 resched_task(rq->idle);
2380                 ret = 1;
2381         }
2382         spin_unlock(&rq->lock);
2383 #endif
2384         return ret;
2385 }
2386
2387 DEFINE_PER_CPU(struct kernel_stat, kstat);
2388
2389 EXPORT_PER_CPU_SYMBOL(kstat);
2390
2391 /*
2392  * This is called on clock ticks and on context switches.
2393  * Bank in p->sched_time the ns elapsed since the last tick or switch.
2394  */
2395 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2396                                     unsigned long long now)
2397 {
2398         unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2399         p->sched_time += now - last;
2400 }
2401
2402 /*
2403  * Return current->sched_time plus any more ns on the sched_clock
2404  * that have not yet been banked.
2405  */
2406 unsigned long long current_sched_time(const task_t *tsk)
2407 {
2408         unsigned long long ns;
2409         unsigned long flags;
2410         local_irq_save(flags);
2411         ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2412         ns = tsk->sched_time + (sched_clock() - ns);
2413         local_irq_restore(flags);
2414         return ns;
2415 }
2416
2417 /*
2418  * We place interactive tasks back into the active array, if possible.
2419  *
2420  * To guarantee that this does not starve expired tasks we ignore the
2421  * interactivity of a task if the first expired task had to wait more
2422  * than a 'reasonable' amount of time. This deadline timeout is
2423  * load-dependent, as the frequency of array switched decreases with
2424  * increasing number of running tasks. We also ignore the interactivity
2425  * if a better static_prio task has expired:
2426  */
2427 #define EXPIRED_STARVING(rq) \
2428         ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2429                 (jiffies - (rq)->expired_timestamp >= \
2430                         STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2431                         ((rq)->curr->static_prio > (rq)->best_expired_prio))
2432
2433 /*
2434  * Account user cpu time to a process.
2435  * @p: the process that the cpu time gets accounted to
2436  * @hardirq_offset: the offset to subtract from hardirq_count()
2437  * @cputime: the cpu time spent in user space since the last update
2438  */
2439 void account_user_time(struct task_struct *p, cputime_t cputime)
2440 {
2441         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2442         cputime64_t tmp;
2443
2444         p->utime = cputime_add(p->utime, cputime);
2445
2446         /* Add user time to cpustat. */
2447         tmp = cputime_to_cputime64(cputime);
2448         if (TASK_NICE(p) > 0)
2449                 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2450         else
2451                 cpustat->user = cputime64_add(cpustat->user, tmp);
2452 }
2453
2454 /*
2455  * Account system cpu time to a process.
2456  * @p: the process that the cpu time gets accounted to
2457  * @hardirq_offset: the offset to subtract from hardirq_count()
2458  * @cputime: the cpu time spent in kernel space since the last update
2459  */
2460 void account_system_time(struct task_struct *p, int hardirq_offset,
2461                          cputime_t cputime)
2462 {
2463         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2464         runqueue_t *rq = this_rq();
2465         cputime64_t tmp;
2466
2467         p->stime = cputime_add(p->stime, cputime);
2468
2469         /* Add system time to cpustat. */
2470         tmp = cputime_to_cputime64(cputime);
2471         if (hardirq_count() - hardirq_offset)
2472                 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2473         else if (softirq_count())
2474                 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2475         else if (p != rq->idle)
2476                 cpustat->system = cputime64_add(cpustat->system, tmp);
2477         else if (atomic_read(&rq->nr_iowait) > 0)
2478                 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2479         else
2480                 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2481         /* Account for system time used */
2482         acct_update_integrals(p);
2483         /* Update rss highwater mark */
2484         update_mem_hiwater(p);
2485 }
2486
2487 /*
2488  * Account for involuntary wait time.
2489  * @p: the process from which the cpu time has been stolen
2490  * @steal: the cpu time spent in involuntary wait
2491  */
2492 void account_steal_time(struct task_struct *p, cputime_t steal)
2493 {
2494         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2495         cputime64_t tmp = cputime_to_cputime64(steal);
2496         runqueue_t *rq = this_rq();
2497
2498         if (p == rq->idle) {
2499                 p->stime = cputime_add(p->stime, steal);
2500                 if (atomic_read(&rq->nr_iowait) > 0)
2501                         cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2502                 else
2503                         cpustat->idle = cputime64_add(cpustat->idle, tmp);
2504         } else
2505                 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2506 }
2507
2508 /*
2509  * This function gets called by the timer code, with HZ frequency.
2510  * We call it with interrupts disabled.
2511  *
2512  * It also gets called by the fork code, when changing the parent's
2513  * timeslices.
2514  */
2515 void scheduler_tick(void)
2516 {
2517         int cpu = smp_processor_id();
2518         runqueue_t *rq = this_rq();
2519         task_t *p = current;
2520         unsigned long long now = sched_clock();
2521
2522         update_cpu_clock(p, rq, now);
2523
2524         rq->timestamp_last_tick = now;
2525
2526         if (p == rq->idle) {
2527                 if (wake_priority_sleeper(rq))
2528                         goto out;
2529                 rebalance_tick(cpu, rq, SCHED_IDLE);
2530                 return;
2531         }
2532
2533         /* Task might have expired already, but not scheduled off yet */
2534         if (p->array != rq->active) {
2535                 set_tsk_need_resched(p);
2536                 goto out;
2537         }
2538         spin_lock(&rq->lock);
2539         /*
2540          * The task was running during this tick - update the
2541          * time slice counter. Note: we do not update a thread's
2542          * priority until it either goes to sleep or uses up its
2543          * timeslice. This makes it possible for interactive tasks
2544          * to use up their timeslices at their highest priority levels.
2545          */
2546         if (rt_task(p)) {
2547                 /*
2548                  * RR tasks need a special form of timeslice management.
2549                  * FIFO tasks have no timeslices.
2550                  */
2551                 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2552                         p->time_slice = task_timeslice(p);
2553                         p->first_time_slice = 0;
2554                         set_tsk_need_resched(p);
2555
2556                         /* put it at the end of the queue: */
2557                         requeue_task(p, rq->active);
2558                 }
2559                 goto out_unlock;
2560         }
2561         if (!--p->time_slice) {
2562                 dequeue_task(p, rq->active);
2563                 set_tsk_need_resched(p);
2564                 p->prio = effective_prio(p);
2565                 p->time_slice = task_timeslice(p);
2566                 p->first_time_slice = 0;
2567
2568                 if (!rq->expired_timestamp)
2569                         rq->expired_timestamp = jiffies;
2570                 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2571                         enqueue_task(p, rq->expired);
2572                         if (p->static_prio < rq->best_expired_prio)
2573                                 rq->best_expired_prio = p->static_prio;
2574                 } else
2575                         enqueue_task(p, rq->active);
2576         } else {
2577                 /*
2578                  * Prevent a too long timeslice allowing a task to monopolize
2579                  * the CPU. We do this by splitting up the timeslice into
2580                  * smaller pieces.
2581                  *
2582                  * Note: this does not mean the task's timeslices expire or
2583                  * get lost in any way, they just might be preempted by
2584                  * another task of equal priority. (one with higher
2585                  * priority would have preempted this task already.) We
2586                  * requeue this task to the end of the list on this priority
2587                  * level, which is in essence a round-robin of tasks with
2588                  * equal priority.
2589                  *
2590                  * This only applies to tasks in the interactive
2591                  * delta range with at least TIMESLICE_GRANULARITY to requeue.
2592                  */
2593                 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2594                         p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2595                         (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2596                         (p->array == rq->active)) {
2597
2598                         requeue_task(p, rq->active);
2599                         set_tsk_need_resched(p);
2600                 }
2601         }
2602 out_unlock:
2603         spin_unlock(&rq->lock);
2604 out:
2605         rebalance_tick(cpu, rq, NOT_IDLE);
2606 }
2607
2608 #ifdef CONFIG_SCHED_SMT
2609 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2610 {
2611         struct sched_domain *tmp, *sd = NULL;
2612         cpumask_t sibling_map;
2613         int i;
2614
2615         for_each_domain(this_cpu, tmp)
2616                 if (tmp->flags & SD_SHARE_CPUPOWER)
2617                         sd = tmp;
2618
2619         if (!sd)
2620                 return;
2621
2622         /*
2623          * Unlock the current runqueue because we have to lock in
2624          * CPU order to avoid deadlocks. Caller knows that we might
2625          * unlock. We keep IRQs disabled.
2626          */
2627         spin_unlock(&this_rq->lock);
2628
2629         sibling_map = sd->span;
2630
2631         for_each_cpu_mask(i, sibling_map)
2632                 spin_lock(&cpu_rq(i)->lock);
2633         /*
2634          * We clear this CPU from the mask. This both simplifies the
2635          * inner loop and keps this_rq locked when we exit:
2636          */
2637         cpu_clear(this_cpu, sibling_map);
2638
2639         for_each_cpu_mask(i, sibling_map) {
2640                 runqueue_t *smt_rq = cpu_rq(i);
2641
2642                 /*
2643                  * If an SMT sibling task is sleeping due to priority
2644                  * reasons wake it up now.
2645                  */
2646                 if (smt_rq->curr == smt_rq->idle && smt_rq->nr_running)
2647                         resched_task(smt_rq->idle);
2648         }
2649
2650         for_each_cpu_mask(i, sibling_map)
2651                 spin_unlock(&cpu_rq(i)->lock);
2652         /*
2653          * We exit with this_cpu's rq still held and IRQs
2654          * still disabled:
2655          */
2656 }
2657
2658 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2659 {
2660         struct sched_domain *tmp, *sd = NULL;
2661         cpumask_t sibling_map;
2662         prio_array_t *array;
2663         int ret = 0, i;
2664         task_t *p;
2665
2666         for_each_domain(this_cpu, tmp)
2667                 if (tmp->flags & SD_SHARE_CPUPOWER)
2668                         sd = tmp;
2669
2670         if (!sd)
2671                 return 0;
2672
2673         /*
2674          * The same locking rules and details apply as for
2675          * wake_sleeping_dependent():
2676          */
2677         spin_unlock(&this_rq->lock);
2678         sibling_map = sd->span;
2679         for_each_cpu_mask(i, sibling_map)
2680                 spin_lock(&cpu_rq(i)->lock);
2681         cpu_clear(this_cpu, sibling_map);
2682
2683         /*
2684          * Establish next task to be run - it might have gone away because
2685          * we released the runqueue lock above:
2686          */
2687         if (!this_rq->nr_running)
2688                 goto out_unlock;
2689         array = this_rq->active;
2690         if (!array->nr_active)
2691                 array = this_rq->expired;
2692         BUG_ON(!array->nr_active);
2693
2694         p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2695                 task_t, run_list);
2696
2697         for_each_cpu_mask(i, sibling_map) {
2698                 runqueue_t *smt_rq = cpu_rq(i);
2699                 task_t *smt_curr = smt_rq->curr;
2700
2701                 /*
2702                  * If a user task with lower static priority than the
2703                  * running task on the SMT sibling is trying to schedule,
2704                  * delay it till there is proportionately less timeslice
2705                  * left of the sibling task to prevent a lower priority
2706                  * task from using an unfair proportion of the
2707                  * physical cpu's resources. -ck
2708                  */
2709                 if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) / 100) >
2710                         task_timeslice(p) || rt_task(smt_curr)) &&
2711                         p->mm && smt_curr->mm && !rt_task(p))
2712                                 ret = 1;
2713
2714                 /*
2715                  * Reschedule a lower priority task on the SMT sibling,
2716                  * or wake it up if it has been put to sleep for priority
2717                  * reasons.
2718                  */
2719                 if ((((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
2720                         task_timeslice(smt_curr) || rt_task(p)) &&
2721                         smt_curr->mm && p->mm && !rt_task(smt_curr)) ||
2722                         (smt_curr == smt_rq->idle && smt_rq->nr_running))
2723                                 resched_task(smt_curr);
2724         }
2725 out_unlock:
2726         for_each_cpu_mask(i, sibling_map)
2727                 spin_unlock(&cpu_rq(i)->lock);
2728         return ret;
2729 }
2730 #else
2731 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2732 {
2733 }
2734
2735 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2736 {
2737         return 0;
2738 }
2739 #endif
2740
2741 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2742
2743 void fastcall add_preempt_count(int val)
2744 {
2745         /*
2746          * Underflow?
2747          */
2748         BUG_ON((preempt_count() < 0));
2749         preempt_count() += val;
2750         /*
2751          * Spinlock count overflowing soon?
2752          */
2753         BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2754 }
2755 EXPORT_SYMBOL(add_preempt_count);
2756
2757 void fastcall sub_preempt_count(int val)
2758 {
2759         /*
2760          * Underflow?
2761          */
2762         BUG_ON(val > preempt_count());
2763         /*
2764          * Is the spinlock portion underflowing?
2765          */
2766         BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2767         preempt_count() -= val;
2768 }
2769 EXPORT_SYMBOL(sub_preempt_count);
2770
2771 #endif
2772
2773 /*
2774  * schedule() is the main scheduler function.
2775  */
2776 asmlinkage void __sched schedule(void)
2777 {
2778         long *switch_count;
2779         task_t *prev, *next;
2780         runqueue_t *rq;
2781         prio_array_t *array;
2782         struct list_head *queue;
2783         unsigned long long now;
2784         unsigned long run_time;
2785         int cpu, idx;
2786
2787         /*
2788          * Test if we are atomic.  Since do_exit() needs to call into
2789          * schedule() atomically, we ignore that path for now.
2790          * Otherwise, whine if we are scheduling when we should not be.
2791          */
2792         if (likely(!current->exit_state)) {
2793                 if (unlikely(in_atomic())) {
2794                         printk(KERN_ERR "scheduling while atomic: "
2795                                 "%s/0x%08x/%d\n",
2796                                 current->comm, preempt_count(), current->pid);
2797                         dump_stack();
2798                 }
2799         }
2800         profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2801
2802 need_resched:
2803         preempt_disable();
2804         prev = current;
2805         release_kernel_lock(prev);
2806 need_resched_nonpreemptible:
2807         rq = this_rq();
2808
2809         /*
2810          * The idle thread is not allowed to schedule!
2811          * Remove this check after it has been exercised a bit.
2812          */
2813         if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2814                 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2815                 dump_stack();
2816         }
2817
2818         schedstat_inc(rq, sched_cnt);
2819         now = sched_clock();
2820         if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2821                 run_time = now - prev->timestamp;
2822                 if (unlikely((long long)(now - prev->timestamp) < 0))
2823                         run_time = 0;
2824         } else
2825                 run_time = NS_MAX_SLEEP_AVG;
2826
2827         /*
2828          * Tasks charged proportionately less run_time at high sleep_avg to
2829          * delay them losing their interactive status
2830          */
2831         run_time /= (CURRENT_BONUS(prev) ? : 1);
2832
2833         spin_lock_irq(&rq->lock);
2834
2835         if (unlikely(prev->flags & PF_DEAD))
2836                 prev->state = EXIT_DEAD;
2837
2838         switch_count = &prev->nivcsw;
2839         if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2840                 switch_count = &prev->nvcsw;
2841                 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2842                                 unlikely(signal_pending(prev))))
2843                         prev->state = TASK_RUNNING;
2844                 else {
2845                         if (prev->state == TASK_UNINTERRUPTIBLE)
2846                                 rq->nr_uninterruptible++;
2847                         deactivate_task(prev, rq);
2848                 }
2849         }
2850
2851         cpu = smp_processor_id();
2852         if (unlikely(!rq->nr_running)) {
2853 go_idle:
2854                 idle_balance(cpu, rq);
2855                 if (!rq->nr_running) {
2856                         next = rq->idle;
2857                         rq->expired_timestamp = 0;
2858                         wake_sleeping_dependent(cpu, rq);
2859                         /*
2860                          * wake_sleeping_dependent() might have released
2861                          * the runqueue, so break out if we got new
2862                          * tasks meanwhile:
2863                          */
2864                         if (!rq->nr_running)
2865                                 goto switch_tasks;
2866                 }
2867         } else {
2868                 if (dependent_sleeper(cpu, rq)) {
2869                         next = rq->idle;
2870                         goto switch_tasks;
2871                 }
2872                 /*
2873                  * dependent_sleeper() releases and reacquires the runqueue
2874                  * lock, hence go into the idle loop if the rq went
2875                  * empty meanwhile:
2876                  */
2877                 if (unlikely(!rq->nr_running))
2878                         goto go_idle;
2879         }
2880
2881         array = rq->active;
2882         if (unlikely(!array->nr_active)) {
2883                 /*
2884                  * Switch the active and expired arrays.
2885                  */
2886                 schedstat_inc(rq, sched_switch);
2887                 rq->active = rq->expired;
2888                 rq->expired = array;
2889                 array = rq->active;
2890                 rq->expired_timestamp = 0;
2891                 rq->best_expired_prio = MAX_PRIO;
2892         }
2893
2894         idx = sched_find_first_bit(array->bitmap);
2895         queue = array->queue + idx;
2896         next = list_entry(queue->next, task_t, run_list);
2897
2898         if (!rt_task(next) && next->activated > 0) {
2899                 unsigned long long delta = now - next->timestamp;
2900                 if (unlikely((long long)(now - next->timestamp) < 0))
2901                         delta = 0;
2902
2903                 if (next->activated == 1)
2904                         delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2905
2906                 array = next->array;
2907                 dequeue_task(next, array);
2908                 recalc_task_prio(next, next->timestamp + delta);
2909                 enqueue_task(next, array);
2910         }
2911         next->activated = 0;
2912 switch_tasks:
2913         if (next == rq->idle)
2914                 schedstat_inc(rq, sched_goidle);
2915         prefetch(next);
2916         clear_tsk_need_resched(prev);
2917         rcu_qsctr_inc(task_cpu(prev));
2918
2919         update_cpu_clock(prev, rq, now);
2920
2921         prev->sleep_avg -= run_time;
2922         if ((long)prev->sleep_avg <= 0)
2923                 prev->sleep_avg = 0;
2924         prev->timestamp = prev->last_ran = now;
2925
2926         sched_info_switch(prev, next);
2927         if (likely(prev != next)) {
2928                 next->timestamp = now;
2929                 rq->nr_switches++;
2930                 rq->curr = next;
2931                 ++*switch_count;
2932
2933                 prepare_task_switch(rq, next);
2934                 prev = context_switch(rq, prev, next);
2935                 barrier();
2936                 /*
2937                  * this_rq must be evaluated again because prev may have moved
2938                  * CPUs since it called schedule(), thus the 'rq' on its stack
2939                  * frame will be invalid.
2940                  */
2941                 finish_task_switch(this_rq(), prev);
2942         } else
2943                 spin_unlock_irq(&rq->lock);
2944
2945         prev = current;
2946         if (unlikely(reacquire_kernel_lock(prev) < 0))
2947                 goto need_resched_nonpreemptible;
2948         preempt_enable_no_resched();
2949         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2950                 goto need_resched;
2951 }
2952
2953 EXPORT_SYMBOL(schedule);
2954
2955 #ifdef CONFIG_PREEMPT
2956 /*
2957  * this is is the entry point to schedule() from in-kernel preemption
2958  * off of preempt_enable.  Kernel preemptions off return from interrupt
2959  * occur there and call schedule directly.
2960  */
2961 asmlinkage void __sched preempt_schedule(void)
2962 {
2963         struct thread_info *ti = current_thread_info();
2964 #ifdef CONFIG_PREEMPT_BKL
2965         struct task_struct *task = current;
2966         int saved_lock_depth;
2967 #endif
2968         /*
2969          * If there is a non-zero preempt_count or interrupts are disabled,
2970          * we do not want to preempt the current task.  Just return..
2971          */
2972         if (unlikely(ti->preempt_count || irqs_disabled()))
2973                 return;
2974
2975 need_resched:
2976         add_preempt_count(PREEMPT_ACTIVE);
2977         /*
2978          * We keep the big kernel semaphore locked, but we
2979          * clear ->lock_depth so that schedule() doesnt
2980          * auto-release the semaphore:
2981          */
2982 #ifdef CONFIG_PREEMPT_BKL
2983         saved_lock_depth = task->lock_depth;
2984         task->lock_depth = -1;
2985 #endif
2986         schedule();
2987 #ifdef CONFIG_PREEMPT_BKL
2988         task->lock_depth = saved_lock_depth;
2989 #endif
2990         sub_preempt_count(PREEMPT_ACTIVE);
2991
2992         /* we could miss a preemption opportunity between schedule and now */
2993         barrier();
2994         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2995                 goto need_resched;
2996 }
2997
2998 EXPORT_SYMBOL(preempt_schedule);
2999
3000 /*
3001  * this is is the entry point to schedule() from kernel preemption
3002  * off of irq context.
3003  * Note, that this is called and return with irqs disabled. This will
3004  * protect us against recursive calling from irq.
3005  */
3006 asmlinkage void __sched preempt_schedule_irq(void)
3007 {
3008         struct thread_info *ti = current_thread_info();
3009 #ifdef CONFIG_PREEMPT_BKL
3010         struct task_struct *task = current;
3011         int saved_lock_depth;
3012 #endif
3013         /* Catch callers which need to be fixed*/
3014         BUG_ON(ti->preempt_count || !irqs_disabled());
3015
3016 need_resched:
3017         add_preempt_count(PREEMPT_ACTIVE);
3018         /*
3019          * We keep the big kernel semaphore locked, but we
3020          * clear ->lock_depth so that schedule() doesnt
3021          * auto-release the semaphore:
3022          */
3023 #ifdef CONFIG_PREEMPT_BKL
3024         saved_lock_depth = task->lock_depth;
3025         task->lock_depth = -1;
3026 #endif
3027         local_irq_enable();
3028         schedule();
3029         local_irq_disable();
3030 #ifdef CONFIG_PREEMPT_BKL
3031         task->lock_depth = saved_lock_depth;
3032 #endif
3033         sub_preempt_count(PREEMPT_ACTIVE);
3034
3035         /* we could miss a preemption opportunity between schedule and now */
3036         barrier();
3037         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3038                 goto need_resched;
3039 }
3040
3041 #endif /* CONFIG_PREEMPT */
3042
3043 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key)
3044 {
3045         task_t *p = curr->private;
3046         return try_to_wake_up(p, mode, sync);
3047 }
3048
3049 EXPORT_SYMBOL(default_wake_function);
3050
3051 /*
3052  * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
3053  * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
3054  * number) then we wake all the non-exclusive tasks and one exclusive task.
3055  *
3056  * There are circumstances in which we can try to wake a task which has already
3057  * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
3058  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3059  */
3060 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3061                              int nr_exclusive, int sync, void *key)
3062 {
3063         struct list_head *tmp, *next;
3064
3065         list_for_each_safe(tmp, next, &q->task_list) {
3066                 wait_queue_t *curr;
3067                 unsigned flags;
3068                 curr = list_entry(tmp, wait_queue_t, task_list);
3069                 flags = curr->flags;
3070                 if (curr->func(curr, mode, sync, key) &&
3071                     (flags & WQ_FLAG_EXCLUSIVE) &&
3072                     !--nr_exclusive)
3073                         break;
3074         }
3075 }
3076
3077 /**
3078  * __wake_up - wake up threads blocked on a waitqueue.
3079  * @q: the waitqueue
3080  * @mode: which threads
3081  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3082  * @key: is directly passed to the wakeup function
3083  */
3084 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3085                                 int nr_exclusive, void *key)
3086 {
3087         unsigned long flags;
3088
3089         spin_lock_irqsave(&q->lock, flags);
3090         __wake_up_common(q, mode, nr_exclusive, 0, key);
3091         spin_unlock_irqrestore(&q->lock, flags);
3092 }
3093
3094 EXPORT_SYMBOL(__wake_up);
3095
3096 /*
3097  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3098  */
3099 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3100 {
3101         __wake_up_common(q, mode, 1, 0, NULL);
3102 }
3103
3104 /**
3105  * __wake_up_sync - wake up threads blocked on a waitqueue.
3106  * @q: the waitqueue
3107  * @mode: which threads
3108  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3109  *
3110  * The sync wakeup differs that the waker knows that it will schedule
3111  * away soon, so while the target thread will be woken up, it will not
3112  * be migrated to another CPU - ie. the two threads are 'synchronized'
3113  * with each other. This can prevent needless bouncing between CPUs.
3114  *
3115  * On UP it can prevent extra preemption.
3116  */
3117 void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3118 {
3119         unsigned long flags;
3120         int sync = 1;
3121
3122         if (unlikely(!q))
3123                 return;
3124
3125         if (unlikely(!nr_exclusive))
3126                 sync = 0;
3127
3128         spin_lock_irqsave(&q->lock, flags);
3129         __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3130         spin_unlock_irqrestore(&q->lock, flags);
3131 }
3132 EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
3133
3134 void fastcall complete(struct completion *x)
3135 {
3136         unsigned long flags;
3137
3138         spin_lock_irqsave(&x->wait.lock, flags);
3139         x->done++;
3140         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3141                          1, 0, NULL);
3142         spin_unlock_irqrestore(&x->wait.lock, flags);
3143 }
3144 EXPORT_SYMBOL(complete);
3145
3146 void fastcall complete_all(struct completion *x)
3147 {
3148         unsigned long flags;
3149
3150         spin_lock_irqsave(&x->wait.lock, flags);
3151         x->done += UINT_MAX/2;
3152         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3153                          0, 0, NULL);
3154         spin_unlock_irqrestore(&x->wait.lock, flags);
3155 }
3156 EXPORT_SYMBOL(complete_all);
3157
3158 void fastcall __sched wait_for_completion(struct completion *x)
3159 {
3160         might_sleep();
3161         spin_lock_irq(&x->wait.lock);
3162         if (!x->done) {
3163                 DECLARE_WAITQUEUE(wait, current);
3164
3165                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3166                 __add_wait_queue_tail(&x->wait, &wait);
3167                 do {
3168                         __set_current_state(TASK_UNINTERRUPTIBLE);
3169                         spin_unlock_irq(&x->wait.lock);
3170                         schedule();
3171                         spin_lock_irq(&x->wait.lock);
3172                 } while (!x->done);
3173                 __remove_wait_queue(&x->wait, &wait);
3174         }
3175         x->done--;
3176         spin_unlock_irq(&x->wait.lock);
3177 }
3178 EXPORT_SYMBOL(wait_for_completion);
3179
3180 unsigned long fastcall __sched
3181 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3182 {
3183         might_sleep();
3184
3185         spin_lock_irq(&x->wait.lock);
3186         if (!x->done) {
3187                 DECLARE_WAITQUEUE(wait, current);
3188
3189                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3190                 __add_wait_queue_tail(&x->wait, &wait);
3191                 do {
3192                         __set_current_state(TASK_UNINTERRUPTIBLE);
3193                         spin_unlock_irq(&x->wait.lock);
3194                         timeout = schedule_timeout(timeout);
3195                         spin_lock_irq(&x->wait.lock);
3196                         if (!timeout) {
3197                                 __remove_wait_queue(&x->wait, &wait);
3198                                 goto out;
3199                         }
3200                 } while (!x->done);
3201                 __remove_wait_queue(&x->wait, &wait);
3202         }
3203         x->done--;
3204 out:
3205         spin_unlock_irq(&x->wait.lock);
3206         return timeout;
3207 }
3208 EXPORT_SYMBOL(wait_for_completion_timeout);
3209
3210 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3211 {
3212         int ret = 0;
3213
3214         might_sleep();
3215
3216         spin_lock_irq(&x->wait.lock);
3217         if (!x->done) {
3218                 DECLARE_WAITQUEUE(wait, current);
3219
3220                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3221                 __add_wait_queue_tail(&x->wait, &wait);
3222                 do {
3223                         if (signal_pending(current)) {
3224                                 ret = -ERESTARTSYS;
3225                                 __remove_wait_queue(&x->wait, &wait);
3226                                 goto out;
3227                         }
3228                         __set_current_state(TASK_INTERRUPTIBLE);
3229                         spin_unlock_irq(&x->wait.lock);
3230                         schedule();
3231                         spin_lock_irq(&x->wait.lock);
3232                 } while (!x->done);
3233                 __remove_wait_queue(&x->wait, &wait);
3234         }
3235         x->done--;
3236 out:
3237         spin_unlock_irq(&x->wait.lock);
3238
3239         return ret;
3240 }
3241 EXPORT_SYMBOL(wait_for_completion_interruptible);
3242
3243 unsigned long fastcall __sched
3244 wait_for_completion_interruptible_timeout(struct completion *x,
3245                                           unsigned long timeout)
3246 {
3247         might_sleep();
3248
3249         spin_lock_irq(&x->wait.lock);
3250         if (!x->done) {
3251                 DECLARE_WAITQUEUE(wait, current);
3252
3253                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3254                 __add_wait_queue_tail(&x->wait, &wait);
3255                 do {
3256                         if (signal_pending(current)) {
3257                                 timeout = -ERESTARTSYS;
3258                                 __remove_wait_queue(&x->wait, &wait);
3259                                 goto out;
3260                         }
3261                         __set_current_state(TASK_INTERRUPTIBLE);
3262                         spin_unlock_irq(&x->wait.lock);
3263                         timeout = schedule_timeout(timeout);
3264                         spin_lock_irq(&x->wait.lock);
3265                         if (!timeout) {
3266                                 __remove_wait_queue(&x->wait, &wait);
3267                                 goto out;
3268                         }
3269                 } while (!x->done);
3270                 __remove_wait_queue(&x->wait, &wait);
3271         }
3272         x->done--;
3273 out:
3274         spin_unlock_irq(&x->wait.lock);
3275         return timeout;
3276 }
3277 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3278
3279
3280 #define SLEEP_ON_VAR                                    \
3281         unsigned long flags;                            \
3282         wait_queue_t wait;                              \
3283         init_waitqueue_entry(&wait, current);
3284
3285 #define SLEEP_ON_HEAD                                   \
3286         spin_lock_irqsave(&q->lock,flags);              \
3287         __add_wait_queue(q, &wait);                     \
3288         spin_unlock(&q->lock);
3289
3290 #define SLEEP_ON_TAIL                                   \
3291         spin_lock_irq(&q->lock);                        \
3292         __remove_wait_queue(q, &wait);                  \
3293         spin_unlock_irqrestore(&q->lock, flags);
3294
3295 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3296 {
3297         SLEEP_ON_VAR
3298
3299         current->state = TASK_INTERRUPTIBLE;
3300
3301         SLEEP_ON_HEAD
3302         schedule();
3303         SLEEP_ON_TAIL
3304 }
3305
3306 EXPORT_SYMBOL(interruptible_sleep_on);
3307
3308 long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3309 {
3310         SLEEP_ON_VAR
3311
3312         current->state = TASK_INTERRUPTIBLE;
3313
3314         SLEEP_ON_HEAD
3315         timeout = schedule_timeout(timeout);
3316         SLEEP_ON_TAIL
3317
3318         return timeout;
3319 }
3320
3321 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3322
3323 void fastcall __sched sleep_on(wait_queue_head_t *q)
3324 {
3325         SLEEP_ON_VAR
3326
3327         current->state = TASK_UNINTERRUPTIBLE;
3328
3329         SLEEP_ON_HEAD
3330         schedule();
3331         SLEEP_ON_TAIL
3332 }
3333
3334 EXPORT_SYMBOL(sleep_on);
3335
3336 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3337 {
3338         SLEEP_ON_VAR
3339
3340         current->state = TASK_UNINTERRUPTIBLE;
3341
3342         SLEEP_ON_HEAD
3343         timeout = schedule_timeout(timeout);
3344         SLEEP_ON_TAIL
3345
3346         return timeout;
3347 }
3348
3349 EXPORT_SYMBOL(sleep_on_timeout);
3350
3351 void set_user_nice(task_t *p, long nice)
3352 {
3353         unsigned long flags;
3354         prio_array_t *array;
3355         runqueue_t *rq;
3356         int old_prio, new_prio, delta;
3357
3358         if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3359                 return;
3360         /*
3361          * We have to be careful, if called from sys_setpriority(),
3362          * the task might be in the middle of scheduling on another CPU.
3363          */
3364         rq = task_rq_lock(p, &flags);
3365         /*
3366          * The RT priorities are set via sched_setscheduler(), but we still
3367          * allow the 'normal' nice value to be set - but as expected
3368          * it wont have any effect on scheduling until the task is
3369          * not SCHED_NORMAL:
3370          */
3371         if (rt_task(p)) {
3372                 p->static_prio = NICE_TO_PRIO(nice);
3373                 goto out_unlock;
3374         }
3375         array = p->array;
3376         if (array)
3377                 dequeue_task(p, array);
3378
3379         old_prio = p->prio;
3380         new_prio = NICE_TO_PRIO(nice);
3381         delta = new_prio - old_prio;
3382         p->static_prio = NICE_TO_PRIO(nice);
3383         p->prio += delta;
3384
3385         if (array) {
3386                 enqueue_task(p, array);
3387                 /*
3388                  * If the task increased its priority or is running and
3389                  * lowered its priority, then reschedule its CPU:
3390                  */
3391                 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3392                         resched_task(rq->curr);
3393         }
3394 out_unlock:
3395         task_rq_unlock(rq, &flags);
3396 }
3397
3398 EXPORT_SYMBOL(set_user_nice);
3399
3400 /*
3401  * can_nice - check if a task can reduce its nice value
3402  * @p: task
3403  * @nice: nice value
3404  */
3405 int can_nice(const task_t *p, const int nice)
3406 {
3407         /* convert nice value [19,-20] to rlimit style value [0,39] */
3408         int nice_rlim = 19 - nice;
3409         return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3410                 capable(CAP_SYS_NICE));
3411 }
3412
3413 #ifdef __ARCH_WANT_SYS_NICE
3414
3415 /*
3416  * sys_nice - change the priority of the current process.
3417  * @increment: priority increment
3418  *
3419  * sys_setpriority is a more generic, but much slower function that
3420  * does similar things.
3421  */
3422 asmlinkage long sys_nice(int increment)
3423 {
3424         int retval;
3425         long nice;
3426
3427         /*
3428          * Setpriority might change our priority at the same moment.
3429          * We don't have to worry. Conceptually one call occurs first
3430          * and we have a single winner.
3431          */
3432         if (increment < -40)
3433                 increment = -40;
3434         if (increment > 40)
3435                 increment = 40;
3436
3437         nice = PRIO_TO_NICE(current->static_prio) + increment;
3438         if (nice < -20)
3439                 nice = -20;
3440         if (nice > 19)
3441                 nice = 19;
3442
3443         if (increment < 0 && !can_nice(current, nice))
3444                 return -EPERM;
3445
3446         retval = security_task_setnice(current, nice);
3447         if (retval)
3448                 return retval;
3449
3450         set_user_nice(current, nice);
3451         return 0;
3452 }
3453
3454 #endif
3455
3456 /**
3457  * task_prio - return the priority value of a given task.
3458  * @p: the task in question.
3459  *
3460  * This is the priority value as seen by users in /proc.
3461  * RT tasks are offset by -200. Normal tasks are centered
3462  * around 0, value goes from -16 to +15.
3463  */
3464 int task_prio(const task_t *p)
3465 {
3466         return p->prio - MAX_RT_PRIO;
3467 }
3468
3469 /**
3470  * task_nice - return the nice value of a given task.
3471  * @p: the task in question.
3472  */
3473 int task_nice(const task_t *p)
3474 {
3475         return TASK_NICE(p);
3476 }
3477
3478 /*
3479  * The only users of task_nice are binfmt_elf and binfmt_elf32.
3480  * binfmt_elf is no longer modular, but binfmt_elf32 still is.
3481  * Therefore, task_nice is needed if there is a compat_mode.
3482  */
3483 #ifdef CONFIG_COMPAT
3484 EXPORT_SYMBOL_GPL(task_nice);
3485 #endif
3486
3487 /**
3488  * idle_cpu - is a given cpu idle currently?
3489  * @cpu: the processor in question.
3490  */
3491 int idle_cpu(int cpu)
3492 {
3493         return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3494 }
3495
3496 EXPORT_SYMBOL_GPL(idle_cpu);
3497
3498 /**
3499  * idle_task - return the idle task for a given cpu.
3500  * @cpu: the processor in question.
3501  */
3502 task_t *idle_task(int cpu)
3503 {
3504         return cpu_rq(cpu)->idle;
3505 }
3506
3507 /**
3508  * find_process_by_pid - find a process with a matching PID value.
3509  * @pid: the pid in question.
3510  */
3511 static inline task_t *find_process_by_pid(pid_t pid)
3512 {
3513         return pid ? find_task_by_pid(pid) : current;
3514 }
3515
3516 /* Actually do priority change: must hold rq lock. */
3517 static void __setscheduler(struct task_struct *p, int policy, int prio)
3518 {
3519         BUG_ON(p->array);
3520         p->policy = policy;
3521         p->rt_priority = prio;
3522         if (policy != SCHED_NORMAL)
3523                 p->prio = MAX_USER_RT_PRIO-1 - p->rt_priority;
3524         else
3525                 p->prio = p->static_prio;
3526 }
3527
3528 /**
3529  * sched_setscheduler - change the scheduling policy and/or RT priority of
3530  * a thread.
3531  * @p: the task in question.
3532  * @policy: new policy.
3533  * @param: structure containing the new RT priority.
3534  */
3535 int sched_setscheduler(struct task_struct *p, int policy, struct sched_param *param)
3536 {
3537         int retval;
3538         int oldprio, oldpolicy = -1;
3539         prio_array_t *array;
3540         unsigned long flags;
3541         runqueue_t *rq;
3542
3543 recheck:
3544         /* double check policy once rq lock held */
3545         if (policy < 0)
3546                 policy = oldpolicy = p->policy;
3547         else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3548                                 policy != SCHED_NORMAL)
3549                         return -EINVAL;
3550         /*
3551          * Valid priorities for SCHED_FIFO and SCHED_RR are
3552          * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3553          */
3554         if (param->sched_priority < 0 ||
3555             param->sched_priority > MAX_USER_RT_PRIO-1)
3556                 return -EINVAL;
3557         if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3558                 return -EINVAL;
3559
3560         if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
3561             param->sched_priority > p->signal->rlim[RLIMIT_RTPRIO].rlim_cur &&
3562             !capable(CAP_SYS_NICE))
3563                 return -EPERM;
3564         if ((current->euid != p->euid) && (current->euid != p->uid) &&
3565             !capable(CAP_SYS_NICE))
3566                 return -EPERM;
3567
3568         retval = security_task_setscheduler(p, policy, param);
3569         if (retval)
3570                 return retval;
3571         /*
3572          * To be able to change p->policy safely, the apropriate
3573          * runqueue lock must be held.
3574          */
3575         rq = task_rq_lock(p, &flags);
3576         /* recheck policy now with rq lock held */
3577         if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3578                 policy = oldpolicy = -1;
3579                 task_rq_unlock(rq, &flags);
3580                 goto recheck;
3581         }
3582         array = p->array;
3583         if (array)
3584                 deactivate_task(p, rq);
3585         oldprio = p->prio;
3586         __setscheduler(p, policy, param->sched_priority);
3587         if (array) {
3588                 __activate_task(p, rq);
3589                 /*
3590                  * Reschedule if we are currently running on this runqueue and
3591                  * our priority decreased, or if we are not currently running on
3592                  * this runqueue and our priority is higher than the current's
3593                  */
3594                 if (task_running(rq, p)) {
3595                         if (p->prio > oldprio)
3596                                 resched_task(rq->curr);
3597                 } else if (TASK_PREEMPTS_CURR(p, rq))
3598                         resched_task(rq->curr);
3599         }
3600         task_rq_unlock(rq, &flags);
3601         return 0;
3602 }
3603 EXPORT_SYMBOL_GPL(sched_setscheduler);
3604
3605 static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3606 {
3607         int retval;
3608         struct sched_param lparam;
3609         struct task_struct *p;
3610
3611         if (!param || pid < 0)
3612                 return -EINVAL;
3613         if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3614                 return -EFAULT;
3615         read_lock_irq(&tasklist_lock);
3616         p = find_process_by_pid(pid);
3617         if (!p) {
3618                 read_unlock_irq(&tasklist_lock);
3619                 return -ESRCH;
3620         }
3621         retval = sched_setscheduler(p, policy, &lparam);
3622         read_unlock_irq(&tasklist_lock);
3623         return retval;
3624 }
3625
3626 /**
3627  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3628  * @pid: the pid in question.
3629  * @policy: new policy.
3630  * @param: structure containing the new RT priority.
3631  */
3632 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3633                                        struct sched_param __user *param)
3634 {
3635         return do_sched_setscheduler(pid, policy, param);
3636 }
3637
3638 /**
3639  * sys_sched_setparam - set/change the RT priority of a thread
3640  * @pid: the pid in question.
3641  * @param: structure containing the new RT priority.
3642  */
3643 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3644 {
3645         return do_sched_setscheduler(pid, -1, param);
3646 }
3647
3648 /**
3649  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3650  * @pid: the pid in question.
3651  */
3652 asmlinkage long sys_sched_getscheduler(pid_t pid)
3653 {
3654         int retval = -EINVAL;
3655         task_t *p;
3656
3657         if (pid < 0)
3658                 goto out_nounlock;
3659
3660         retval = -ESRCH;
3661         read_lock(&tasklist_lock);
3662         p = find_process_by_pid(pid);
3663         if (p) {
3664                 retval = security_task_getscheduler(p);
3665                 if (!retval)
3666                         retval = p->policy;
3667         }
3668         read_unlock(&tasklist_lock);
3669
3670 out_nounlock:
3671         return retval;
3672 }
3673
3674 /**
3675  * sys_sched_getscheduler - get the RT priority of a thread
3676  * @pid: the pid in question.
3677  * @param: structure containing the RT priority.
3678  */
3679 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3680 {
3681         struct sched_param lp;
3682         int retval = -EINVAL;
3683         task_t *p;
3684
3685         if (!param || pid < 0)
3686                 goto out_nounlock;
3687
3688         read_lock(&tasklist_lock);
3689         p = find_process_by_pid(pid);
3690         retval = -ESRCH;
3691         if (!p)
3692                 goto out_unlock;
3693
3694         retval = security_task_getscheduler(p);
3695         if (retval)
3696                 goto out_unlock;
3697
3698         lp.sched_priority = p->rt_priority;
3699         read_unlock(&tasklist_lock);
3700
3701         /*
3702          * This one might sleep, we cannot do it with a spinlock held ...
3703          */
3704         retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3705
3706 out_nounlock:
3707         return retval;
3708
3709 out_unlock:
3710         read_unlock(&tasklist_lock);
3711         return retval;
3712 }
3713
3714 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3715 {
3716         task_t *p;
3717         int retval;
3718         cpumask_t cpus_allowed;
3719
3720         lock_cpu_hotplug();
3721         read_lock(&tasklist_lock);
3722
3723         p = find_process_by_pid(pid);
3724         if (!p) {
3725                 read_unlock(&tasklist_lock);
3726                 unlock_cpu_hotplug();
3727                 return -ESRCH;
3728         }
3729
3730         /*
3731          * It is not safe to call set_cpus_allowed with the
3732          * tasklist_lock held.  We will bump the task_struct's
3733          * usage count and then drop tasklist_lock.
3734          */
3735         get_task_struct(p);
3736         read_unlock(&tasklist_lock);
3737
3738         retval = -EPERM;
3739         if ((current->euid != p->euid) && (current->euid != p->uid) &&
3740                         !capable(CAP_SYS_NICE))
3741                 goto out_unlock;
3742
3743         cpus_allowed = cpuset_cpus_allowed(p);
3744         cpus_and(new_mask, new_mask, cpus_allowed);
3745         retval = set_cpus_allowed(p, new_mask);
3746
3747 out_unlock:
3748         put_task_struct(p);
3749         unlock_cpu_hotplug();
3750         return retval;
3751 }
3752
3753 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3754                              cpumask_t *new_mask)
3755 {
3756         if (len < sizeof(cpumask_t)) {
3757                 memset(new_mask, 0, sizeof(cpumask_t));
3758         } else if (len > sizeof(cpumask_t)) {
3759                 len = sizeof(cpumask_t);
3760         }
3761         return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3762 }
3763
3764 /**
3765  * sys_sched_setaffinity - set the cpu affinity of a process
3766  * @pid: pid of the process
3767  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3768  * @user_mask_ptr: user-space pointer to the new cpu mask
3769  */
3770 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3771                                       unsigned long __user *user_mask_ptr)
3772 {
3773         cpumask_t new_mask;
3774         int retval;
3775
3776         retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3777         if (retval)
3778                 return retval;
3779
3780         return sched_setaffinity(pid, new_mask);
3781 }
3782
3783 /*
3784  * Represents all cpu's present in the system
3785  * In systems capable of hotplug, this map could dynamically grow
3786  * as new cpu's are detected in the system via any platform specific
3787  * method, such as ACPI for e.g.
3788  */
3789
3790 cpumask_t cpu_present_map;
3791 EXPORT_SYMBOL(cpu_present_map);
3792
3793 #ifndef CONFIG_SMP
3794 cpumask_t cpu_online_map = CPU_MASK_ALL;
3795 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3796 #endif
3797
3798 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3799 {
3800         int retval;
3801         task_t *p;
3802
3803         lock_cpu_hotplug();
3804         read_lock(&tasklist_lock);
3805
3806         retval = -ESRCH;
3807         p = find_process_by_pid(pid);
3808         if (!p)
3809                 goto out_unlock;
3810
3811         retval = 0;
3812         cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3813
3814 out_unlock:
3815         read_unlock(&tasklist_lock);
3816         unlock_cpu_hotplug();
3817         if (retval)
3818                 return retval;
3819
3820         return 0;
3821 }
3822
3823 /**
3824  * sys_sched_getaffinity - get the cpu affinity of a process
3825  * @pid: pid of the process
3826  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3827  * @user_mask_ptr: user-space pointer to hold the current cpu mask
3828  */
3829 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3830                                       unsigned long __user *user_mask_ptr)
3831 {
3832         int ret;
3833         cpumask_t mask;
3834
3835         if (len < sizeof(cpumask_t))
3836                 return -EINVAL;
3837
3838         ret = sched_getaffinity(pid, &mask);
3839         if (ret < 0)
3840                 return ret;
3841
3842         if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3843                 return -EFAULT;
3844
3845         return sizeof(cpumask_t);
3846 }
3847
3848 /**
3849  * sys_sched_yield - yield the current processor to other threads.
3850  *
3851  * this function yields the current CPU by moving the calling thread
3852  * to the expired array. If there are no other threads running on this
3853  * CPU then this function will return.
3854  */
3855 asmlinkage long sys_sched_yield(void)
3856 {
3857         runqueue_t *rq = this_rq_lock();
3858         prio_array_t *array = current->array;
3859         prio_array_t *target = rq->expired;
3860
3861         schedstat_inc(rq, yld_cnt);
3862         /*
3863          * We implement yielding by moving the task into the expired
3864          * queue.
3865          *
3866          * (special rule: RT tasks will just roundrobin in the active
3867          *  array.)
3868          */
3869         if (rt_task(current))
3870                 target = rq->active;
3871
3872         if (current->array->nr_active == 1) {
3873                 schedstat_inc(rq, yld_act_empty);
3874                 if (!rq->expired->nr_active)
3875                         schedstat_inc(rq, yld_both_empty);
3876         } else if (!rq->expired->nr_active)
3877                 schedstat_inc(rq, yld_exp_empty);
3878
3879         if (array != target) {
3880                 dequeue_task(current, array);
3881                 enqueue_task(current, target);
3882         } else
3883                 /*
3884                  * requeue_task is cheaper so perform that if possible.
3885                  */
3886                 requeue_task(current, array);
3887
3888         /*
3889          * Since we are going to call schedule() anyway, there's
3890          * no need to preempt or enable interrupts:
3891          */
3892         __release(rq->lock);
3893         _raw_spin_unlock(&rq->lock);
3894         preempt_enable_no_resched();
3895
3896         schedule();
3897
3898         return 0;
3899 }
3900
3901 static inline void __cond_resched(void)
3902 {
3903         do {
3904                 add_preempt_count(PREEMPT_ACTIVE);
3905                 schedule();
3906                 sub_preempt_count(PREEMPT_ACTIVE);
3907         } while (need_resched());
3908 }
3909
3910 int __sched cond_resched(void)
3911 {
3912         if (need_resched()) {
3913                 __cond_resched();
3914                 return 1;
3915         }
3916         return 0;
3917 }
3918
3919 EXPORT_SYMBOL(cond_resched);
3920
3921 /*
3922  * cond_resched_lock() - if a reschedule is pending, drop the given lock,
3923  * call schedule, and on return reacquire the lock.
3924  *
3925  * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
3926  * operations here to prevent schedule() from being called twice (once via
3927  * spin_unlock(), once by hand).
3928  */
3929 int cond_resched_lock(spinlock_t * lock)
3930 {
3931         int ret = 0;
3932
3933         if (need_lockbreak(lock)) {
3934                 spin_unlock(lock);
3935                 cpu_relax();
3936                 ret = 1;
3937                 spin_lock(lock);
3938         }
3939         if (need_resched()) {
3940                 _raw_spin_unlock(lock);
3941                 preempt_enable_no_resched();
3942                 __cond_resched();
3943                 ret = 1;
3944                 spin_lock(lock);
3945         }
3946         return ret;
3947 }
3948
3949 EXPORT_SYMBOL(cond_resched_lock);
3950
3951 int __sched cond_resched_softirq(void)
3952 {
3953         BUG_ON(!in_softirq());
3954
3955         if (need_resched()) {
3956                 __local_bh_enable();
3957                 __cond_resched();
3958                 local_bh_disable();
3959                 return 1;
3960         }
3961         return 0;
3962 }
3963
3964 EXPORT_SYMBOL(cond_resched_softirq);
3965
3966
3967 /**
3968  * yield - yield the current processor to other threads.
3969  *
3970  * this is a shortcut for kernel-space yielding - it marks the
3971  * thread runnable and calls sys_sched_yield().
3972  */
3973 void __sched yield(void)
3974 {
3975         set_current_state(TASK_RUNNING);
3976         sys_sched_yield();
3977 }
3978
3979 EXPORT_SYMBOL(yield);
3980
3981 /*
3982  * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
3983  * that process accounting knows that this is a task in IO wait state.
3984  *
3985  * But don't do that if it is a deliberate, throttling IO wait (this task
3986  * has set its backing_dev_info: the queue against which it should throttle)
3987  */
3988 void __sched io_schedule(void)
3989 {
3990         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
3991
3992         atomic_inc(&rq->nr_iowait);
3993         schedule();
3994         atomic_dec(&rq->nr_iowait);
3995 }
3996
3997 EXPORT_SYMBOL(io_schedule);
3998
3999 long __sched io_schedule_timeout(long timeout)
4000 {
4001         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4002         long ret;
4003
4004         atomic_inc(&rq->nr_iowait);
4005         ret = schedule_timeout(timeout);
4006         atomic_dec(&rq->nr_iowait);
4007         return ret;
4008 }
4009
4010 /**
4011  * sys_sched_get_priority_max - return maximum RT priority.
4012  * @policy: scheduling class.
4013  *
4014  * this syscall returns the maximum rt_priority that can be used
4015  * by a given scheduling class.
4016  */
4017 asmlinkage long sys_sched_get_priority_max(int policy)
4018 {
4019         int ret = -EINVAL;
4020
4021         switch (policy) {
4022         case SCHED_FIFO:
4023         case SCHED_RR:
4024                 ret = MAX_USER_RT_PRIO-1;
4025                 break;
4026         case SCHED_NORMAL:
4027                 ret = 0;
4028                 break;
4029         }
4030         return ret;
4031 }
4032
4033 /**
4034  * sys_sched_get_priority_min - return minimum RT priority.
4035  * @policy: scheduling class.
4036  *
4037  * this syscall returns the minimum rt_priority that can be used
4038  * by a given scheduling class.
4039  */
4040 asmlinkage long sys_sched_get_priority_min(int policy)
4041 {
4042         int ret = -EINVAL;
4043
4044         switch (policy) {
4045         case SCHED_FIFO:
4046         case SCHED_RR:
4047                 ret = 1;
4048                 break;
4049         case SCHED_NORMAL:
4050                 ret = 0;
4051         }
4052         return ret;
4053 }
4054
4055 /**
4056  * sys_sched_rr_get_interval - return the default timeslice of a process.
4057  * @pid: pid of the process.
4058  * @interval: userspace pointer to the timeslice value.
4059  *
4060  * this syscall writes the default timeslice value of a given process
4061  * into the user-space timespec buffer. A value of '0' means infinity.
4062  */
4063 asmlinkage
4064 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4065 {
4066         int retval = -EINVAL;
4067         struct timespec t;
4068         task_t *p;
4069
4070         if (pid < 0)
4071                 goto out_nounlock;
4072
4073         retval = -ESRCH;
4074         read_lock(&tasklist_lock);
4075         p = find_process_by_pid(pid);
4076         if (!p)
4077                 goto out_unlock;
4078
4079         retval = security_task_getscheduler(p);
4080         if (retval)
4081                 goto out_unlock;
4082
4083         jiffies_to_timespec(p->policy & SCHED_FIFO ?
4084                                 0 : task_timeslice(p), &t);
4085         read_unlock(&tasklist_lock);
4086         retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4087 out_nounlock:
4088         return retval;
4089 out_unlock:
4090         read_unlock(&tasklist_lock);
4091         return retval;
4092 }
4093
4094 static inline struct task_struct *eldest_child(struct task_struct *p)
4095 {
4096         if (list_empty(&p->children)) return NULL;
4097         return list_entry(p->children.next,struct task_struct,sibling);
4098 }
4099
4100 static inline struct task_struct *older_sibling(struct task_struct *p)
4101 {
4102         if (p->sibling.prev==&p->parent->children) return NULL;
4103         return list_entry(p->sibling.prev,struct task_struct,sibling);
4104 }
4105
4106 static inline struct task_struct *younger_sibling(struct task_struct *p)
4107 {
4108         if (p->sibling.next==&p->parent->children) return NULL;
4109         return list_entry(p->sibling.next,struct task_struct,sibling);
4110 }
4111
4112 static void show_task(task_t * p)
4113 {
4114         task_t *relative;
4115         unsigned state;
4116         unsigned long free = 0;
4117         static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4118
4119         printk("%-13.13s ", p->comm);
4120         state = p->state ? __ffs(p->state) + 1 : 0;
4121         if (state < ARRAY_SIZE(stat_nam))
4122                 printk(stat_nam[state]);
4123         else
4124                 printk("?");
4125 #if (BITS_PER_LONG == 32)
4126         if (state == TASK_RUNNING)
4127                 printk(" running ");
4128         else
4129                 printk(" %08lX ", thread_saved_pc(p));
4130 #else
4131         if (state == TASK_RUNNING)
4132                 printk("  running task   ");
4133         else
4134                 printk(" %016lx ", thread_saved_pc(p));
4135 #endif
4136 #ifdef CONFIG_DEBUG_STACK_USAGE
4137         {
4138                 unsigned long * n = (unsigned long *) (p->thread_info+1);
4139                 while (!*n)
4140                         n++;
4141                 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4142         }
4143 #endif
4144         printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4145         if ((relative = eldest_child(p)))
4146                 printk("%5d ", relative->pid);
4147         else
4148                 printk("      ");
4149         if ((relative = younger_sibling(p)))
4150                 printk("%7d", relative->pid);
4151         else
4152                 printk("       ");
4153         if ((relative = older_sibling(p)))
4154                 printk(" %5d", relative->pid);
4155         else
4156                 printk("      ");
4157         if (!p->mm)
4158                 printk(" (L-TLB)\n");
4159         else
4160                 printk(" (NOTLB)\n");
4161
4162         if (state != TASK_RUNNING)
4163                 show_stack(p, NULL);
4164 }
4165
4166 void show_state(void)
4167 {
4168         task_t *g, *p;
4169
4170 #if (BITS_PER_LONG == 32)
4171         printk("\n"
4172                "                                               sibling\n");
4173         printk("  task             PC      pid father child younger older\n");
4174 #else
4175         printk("\n"
4176                "                                                       sibling\n");
4177         printk("  task                 PC          pid father child younger older\n");
4178 #endif
4179         read_lock(&tasklist_lock);
4180         do_each_thread(g, p) {
4181                 /*
4182                  * reset the NMI-timeout, listing all files on a slow
4183                  * console might take alot of time:
4184                  */
4185                 touch_nmi_watchdog();
4186                 show_task(p);
4187         } while_each_thread(g, p);
4188
4189         read_unlock(&tasklist_lock);
4190 }
4191
4192 void __devinit init_idle(task_t *idle, int cpu)
4193 {
4194         runqueue_t *rq = cpu_rq(cpu);
4195         unsigned long flags;
4196
4197         idle->sleep_avg = 0;
4198         idle->array = NULL;
4199         idle->prio = MAX_PRIO;
4200         idle->state = TASK_RUNNING;
4201         idle->cpus_allowed = cpumask_of_cpu(cpu);
4202         set_task_cpu(idle, cpu);
4203
4204         spin_lock_irqsave(&rq->lock, flags);
4205         rq->curr = rq->idle = idle;
4206 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4207         idle->oncpu = 1;
4208 #endif
4209         set_tsk_need_resched(idle);
4210         spin_unlock_irqrestore(&rq->lock, flags);
4211
4212         /* Set the preempt count _outside_ the spinlocks! */
4213 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4214         idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4215 #else
4216         idle->thread_info->preempt_count = 0;
4217 #endif
4218 }
4219
4220 /*
4221  * In a system that switches off the HZ timer nohz_cpu_mask
4222  * indicates which cpus entered this state. This is used
4223  * in the rcu update to wait only for active cpus. For system
4224  * which do not switch off the HZ timer nohz_cpu_mask should
4225  * always be CPU_MASK_NONE.
4226  */
4227 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4228
4229 #ifdef CONFIG_SMP
4230 /*
4231  * This is how migration works:
4232  *
4233  * 1) we queue a migration_req_t structure in the source CPU's
4234  *    runqueue and wake up that CPU's migration thread.
4235  * 2) we down() the locked semaphore => thread blocks.
4236  * 3) migration thread wakes up (implicitly it forces the migrated
4237  *    thread off the CPU)
4238  * 4) it gets the migration request and checks whether the migrated
4239  *    task is still in the wrong runqueue.
4240  * 5) if it's in the wrong runqueue then the migration thread removes
4241  *    it and puts it into the right queue.
4242  * 6) migration thread up()s the semaphore.
4243  * 7) we wake up and the migration is done.
4244  */
4245
4246 /*
4247  * Change a given task's CPU affinity. Migrate the thread to a
4248  * proper CPU and schedule it away if the CPU it's executing on
4249  * is removed from the allowed bitmask.
4250  *
4251  * NOTE: the caller must have a valid reference to the task, the
4252  * task must not exit() & deallocate itself prematurely.  The
4253  * call is not atomic; no spinlocks may be held.
4254  */
4255 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4256 {
4257         unsigned long flags;
4258         int ret = 0;
4259         migration_req_t req;
4260         runqueue_t *rq;
4261
4262         rq = task_rq_lock(p, &flags);
4263         if (!cpus_intersects(new_mask, cpu_online_map)) {
4264                 ret = -EINVAL;
4265                 goto out;
4266         }
4267
4268         p->cpus_allowed = new_mask;
4269         /* Can the task run on the task's current CPU? If so, we're done */
4270         if (cpu_isset(task_cpu(p), new_mask))
4271                 goto out;
4272
4273         if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4274                 /* Need help from migration thread: drop lock and wait. */
4275                 task_rq_unlock(rq, &flags);
4276                 wake_up_process(rq->migration_thread);
4277                 wait_for_completion(&req.done);
4278                 tlb_migrate_finish(p->mm);
4279                 return 0;
4280         }
4281 out:
4282         task_rq_unlock(rq, &flags);
4283         return ret;
4284 }
4285
4286 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4287
4288 /*
4289  * Move (not current) task off this cpu, onto dest cpu.  We're doing
4290  * this because either it can't run here any more (set_cpus_allowed()
4291  * away from this CPU, or CPU going down), or because we're
4292  * attempting to rebalance this task on exec (sched_exec).
4293  *
4294  * So we race with normal scheduler movements, but that's OK, as long
4295  * as the task is no longer on this CPU.
4296  */
4297 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4298 {
4299         runqueue_t *rq_dest, *rq_src;
4300
4301         if (unlikely(cpu_is_offline(dest_cpu)))
4302                 return;
4303
4304         rq_src = cpu_rq(src_cpu);
4305         rq_dest = cpu_rq(dest_cpu);
4306
4307         double_rq_lock(rq_src, rq_dest);
4308         /* Already moved. */
4309         if (task_cpu(p) != src_cpu)
4310                 goto out;
4311         /* Affinity changed (again). */
4312         if (!cpu_isset(dest_cpu, p->cpus_allowed))
4313                 goto out;
4314
4315         set_task_cpu(p, dest_cpu);
4316         if (p->array) {
4317                 /*
4318                  * Sync timestamp with rq_dest's before activating.
4319                  * The same thing could be achieved by doing this step
4320                  * afterwards, and pretending it was a local activate.
4321                  * This way is cleaner and logically correct.
4322                  */
4323                 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4324                                 + rq_dest->timestamp_last_tick;
4325                 deactivate_task(p, rq_src);
4326                 activate_task(p, rq_dest, 0);
4327                 if (TASK_PREEMPTS_CURR(p, rq_dest))
4328                         resched_task(rq_dest->curr);
4329         }
4330
4331 out:
4332         double_rq_unlock(rq_src, rq_dest);
4333 }
4334
4335 /*
4336  * migration_thread - this is a highprio system thread that performs
4337  * thread migration by bumping thread off CPU then 'pushing' onto
4338  * another runqueue.
4339  */
4340 static int migration_thread(void * data)
4341 {
4342         runqueue_t *rq;
4343         int cpu = (long)data;
4344
4345         rq = cpu_rq(cpu);
4346         BUG_ON(rq->migration_thread != current);
4347
4348         set_current_state(TASK_INTERRUPTIBLE);
4349         while (!kthread_should_stop()) {
4350                 struct list_head *head;
4351                 migration_req_t *req;
4352
4353                 if (current->flags & PF_FREEZE)
4354                         refrigerator(PF_FREEZE);
4355
4356                 spin_lock_irq(&rq->lock);
4357
4358                 if (cpu_is_offline(cpu)) {
4359                         spin_unlock_irq(&rq->lock);
4360                         goto wait_to_die;
4361                 }
4362
4363                 if (rq->active_balance) {
4364                         active_load_balance(rq, cpu);
4365                         rq->active_balance = 0;
4366                 }
4367
4368                 head = &rq->migration_queue;
4369
4370                 if (list_empty(head)) {
4371                         spin_unlock_irq(&rq->lock);
4372                         schedule();
4373                         set_current_state(TASK_INTERRUPTIBLE);
4374                         continue;
4375                 }
4376                 req = list_entry(head->next, migration_req_t, list);
4377                 list_del_init(head->next);
4378
4379                 spin_unlock(&rq->lock);
4380                 __migrate_task(req->task, cpu, req->dest_cpu);
4381                 local_irq_enable();
4382
4383                 complete(&req->done);
4384         }
4385         __set_current_state(TASK_RUNNING);
4386         return 0;
4387
4388 wait_to_die:
4389         /* Wait for kthread_stop */
4390         set_current_state(TASK_INTERRUPTIBLE);
4391         while (!kthread_should_stop()) {
4392                 schedule();
4393                 set_current_state(TASK_INTERRUPTIBLE);
4394         }
4395         __set_current_state(TASK_RUNNING);
4396         return 0;
4397 }
4398
4399 #ifdef CONFIG_HOTPLUG_CPU
4400 /* Figure out where task on dead CPU should go, use force if neccessary. */
4401 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4402 {
4403         int dest_cpu;
4404         cpumask_t mask;
4405
4406         /* On same node? */
4407         mask = node_to_cpumask(cpu_to_node(dead_cpu));
4408         cpus_and(mask, mask, tsk->cpus_allowed);
4409         dest_cpu = any_online_cpu(mask);
4410
4411         /* On any allowed CPU? */
4412         if (dest_cpu == NR_CPUS)
4413                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4414
4415         /* No more Mr. Nice Guy. */
4416         if (dest_cpu == NR_CPUS) {
4417                 cpus_setall(tsk->cpus_allowed);
4418                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4419
4420                 /*
4421                  * Don't tell them about moving exiting tasks or
4422                  * kernel threads (both mm NULL), since they never
4423                  * leave kernel.
4424                  */
4425                 if (tsk->mm && printk_ratelimit())
4426                         printk(KERN_INFO "process %d (%s) no "
4427                                "longer affine to cpu%d\n",
4428                                tsk->pid, tsk->comm, dead_cpu);
4429         }
4430         __migrate_task(tsk, dead_cpu, dest_cpu);
4431 }
4432
4433 /*
4434  * While a dead CPU has no uninterruptible tasks queued at this point,
4435  * it might still have a nonzero ->nr_uninterruptible counter, because
4436  * for performance reasons the counter is not stricly tracking tasks to
4437  * their home CPUs. So we just add the counter to another CPU's counter,
4438  * to keep the global sum constant after CPU-down:
4439  */
4440 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4441 {
4442         runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4443         unsigned long flags;
4444
4445         local_irq_save(flags);
4446         double_rq_lock(rq_src, rq_dest);
4447         rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4448         rq_src->nr_uninterruptible = 0;
4449         double_rq_unlock(rq_src, rq_dest);
4450         local_irq_restore(flags);
4451 }
4452
4453 /* Run through task list and migrate tasks from the dead cpu. */
4454 static void migrate_live_tasks(int src_cpu)
4455 {
4456         struct task_struct *tsk, *t;
4457
4458         write_lock_irq(&tasklist_lock);
4459
4460         do_each_thread(t, tsk) {
4461                 if (tsk == current)
4462                         continue;
4463
4464                 if (task_cpu(tsk) == src_cpu)
4465                         move_task_off_dead_cpu(src_cpu, tsk);
4466         } while_each_thread(t, tsk);
4467
4468         write_unlock_irq(&tasklist_lock);
4469 }
4470
4471 /* Schedules idle task to be the next runnable task on current CPU.
4472  * It does so by boosting its priority to highest possible and adding it to
4473  * the _front_ of runqueue. Used by CPU offline code.
4474  */
4475 void sched_idle_next(void)
4476 {
4477         int cpu = smp_processor_id();
4478         runqueue_t *rq = this_rq();
4479         struct task_struct *p = rq->idle;
4480         unsigned long flags;
4481
4482         /* cpu has to be offline */
4483         BUG_ON(cpu_online(cpu));
4484
4485         /* Strictly not necessary since rest of the CPUs are stopped by now
4486          * and interrupts disabled on current cpu.
4487          */
4488         spin_lock_irqsave(&rq->lock, flags);
4489
4490         __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4491         /* Add idle task to _front_ of it's priority queue */
4492         __activate_idle_task(p, rq);
4493
4494         spin_unlock_irqrestore(&rq->lock, flags);
4495 }
4496
4497 /* Ensures that the idle task is using init_mm right before its cpu goes
4498  * offline.
4499  */
4500 void idle_task_exit(void)
4501 {
4502         struct mm_struct *mm = current->active_mm;
4503
4504         BUG_ON(cpu_online(smp_processor_id()));
4505
4506         if (mm != &init_mm)
4507                 switch_mm(mm, &init_mm, current);
4508         mmdrop(mm);
4509 }
4510
4511 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4512 {
4513         struct runqueue *rq = cpu_rq(dead_cpu);
4514
4515         /* Must be exiting, otherwise would be on tasklist. */
4516         BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4517
4518         /* Cannot have done final schedule yet: would have vanished. */
4519         BUG_ON(tsk->flags & PF_DEAD);
4520
4521         get_task_struct(tsk);
4522
4523         /*
4524          * Drop lock around migration; if someone else moves it,
4525          * that's OK.  No task can be added to this CPU, so iteration is
4526          * fine.
4527          */
4528         spin_unlock_irq(&rq->lock);
4529         move_task_off_dead_cpu(dead_cpu, tsk);
4530         spin_lock_irq(&rq->lock);
4531
4532         put_task_struct(tsk);
4533 }
4534
4535 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4536 static void migrate_dead_tasks(unsigned int dead_cpu)
4537 {
4538         unsigned arr, i;
4539         struct runqueue *rq = cpu_rq(dead_cpu);
4540
4541         for (arr = 0; arr < 2; arr++) {
4542                 for (i = 0; i < MAX_PRIO; i++) {
4543                         struct list_head *list = &rq->arrays[arr].queue[i];
4544                         while (!list_empty(list))
4545                                 migrate_dead(dead_cpu,
4546                                              list_entry(list->next, task_t,
4547                                                         run_list));
4548                 }
4549         }
4550 }
4551 #endif /* CONFIG_HOTPLUG_CPU */
4552
4553 /*
4554  * migration_call - callback that gets triggered when a CPU is added.
4555  * Here we can start up the necessary migration thread for the new CPU.
4556  */
4557 static int migration_call(struct notifier_block *nfb, unsigned long action,
4558                           void *hcpu)
4559 {
4560         int cpu = (long)hcpu;
4561         struct task_struct *p;
4562         struct runqueue *rq;
4563         unsigned long flags;
4564
4565         switch (action) {
4566         case CPU_UP_PREPARE:
4567                 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4568                 if (IS_ERR(p))
4569                         return NOTIFY_BAD;
4570                 p->flags |= PF_NOFREEZE;
4571                 kthread_bind(p, cpu);
4572                 /* Must be high prio: stop_machine expects to yield to it. */
4573                 rq = task_rq_lock(p, &flags);
4574                 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4575                 task_rq_unlock(rq, &flags);
4576                 cpu_rq(cpu)->migration_thread = p;
4577                 break;
4578         case CPU_ONLINE:
4579                 /* Strictly unneccessary, as first user will wake it. */
4580                 wake_up_process(cpu_rq(cpu)->migration_thread);
4581                 break;
4582 #ifdef CONFIG_HOTPLUG_CPU
4583         case CPU_UP_CANCELED:
4584                 /* Unbind it from offline cpu so it can run.  Fall thru. */
4585                 kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
4586                 kthread_stop(cpu_rq(cpu)->migration_thread);
4587                 cpu_rq(cpu)->migration_thread = NULL;
4588                 break;
4589         case CPU_DEAD:
4590                 migrate_live_tasks(cpu);
4591                 rq = cpu_rq(cpu);
4592                 kthread_stop(rq->migration_thread);
4593                 rq->migration_thread = NULL;
4594                 /* Idle task back to normal (off runqueue, low prio) */
4595                 rq = task_rq_lock(rq->idle, &flags);
4596                 deactivate_task(rq->idle, rq);
4597                 rq->idle->static_prio = MAX_PRIO;
4598                 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4599                 migrate_dead_tasks(cpu);
4600                 task_rq_unlock(rq, &flags);
4601                 migrate_nr_uninterruptible(rq);
4602                 BUG_ON(rq->nr_running != 0);
4603
4604                 /* No need to migrate the tasks: it was best-effort if
4605                  * they didn't do lock_cpu_hotplug().  Just wake up
4606                  * the requestors. */
4607                 spin_lock_irq(&rq->lock);
4608                 while (!list_empty(&rq->migration_queue)) {
4609                         migration_req_t *req;
4610                         req = list_entry(rq->migration_queue.next,
4611                                          migration_req_t, list);
4612                         list_del_init(&req->list);
4613                         complete(&req->done);
4614                 }
4615                 spin_unlock_irq(&rq->lock);
4616                 break;
4617 #endif
4618         }
4619         return NOTIFY_OK;
4620 }
4621
4622 /* Register at highest priority so that task migration (migrate_all_tasks)
4623  * happens before everything else.
4624  */
4625 static struct notifier_block __devinitdata migration_notifier = {
4626         .notifier_call = migration_call,
4627         .priority = 10
4628 };
4629
4630 int __init migration_init(void)
4631 {
4632         void *cpu = (void *)(long)smp_processor_id();
4633         /* Start one for boot CPU. */
4634         migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4635         migration_call(&migration_notifier, CPU_ONLINE, cpu);
4636         register_cpu_notifier(&migration_notifier);
4637         return 0;
4638 }
4639 #endif
4640
4641 #ifdef CONFIG_SMP
4642 #define SCHED_DOMAIN_DEBUG
4643 #ifdef SCHED_DOMAIN_DEBUG
4644 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4645 {
4646         int level = 0;
4647
4648         if (!sd) {
4649                 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4650                 return;
4651         }
4652
4653         printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4654
4655         do {
4656                 int i;
4657                 char str[NR_CPUS];
4658                 struct sched_group *group = sd->groups;
4659                 cpumask_t groupmask;
4660
4661                 cpumask_scnprintf(str, NR_CPUS, sd->span);
4662                 cpus_clear(groupmask);
4663
4664                 printk(KERN_DEBUG);
4665                 for (i = 0; i < level + 1; i++)
4666                         printk(" ");
4667                 printk("domain %d: ", level);
4668
4669                 if (!(sd->flags & SD_LOAD_BALANCE)) {
4670                         printk("does not load-balance\n");
4671                         if (sd->parent)
4672                                 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4673                         break;
4674                 }
4675
4676                 printk("span %s\n", str);
4677
4678                 if (!cpu_isset(cpu, sd->span))
4679                         printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4680                 if (!cpu_isset(cpu, group->cpumask))
4681                         printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4682
4683                 printk(KERN_DEBUG);
4684                 for (i = 0; i < level + 2; i++)
4685                         printk(" ");
4686                 printk("groups:");
4687                 do {
4688                         if (!group) {
4689                                 printk("\n");
4690                                 printk(KERN_ERR "ERROR: group is NULL\n");
4691                                 break;
4692                         }
4693
4694                         if (!group->cpu_power) {
4695                                 printk("\n");
4696                                 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4697                         }
4698
4699                         if (!cpus_weight(group->cpumask)) {
4700                                 printk("\n");
4701                                 printk(KERN_ERR "ERROR: empty group\n");
4702                         }
4703
4704                         if (cpus_intersects(groupmask, group->cpumask)) {
4705                                 printk("\n");
4706                                 printk(KERN_ERR "ERROR: repeated CPUs\n");
4707                         }
4708
4709                         cpus_or(groupmask, groupmask, group->cpumask);
4710
4711                         cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4712                         printk(" %s", str);
4713
4714                         group = group->next;
4715                 } while (group != sd->groups);
4716                 printk("\n");
4717
4718                 if (!cpus_equal(sd->span, groupmask))
4719                         printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4720
4721                 level++;
4722                 sd = sd->parent;
4723
4724                 if (sd) {
4725                         if (!cpus_subset(groupmask, sd->span))
4726                                 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4727                 }
4728
4729         } while (sd);
4730 }
4731 #else
4732 #define sched_domain_debug(sd, cpu) {}
4733 #endif
4734
4735 static int __devinit sd_degenerate(struct sched_domain *sd)
4736 {
4737         if (cpus_weight(sd->span) == 1)
4738                 return 1;
4739
4740         /* Following flags need at least 2 groups */
4741         if (sd->flags & (SD_LOAD_BALANCE |
4742                          SD_BALANCE_NEWIDLE |
4743                          SD_BALANCE_FORK |
4744                          SD_BALANCE_EXEC)) {
4745                 if (sd->groups != sd->groups->next)
4746                         return 0;
4747         }
4748
4749         /* Following flags don't use groups */
4750         if (sd->flags & (SD_WAKE_IDLE |
4751                          SD_WAKE_AFFINE |
4752                          SD_WAKE_BALANCE))
4753                 return 0;
4754
4755         return 1;
4756 }
4757
4758 static int __devinit sd_parent_degenerate(struct sched_domain *sd,
4759                                                 struct sched_domain *parent)
4760 {
4761         unsigned long cflags = sd->flags, pflags = parent->flags;
4762
4763         if (sd_degenerate(parent))
4764                 return 1;
4765
4766         if (!cpus_equal(sd->span, parent->span))
4767                 return 0;
4768
4769         /* Does parent contain flags not in child? */
4770         /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4771         if (cflags & SD_WAKE_AFFINE)
4772                 pflags &= ~SD_WAKE_BALANCE;
4773         /* Flags needing groups don't count if only 1 group in parent */
4774         if (parent->groups == parent->groups->next) {
4775                 pflags &= ~(SD_LOAD_BALANCE |
4776                                 SD_BALANCE_NEWIDLE |
4777                                 SD_BALANCE_FORK |
4778                                 SD_BALANCE_EXEC);
4779         }
4780         if (~cflags & pflags)
4781                 return 0;
4782
4783         return 1;
4784 }
4785
4786 /*
4787  * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
4788  * hold the hotplug lock.
4789  */
4790 void __devinit cpu_attach_domain(struct sched_domain *sd, int cpu)
4791 {
4792         runqueue_t *rq = cpu_rq(cpu);
4793         struct sched_domain *tmp;
4794
4795         /* Remove the sched domains which do not contribute to scheduling. */
4796         for (tmp = sd; tmp; tmp = tmp->parent) {
4797                 struct sched_domain *parent = tmp->parent;
4798                 if (!parent)
4799                         break;
4800                 if (sd_parent_degenerate(tmp, parent))
4801                         tmp->parent = parent->parent;
4802         }
4803
4804         if (sd && sd_degenerate(sd))
4805                 sd = sd->parent;
4806
4807         sched_domain_debug(sd, cpu);
4808
4809         rcu_assign_pointer(rq->sd, sd);
4810 }
4811
4812 /* cpus with isolated domains */
4813 cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4814
4815 /* Setup the mask of cpus configured for isolated domains */
4816 static int __init isolated_cpu_setup(char *str)
4817 {
4818         int ints[NR_CPUS], i;
4819
4820         str = get_options(str, ARRAY_SIZE(ints), ints);
4821         cpus_clear(cpu_isolated_map);
4822         for (i = 1; i <= ints[0]; i++)
4823                 if (ints[i] < NR_CPUS)
4824                         cpu_set(ints[i], cpu_isolated_map);
4825         return 1;
4826 }
4827
4828 __setup ("isolcpus=", isolated_cpu_setup);
4829
4830 /*
4831  * init_sched_build_groups takes an array of groups, the cpumask we wish
4832  * to span, and a pointer to a function which identifies what group a CPU
4833  * belongs to. The return value of group_fn must be a valid index into the
4834  * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4835  * keep track of groups covered with a cpumask_t).
4836  *
4837  * init_sched_build_groups will build a circular linked list of the groups
4838  * covered by the given span, and will set each group's ->cpumask correctly,
4839  * and ->cpu_power to 0.
4840  */
4841 void __devinit init_sched_build_groups(struct sched_group groups[],
4842                         cpumask_t span, int (*group_fn)(int cpu))
4843 {
4844         struct sched_group *first = NULL, *last = NULL;
4845         cpumask_t covered = CPU_MASK_NONE;
4846         int i;
4847
4848         for_each_cpu_mask(i, span) {
4849                 int group = group_fn(i);
4850                 struct sched_group *sg = &groups[group];
4851                 int j;
4852
4853                 if (cpu_isset(i, covered))
4854                         continue;
4855
4856                 sg->cpumask = CPU_MASK_NONE;
4857                 sg->cpu_power = 0;
4858
4859                 for_each_cpu_mask(j, span) {
4860                         if (group_fn(j) != group)
4861                                 continue;
4862
4863                         cpu_set(j, covered);
4864                         cpu_set(j, sg->cpumask);
4865                 }
4866                 if (!first)
4867                         first = sg;
4868                 if (last)
4869                         last->next = sg;
4870                 last = sg;
4871         }
4872         last->next = first;
4873 }
4874
4875
4876 #ifdef ARCH_HAS_SCHED_DOMAIN
4877 extern void __devinit arch_init_sched_domains(void);
4878 extern void __devinit arch_destroy_sched_domains(void);
4879 #else
4880 #ifdef CONFIG_SCHED_SMT
4881 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
4882 static struct sched_group sched_group_cpus[NR_CPUS];
4883 static int __devinit cpu_to_cpu_group(int cpu)
4884 {
4885         return cpu;
4886 }
4887 #endif
4888
4889 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
4890 static struct sched_group sched_group_phys[NR_CPUS];
4891 static int __devinit cpu_to_phys_group(int cpu)
4892 {
4893 #ifdef CONFIG_SCHED_SMT
4894         return first_cpu(cpu_sibling_map[cpu]);
4895 #else
4896         return cpu;
4897 #endif
4898 }
4899
4900 #ifdef CONFIG_NUMA
4901
4902 static DEFINE_PER_CPU(struct sched_domain, node_domains);
4903 static struct sched_group sched_group_nodes[MAX_NUMNODES];
4904 static int __devinit cpu_to_node_group(int cpu)
4905 {
4906         return cpu_to_node(cpu);
4907 }
4908 #endif
4909
4910 #if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
4911 /*
4912  * The domains setup code relies on siblings not spanning
4913  * multiple nodes. Make sure the architecture has a proper
4914  * siblings map:
4915  */
4916 static void check_sibling_maps(void)
4917 {
4918         int i, j;
4919
4920         for_each_online_cpu(i) {
4921                 for_each_cpu_mask(j, cpu_sibling_map[i]) {
4922                         if (cpu_to_node(i) != cpu_to_node(j)) {
4923                                 printk(KERN_INFO "warning: CPU %d siblings map "
4924                                         "to different node - isolating "
4925                                         "them.\n", i);
4926                                 cpu_sibling_map[i] = cpumask_of_cpu(i);
4927                                 break;
4928                         }
4929                 }
4930         }
4931 }
4932 #endif
4933
4934 /*
4935  * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
4936  */
4937 static void __devinit arch_init_sched_domains(void)
4938 {
4939         int i;
4940         cpumask_t cpu_default_map;
4941
4942 #if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
4943         check_sibling_maps();
4944 #endif
4945         /*
4946          * Setup mask for cpus without special case scheduling requirements.
4947          * For now this just excludes isolated cpus, but could be used to
4948          * exclude other special cases in the future.
4949          */
4950         cpus_complement(cpu_default_map, cpu_isolated_map);
4951         cpus_and(cpu_default_map, cpu_default_map, cpu_online_map);
4952
4953         /*
4954          * Set up domains. Isolated domains just stay on the NULL domain.
4955          */
4956         for_each_cpu_mask(i, cpu_default_map) {
4957                 int group;
4958                 struct sched_domain *sd = NULL, *p;
4959                 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
4960
4961                 cpus_and(nodemask, nodemask, cpu_default_map);
4962
4963 #ifdef CONFIG_NUMA
4964                 sd = &per_cpu(node_domains, i);
4965                 group = cpu_to_node_group(i);
4966                 *sd = SD_NODE_INIT;
4967                 sd->span = cpu_default_map;
4968                 sd->groups = &sched_group_nodes[group];
4969 #endif
4970
4971                 p = sd;
4972                 sd = &per_cpu(phys_domains, i);
4973                 group = cpu_to_phys_group(i);
4974                 *sd = SD_CPU_INIT;
4975                 sd->span = nodemask;
4976                 sd->parent = p;
4977                 sd->groups = &sched_group_phys[group];
4978
4979 #ifdef CONFIG_SCHED_SMT
4980                 p = sd;
4981                 sd = &per_cpu(cpu_domains, i);
4982                 group = cpu_to_cpu_group(i);
4983                 *sd = SD_SIBLING_INIT;
4984                 sd->span = cpu_sibling_map[i];
4985                 cpus_and(sd->span, sd->span, cpu_default_map);
4986                 sd->parent = p;
4987                 sd->groups = &sched_group_cpus[group];
4988 #endif
4989         }
4990
4991 #ifdef CONFIG_SCHED_SMT
4992         /* Set up CPU (sibling) groups */
4993         for_each_online_cpu(i) {
4994                 cpumask_t this_sibling_map = cpu_sibling_map[i];
4995                 cpus_and(this_sibling_map, this_sibling_map, cpu_default_map);
4996                 if (i != first_cpu(this_sibling_map))
4997                         continue;
4998
4999                 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5000                                                 &cpu_to_cpu_group);
5001         }
5002 #endif
5003
5004         /* Set up physical groups */
5005         for (i = 0; i < MAX_NUMNODES; i++) {
5006                 cpumask_t nodemask = node_to_cpumask(i);
5007
5008                 cpus_and(nodemask, nodemask, cpu_default_map);
5009                 if (cpus_empty(nodemask))
5010                         continue;
5011
5012                 init_sched_build_groups(sched_group_phys, nodemask,
5013                                                 &cpu_to_phys_group);
5014         }
5015
5016 #ifdef CONFIG_NUMA
5017         /* Set up node groups */
5018         init_sched_build_groups(sched_group_nodes, cpu_default_map,
5019                                         &cpu_to_node_group);
5020 #endif
5021
5022         /* Calculate CPU power for physical packages and nodes */
5023         for_each_cpu_mask(i, cpu_default_map) {
5024                 int power;
5025                 struct sched_domain *sd;
5026 #ifdef CONFIG_SCHED_SMT
5027                 sd = &per_cpu(cpu_domains, i);
5028                 power = SCHED_LOAD_SCALE;
5029                 sd->groups->cpu_power = power;
5030 #endif
5031
5032                 sd = &per_cpu(phys_domains, i);
5033                 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5034                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5035                 sd->groups->cpu_power = power;
5036
5037 #ifdef CONFIG_NUMA
5038                 if (i == first_cpu(sd->groups->cpumask)) {
5039                         /* Only add "power" once for each physical package. */
5040                         sd = &per_cpu(node_domains, i);
5041                         sd->groups->cpu_power += power;
5042                 }
5043 #endif
5044         }
5045
5046         /* Attach the domains */
5047         for_each_online_cpu(i) {
5048                 struct sched_domain *sd;
5049 #ifdef CONFIG_SCHED_SMT
5050                 sd = &per_cpu(cpu_domains, i);
5051 #else
5052                 sd = &per_cpu(phys_domains, i);
5053 #endif
5054                 cpu_attach_domain(sd, i);
5055         }
5056 }
5057
5058 #ifdef CONFIG_HOTPLUG_CPU
5059 static void __devinit arch_destroy_sched_domains(void)
5060 {
5061         /* Do nothing: everything is statically allocated. */
5062 }
5063 #endif
5064
5065 #endif /* ARCH_HAS_SCHED_DOMAIN */
5066
5067 #ifdef CONFIG_HOTPLUG_CPU
5068 /*
5069  * Force a reinitialization of the sched domains hierarchy.  The domains
5070  * and groups cannot be updated in place without racing with the balancing
5071  * code, so we temporarily attach all running cpus to the NULL domain
5072  * which will prevent rebalancing while the sched domains are recalculated.
5073  */
5074 static int update_sched_domains(struct notifier_block *nfb,
5075                                 unsigned long action, void *hcpu)
5076 {
5077         int i;
5078
5079         switch (action) {
5080         case CPU_UP_PREPARE:
5081         case CPU_DOWN_PREPARE:
5082                 for_each_online_cpu(i)
5083                         cpu_attach_domain(NULL, i);
5084                 synchronize_kernel();
5085                 arch_destroy_sched_domains();
5086                 return NOTIFY_OK;
5087
5088         case CPU_UP_CANCELED:
5089         case CPU_DOWN_FAILED:
5090         case CPU_ONLINE:
5091         case CPU_DEAD:
5092                 /*
5093                  * Fall through and re-initialise the domains.
5094                  */
5095                 break;
5096         default:
5097                 return NOTIFY_DONE;
5098         }
5099
5100         /* The hotplug lock is already held by cpu_up/cpu_down */
5101         arch_init_sched_domains();
5102
5103         return NOTIFY_OK;
5104 }
5105 #endif
5106
5107 void __init sched_init_smp(void)
5108 {
5109         lock_cpu_hotplug();
5110         arch_init_sched_domains();
5111         unlock_cpu_hotplug();
5112         /* XXX: Theoretical race here - CPU may be hotplugged now */
5113         hotcpu_notifier(update_sched_domains, 0);
5114 }
5115 #else
5116 void __init sched_init_smp(void)
5117 {
5118 }
5119 #endif /* CONFIG_SMP */
5120
5121 int in_sched_functions(unsigned long addr)
5122 {
5123         /* Linker adds these: start and end of __sched functions */
5124         extern char __sched_text_start[], __sched_text_end[];
5125         return in_lock_functions(addr) ||
5126                 (addr >= (unsigned long)__sched_text_start
5127                 && addr < (unsigned long)__sched_text_end);
5128 }
5129
5130 void __init sched_init(void)
5131 {
5132         runqueue_t *rq;
5133         int i, j, k;
5134
5135         for (i = 0; i < NR_CPUS; i++) {
5136                 prio_array_t *array;
5137
5138                 rq = cpu_rq(i);
5139                 spin_lock_init(&rq->lock);
5140                 rq->nr_running = 0;
5141                 rq->active = rq->arrays;
5142                 rq->expired = rq->arrays + 1;
5143                 rq->best_expired_prio = MAX_PRIO;
5144
5145 #ifdef CONFIG_SMP
5146                 rq->sd = NULL;
5147                 for (j = 1; j < 3; j++)
5148                         rq->cpu_load[j] = 0;
5149                 rq->active_balance = 0;
5150                 rq->push_cpu = 0;
5151                 rq->migration_thread = NULL;
5152                 INIT_LIST_HEAD(&rq->migration_queue);
5153 #endif
5154                 atomic_set(&rq->nr_iowait, 0);
5155
5156                 for (j = 0; j < 2; j++) {
5157                         array = rq->arrays + j;
5158                         for (k = 0; k < MAX_PRIO; k++) {
5159                                 INIT_LIST_HEAD(array->queue + k);
5160                                 __clear_bit(k, array->bitmap);
5161                         }
5162                         // delimiter for bitsearch
5163                         __set_bit(MAX_PRIO, array->bitmap);
5164                 }
5165         }
5166
5167         /*
5168          * The boot idle thread does lazy MMU switching as well:
5169          */
5170         atomic_inc(&init_mm.mm_count);
5171         enter_lazy_tlb(&init_mm, current);
5172
5173         /*
5174          * Make us the idle thread. Technically, schedule() should not be
5175          * called from this thread, however somewhere below it might be,
5176          * but because we are the idle thread, we just pick up running again
5177          * when this runqueue becomes "idle".
5178          */
5179         init_idle(current, smp_processor_id());
5180 }
5181
5182 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5183 void __might_sleep(char *file, int line)
5184 {
5185 #if defined(in_atomic)
5186         static unsigned long prev_jiffy;        /* ratelimiting */
5187
5188         if ((in_atomic() || irqs_disabled()) &&
5189             system_state == SYSTEM_RUNNING && !oops_in_progress) {
5190                 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5191                         return;
5192                 prev_jiffy = jiffies;
5193                 printk(KERN_ERR "Debug: sleeping function called from invalid"
5194                                 " context at %s:%d\n", file, line);
5195                 printk("in_atomic():%d, irqs_disabled():%d\n",
5196                         in_atomic(), irqs_disabled());
5197                 dump_stack();
5198         }
5199 #endif
5200 }
5201 EXPORT_SYMBOL(__might_sleep);
5202 #endif
5203
5204 #ifdef CONFIG_MAGIC_SYSRQ
5205 void normalize_rt_tasks(void)
5206 {
5207         struct task_struct *p;
5208         prio_array_t *array;
5209         unsigned long flags;
5210         runqueue_t *rq;
5211
5212         read_lock_irq(&tasklist_lock);
5213         for_each_process (p) {
5214                 if (!rt_task(p))
5215                         continue;
5216
5217                 rq = task_rq_lock(p, &flags);
5218
5219                 array = p->array;
5220                 if (array)
5221                         deactivate_task(p, task_rq(p));
5222                 __setscheduler(p, SCHED_NORMAL, 0);
5223                 if (array) {
5224                         __activate_task(p, task_rq(p));
5225                         resched_task(rq->curr);
5226                 }
5227
5228                 task_rq_unlock(rq, &flags);
5229         }
5230         read_unlock_irq(&tasklist_lock);
5231 }
5232
5233 #endif /* CONFIG_MAGIC_SYSRQ */