Merge branch 'perf/urgent' into perf/core
[pandora-kernel.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 /*
39  * Each CPU has a list of per CPU events:
40  */
41 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
42
43 int perf_max_events __read_mostly = 1;
44 static int perf_reserved_percpu __read_mostly;
45 static int perf_overcommit __read_mostly = 1;
46
47 static atomic_t nr_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
51
52 /*
53  * perf event paranoia level:
54  *  -1 - not paranoid at all
55  *   0 - disallow raw tracepoint access for unpriv
56  *   1 - disallow cpu events for unpriv
57  *   2 - disallow kernel profiling for unpriv
58  */
59 int sysctl_perf_event_paranoid __read_mostly = 1;
60
61 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62
63 /*
64  * max perf event sample rate
65  */
66 int sysctl_perf_event_sample_rate __read_mostly = 100000;
67
68 static atomic64_t perf_event_id;
69
70 /*
71  * Lock for (sysadmin-configurable) event reservations:
72  */
73 static DEFINE_SPINLOCK(perf_resource_lock);
74
75 /*
76  * Architecture provided APIs - weak aliases:
77  */
78 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79 {
80         return NULL;
81 }
82
83 void __weak hw_perf_disable(void)               { barrier(); }
84 void __weak hw_perf_enable(void)                { barrier(); }
85
86 int __weak
87 hw_perf_group_sched_in(struct perf_event *group_leader,
88                struct perf_cpu_context *cpuctx,
89                struct perf_event_context *ctx)
90 {
91         return 0;
92 }
93
94 void __weak perf_event_print_debug(void)        { }
95
96 static DEFINE_PER_CPU(int, perf_disable_count);
97
98 void perf_disable(void)
99 {
100         if (!__get_cpu_var(perf_disable_count)++)
101                 hw_perf_disable();
102 }
103
104 void perf_enable(void)
105 {
106         if (!--__get_cpu_var(perf_disable_count))
107                 hw_perf_enable();
108 }
109
110 static void get_ctx(struct perf_event_context *ctx)
111 {
112         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
113 }
114
115 static void free_ctx(struct rcu_head *head)
116 {
117         struct perf_event_context *ctx;
118
119         ctx = container_of(head, struct perf_event_context, rcu_head);
120         kfree(ctx);
121 }
122
123 static void put_ctx(struct perf_event_context *ctx)
124 {
125         if (atomic_dec_and_test(&ctx->refcount)) {
126                 if (ctx->parent_ctx)
127                         put_ctx(ctx->parent_ctx);
128                 if (ctx->task)
129                         put_task_struct(ctx->task);
130                 call_rcu(&ctx->rcu_head, free_ctx);
131         }
132 }
133
134 static void unclone_ctx(struct perf_event_context *ctx)
135 {
136         if (ctx->parent_ctx) {
137                 put_ctx(ctx->parent_ctx);
138                 ctx->parent_ctx = NULL;
139         }
140 }
141
142 /*
143  * If we inherit events we want to return the parent event id
144  * to userspace.
145  */
146 static u64 primary_event_id(struct perf_event *event)
147 {
148         u64 id = event->id;
149
150         if (event->parent)
151                 id = event->parent->id;
152
153         return id;
154 }
155
156 /*
157  * Get the perf_event_context for a task and lock it.
158  * This has to cope with with the fact that until it is locked,
159  * the context could get moved to another task.
160  */
161 static struct perf_event_context *
162 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
163 {
164         struct perf_event_context *ctx;
165
166         rcu_read_lock();
167  retry:
168         ctx = rcu_dereference(task->perf_event_ctxp);
169         if (ctx) {
170                 /*
171                  * If this context is a clone of another, it might
172                  * get swapped for another underneath us by
173                  * perf_event_task_sched_out, though the
174                  * rcu_read_lock() protects us from any context
175                  * getting freed.  Lock the context and check if it
176                  * got swapped before we could get the lock, and retry
177                  * if so.  If we locked the right context, then it
178                  * can't get swapped on us any more.
179                  */
180                 raw_spin_lock_irqsave(&ctx->lock, *flags);
181                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
182                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
183                         goto retry;
184                 }
185
186                 if (!atomic_inc_not_zero(&ctx->refcount)) {
187                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
188                         ctx = NULL;
189                 }
190         }
191         rcu_read_unlock();
192         return ctx;
193 }
194
195 /*
196  * Get the context for a task and increment its pin_count so it
197  * can't get swapped to another task.  This also increments its
198  * reference count so that the context can't get freed.
199  */
200 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
201 {
202         struct perf_event_context *ctx;
203         unsigned long flags;
204
205         ctx = perf_lock_task_context(task, &flags);
206         if (ctx) {
207                 ++ctx->pin_count;
208                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
209         }
210         return ctx;
211 }
212
213 static void perf_unpin_context(struct perf_event_context *ctx)
214 {
215         unsigned long flags;
216
217         raw_spin_lock_irqsave(&ctx->lock, flags);
218         --ctx->pin_count;
219         raw_spin_unlock_irqrestore(&ctx->lock, flags);
220         put_ctx(ctx);
221 }
222
223 static inline u64 perf_clock(void)
224 {
225         return cpu_clock(raw_smp_processor_id());
226 }
227
228 /*
229  * Update the record of the current time in a context.
230  */
231 static void update_context_time(struct perf_event_context *ctx)
232 {
233         u64 now = perf_clock();
234
235         ctx->time += now - ctx->timestamp;
236         ctx->timestamp = now;
237 }
238
239 /*
240  * Update the total_time_enabled and total_time_running fields for a event.
241  */
242 static void update_event_times(struct perf_event *event)
243 {
244         struct perf_event_context *ctx = event->ctx;
245         u64 run_end;
246
247         if (event->state < PERF_EVENT_STATE_INACTIVE ||
248             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
249                 return;
250
251         if (ctx->is_active)
252                 run_end = ctx->time;
253         else
254                 run_end = event->tstamp_stopped;
255
256         event->total_time_enabled = run_end - event->tstamp_enabled;
257
258         if (event->state == PERF_EVENT_STATE_INACTIVE)
259                 run_end = event->tstamp_stopped;
260         else
261                 run_end = ctx->time;
262
263         event->total_time_running = run_end - event->tstamp_running;
264 }
265
266 static struct list_head *
267 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
268 {
269         if (event->attr.pinned)
270                 return &ctx->pinned_groups;
271         else
272                 return &ctx->flexible_groups;
273 }
274
275 /*
276  * Add a event from the lists for its context.
277  * Must be called with ctx->mutex and ctx->lock held.
278  */
279 static void
280 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
281 {
282         struct perf_event *group_leader = event->group_leader;
283
284         /*
285          * Depending on whether it is a standalone or sibling event,
286          * add it straight to the context's event list, or to the group
287          * leader's sibling list:
288          */
289         if (group_leader == event) {
290                 struct list_head *list;
291
292                 if (is_software_event(event))
293                         event->group_flags |= PERF_GROUP_SOFTWARE;
294
295                 list = ctx_group_list(event, ctx);
296                 list_add_tail(&event->group_entry, list);
297         } else {
298                 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
299                     !is_software_event(event))
300                         group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
301
302                 list_add_tail(&event->group_entry, &group_leader->sibling_list);
303                 group_leader->nr_siblings++;
304         }
305
306         list_add_rcu(&event->event_entry, &ctx->event_list);
307         ctx->nr_events++;
308         if (event->attr.inherit_stat)
309                 ctx->nr_stat++;
310 }
311
312 /*
313  * Remove a event from the lists for its context.
314  * Must be called with ctx->mutex and ctx->lock held.
315  */
316 static void
317 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
318 {
319         struct perf_event *sibling, *tmp;
320
321         if (list_empty(&event->group_entry))
322                 return;
323         ctx->nr_events--;
324         if (event->attr.inherit_stat)
325                 ctx->nr_stat--;
326
327         list_del_init(&event->group_entry);
328         list_del_rcu(&event->event_entry);
329
330         if (event->group_leader != event)
331                 event->group_leader->nr_siblings--;
332
333         update_event_times(event);
334
335         /*
336          * If event was in error state, then keep it
337          * that way, otherwise bogus counts will be
338          * returned on read(). The only way to get out
339          * of error state is by explicit re-enabling
340          * of the event
341          */
342         if (event->state > PERF_EVENT_STATE_OFF)
343                 event->state = PERF_EVENT_STATE_OFF;
344
345         if (event->state > PERF_EVENT_STATE_FREE)
346                 return;
347
348         /*
349          * If this was a group event with sibling events then
350          * upgrade the siblings to singleton events by adding them
351          * to the context list directly:
352          */
353         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
354                 struct list_head *list;
355
356                 list = ctx_group_list(event, ctx);
357                 list_move_tail(&sibling->group_entry, list);
358                 sibling->group_leader = sibling;
359
360                 /* Inherit group flags from the previous leader */
361                 sibling->group_flags = event->group_flags;
362         }
363 }
364
365 static void
366 event_sched_out(struct perf_event *event,
367                   struct perf_cpu_context *cpuctx,
368                   struct perf_event_context *ctx)
369 {
370         if (event->state != PERF_EVENT_STATE_ACTIVE)
371                 return;
372
373         event->state = PERF_EVENT_STATE_INACTIVE;
374         if (event->pending_disable) {
375                 event->pending_disable = 0;
376                 event->state = PERF_EVENT_STATE_OFF;
377         }
378         event->tstamp_stopped = ctx->time;
379         event->pmu->disable(event);
380         event->oncpu = -1;
381
382         if (!is_software_event(event))
383                 cpuctx->active_oncpu--;
384         ctx->nr_active--;
385         if (event->attr.exclusive || !cpuctx->active_oncpu)
386                 cpuctx->exclusive = 0;
387 }
388
389 static void
390 group_sched_out(struct perf_event *group_event,
391                 struct perf_cpu_context *cpuctx,
392                 struct perf_event_context *ctx)
393 {
394         struct perf_event *event;
395
396         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
397                 return;
398
399         event_sched_out(group_event, cpuctx, ctx);
400
401         /*
402          * Schedule out siblings (if any):
403          */
404         list_for_each_entry(event, &group_event->sibling_list, group_entry)
405                 event_sched_out(event, cpuctx, ctx);
406
407         if (group_event->attr.exclusive)
408                 cpuctx->exclusive = 0;
409 }
410
411 /*
412  * Cross CPU call to remove a performance event
413  *
414  * We disable the event on the hardware level first. After that we
415  * remove it from the context list.
416  */
417 static void __perf_event_remove_from_context(void *info)
418 {
419         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
420         struct perf_event *event = info;
421         struct perf_event_context *ctx = event->ctx;
422
423         /*
424          * If this is a task context, we need to check whether it is
425          * the current task context of this cpu. If not it has been
426          * scheduled out before the smp call arrived.
427          */
428         if (ctx->task && cpuctx->task_ctx != ctx)
429                 return;
430
431         raw_spin_lock(&ctx->lock);
432         /*
433          * Protect the list operation against NMI by disabling the
434          * events on a global level.
435          */
436         perf_disable();
437
438         event_sched_out(event, cpuctx, ctx);
439
440         list_del_event(event, ctx);
441
442         if (!ctx->task) {
443                 /*
444                  * Allow more per task events with respect to the
445                  * reservation:
446                  */
447                 cpuctx->max_pertask =
448                         min(perf_max_events - ctx->nr_events,
449                             perf_max_events - perf_reserved_percpu);
450         }
451
452         perf_enable();
453         raw_spin_unlock(&ctx->lock);
454 }
455
456
457 /*
458  * Remove the event from a task's (or a CPU's) list of events.
459  *
460  * Must be called with ctx->mutex held.
461  *
462  * CPU events are removed with a smp call. For task events we only
463  * call when the task is on a CPU.
464  *
465  * If event->ctx is a cloned context, callers must make sure that
466  * every task struct that event->ctx->task could possibly point to
467  * remains valid.  This is OK when called from perf_release since
468  * that only calls us on the top-level context, which can't be a clone.
469  * When called from perf_event_exit_task, it's OK because the
470  * context has been detached from its task.
471  */
472 static void perf_event_remove_from_context(struct perf_event *event)
473 {
474         struct perf_event_context *ctx = event->ctx;
475         struct task_struct *task = ctx->task;
476
477         if (!task) {
478                 /*
479                  * Per cpu events are removed via an smp call and
480                  * the removal is always successful.
481                  */
482                 smp_call_function_single(event->cpu,
483                                          __perf_event_remove_from_context,
484                                          event, 1);
485                 return;
486         }
487
488 retry:
489         task_oncpu_function_call(task, __perf_event_remove_from_context,
490                                  event);
491
492         raw_spin_lock_irq(&ctx->lock);
493         /*
494          * If the context is active we need to retry the smp call.
495          */
496         if (ctx->nr_active && !list_empty(&event->group_entry)) {
497                 raw_spin_unlock_irq(&ctx->lock);
498                 goto retry;
499         }
500
501         /*
502          * The lock prevents that this context is scheduled in so we
503          * can remove the event safely, if the call above did not
504          * succeed.
505          */
506         if (!list_empty(&event->group_entry))
507                 list_del_event(event, ctx);
508         raw_spin_unlock_irq(&ctx->lock);
509 }
510
511 /*
512  * Update total_time_enabled and total_time_running for all events in a group.
513  */
514 static void update_group_times(struct perf_event *leader)
515 {
516         struct perf_event *event;
517
518         update_event_times(leader);
519         list_for_each_entry(event, &leader->sibling_list, group_entry)
520                 update_event_times(event);
521 }
522
523 /*
524  * Cross CPU call to disable a performance event
525  */
526 static void __perf_event_disable(void *info)
527 {
528         struct perf_event *event = info;
529         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
530         struct perf_event_context *ctx = event->ctx;
531
532         /*
533          * If this is a per-task event, need to check whether this
534          * event's task is the current task on this cpu.
535          */
536         if (ctx->task && cpuctx->task_ctx != ctx)
537                 return;
538
539         raw_spin_lock(&ctx->lock);
540
541         /*
542          * If the event is on, turn it off.
543          * If it is in error state, leave it in error state.
544          */
545         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
546                 update_context_time(ctx);
547                 update_group_times(event);
548                 if (event == event->group_leader)
549                         group_sched_out(event, cpuctx, ctx);
550                 else
551                         event_sched_out(event, cpuctx, ctx);
552                 event->state = PERF_EVENT_STATE_OFF;
553         }
554
555         raw_spin_unlock(&ctx->lock);
556 }
557
558 /*
559  * Disable a event.
560  *
561  * If event->ctx is a cloned context, callers must make sure that
562  * every task struct that event->ctx->task could possibly point to
563  * remains valid.  This condition is satisifed when called through
564  * perf_event_for_each_child or perf_event_for_each because they
565  * hold the top-level event's child_mutex, so any descendant that
566  * goes to exit will block in sync_child_event.
567  * When called from perf_pending_event it's OK because event->ctx
568  * is the current context on this CPU and preemption is disabled,
569  * hence we can't get into perf_event_task_sched_out for this context.
570  */
571 void perf_event_disable(struct perf_event *event)
572 {
573         struct perf_event_context *ctx = event->ctx;
574         struct task_struct *task = ctx->task;
575
576         if (!task) {
577                 /*
578                  * Disable the event on the cpu that it's on
579                  */
580                 smp_call_function_single(event->cpu, __perf_event_disable,
581                                          event, 1);
582                 return;
583         }
584
585  retry:
586         task_oncpu_function_call(task, __perf_event_disable, event);
587
588         raw_spin_lock_irq(&ctx->lock);
589         /*
590          * If the event is still active, we need to retry the cross-call.
591          */
592         if (event->state == PERF_EVENT_STATE_ACTIVE) {
593                 raw_spin_unlock_irq(&ctx->lock);
594                 goto retry;
595         }
596
597         /*
598          * Since we have the lock this context can't be scheduled
599          * in, so we can change the state safely.
600          */
601         if (event->state == PERF_EVENT_STATE_INACTIVE) {
602                 update_group_times(event);
603                 event->state = PERF_EVENT_STATE_OFF;
604         }
605
606         raw_spin_unlock_irq(&ctx->lock);
607 }
608
609 static int
610 event_sched_in(struct perf_event *event,
611                  struct perf_cpu_context *cpuctx,
612                  struct perf_event_context *ctx)
613 {
614         if (event->state <= PERF_EVENT_STATE_OFF)
615                 return 0;
616
617         event->state = PERF_EVENT_STATE_ACTIVE;
618         event->oncpu = smp_processor_id();
619         /*
620          * The new state must be visible before we turn it on in the hardware:
621          */
622         smp_wmb();
623
624         if (event->pmu->enable(event)) {
625                 event->state = PERF_EVENT_STATE_INACTIVE;
626                 event->oncpu = -1;
627                 return -EAGAIN;
628         }
629
630         event->tstamp_running += ctx->time - event->tstamp_stopped;
631
632         if (!is_software_event(event))
633                 cpuctx->active_oncpu++;
634         ctx->nr_active++;
635
636         if (event->attr.exclusive)
637                 cpuctx->exclusive = 1;
638
639         return 0;
640 }
641
642 static int
643 group_sched_in(struct perf_event *group_event,
644                struct perf_cpu_context *cpuctx,
645                struct perf_event_context *ctx)
646 {
647         struct perf_event *event, *partial_group;
648         int ret;
649
650         if (group_event->state == PERF_EVENT_STATE_OFF)
651                 return 0;
652
653         ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
654         if (ret)
655                 return ret < 0 ? ret : 0;
656
657         if (event_sched_in(group_event, cpuctx, ctx))
658                 return -EAGAIN;
659
660         /*
661          * Schedule in siblings as one group (if any):
662          */
663         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
664                 if (event_sched_in(event, cpuctx, ctx)) {
665                         partial_group = event;
666                         goto group_error;
667                 }
668         }
669
670         return 0;
671
672 group_error:
673         /*
674          * Groups can be scheduled in as one unit only, so undo any
675          * partial group before returning:
676          */
677         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
678                 if (event == partial_group)
679                         break;
680                 event_sched_out(event, cpuctx, ctx);
681         }
682         event_sched_out(group_event, cpuctx, ctx);
683
684         return -EAGAIN;
685 }
686
687 /*
688  * Work out whether we can put this event group on the CPU now.
689  */
690 static int group_can_go_on(struct perf_event *event,
691                            struct perf_cpu_context *cpuctx,
692                            int can_add_hw)
693 {
694         /*
695          * Groups consisting entirely of software events can always go on.
696          */
697         if (event->group_flags & PERF_GROUP_SOFTWARE)
698                 return 1;
699         /*
700          * If an exclusive group is already on, no other hardware
701          * events can go on.
702          */
703         if (cpuctx->exclusive)
704                 return 0;
705         /*
706          * If this group is exclusive and there are already
707          * events on the CPU, it can't go on.
708          */
709         if (event->attr.exclusive && cpuctx->active_oncpu)
710                 return 0;
711         /*
712          * Otherwise, try to add it if all previous groups were able
713          * to go on.
714          */
715         return can_add_hw;
716 }
717
718 static void add_event_to_ctx(struct perf_event *event,
719                                struct perf_event_context *ctx)
720 {
721         list_add_event(event, ctx);
722         event->tstamp_enabled = ctx->time;
723         event->tstamp_running = ctx->time;
724         event->tstamp_stopped = ctx->time;
725 }
726
727 /*
728  * Cross CPU call to install and enable a performance event
729  *
730  * Must be called with ctx->mutex held
731  */
732 static void __perf_install_in_context(void *info)
733 {
734         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
735         struct perf_event *event = info;
736         struct perf_event_context *ctx = event->ctx;
737         struct perf_event *leader = event->group_leader;
738         int err;
739
740         /*
741          * If this is a task context, we need to check whether it is
742          * the current task context of this cpu. If not it has been
743          * scheduled out before the smp call arrived.
744          * Or possibly this is the right context but it isn't
745          * on this cpu because it had no events.
746          */
747         if (ctx->task && cpuctx->task_ctx != ctx) {
748                 if (cpuctx->task_ctx || ctx->task != current)
749                         return;
750                 cpuctx->task_ctx = ctx;
751         }
752
753         raw_spin_lock(&ctx->lock);
754         ctx->is_active = 1;
755         update_context_time(ctx);
756
757         /*
758          * Protect the list operation against NMI by disabling the
759          * events on a global level. NOP for non NMI based events.
760          */
761         perf_disable();
762
763         add_event_to_ctx(event, ctx);
764
765         if (event->cpu != -1 && event->cpu != smp_processor_id())
766                 goto unlock;
767
768         /*
769          * Don't put the event on if it is disabled or if
770          * it is in a group and the group isn't on.
771          */
772         if (event->state != PERF_EVENT_STATE_INACTIVE ||
773             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
774                 goto unlock;
775
776         /*
777          * An exclusive event can't go on if there are already active
778          * hardware events, and no hardware event can go on if there
779          * is already an exclusive event on.
780          */
781         if (!group_can_go_on(event, cpuctx, 1))
782                 err = -EEXIST;
783         else
784                 err = event_sched_in(event, cpuctx, ctx);
785
786         if (err) {
787                 /*
788                  * This event couldn't go on.  If it is in a group
789                  * then we have to pull the whole group off.
790                  * If the event group is pinned then put it in error state.
791                  */
792                 if (leader != event)
793                         group_sched_out(leader, cpuctx, ctx);
794                 if (leader->attr.pinned) {
795                         update_group_times(leader);
796                         leader->state = PERF_EVENT_STATE_ERROR;
797                 }
798         }
799
800         if (!err && !ctx->task && cpuctx->max_pertask)
801                 cpuctx->max_pertask--;
802
803  unlock:
804         perf_enable();
805
806         raw_spin_unlock(&ctx->lock);
807 }
808
809 /*
810  * Attach a performance event to a context
811  *
812  * First we add the event to the list with the hardware enable bit
813  * in event->hw_config cleared.
814  *
815  * If the event is attached to a task which is on a CPU we use a smp
816  * call to enable it in the task context. The task might have been
817  * scheduled away, but we check this in the smp call again.
818  *
819  * Must be called with ctx->mutex held.
820  */
821 static void
822 perf_install_in_context(struct perf_event_context *ctx,
823                         struct perf_event *event,
824                         int cpu)
825 {
826         struct task_struct *task = ctx->task;
827
828         if (!task) {
829                 /*
830                  * Per cpu events are installed via an smp call and
831                  * the install is always successful.
832                  */
833                 smp_call_function_single(cpu, __perf_install_in_context,
834                                          event, 1);
835                 return;
836         }
837
838 retry:
839         task_oncpu_function_call(task, __perf_install_in_context,
840                                  event);
841
842         raw_spin_lock_irq(&ctx->lock);
843         /*
844          * we need to retry the smp call.
845          */
846         if (ctx->is_active && list_empty(&event->group_entry)) {
847                 raw_spin_unlock_irq(&ctx->lock);
848                 goto retry;
849         }
850
851         /*
852          * The lock prevents that this context is scheduled in so we
853          * can add the event safely, if it the call above did not
854          * succeed.
855          */
856         if (list_empty(&event->group_entry))
857                 add_event_to_ctx(event, ctx);
858         raw_spin_unlock_irq(&ctx->lock);
859 }
860
861 /*
862  * Put a event into inactive state and update time fields.
863  * Enabling the leader of a group effectively enables all
864  * the group members that aren't explicitly disabled, so we
865  * have to update their ->tstamp_enabled also.
866  * Note: this works for group members as well as group leaders
867  * since the non-leader members' sibling_lists will be empty.
868  */
869 static void __perf_event_mark_enabled(struct perf_event *event,
870                                         struct perf_event_context *ctx)
871 {
872         struct perf_event *sub;
873
874         event->state = PERF_EVENT_STATE_INACTIVE;
875         event->tstamp_enabled = ctx->time - event->total_time_enabled;
876         list_for_each_entry(sub, &event->sibling_list, group_entry)
877                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
878                         sub->tstamp_enabled =
879                                 ctx->time - sub->total_time_enabled;
880 }
881
882 /*
883  * Cross CPU call to enable a performance event
884  */
885 static void __perf_event_enable(void *info)
886 {
887         struct perf_event *event = info;
888         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
889         struct perf_event_context *ctx = event->ctx;
890         struct perf_event *leader = event->group_leader;
891         int err;
892
893         /*
894          * If this is a per-task event, need to check whether this
895          * event's task is the current task on this cpu.
896          */
897         if (ctx->task && cpuctx->task_ctx != ctx) {
898                 if (cpuctx->task_ctx || ctx->task != current)
899                         return;
900                 cpuctx->task_ctx = ctx;
901         }
902
903         raw_spin_lock(&ctx->lock);
904         ctx->is_active = 1;
905         update_context_time(ctx);
906
907         if (event->state >= PERF_EVENT_STATE_INACTIVE)
908                 goto unlock;
909         __perf_event_mark_enabled(event, ctx);
910
911         if (event->cpu != -1 && event->cpu != smp_processor_id())
912                 goto unlock;
913
914         /*
915          * If the event is in a group and isn't the group leader,
916          * then don't put it on unless the group is on.
917          */
918         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
919                 goto unlock;
920
921         if (!group_can_go_on(event, cpuctx, 1)) {
922                 err = -EEXIST;
923         } else {
924                 perf_disable();
925                 if (event == leader)
926                         err = group_sched_in(event, cpuctx, ctx);
927                 else
928                         err = event_sched_in(event, cpuctx, ctx);
929                 perf_enable();
930         }
931
932         if (err) {
933                 /*
934                  * If this event can't go on and it's part of a
935                  * group, then the whole group has to come off.
936                  */
937                 if (leader != event)
938                         group_sched_out(leader, cpuctx, ctx);
939                 if (leader->attr.pinned) {
940                         update_group_times(leader);
941                         leader->state = PERF_EVENT_STATE_ERROR;
942                 }
943         }
944
945  unlock:
946         raw_spin_unlock(&ctx->lock);
947 }
948
949 /*
950  * Enable a event.
951  *
952  * If event->ctx is a cloned context, callers must make sure that
953  * every task struct that event->ctx->task could possibly point to
954  * remains valid.  This condition is satisfied when called through
955  * perf_event_for_each_child or perf_event_for_each as described
956  * for perf_event_disable.
957  */
958 void perf_event_enable(struct perf_event *event)
959 {
960         struct perf_event_context *ctx = event->ctx;
961         struct task_struct *task = ctx->task;
962
963         if (!task) {
964                 /*
965                  * Enable the event on the cpu that it's on
966                  */
967                 smp_call_function_single(event->cpu, __perf_event_enable,
968                                          event, 1);
969                 return;
970         }
971
972         raw_spin_lock_irq(&ctx->lock);
973         if (event->state >= PERF_EVENT_STATE_INACTIVE)
974                 goto out;
975
976         /*
977          * If the event is in error state, clear that first.
978          * That way, if we see the event in error state below, we
979          * know that it has gone back into error state, as distinct
980          * from the task having been scheduled away before the
981          * cross-call arrived.
982          */
983         if (event->state == PERF_EVENT_STATE_ERROR)
984                 event->state = PERF_EVENT_STATE_OFF;
985
986  retry:
987         raw_spin_unlock_irq(&ctx->lock);
988         task_oncpu_function_call(task, __perf_event_enable, event);
989
990         raw_spin_lock_irq(&ctx->lock);
991
992         /*
993          * If the context is active and the event is still off,
994          * we need to retry the cross-call.
995          */
996         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
997                 goto retry;
998
999         /*
1000          * Since we have the lock this context can't be scheduled
1001          * in, so we can change the state safely.
1002          */
1003         if (event->state == PERF_EVENT_STATE_OFF)
1004                 __perf_event_mark_enabled(event, ctx);
1005
1006  out:
1007         raw_spin_unlock_irq(&ctx->lock);
1008 }
1009
1010 static int perf_event_refresh(struct perf_event *event, int refresh)
1011 {
1012         /*
1013          * not supported on inherited events
1014          */
1015         if (event->attr.inherit)
1016                 return -EINVAL;
1017
1018         atomic_add(refresh, &event->event_limit);
1019         perf_event_enable(event);
1020
1021         return 0;
1022 }
1023
1024 enum event_type_t {
1025         EVENT_FLEXIBLE = 0x1,
1026         EVENT_PINNED = 0x2,
1027         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1028 };
1029
1030 static void ctx_sched_out(struct perf_event_context *ctx,
1031                           struct perf_cpu_context *cpuctx,
1032                           enum event_type_t event_type)
1033 {
1034         struct perf_event *event;
1035
1036         raw_spin_lock(&ctx->lock);
1037         ctx->is_active = 0;
1038         if (likely(!ctx->nr_events))
1039                 goto out;
1040         update_context_time(ctx);
1041
1042         perf_disable();
1043         if (!ctx->nr_active)
1044                 goto out_enable;
1045
1046         if (event_type & EVENT_PINNED)
1047                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1048                         group_sched_out(event, cpuctx, ctx);
1049
1050         if (event_type & EVENT_FLEXIBLE)
1051                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1052                         group_sched_out(event, cpuctx, ctx);
1053
1054  out_enable:
1055         perf_enable();
1056  out:
1057         raw_spin_unlock(&ctx->lock);
1058 }
1059
1060 /*
1061  * Test whether two contexts are equivalent, i.e. whether they
1062  * have both been cloned from the same version of the same context
1063  * and they both have the same number of enabled events.
1064  * If the number of enabled events is the same, then the set
1065  * of enabled events should be the same, because these are both
1066  * inherited contexts, therefore we can't access individual events
1067  * in them directly with an fd; we can only enable/disable all
1068  * events via prctl, or enable/disable all events in a family
1069  * via ioctl, which will have the same effect on both contexts.
1070  */
1071 static int context_equiv(struct perf_event_context *ctx1,
1072                          struct perf_event_context *ctx2)
1073 {
1074         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1075                 && ctx1->parent_gen == ctx2->parent_gen
1076                 && !ctx1->pin_count && !ctx2->pin_count;
1077 }
1078
1079 static void __perf_event_sync_stat(struct perf_event *event,
1080                                      struct perf_event *next_event)
1081 {
1082         u64 value;
1083
1084         if (!event->attr.inherit_stat)
1085                 return;
1086
1087         /*
1088          * Update the event value, we cannot use perf_event_read()
1089          * because we're in the middle of a context switch and have IRQs
1090          * disabled, which upsets smp_call_function_single(), however
1091          * we know the event must be on the current CPU, therefore we
1092          * don't need to use it.
1093          */
1094         switch (event->state) {
1095         case PERF_EVENT_STATE_ACTIVE:
1096                 event->pmu->read(event);
1097                 /* fall-through */
1098
1099         case PERF_EVENT_STATE_INACTIVE:
1100                 update_event_times(event);
1101                 break;
1102
1103         default:
1104                 break;
1105         }
1106
1107         /*
1108          * In order to keep per-task stats reliable we need to flip the event
1109          * values when we flip the contexts.
1110          */
1111         value = atomic64_read(&next_event->count);
1112         value = atomic64_xchg(&event->count, value);
1113         atomic64_set(&next_event->count, value);
1114
1115         swap(event->total_time_enabled, next_event->total_time_enabled);
1116         swap(event->total_time_running, next_event->total_time_running);
1117
1118         /*
1119          * Since we swizzled the values, update the user visible data too.
1120          */
1121         perf_event_update_userpage(event);
1122         perf_event_update_userpage(next_event);
1123 }
1124
1125 #define list_next_entry(pos, member) \
1126         list_entry(pos->member.next, typeof(*pos), member)
1127
1128 static void perf_event_sync_stat(struct perf_event_context *ctx,
1129                                    struct perf_event_context *next_ctx)
1130 {
1131         struct perf_event *event, *next_event;
1132
1133         if (!ctx->nr_stat)
1134                 return;
1135
1136         update_context_time(ctx);
1137
1138         event = list_first_entry(&ctx->event_list,
1139                                    struct perf_event, event_entry);
1140
1141         next_event = list_first_entry(&next_ctx->event_list,
1142                                         struct perf_event, event_entry);
1143
1144         while (&event->event_entry != &ctx->event_list &&
1145                &next_event->event_entry != &next_ctx->event_list) {
1146
1147                 __perf_event_sync_stat(event, next_event);
1148
1149                 event = list_next_entry(event, event_entry);
1150                 next_event = list_next_entry(next_event, event_entry);
1151         }
1152 }
1153
1154 /*
1155  * Called from scheduler to remove the events of the current task,
1156  * with interrupts disabled.
1157  *
1158  * We stop each event and update the event value in event->count.
1159  *
1160  * This does not protect us against NMI, but disable()
1161  * sets the disabled bit in the control field of event _before_
1162  * accessing the event control register. If a NMI hits, then it will
1163  * not restart the event.
1164  */
1165 void perf_event_task_sched_out(struct task_struct *task,
1166                                  struct task_struct *next)
1167 {
1168         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1169         struct perf_event_context *ctx = task->perf_event_ctxp;
1170         struct perf_event_context *next_ctx;
1171         struct perf_event_context *parent;
1172         int do_switch = 1;
1173
1174         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1175
1176         if (likely(!ctx || !cpuctx->task_ctx))
1177                 return;
1178
1179         rcu_read_lock();
1180         parent = rcu_dereference(ctx->parent_ctx);
1181         next_ctx = next->perf_event_ctxp;
1182         if (parent && next_ctx &&
1183             rcu_dereference(next_ctx->parent_ctx) == parent) {
1184                 /*
1185                  * Looks like the two contexts are clones, so we might be
1186                  * able to optimize the context switch.  We lock both
1187                  * contexts and check that they are clones under the
1188                  * lock (including re-checking that neither has been
1189                  * uncloned in the meantime).  It doesn't matter which
1190                  * order we take the locks because no other cpu could
1191                  * be trying to lock both of these tasks.
1192                  */
1193                 raw_spin_lock(&ctx->lock);
1194                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1195                 if (context_equiv(ctx, next_ctx)) {
1196                         /*
1197                          * XXX do we need a memory barrier of sorts
1198                          * wrt to rcu_dereference() of perf_event_ctxp
1199                          */
1200                         task->perf_event_ctxp = next_ctx;
1201                         next->perf_event_ctxp = ctx;
1202                         ctx->task = next;
1203                         next_ctx->task = task;
1204                         do_switch = 0;
1205
1206                         perf_event_sync_stat(ctx, next_ctx);
1207                 }
1208                 raw_spin_unlock(&next_ctx->lock);
1209                 raw_spin_unlock(&ctx->lock);
1210         }
1211         rcu_read_unlock();
1212
1213         if (do_switch) {
1214                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1215                 cpuctx->task_ctx = NULL;
1216         }
1217 }
1218
1219 static void task_ctx_sched_out(struct perf_event_context *ctx,
1220                                enum event_type_t event_type)
1221 {
1222         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1223
1224         if (!cpuctx->task_ctx)
1225                 return;
1226
1227         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1228                 return;
1229
1230         ctx_sched_out(ctx, cpuctx, event_type);
1231         cpuctx->task_ctx = NULL;
1232 }
1233
1234 /*
1235  * Called with IRQs disabled
1236  */
1237 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1238 {
1239         task_ctx_sched_out(ctx, EVENT_ALL);
1240 }
1241
1242 /*
1243  * Called with IRQs disabled
1244  */
1245 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1246                               enum event_type_t event_type)
1247 {
1248         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1249 }
1250
1251 static void
1252 ctx_pinned_sched_in(struct perf_event_context *ctx,
1253                     struct perf_cpu_context *cpuctx)
1254 {
1255         struct perf_event *event;
1256
1257         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1258                 if (event->state <= PERF_EVENT_STATE_OFF)
1259                         continue;
1260                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1261                         continue;
1262
1263                 if (group_can_go_on(event, cpuctx, 1))
1264                         group_sched_in(event, cpuctx, ctx);
1265
1266                 /*
1267                  * If this pinned group hasn't been scheduled,
1268                  * put it in error state.
1269                  */
1270                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1271                         update_group_times(event);
1272                         event->state = PERF_EVENT_STATE_ERROR;
1273                 }
1274         }
1275 }
1276
1277 static void
1278 ctx_flexible_sched_in(struct perf_event_context *ctx,
1279                       struct perf_cpu_context *cpuctx)
1280 {
1281         struct perf_event *event;
1282         int can_add_hw = 1;
1283
1284         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1285                 /* Ignore events in OFF or ERROR state */
1286                 if (event->state <= PERF_EVENT_STATE_OFF)
1287                         continue;
1288                 /*
1289                  * Listen to the 'cpu' scheduling filter constraint
1290                  * of events:
1291                  */
1292                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1293                         continue;
1294
1295                 if (group_can_go_on(event, cpuctx, can_add_hw))
1296                         if (group_sched_in(event, cpuctx, ctx))
1297                                 can_add_hw = 0;
1298         }
1299 }
1300
1301 static void
1302 ctx_sched_in(struct perf_event_context *ctx,
1303              struct perf_cpu_context *cpuctx,
1304              enum event_type_t event_type)
1305 {
1306         raw_spin_lock(&ctx->lock);
1307         ctx->is_active = 1;
1308         if (likely(!ctx->nr_events))
1309                 goto out;
1310
1311         ctx->timestamp = perf_clock();
1312
1313         perf_disable();
1314
1315         /*
1316          * First go through the list and put on any pinned groups
1317          * in order to give them the best chance of going on.
1318          */
1319         if (event_type & EVENT_PINNED)
1320                 ctx_pinned_sched_in(ctx, cpuctx);
1321
1322         /* Then walk through the lower prio flexible groups */
1323         if (event_type & EVENT_FLEXIBLE)
1324                 ctx_flexible_sched_in(ctx, cpuctx);
1325
1326         perf_enable();
1327  out:
1328         raw_spin_unlock(&ctx->lock);
1329 }
1330
1331 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1332                              enum event_type_t event_type)
1333 {
1334         struct perf_event_context *ctx = &cpuctx->ctx;
1335
1336         ctx_sched_in(ctx, cpuctx, event_type);
1337 }
1338
1339 static void task_ctx_sched_in(struct task_struct *task,
1340                               enum event_type_t event_type)
1341 {
1342         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1343         struct perf_event_context *ctx = task->perf_event_ctxp;
1344
1345         if (likely(!ctx))
1346                 return;
1347         if (cpuctx->task_ctx == ctx)
1348                 return;
1349         ctx_sched_in(ctx, cpuctx, event_type);
1350         cpuctx->task_ctx = ctx;
1351 }
1352 /*
1353  * Called from scheduler to add the events of the current task
1354  * with interrupts disabled.
1355  *
1356  * We restore the event value and then enable it.
1357  *
1358  * This does not protect us against NMI, but enable()
1359  * sets the enabled bit in the control field of event _before_
1360  * accessing the event control register. If a NMI hits, then it will
1361  * keep the event running.
1362  */
1363 void perf_event_task_sched_in(struct task_struct *task)
1364 {
1365         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1366         struct perf_event_context *ctx = task->perf_event_ctxp;
1367
1368         if (likely(!ctx))
1369                 return;
1370
1371         if (cpuctx->task_ctx == ctx)
1372                 return;
1373
1374         perf_disable();
1375
1376         /*
1377          * We want to keep the following priority order:
1378          * cpu pinned (that don't need to move), task pinned,
1379          * cpu flexible, task flexible.
1380          */
1381         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1382
1383         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1384         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1385         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1386
1387         cpuctx->task_ctx = ctx;
1388
1389         perf_enable();
1390 }
1391
1392 #define MAX_INTERRUPTS (~0ULL)
1393
1394 static void perf_log_throttle(struct perf_event *event, int enable);
1395
1396 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1397 {
1398         u64 frequency = event->attr.sample_freq;
1399         u64 sec = NSEC_PER_SEC;
1400         u64 divisor, dividend;
1401
1402         int count_fls, nsec_fls, frequency_fls, sec_fls;
1403
1404         count_fls = fls64(count);
1405         nsec_fls = fls64(nsec);
1406         frequency_fls = fls64(frequency);
1407         sec_fls = 30;
1408
1409         /*
1410          * We got @count in @nsec, with a target of sample_freq HZ
1411          * the target period becomes:
1412          *
1413          *             @count * 10^9
1414          * period = -------------------
1415          *          @nsec * sample_freq
1416          *
1417          */
1418
1419         /*
1420          * Reduce accuracy by one bit such that @a and @b converge
1421          * to a similar magnitude.
1422          */
1423 #define REDUCE_FLS(a, b)                \
1424 do {                                    \
1425         if (a##_fls > b##_fls) {        \
1426                 a >>= 1;                \
1427                 a##_fls--;              \
1428         } else {                        \
1429                 b >>= 1;                \
1430                 b##_fls--;              \
1431         }                               \
1432 } while (0)
1433
1434         /*
1435          * Reduce accuracy until either term fits in a u64, then proceed with
1436          * the other, so that finally we can do a u64/u64 division.
1437          */
1438         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1439                 REDUCE_FLS(nsec, frequency);
1440                 REDUCE_FLS(sec, count);
1441         }
1442
1443         if (count_fls + sec_fls > 64) {
1444                 divisor = nsec * frequency;
1445
1446                 while (count_fls + sec_fls > 64) {
1447                         REDUCE_FLS(count, sec);
1448                         divisor >>= 1;
1449                 }
1450
1451                 dividend = count * sec;
1452         } else {
1453                 dividend = count * sec;
1454
1455                 while (nsec_fls + frequency_fls > 64) {
1456                         REDUCE_FLS(nsec, frequency);
1457                         dividend >>= 1;
1458                 }
1459
1460                 divisor = nsec * frequency;
1461         }
1462
1463         return div64_u64(dividend, divisor);
1464 }
1465
1466 static void perf_event_stop(struct perf_event *event)
1467 {
1468         if (!event->pmu->stop)
1469                 return event->pmu->disable(event);
1470
1471         return event->pmu->stop(event);
1472 }
1473
1474 static int perf_event_start(struct perf_event *event)
1475 {
1476         if (!event->pmu->start)
1477                 return event->pmu->enable(event);
1478
1479         return event->pmu->start(event);
1480 }
1481
1482 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1483 {
1484         struct hw_perf_event *hwc = &event->hw;
1485         u64 period, sample_period;
1486         s64 delta;
1487
1488         period = perf_calculate_period(event, nsec, count);
1489
1490         delta = (s64)(period - hwc->sample_period);
1491         delta = (delta + 7) / 8; /* low pass filter */
1492
1493         sample_period = hwc->sample_period + delta;
1494
1495         if (!sample_period)
1496                 sample_period = 1;
1497
1498         hwc->sample_period = sample_period;
1499
1500         if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1501                 perf_disable();
1502                 perf_event_stop(event);
1503                 atomic64_set(&hwc->period_left, 0);
1504                 perf_event_start(event);
1505                 perf_enable();
1506         }
1507 }
1508
1509 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1510 {
1511         struct perf_event *event;
1512         struct hw_perf_event *hwc;
1513         u64 interrupts, now;
1514         s64 delta;
1515
1516         raw_spin_lock(&ctx->lock);
1517         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1518                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1519                         continue;
1520
1521                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1522                         continue;
1523
1524                 hwc = &event->hw;
1525
1526                 interrupts = hwc->interrupts;
1527                 hwc->interrupts = 0;
1528
1529                 /*
1530                  * unthrottle events on the tick
1531                  */
1532                 if (interrupts == MAX_INTERRUPTS) {
1533                         perf_log_throttle(event, 1);
1534                         perf_disable();
1535                         event->pmu->unthrottle(event);
1536                         perf_enable();
1537                 }
1538
1539                 if (!event->attr.freq || !event->attr.sample_freq)
1540                         continue;
1541
1542                 perf_disable();
1543                 event->pmu->read(event);
1544                 now = atomic64_read(&event->count);
1545                 delta = now - hwc->freq_count_stamp;
1546                 hwc->freq_count_stamp = now;
1547
1548                 if (delta > 0)
1549                         perf_adjust_period(event, TICK_NSEC, delta);
1550                 perf_enable();
1551         }
1552         raw_spin_unlock(&ctx->lock);
1553 }
1554
1555 /*
1556  * Round-robin a context's events:
1557  */
1558 static void rotate_ctx(struct perf_event_context *ctx)
1559 {
1560         raw_spin_lock(&ctx->lock);
1561
1562         /* Rotate the first entry last of non-pinned groups */
1563         list_rotate_left(&ctx->flexible_groups);
1564
1565         raw_spin_unlock(&ctx->lock);
1566 }
1567
1568 void perf_event_task_tick(struct task_struct *curr)
1569 {
1570         struct perf_cpu_context *cpuctx;
1571         struct perf_event_context *ctx;
1572         int rotate = 0;
1573
1574         if (!atomic_read(&nr_events))
1575                 return;
1576
1577         cpuctx = &__get_cpu_var(perf_cpu_context);
1578         if (cpuctx->ctx.nr_events &&
1579             cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1580                 rotate = 1;
1581
1582         ctx = curr->perf_event_ctxp;
1583         if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1584                 rotate = 1;
1585
1586         perf_ctx_adjust_freq(&cpuctx->ctx);
1587         if (ctx)
1588                 perf_ctx_adjust_freq(ctx);
1589
1590         if (!rotate)
1591                 return;
1592
1593         perf_disable();
1594         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1595         if (ctx)
1596                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1597
1598         rotate_ctx(&cpuctx->ctx);
1599         if (ctx)
1600                 rotate_ctx(ctx);
1601
1602         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1603         if (ctx)
1604                 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1605         perf_enable();
1606 }
1607
1608 static int event_enable_on_exec(struct perf_event *event,
1609                                 struct perf_event_context *ctx)
1610 {
1611         if (!event->attr.enable_on_exec)
1612                 return 0;
1613
1614         event->attr.enable_on_exec = 0;
1615         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1616                 return 0;
1617
1618         __perf_event_mark_enabled(event, ctx);
1619
1620         return 1;
1621 }
1622
1623 /*
1624  * Enable all of a task's events that have been marked enable-on-exec.
1625  * This expects task == current.
1626  */
1627 static void perf_event_enable_on_exec(struct task_struct *task)
1628 {
1629         struct perf_event_context *ctx;
1630         struct perf_event *event;
1631         unsigned long flags;
1632         int enabled = 0;
1633         int ret;
1634
1635         local_irq_save(flags);
1636         ctx = task->perf_event_ctxp;
1637         if (!ctx || !ctx->nr_events)
1638                 goto out;
1639
1640         __perf_event_task_sched_out(ctx);
1641
1642         raw_spin_lock(&ctx->lock);
1643
1644         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1645                 ret = event_enable_on_exec(event, ctx);
1646                 if (ret)
1647                         enabled = 1;
1648         }
1649
1650         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1651                 ret = event_enable_on_exec(event, ctx);
1652                 if (ret)
1653                         enabled = 1;
1654         }
1655
1656         /*
1657          * Unclone this context if we enabled any event.
1658          */
1659         if (enabled)
1660                 unclone_ctx(ctx);
1661
1662         raw_spin_unlock(&ctx->lock);
1663
1664         perf_event_task_sched_in(task);
1665  out:
1666         local_irq_restore(flags);
1667 }
1668
1669 /*
1670  * Cross CPU call to read the hardware event
1671  */
1672 static void __perf_event_read(void *info)
1673 {
1674         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1675         struct perf_event *event = info;
1676         struct perf_event_context *ctx = event->ctx;
1677
1678         /*
1679          * If this is a task context, we need to check whether it is
1680          * the current task context of this cpu.  If not it has been
1681          * scheduled out before the smp call arrived.  In that case
1682          * event->count would have been updated to a recent sample
1683          * when the event was scheduled out.
1684          */
1685         if (ctx->task && cpuctx->task_ctx != ctx)
1686                 return;
1687
1688         raw_spin_lock(&ctx->lock);
1689         update_context_time(ctx);
1690         update_event_times(event);
1691         raw_spin_unlock(&ctx->lock);
1692
1693         event->pmu->read(event);
1694 }
1695
1696 static u64 perf_event_read(struct perf_event *event)
1697 {
1698         /*
1699          * If event is enabled and currently active on a CPU, update the
1700          * value in the event structure:
1701          */
1702         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1703                 smp_call_function_single(event->oncpu,
1704                                          __perf_event_read, event, 1);
1705         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1706                 struct perf_event_context *ctx = event->ctx;
1707                 unsigned long flags;
1708
1709                 raw_spin_lock_irqsave(&ctx->lock, flags);
1710                 update_context_time(ctx);
1711                 update_event_times(event);
1712                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1713         }
1714
1715         return atomic64_read(&event->count);
1716 }
1717
1718 /*
1719  * Initialize the perf_event context in a task_struct:
1720  */
1721 static void
1722 __perf_event_init_context(struct perf_event_context *ctx,
1723                             struct task_struct *task)
1724 {
1725         raw_spin_lock_init(&ctx->lock);
1726         mutex_init(&ctx->mutex);
1727         INIT_LIST_HEAD(&ctx->pinned_groups);
1728         INIT_LIST_HEAD(&ctx->flexible_groups);
1729         INIT_LIST_HEAD(&ctx->event_list);
1730         atomic_set(&ctx->refcount, 1);
1731         ctx->task = task;
1732 }
1733
1734 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1735 {
1736         struct perf_event_context *ctx;
1737         struct perf_cpu_context *cpuctx;
1738         struct task_struct *task;
1739         unsigned long flags;
1740         int err;
1741
1742         if (pid == -1 && cpu != -1) {
1743                 /* Must be root to operate on a CPU event: */
1744                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1745                         return ERR_PTR(-EACCES);
1746
1747                 if (cpu < 0 || cpu >= nr_cpumask_bits)
1748                         return ERR_PTR(-EINVAL);
1749
1750                 /*
1751                  * We could be clever and allow to attach a event to an
1752                  * offline CPU and activate it when the CPU comes up, but
1753                  * that's for later.
1754                  */
1755                 if (!cpu_online(cpu))
1756                         return ERR_PTR(-ENODEV);
1757
1758                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1759                 ctx = &cpuctx->ctx;
1760                 get_ctx(ctx);
1761
1762                 return ctx;
1763         }
1764
1765         rcu_read_lock();
1766         if (!pid)
1767                 task = current;
1768         else
1769                 task = find_task_by_vpid(pid);
1770         if (task)
1771                 get_task_struct(task);
1772         rcu_read_unlock();
1773
1774         if (!task)
1775                 return ERR_PTR(-ESRCH);
1776
1777         /*
1778          * Can't attach events to a dying task.
1779          */
1780         err = -ESRCH;
1781         if (task->flags & PF_EXITING)
1782                 goto errout;
1783
1784         /* Reuse ptrace permission checks for now. */
1785         err = -EACCES;
1786         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1787                 goto errout;
1788
1789  retry:
1790         ctx = perf_lock_task_context(task, &flags);
1791         if (ctx) {
1792                 unclone_ctx(ctx);
1793                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1794         }
1795
1796         if (!ctx) {
1797                 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1798                 err = -ENOMEM;
1799                 if (!ctx)
1800                         goto errout;
1801                 __perf_event_init_context(ctx, task);
1802                 get_ctx(ctx);
1803                 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1804                         /*
1805                          * We raced with some other task; use
1806                          * the context they set.
1807                          */
1808                         kfree(ctx);
1809                         goto retry;
1810                 }
1811                 get_task_struct(task);
1812         }
1813
1814         put_task_struct(task);
1815         return ctx;
1816
1817  errout:
1818         put_task_struct(task);
1819         return ERR_PTR(err);
1820 }
1821
1822 static void perf_event_free_filter(struct perf_event *event);
1823
1824 static void free_event_rcu(struct rcu_head *head)
1825 {
1826         struct perf_event *event;
1827
1828         event = container_of(head, struct perf_event, rcu_head);
1829         if (event->ns)
1830                 put_pid_ns(event->ns);
1831         perf_event_free_filter(event);
1832         kfree(event);
1833 }
1834
1835 static void perf_pending_sync(struct perf_event *event);
1836
1837 static void free_event(struct perf_event *event)
1838 {
1839         perf_pending_sync(event);
1840
1841         if (!event->parent) {
1842                 atomic_dec(&nr_events);
1843                 if (event->attr.mmap)
1844                         atomic_dec(&nr_mmap_events);
1845                 if (event->attr.comm)
1846                         atomic_dec(&nr_comm_events);
1847                 if (event->attr.task)
1848                         atomic_dec(&nr_task_events);
1849         }
1850
1851         if (event->output) {
1852                 fput(event->output->filp);
1853                 event->output = NULL;
1854         }
1855
1856         if (event->destroy)
1857                 event->destroy(event);
1858
1859         put_ctx(event->ctx);
1860         call_rcu(&event->rcu_head, free_event_rcu);
1861 }
1862
1863 int perf_event_release_kernel(struct perf_event *event)
1864 {
1865         struct perf_event_context *ctx = event->ctx;
1866
1867         event->state = PERF_EVENT_STATE_FREE;
1868
1869         WARN_ON_ONCE(ctx->parent_ctx);
1870         mutex_lock(&ctx->mutex);
1871         perf_event_remove_from_context(event);
1872         mutex_unlock(&ctx->mutex);
1873
1874         mutex_lock(&event->owner->perf_event_mutex);
1875         list_del_init(&event->owner_entry);
1876         mutex_unlock(&event->owner->perf_event_mutex);
1877         put_task_struct(event->owner);
1878
1879         free_event(event);
1880
1881         return 0;
1882 }
1883 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1884
1885 /*
1886  * Called when the last reference to the file is gone.
1887  */
1888 static int perf_release(struct inode *inode, struct file *file)
1889 {
1890         struct perf_event *event = file->private_data;
1891
1892         file->private_data = NULL;
1893
1894         return perf_event_release_kernel(event);
1895 }
1896
1897 static int perf_event_read_size(struct perf_event *event)
1898 {
1899         int entry = sizeof(u64); /* value */
1900         int size = 0;
1901         int nr = 1;
1902
1903         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1904                 size += sizeof(u64);
1905
1906         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1907                 size += sizeof(u64);
1908
1909         if (event->attr.read_format & PERF_FORMAT_ID)
1910                 entry += sizeof(u64);
1911
1912         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1913                 nr += event->group_leader->nr_siblings;
1914                 size += sizeof(u64);
1915         }
1916
1917         size += entry * nr;
1918
1919         return size;
1920 }
1921
1922 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1923 {
1924         struct perf_event *child;
1925         u64 total = 0;
1926
1927         *enabled = 0;
1928         *running = 0;
1929
1930         mutex_lock(&event->child_mutex);
1931         total += perf_event_read(event);
1932         *enabled += event->total_time_enabled +
1933                         atomic64_read(&event->child_total_time_enabled);
1934         *running += event->total_time_running +
1935                         atomic64_read(&event->child_total_time_running);
1936
1937         list_for_each_entry(child, &event->child_list, child_list) {
1938                 total += perf_event_read(child);
1939                 *enabled += child->total_time_enabled;
1940                 *running += child->total_time_running;
1941         }
1942         mutex_unlock(&event->child_mutex);
1943
1944         return total;
1945 }
1946 EXPORT_SYMBOL_GPL(perf_event_read_value);
1947
1948 static int perf_event_read_group(struct perf_event *event,
1949                                    u64 read_format, char __user *buf)
1950 {
1951         struct perf_event *leader = event->group_leader, *sub;
1952         int n = 0, size = 0, ret = -EFAULT;
1953         struct perf_event_context *ctx = leader->ctx;
1954         u64 values[5];
1955         u64 count, enabled, running;
1956
1957         mutex_lock(&ctx->mutex);
1958         count = perf_event_read_value(leader, &enabled, &running);
1959
1960         values[n++] = 1 + leader->nr_siblings;
1961         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1962                 values[n++] = enabled;
1963         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1964                 values[n++] = running;
1965         values[n++] = count;
1966         if (read_format & PERF_FORMAT_ID)
1967                 values[n++] = primary_event_id(leader);
1968
1969         size = n * sizeof(u64);
1970
1971         if (copy_to_user(buf, values, size))
1972                 goto unlock;
1973
1974         ret = size;
1975
1976         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1977                 n = 0;
1978
1979                 values[n++] = perf_event_read_value(sub, &enabled, &running);
1980                 if (read_format & PERF_FORMAT_ID)
1981                         values[n++] = primary_event_id(sub);
1982
1983                 size = n * sizeof(u64);
1984
1985                 if (copy_to_user(buf + ret, values, size)) {
1986                         ret = -EFAULT;
1987                         goto unlock;
1988                 }
1989
1990                 ret += size;
1991         }
1992 unlock:
1993         mutex_unlock(&ctx->mutex);
1994
1995         return ret;
1996 }
1997
1998 static int perf_event_read_one(struct perf_event *event,
1999                                  u64 read_format, char __user *buf)
2000 {
2001         u64 enabled, running;
2002         u64 values[4];
2003         int n = 0;
2004
2005         values[n++] = perf_event_read_value(event, &enabled, &running);
2006         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2007                 values[n++] = enabled;
2008         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2009                 values[n++] = running;
2010         if (read_format & PERF_FORMAT_ID)
2011                 values[n++] = primary_event_id(event);
2012
2013         if (copy_to_user(buf, values, n * sizeof(u64)))
2014                 return -EFAULT;
2015
2016         return n * sizeof(u64);
2017 }
2018
2019 /*
2020  * Read the performance event - simple non blocking version for now
2021  */
2022 static ssize_t
2023 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2024 {
2025         u64 read_format = event->attr.read_format;
2026         int ret;
2027
2028         /*
2029          * Return end-of-file for a read on a event that is in
2030          * error state (i.e. because it was pinned but it couldn't be
2031          * scheduled on to the CPU at some point).
2032          */
2033         if (event->state == PERF_EVENT_STATE_ERROR)
2034                 return 0;
2035
2036         if (count < perf_event_read_size(event))
2037                 return -ENOSPC;
2038
2039         WARN_ON_ONCE(event->ctx->parent_ctx);
2040         if (read_format & PERF_FORMAT_GROUP)
2041                 ret = perf_event_read_group(event, read_format, buf);
2042         else
2043                 ret = perf_event_read_one(event, read_format, buf);
2044
2045         return ret;
2046 }
2047
2048 static ssize_t
2049 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2050 {
2051         struct perf_event *event = file->private_data;
2052
2053         return perf_read_hw(event, buf, count);
2054 }
2055
2056 static unsigned int perf_poll(struct file *file, poll_table *wait)
2057 {
2058         struct perf_event *event = file->private_data;
2059         struct perf_mmap_data *data;
2060         unsigned int events = POLL_HUP;
2061
2062         rcu_read_lock();
2063         data = rcu_dereference(event->data);
2064         if (data)
2065                 events = atomic_xchg(&data->poll, 0);
2066         rcu_read_unlock();
2067
2068         poll_wait(file, &event->waitq, wait);
2069
2070         return events;
2071 }
2072
2073 static void perf_event_reset(struct perf_event *event)
2074 {
2075         (void)perf_event_read(event);
2076         atomic64_set(&event->count, 0);
2077         perf_event_update_userpage(event);
2078 }
2079
2080 /*
2081  * Holding the top-level event's child_mutex means that any
2082  * descendant process that has inherited this event will block
2083  * in sync_child_event if it goes to exit, thus satisfying the
2084  * task existence requirements of perf_event_enable/disable.
2085  */
2086 static void perf_event_for_each_child(struct perf_event *event,
2087                                         void (*func)(struct perf_event *))
2088 {
2089         struct perf_event *child;
2090
2091         WARN_ON_ONCE(event->ctx->parent_ctx);
2092         mutex_lock(&event->child_mutex);
2093         func(event);
2094         list_for_each_entry(child, &event->child_list, child_list)
2095                 func(child);
2096         mutex_unlock(&event->child_mutex);
2097 }
2098
2099 static void perf_event_for_each(struct perf_event *event,
2100                                   void (*func)(struct perf_event *))
2101 {
2102         struct perf_event_context *ctx = event->ctx;
2103         struct perf_event *sibling;
2104
2105         WARN_ON_ONCE(ctx->parent_ctx);
2106         mutex_lock(&ctx->mutex);
2107         event = event->group_leader;
2108
2109         perf_event_for_each_child(event, func);
2110         func(event);
2111         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2112                 perf_event_for_each_child(event, func);
2113         mutex_unlock(&ctx->mutex);
2114 }
2115
2116 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2117 {
2118         struct perf_event_context *ctx = event->ctx;
2119         unsigned long size;
2120         int ret = 0;
2121         u64 value;
2122
2123         if (!event->attr.sample_period)
2124                 return -EINVAL;
2125
2126         size = copy_from_user(&value, arg, sizeof(value));
2127         if (size != sizeof(value))
2128                 return -EFAULT;
2129
2130         if (!value)
2131                 return -EINVAL;
2132
2133         raw_spin_lock_irq(&ctx->lock);
2134         if (event->attr.freq) {
2135                 if (value > sysctl_perf_event_sample_rate) {
2136                         ret = -EINVAL;
2137                         goto unlock;
2138                 }
2139
2140                 event->attr.sample_freq = value;
2141         } else {
2142                 event->attr.sample_period = value;
2143                 event->hw.sample_period = value;
2144         }
2145 unlock:
2146         raw_spin_unlock_irq(&ctx->lock);
2147
2148         return ret;
2149 }
2150
2151 static int perf_event_set_output(struct perf_event *event, int output_fd);
2152 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2153
2154 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2155 {
2156         struct perf_event *event = file->private_data;
2157         void (*func)(struct perf_event *);
2158         u32 flags = arg;
2159
2160         switch (cmd) {
2161         case PERF_EVENT_IOC_ENABLE:
2162                 func = perf_event_enable;
2163                 break;
2164         case PERF_EVENT_IOC_DISABLE:
2165                 func = perf_event_disable;
2166                 break;
2167         case PERF_EVENT_IOC_RESET:
2168                 func = perf_event_reset;
2169                 break;
2170
2171         case PERF_EVENT_IOC_REFRESH:
2172                 return perf_event_refresh(event, arg);
2173
2174         case PERF_EVENT_IOC_PERIOD:
2175                 return perf_event_period(event, (u64 __user *)arg);
2176
2177         case PERF_EVENT_IOC_SET_OUTPUT:
2178                 return perf_event_set_output(event, arg);
2179
2180         case PERF_EVENT_IOC_SET_FILTER:
2181                 return perf_event_set_filter(event, (void __user *)arg);
2182
2183         default:
2184                 return -ENOTTY;
2185         }
2186
2187         if (flags & PERF_IOC_FLAG_GROUP)
2188                 perf_event_for_each(event, func);
2189         else
2190                 perf_event_for_each_child(event, func);
2191
2192         return 0;
2193 }
2194
2195 int perf_event_task_enable(void)
2196 {
2197         struct perf_event *event;
2198
2199         mutex_lock(&current->perf_event_mutex);
2200         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2201                 perf_event_for_each_child(event, perf_event_enable);
2202         mutex_unlock(&current->perf_event_mutex);
2203
2204         return 0;
2205 }
2206
2207 int perf_event_task_disable(void)
2208 {
2209         struct perf_event *event;
2210
2211         mutex_lock(&current->perf_event_mutex);
2212         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2213                 perf_event_for_each_child(event, perf_event_disable);
2214         mutex_unlock(&current->perf_event_mutex);
2215
2216         return 0;
2217 }
2218
2219 #ifndef PERF_EVENT_INDEX_OFFSET
2220 # define PERF_EVENT_INDEX_OFFSET 0
2221 #endif
2222
2223 static int perf_event_index(struct perf_event *event)
2224 {
2225         if (event->state != PERF_EVENT_STATE_ACTIVE)
2226                 return 0;
2227
2228         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2229 }
2230
2231 /*
2232  * Callers need to ensure there can be no nesting of this function, otherwise
2233  * the seqlock logic goes bad. We can not serialize this because the arch
2234  * code calls this from NMI context.
2235  */
2236 void perf_event_update_userpage(struct perf_event *event)
2237 {
2238         struct perf_event_mmap_page *userpg;
2239         struct perf_mmap_data *data;
2240
2241         rcu_read_lock();
2242         data = rcu_dereference(event->data);
2243         if (!data)
2244                 goto unlock;
2245
2246         userpg = data->user_page;
2247
2248         /*
2249          * Disable preemption so as to not let the corresponding user-space
2250          * spin too long if we get preempted.
2251          */
2252         preempt_disable();
2253         ++userpg->lock;
2254         barrier();
2255         userpg->index = perf_event_index(event);
2256         userpg->offset = atomic64_read(&event->count);
2257         if (event->state == PERF_EVENT_STATE_ACTIVE)
2258                 userpg->offset -= atomic64_read(&event->hw.prev_count);
2259
2260         userpg->time_enabled = event->total_time_enabled +
2261                         atomic64_read(&event->child_total_time_enabled);
2262
2263         userpg->time_running = event->total_time_running +
2264                         atomic64_read(&event->child_total_time_running);
2265
2266         barrier();
2267         ++userpg->lock;
2268         preempt_enable();
2269 unlock:
2270         rcu_read_unlock();
2271 }
2272
2273 static unsigned long perf_data_size(struct perf_mmap_data *data)
2274 {
2275         return data->nr_pages << (PAGE_SHIFT + data->data_order);
2276 }
2277
2278 #ifndef CONFIG_PERF_USE_VMALLOC
2279
2280 /*
2281  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2282  */
2283
2284 static struct page *
2285 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2286 {
2287         if (pgoff > data->nr_pages)
2288                 return NULL;
2289
2290         if (pgoff == 0)
2291                 return virt_to_page(data->user_page);
2292
2293         return virt_to_page(data->data_pages[pgoff - 1]);
2294 }
2295
2296 static struct perf_mmap_data *
2297 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2298 {
2299         struct perf_mmap_data *data;
2300         unsigned long size;
2301         int i;
2302
2303         WARN_ON(atomic_read(&event->mmap_count));
2304
2305         size = sizeof(struct perf_mmap_data);
2306         size += nr_pages * sizeof(void *);
2307
2308         data = kzalloc(size, GFP_KERNEL);
2309         if (!data)
2310                 goto fail;
2311
2312         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2313         if (!data->user_page)
2314                 goto fail_user_page;
2315
2316         for (i = 0; i < nr_pages; i++) {
2317                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2318                 if (!data->data_pages[i])
2319                         goto fail_data_pages;
2320         }
2321
2322         data->data_order = 0;
2323         data->nr_pages = nr_pages;
2324
2325         return data;
2326
2327 fail_data_pages:
2328         for (i--; i >= 0; i--)
2329                 free_page((unsigned long)data->data_pages[i]);
2330
2331         free_page((unsigned long)data->user_page);
2332
2333 fail_user_page:
2334         kfree(data);
2335
2336 fail:
2337         return NULL;
2338 }
2339
2340 static void perf_mmap_free_page(unsigned long addr)
2341 {
2342         struct page *page = virt_to_page((void *)addr);
2343
2344         page->mapping = NULL;
2345         __free_page(page);
2346 }
2347
2348 static void perf_mmap_data_free(struct perf_mmap_data *data)
2349 {
2350         int i;
2351
2352         perf_mmap_free_page((unsigned long)data->user_page);
2353         for (i = 0; i < data->nr_pages; i++)
2354                 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2355         kfree(data);
2356 }
2357
2358 #else
2359
2360 /*
2361  * Back perf_mmap() with vmalloc memory.
2362  *
2363  * Required for architectures that have d-cache aliasing issues.
2364  */
2365
2366 static struct page *
2367 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2368 {
2369         if (pgoff > (1UL << data->data_order))
2370                 return NULL;
2371
2372         return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2373 }
2374
2375 static void perf_mmap_unmark_page(void *addr)
2376 {
2377         struct page *page = vmalloc_to_page(addr);
2378
2379         page->mapping = NULL;
2380 }
2381
2382 static void perf_mmap_data_free_work(struct work_struct *work)
2383 {
2384         struct perf_mmap_data *data;
2385         void *base;
2386         int i, nr;
2387
2388         data = container_of(work, struct perf_mmap_data, work);
2389         nr = 1 << data->data_order;
2390
2391         base = data->user_page;
2392         for (i = 0; i < nr + 1; i++)
2393                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2394
2395         vfree(base);
2396         kfree(data);
2397 }
2398
2399 static void perf_mmap_data_free(struct perf_mmap_data *data)
2400 {
2401         schedule_work(&data->work);
2402 }
2403
2404 static struct perf_mmap_data *
2405 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2406 {
2407         struct perf_mmap_data *data;
2408         unsigned long size;
2409         void *all_buf;
2410
2411         WARN_ON(atomic_read(&event->mmap_count));
2412
2413         size = sizeof(struct perf_mmap_data);
2414         size += sizeof(void *);
2415
2416         data = kzalloc(size, GFP_KERNEL);
2417         if (!data)
2418                 goto fail;
2419
2420         INIT_WORK(&data->work, perf_mmap_data_free_work);
2421
2422         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2423         if (!all_buf)
2424                 goto fail_all_buf;
2425
2426         data->user_page = all_buf;
2427         data->data_pages[0] = all_buf + PAGE_SIZE;
2428         data->data_order = ilog2(nr_pages);
2429         data->nr_pages = 1;
2430
2431         return data;
2432
2433 fail_all_buf:
2434         kfree(data);
2435
2436 fail:
2437         return NULL;
2438 }
2439
2440 #endif
2441
2442 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2443 {
2444         struct perf_event *event = vma->vm_file->private_data;
2445         struct perf_mmap_data *data;
2446         int ret = VM_FAULT_SIGBUS;
2447
2448         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2449                 if (vmf->pgoff == 0)
2450                         ret = 0;
2451                 return ret;
2452         }
2453
2454         rcu_read_lock();
2455         data = rcu_dereference(event->data);
2456         if (!data)
2457                 goto unlock;
2458
2459         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2460                 goto unlock;
2461
2462         vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2463         if (!vmf->page)
2464                 goto unlock;
2465
2466         get_page(vmf->page);
2467         vmf->page->mapping = vma->vm_file->f_mapping;
2468         vmf->page->index   = vmf->pgoff;
2469
2470         ret = 0;
2471 unlock:
2472         rcu_read_unlock();
2473
2474         return ret;
2475 }
2476
2477 static void
2478 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2479 {
2480         long max_size = perf_data_size(data);
2481
2482         atomic_set(&data->lock, -1);
2483
2484         if (event->attr.watermark) {
2485                 data->watermark = min_t(long, max_size,
2486                                         event->attr.wakeup_watermark);
2487         }
2488
2489         if (!data->watermark)
2490                 data->watermark = max_size / 2;
2491
2492
2493         rcu_assign_pointer(event->data, data);
2494 }
2495
2496 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2497 {
2498         struct perf_mmap_data *data;
2499
2500         data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2501         perf_mmap_data_free(data);
2502 }
2503
2504 static void perf_mmap_data_release(struct perf_event *event)
2505 {
2506         struct perf_mmap_data *data = event->data;
2507
2508         WARN_ON(atomic_read(&event->mmap_count));
2509
2510         rcu_assign_pointer(event->data, NULL);
2511         call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2512 }
2513
2514 static void perf_mmap_open(struct vm_area_struct *vma)
2515 {
2516         struct perf_event *event = vma->vm_file->private_data;
2517
2518         atomic_inc(&event->mmap_count);
2519 }
2520
2521 static void perf_mmap_close(struct vm_area_struct *vma)
2522 {
2523         struct perf_event *event = vma->vm_file->private_data;
2524
2525         WARN_ON_ONCE(event->ctx->parent_ctx);
2526         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2527                 unsigned long size = perf_data_size(event->data);
2528                 struct user_struct *user = current_user();
2529
2530                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2531                 vma->vm_mm->locked_vm -= event->data->nr_locked;
2532                 perf_mmap_data_release(event);
2533                 mutex_unlock(&event->mmap_mutex);
2534         }
2535 }
2536
2537 static const struct vm_operations_struct perf_mmap_vmops = {
2538         .open           = perf_mmap_open,
2539         .close          = perf_mmap_close,
2540         .fault          = perf_mmap_fault,
2541         .page_mkwrite   = perf_mmap_fault,
2542 };
2543
2544 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2545 {
2546         struct perf_event *event = file->private_data;
2547         unsigned long user_locked, user_lock_limit;
2548         struct user_struct *user = current_user();
2549         unsigned long locked, lock_limit;
2550         struct perf_mmap_data *data;
2551         unsigned long vma_size;
2552         unsigned long nr_pages;
2553         long user_extra, extra;
2554         int ret = 0;
2555
2556         if (!(vma->vm_flags & VM_SHARED))
2557                 return -EINVAL;
2558
2559         vma_size = vma->vm_end - vma->vm_start;
2560         nr_pages = (vma_size / PAGE_SIZE) - 1;
2561
2562         /*
2563          * If we have data pages ensure they're a power-of-two number, so we
2564          * can do bitmasks instead of modulo.
2565          */
2566         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2567                 return -EINVAL;
2568
2569         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2570                 return -EINVAL;
2571
2572         if (vma->vm_pgoff != 0)
2573                 return -EINVAL;
2574
2575         WARN_ON_ONCE(event->ctx->parent_ctx);
2576         mutex_lock(&event->mmap_mutex);
2577         if (event->output) {
2578                 ret = -EINVAL;
2579                 goto unlock;
2580         }
2581
2582         if (atomic_inc_not_zero(&event->mmap_count)) {
2583                 if (nr_pages != event->data->nr_pages)
2584                         ret = -EINVAL;
2585                 goto unlock;
2586         }
2587
2588         user_extra = nr_pages + 1;
2589         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2590
2591         /*
2592          * Increase the limit linearly with more CPUs:
2593          */
2594         user_lock_limit *= num_online_cpus();
2595
2596         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2597
2598         extra = 0;
2599         if (user_locked > user_lock_limit)
2600                 extra = user_locked - user_lock_limit;
2601
2602         lock_limit = rlimit(RLIMIT_MEMLOCK);
2603         lock_limit >>= PAGE_SHIFT;
2604         locked = vma->vm_mm->locked_vm + extra;
2605
2606         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2607                 !capable(CAP_IPC_LOCK)) {
2608                 ret = -EPERM;
2609                 goto unlock;
2610         }
2611
2612         WARN_ON(event->data);
2613
2614         data = perf_mmap_data_alloc(event, nr_pages);
2615         ret = -ENOMEM;
2616         if (!data)
2617                 goto unlock;
2618
2619         ret = 0;
2620         perf_mmap_data_init(event, data);
2621
2622         atomic_set(&event->mmap_count, 1);
2623         atomic_long_add(user_extra, &user->locked_vm);
2624         vma->vm_mm->locked_vm += extra;
2625         event->data->nr_locked = extra;
2626         if (vma->vm_flags & VM_WRITE)
2627                 event->data->writable = 1;
2628
2629 unlock:
2630         mutex_unlock(&event->mmap_mutex);
2631
2632         vma->vm_flags |= VM_RESERVED;
2633         vma->vm_ops = &perf_mmap_vmops;
2634
2635         return ret;
2636 }
2637
2638 static int perf_fasync(int fd, struct file *filp, int on)
2639 {
2640         struct inode *inode = filp->f_path.dentry->d_inode;
2641         struct perf_event *event = filp->private_data;
2642         int retval;
2643
2644         mutex_lock(&inode->i_mutex);
2645         retval = fasync_helper(fd, filp, on, &event->fasync);
2646         mutex_unlock(&inode->i_mutex);
2647
2648         if (retval < 0)
2649                 return retval;
2650
2651         return 0;
2652 }
2653
2654 static const struct file_operations perf_fops = {
2655         .llseek                 = no_llseek,
2656         .release                = perf_release,
2657         .read                   = perf_read,
2658         .poll                   = perf_poll,
2659         .unlocked_ioctl         = perf_ioctl,
2660         .compat_ioctl           = perf_ioctl,
2661         .mmap                   = perf_mmap,
2662         .fasync                 = perf_fasync,
2663 };
2664
2665 /*
2666  * Perf event wakeup
2667  *
2668  * If there's data, ensure we set the poll() state and publish everything
2669  * to user-space before waking everybody up.
2670  */
2671
2672 void perf_event_wakeup(struct perf_event *event)
2673 {
2674         wake_up_all(&event->waitq);
2675
2676         if (event->pending_kill) {
2677                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2678                 event->pending_kill = 0;
2679         }
2680 }
2681
2682 /*
2683  * Pending wakeups
2684  *
2685  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2686  *
2687  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2688  * single linked list and use cmpxchg() to add entries lockless.
2689  */
2690
2691 static void perf_pending_event(struct perf_pending_entry *entry)
2692 {
2693         struct perf_event *event = container_of(entry,
2694                         struct perf_event, pending);
2695
2696         if (event->pending_disable) {
2697                 event->pending_disable = 0;
2698                 __perf_event_disable(event);
2699         }
2700
2701         if (event->pending_wakeup) {
2702                 event->pending_wakeup = 0;
2703                 perf_event_wakeup(event);
2704         }
2705 }
2706
2707 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2708
2709 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2710         PENDING_TAIL,
2711 };
2712
2713 static void perf_pending_queue(struct perf_pending_entry *entry,
2714                                void (*func)(struct perf_pending_entry *))
2715 {
2716         struct perf_pending_entry **head;
2717
2718         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2719                 return;
2720
2721         entry->func = func;
2722
2723         head = &get_cpu_var(perf_pending_head);
2724
2725         do {
2726                 entry->next = *head;
2727         } while (cmpxchg(head, entry->next, entry) != entry->next);
2728
2729         set_perf_event_pending();
2730
2731         put_cpu_var(perf_pending_head);
2732 }
2733
2734 static int __perf_pending_run(void)
2735 {
2736         struct perf_pending_entry *list;
2737         int nr = 0;
2738
2739         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2740         while (list != PENDING_TAIL) {
2741                 void (*func)(struct perf_pending_entry *);
2742                 struct perf_pending_entry *entry = list;
2743
2744                 list = list->next;
2745
2746                 func = entry->func;
2747                 entry->next = NULL;
2748                 /*
2749                  * Ensure we observe the unqueue before we issue the wakeup,
2750                  * so that we won't be waiting forever.
2751                  * -- see perf_not_pending().
2752                  */
2753                 smp_wmb();
2754
2755                 func(entry);
2756                 nr++;
2757         }
2758
2759         return nr;
2760 }
2761
2762 static inline int perf_not_pending(struct perf_event *event)
2763 {
2764         /*
2765          * If we flush on whatever cpu we run, there is a chance we don't
2766          * need to wait.
2767          */
2768         get_cpu();
2769         __perf_pending_run();
2770         put_cpu();
2771
2772         /*
2773          * Ensure we see the proper queue state before going to sleep
2774          * so that we do not miss the wakeup. -- see perf_pending_handle()
2775          */
2776         smp_rmb();
2777         return event->pending.next == NULL;
2778 }
2779
2780 static void perf_pending_sync(struct perf_event *event)
2781 {
2782         wait_event(event->waitq, perf_not_pending(event));
2783 }
2784
2785 void perf_event_do_pending(void)
2786 {
2787         __perf_pending_run();
2788 }
2789
2790 /*
2791  * Callchain support -- arch specific
2792  */
2793
2794 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2795 {
2796         return NULL;
2797 }
2798
2799 __weak
2800 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2801 {
2802 }
2803
2804
2805 /*
2806  * We assume there is only KVM supporting the callbacks.
2807  * Later on, we might change it to a list if there is
2808  * another virtualization implementation supporting the callbacks.
2809  */
2810 struct perf_guest_info_callbacks *perf_guest_cbs;
2811
2812 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2813 {
2814         perf_guest_cbs = cbs;
2815         return 0;
2816 }
2817 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
2818
2819 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2820 {
2821         perf_guest_cbs = NULL;
2822         return 0;
2823 }
2824 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2825
2826 /*
2827  * Output
2828  */
2829 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2830                               unsigned long offset, unsigned long head)
2831 {
2832         unsigned long mask;
2833
2834         if (!data->writable)
2835                 return true;
2836
2837         mask = perf_data_size(data) - 1;
2838
2839         offset = (offset - tail) & mask;
2840         head   = (head   - tail) & mask;
2841
2842         if ((int)(head - offset) < 0)
2843                 return false;
2844
2845         return true;
2846 }
2847
2848 static void perf_output_wakeup(struct perf_output_handle *handle)
2849 {
2850         atomic_set(&handle->data->poll, POLL_IN);
2851
2852         if (handle->nmi) {
2853                 handle->event->pending_wakeup = 1;
2854                 perf_pending_queue(&handle->event->pending,
2855                                    perf_pending_event);
2856         } else
2857                 perf_event_wakeup(handle->event);
2858 }
2859
2860 /*
2861  * Curious locking construct.
2862  *
2863  * We need to ensure a later event_id doesn't publish a head when a former
2864  * event_id isn't done writing. However since we need to deal with NMIs we
2865  * cannot fully serialize things.
2866  *
2867  * What we do is serialize between CPUs so we only have to deal with NMI
2868  * nesting on a single CPU.
2869  *
2870  * We only publish the head (and generate a wakeup) when the outer-most
2871  * event_id completes.
2872  */
2873 static void perf_output_lock(struct perf_output_handle *handle)
2874 {
2875         struct perf_mmap_data *data = handle->data;
2876         int cur, cpu = get_cpu();
2877
2878         handle->locked = 0;
2879
2880         for (;;) {
2881                 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2882                 if (cur == -1) {
2883                         handle->locked = 1;
2884                         break;
2885                 }
2886                 if (cur == cpu)
2887                         break;
2888
2889                 cpu_relax();
2890         }
2891 }
2892
2893 static void perf_output_unlock(struct perf_output_handle *handle)
2894 {
2895         struct perf_mmap_data *data = handle->data;
2896         unsigned long head;
2897         int cpu;
2898
2899         data->done_head = data->head;
2900
2901         if (!handle->locked)
2902                 goto out;
2903
2904 again:
2905         /*
2906          * The xchg implies a full barrier that ensures all writes are done
2907          * before we publish the new head, matched by a rmb() in userspace when
2908          * reading this position.
2909          */
2910         while ((head = atomic_long_xchg(&data->done_head, 0)))
2911                 data->user_page->data_head = head;
2912
2913         /*
2914          * NMI can happen here, which means we can miss a done_head update.
2915          */
2916
2917         cpu = atomic_xchg(&data->lock, -1);
2918         WARN_ON_ONCE(cpu != smp_processor_id());
2919
2920         /*
2921          * Therefore we have to validate we did not indeed do so.
2922          */
2923         if (unlikely(atomic_long_read(&data->done_head))) {
2924                 /*
2925                  * Since we had it locked, we can lock it again.
2926                  */
2927                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2928                         cpu_relax();
2929
2930                 goto again;
2931         }
2932
2933         if (atomic_xchg(&data->wakeup, 0))
2934                 perf_output_wakeup(handle);
2935 out:
2936         put_cpu();
2937 }
2938
2939 void perf_output_copy(struct perf_output_handle *handle,
2940                       const void *buf, unsigned int len)
2941 {
2942         unsigned int pages_mask;
2943         unsigned long offset;
2944         unsigned int size;
2945         void **pages;
2946
2947         offset          = handle->offset;
2948         pages_mask      = handle->data->nr_pages - 1;
2949         pages           = handle->data->data_pages;
2950
2951         do {
2952                 unsigned long page_offset;
2953                 unsigned long page_size;
2954                 int nr;
2955
2956                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2957                 page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
2958                 page_offset = offset & (page_size - 1);
2959                 size        = min_t(unsigned int, page_size - page_offset, len);
2960
2961                 memcpy(pages[nr] + page_offset, buf, size);
2962
2963                 len         -= size;
2964                 buf         += size;
2965                 offset      += size;
2966         } while (len);
2967
2968         handle->offset = offset;
2969
2970         /*
2971          * Check we didn't copy past our reservation window, taking the
2972          * possible unsigned int wrap into account.
2973          */
2974         WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2975 }
2976
2977 int perf_output_begin(struct perf_output_handle *handle,
2978                       struct perf_event *event, unsigned int size,
2979                       int nmi, int sample)
2980 {
2981         struct perf_event *output_event;
2982         struct perf_mmap_data *data;
2983         unsigned long tail, offset, head;
2984         int have_lost;
2985         struct {
2986                 struct perf_event_header header;
2987                 u64                      id;
2988                 u64                      lost;
2989         } lost_event;
2990
2991         rcu_read_lock();
2992         /*
2993          * For inherited events we send all the output towards the parent.
2994          */
2995         if (event->parent)
2996                 event = event->parent;
2997
2998         output_event = rcu_dereference(event->output);
2999         if (output_event)
3000                 event = output_event;
3001
3002         data = rcu_dereference(event->data);
3003         if (!data)
3004                 goto out;
3005
3006         handle->data    = data;
3007         handle->event   = event;
3008         handle->nmi     = nmi;
3009         handle->sample  = sample;
3010
3011         if (!data->nr_pages)
3012                 goto fail;
3013
3014         have_lost = atomic_read(&data->lost);
3015         if (have_lost)
3016                 size += sizeof(lost_event);
3017
3018         perf_output_lock(handle);
3019
3020         do {
3021                 /*
3022                  * Userspace could choose to issue a mb() before updating the
3023                  * tail pointer. So that all reads will be completed before the
3024                  * write is issued.
3025                  */
3026                 tail = ACCESS_ONCE(data->user_page->data_tail);
3027                 smp_rmb();
3028                 offset = head = atomic_long_read(&data->head);
3029                 head += size;
3030                 if (unlikely(!perf_output_space(data, tail, offset, head)))
3031                         goto fail;
3032         } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3033
3034         handle->offset  = offset;
3035         handle->head    = head;
3036
3037         if (head - tail > data->watermark)
3038                 atomic_set(&data->wakeup, 1);
3039
3040         if (have_lost) {
3041                 lost_event.header.type = PERF_RECORD_LOST;
3042                 lost_event.header.misc = 0;
3043                 lost_event.header.size = sizeof(lost_event);
3044                 lost_event.id          = event->id;
3045                 lost_event.lost        = atomic_xchg(&data->lost, 0);
3046
3047                 perf_output_put(handle, lost_event);
3048         }
3049
3050         return 0;
3051
3052 fail:
3053         atomic_inc(&data->lost);
3054         perf_output_unlock(handle);
3055 out:
3056         rcu_read_unlock();
3057
3058         return -ENOSPC;
3059 }
3060
3061 void perf_output_end(struct perf_output_handle *handle)
3062 {
3063         struct perf_event *event = handle->event;
3064         struct perf_mmap_data *data = handle->data;
3065
3066         int wakeup_events = event->attr.wakeup_events;
3067
3068         if (handle->sample && wakeup_events) {
3069                 int events = atomic_inc_return(&data->events);
3070                 if (events >= wakeup_events) {
3071                         atomic_sub(wakeup_events, &data->events);
3072                         atomic_set(&data->wakeup, 1);
3073                 }
3074         }
3075
3076         perf_output_unlock(handle);
3077         rcu_read_unlock();
3078 }
3079
3080 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3081 {
3082         /*
3083          * only top level events have the pid namespace they were created in
3084          */
3085         if (event->parent)
3086                 event = event->parent;
3087
3088         return task_tgid_nr_ns(p, event->ns);
3089 }
3090
3091 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3092 {
3093         /*
3094          * only top level events have the pid namespace they were created in
3095          */
3096         if (event->parent)
3097                 event = event->parent;
3098
3099         return task_pid_nr_ns(p, event->ns);
3100 }
3101
3102 static void perf_output_read_one(struct perf_output_handle *handle,
3103                                  struct perf_event *event)
3104 {
3105         u64 read_format = event->attr.read_format;
3106         u64 values[4];
3107         int n = 0;
3108
3109         values[n++] = atomic64_read(&event->count);
3110         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3111                 values[n++] = event->total_time_enabled +
3112                         atomic64_read(&event->child_total_time_enabled);
3113         }
3114         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3115                 values[n++] = event->total_time_running +
3116                         atomic64_read(&event->child_total_time_running);
3117         }
3118         if (read_format & PERF_FORMAT_ID)
3119                 values[n++] = primary_event_id(event);
3120
3121         perf_output_copy(handle, values, n * sizeof(u64));
3122 }
3123
3124 /*
3125  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3126  */
3127 static void perf_output_read_group(struct perf_output_handle *handle,
3128                             struct perf_event *event)
3129 {
3130         struct perf_event *leader = event->group_leader, *sub;
3131         u64 read_format = event->attr.read_format;
3132         u64 values[5];
3133         int n = 0;
3134
3135         values[n++] = 1 + leader->nr_siblings;
3136
3137         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3138                 values[n++] = leader->total_time_enabled;
3139
3140         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3141                 values[n++] = leader->total_time_running;
3142
3143         if (leader != event)
3144                 leader->pmu->read(leader);
3145
3146         values[n++] = atomic64_read(&leader->count);
3147         if (read_format & PERF_FORMAT_ID)
3148                 values[n++] = primary_event_id(leader);
3149
3150         perf_output_copy(handle, values, n * sizeof(u64));
3151
3152         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3153                 n = 0;
3154
3155                 if (sub != event)
3156                         sub->pmu->read(sub);
3157
3158                 values[n++] = atomic64_read(&sub->count);
3159                 if (read_format & PERF_FORMAT_ID)
3160                         values[n++] = primary_event_id(sub);
3161
3162                 perf_output_copy(handle, values, n * sizeof(u64));
3163         }
3164 }
3165
3166 static void perf_output_read(struct perf_output_handle *handle,
3167                              struct perf_event *event)
3168 {
3169         if (event->attr.read_format & PERF_FORMAT_GROUP)
3170                 perf_output_read_group(handle, event);
3171         else
3172                 perf_output_read_one(handle, event);
3173 }
3174
3175 void perf_output_sample(struct perf_output_handle *handle,
3176                         struct perf_event_header *header,
3177                         struct perf_sample_data *data,
3178                         struct perf_event *event)
3179 {
3180         u64 sample_type = data->type;
3181
3182         perf_output_put(handle, *header);
3183
3184         if (sample_type & PERF_SAMPLE_IP)
3185                 perf_output_put(handle, data->ip);
3186
3187         if (sample_type & PERF_SAMPLE_TID)
3188                 perf_output_put(handle, data->tid_entry);
3189
3190         if (sample_type & PERF_SAMPLE_TIME)
3191                 perf_output_put(handle, data->time);
3192
3193         if (sample_type & PERF_SAMPLE_ADDR)
3194                 perf_output_put(handle, data->addr);
3195
3196         if (sample_type & PERF_SAMPLE_ID)
3197                 perf_output_put(handle, data->id);
3198
3199         if (sample_type & PERF_SAMPLE_STREAM_ID)
3200                 perf_output_put(handle, data->stream_id);
3201
3202         if (sample_type & PERF_SAMPLE_CPU)
3203                 perf_output_put(handle, data->cpu_entry);
3204
3205         if (sample_type & PERF_SAMPLE_PERIOD)
3206                 perf_output_put(handle, data->period);
3207
3208         if (sample_type & PERF_SAMPLE_READ)
3209                 perf_output_read(handle, event);
3210
3211         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3212                 if (data->callchain) {
3213                         int size = 1;
3214
3215                         if (data->callchain)
3216                                 size += data->callchain->nr;
3217
3218                         size *= sizeof(u64);
3219
3220                         perf_output_copy(handle, data->callchain, size);
3221                 } else {
3222                         u64 nr = 0;
3223                         perf_output_put(handle, nr);
3224                 }
3225         }
3226
3227         if (sample_type & PERF_SAMPLE_RAW) {
3228                 if (data->raw) {
3229                         perf_output_put(handle, data->raw->size);
3230                         perf_output_copy(handle, data->raw->data,
3231                                          data->raw->size);
3232                 } else {
3233                         struct {
3234                                 u32     size;
3235                                 u32     data;
3236                         } raw = {
3237                                 .size = sizeof(u32),
3238                                 .data = 0,
3239                         };
3240                         perf_output_put(handle, raw);
3241                 }
3242         }
3243 }
3244
3245 void perf_prepare_sample(struct perf_event_header *header,
3246                          struct perf_sample_data *data,
3247                          struct perf_event *event,
3248                          struct pt_regs *regs)
3249 {
3250         u64 sample_type = event->attr.sample_type;
3251
3252         data->type = sample_type;
3253
3254         header->type = PERF_RECORD_SAMPLE;
3255         header->size = sizeof(*header);
3256
3257         header->misc = 0;
3258         header->misc |= perf_misc_flags(regs);
3259
3260         if (sample_type & PERF_SAMPLE_IP) {
3261                 data->ip = perf_instruction_pointer(regs);
3262
3263                 header->size += sizeof(data->ip);
3264         }
3265
3266         if (sample_type & PERF_SAMPLE_TID) {
3267                 /* namespace issues */
3268                 data->tid_entry.pid = perf_event_pid(event, current);
3269                 data->tid_entry.tid = perf_event_tid(event, current);
3270
3271                 header->size += sizeof(data->tid_entry);
3272         }
3273
3274         if (sample_type & PERF_SAMPLE_TIME) {
3275                 data->time = perf_clock();
3276
3277                 header->size += sizeof(data->time);
3278         }
3279
3280         if (sample_type & PERF_SAMPLE_ADDR)
3281                 header->size += sizeof(data->addr);
3282
3283         if (sample_type & PERF_SAMPLE_ID) {
3284                 data->id = primary_event_id(event);
3285
3286                 header->size += sizeof(data->id);
3287         }
3288
3289         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3290                 data->stream_id = event->id;
3291
3292                 header->size += sizeof(data->stream_id);
3293         }
3294
3295         if (sample_type & PERF_SAMPLE_CPU) {
3296                 data->cpu_entry.cpu             = raw_smp_processor_id();
3297                 data->cpu_entry.reserved        = 0;
3298
3299                 header->size += sizeof(data->cpu_entry);
3300         }
3301
3302         if (sample_type & PERF_SAMPLE_PERIOD)
3303                 header->size += sizeof(data->period);
3304
3305         if (sample_type & PERF_SAMPLE_READ)
3306                 header->size += perf_event_read_size(event);
3307
3308         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3309                 int size = 1;
3310
3311                 data->callchain = perf_callchain(regs);
3312
3313                 if (data->callchain)
3314                         size += data->callchain->nr;
3315
3316                 header->size += size * sizeof(u64);
3317         }
3318
3319         if (sample_type & PERF_SAMPLE_RAW) {
3320                 int size = sizeof(u32);
3321
3322                 if (data->raw)
3323                         size += data->raw->size;
3324                 else
3325                         size += sizeof(u32);
3326
3327                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3328                 header->size += size;
3329         }
3330 }
3331
3332 static void perf_event_output(struct perf_event *event, int nmi,
3333                                 struct perf_sample_data *data,
3334                                 struct pt_regs *regs)
3335 {
3336         struct perf_output_handle handle;
3337         struct perf_event_header header;
3338
3339         perf_prepare_sample(&header, data, event, regs);
3340
3341         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3342                 return;
3343
3344         perf_output_sample(&handle, &header, data, event);
3345
3346         perf_output_end(&handle);
3347 }
3348
3349 /*
3350  * read event_id
3351  */
3352
3353 struct perf_read_event {
3354         struct perf_event_header        header;
3355
3356         u32                             pid;
3357         u32                             tid;
3358 };
3359
3360 static void
3361 perf_event_read_event(struct perf_event *event,
3362                         struct task_struct *task)
3363 {
3364         struct perf_output_handle handle;
3365         struct perf_read_event read_event = {
3366                 .header = {
3367                         .type = PERF_RECORD_READ,
3368                         .misc = 0,
3369                         .size = sizeof(read_event) + perf_event_read_size(event),
3370                 },
3371                 .pid = perf_event_pid(event, task),
3372                 .tid = perf_event_tid(event, task),
3373         };
3374         int ret;
3375
3376         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3377         if (ret)
3378                 return;
3379
3380         perf_output_put(&handle, read_event);
3381         perf_output_read(&handle, event);
3382
3383         perf_output_end(&handle);
3384 }
3385
3386 /*
3387  * task tracking -- fork/exit
3388  *
3389  * enabled by: attr.comm | attr.mmap | attr.task
3390  */
3391
3392 struct perf_task_event {
3393         struct task_struct              *task;
3394         struct perf_event_context       *task_ctx;
3395
3396         struct {
3397                 struct perf_event_header        header;
3398
3399                 u32                             pid;
3400                 u32                             ppid;
3401                 u32                             tid;
3402                 u32                             ptid;
3403                 u64                             time;
3404         } event_id;
3405 };
3406
3407 static void perf_event_task_output(struct perf_event *event,
3408                                      struct perf_task_event *task_event)
3409 {
3410         struct perf_output_handle handle;
3411         struct task_struct *task = task_event->task;
3412         unsigned long flags;
3413         int size, ret;
3414
3415         /*
3416          * If this CPU attempts to acquire an rq lock held by a CPU spinning
3417          * in perf_output_lock() from interrupt context, it's game over.
3418          */
3419         local_irq_save(flags);
3420
3421         size  = task_event->event_id.header.size;
3422         ret = perf_output_begin(&handle, event, size, 0, 0);
3423
3424         if (ret) {
3425                 local_irq_restore(flags);
3426                 return;
3427         }
3428
3429         task_event->event_id.pid = perf_event_pid(event, task);
3430         task_event->event_id.ppid = perf_event_pid(event, current);
3431
3432         task_event->event_id.tid = perf_event_tid(event, task);
3433         task_event->event_id.ptid = perf_event_tid(event, current);
3434
3435         perf_output_put(&handle, task_event->event_id);
3436
3437         perf_output_end(&handle);
3438         local_irq_restore(flags);
3439 }
3440
3441 static int perf_event_task_match(struct perf_event *event)
3442 {
3443         if (event->state < PERF_EVENT_STATE_INACTIVE)
3444                 return 0;
3445
3446         if (event->cpu != -1 && event->cpu != smp_processor_id())
3447                 return 0;
3448
3449         if (event->attr.comm || event->attr.mmap || event->attr.task)
3450                 return 1;
3451
3452         return 0;
3453 }
3454
3455 static void perf_event_task_ctx(struct perf_event_context *ctx,
3456                                   struct perf_task_event *task_event)
3457 {
3458         struct perf_event *event;
3459
3460         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3461                 if (perf_event_task_match(event))
3462                         perf_event_task_output(event, task_event);
3463         }
3464 }
3465
3466 static void perf_event_task_event(struct perf_task_event *task_event)
3467 {
3468         struct perf_cpu_context *cpuctx;
3469         struct perf_event_context *ctx = task_event->task_ctx;
3470
3471         rcu_read_lock();
3472         cpuctx = &get_cpu_var(perf_cpu_context);
3473         perf_event_task_ctx(&cpuctx->ctx, task_event);
3474         if (!ctx)
3475                 ctx = rcu_dereference(current->perf_event_ctxp);
3476         if (ctx)
3477                 perf_event_task_ctx(ctx, task_event);
3478         put_cpu_var(perf_cpu_context);
3479         rcu_read_unlock();
3480 }
3481
3482 static void perf_event_task(struct task_struct *task,
3483                               struct perf_event_context *task_ctx,
3484                               int new)
3485 {
3486         struct perf_task_event task_event;
3487
3488         if (!atomic_read(&nr_comm_events) &&
3489             !atomic_read(&nr_mmap_events) &&
3490             !atomic_read(&nr_task_events))
3491                 return;
3492
3493         task_event = (struct perf_task_event){
3494                 .task     = task,
3495                 .task_ctx = task_ctx,
3496                 .event_id    = {
3497                         .header = {
3498                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3499                                 .misc = 0,
3500                                 .size = sizeof(task_event.event_id),
3501                         },
3502                         /* .pid  */
3503                         /* .ppid */
3504                         /* .tid  */
3505                         /* .ptid */
3506                         .time = perf_clock(),
3507                 },
3508         };
3509
3510         perf_event_task_event(&task_event);
3511 }
3512
3513 void perf_event_fork(struct task_struct *task)
3514 {
3515         perf_event_task(task, NULL, 1);
3516 }
3517
3518 /*
3519  * comm tracking
3520  */
3521
3522 struct perf_comm_event {
3523         struct task_struct      *task;
3524         char                    *comm;
3525         int                     comm_size;
3526
3527         struct {
3528                 struct perf_event_header        header;
3529
3530                 u32                             pid;
3531                 u32                             tid;
3532         } event_id;
3533 };
3534
3535 static void perf_event_comm_output(struct perf_event *event,
3536                                      struct perf_comm_event *comm_event)
3537 {
3538         struct perf_output_handle handle;
3539         int size = comm_event->event_id.header.size;
3540         int ret = perf_output_begin(&handle, event, size, 0, 0);
3541
3542         if (ret)
3543                 return;
3544
3545         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3546         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3547
3548         perf_output_put(&handle, comm_event->event_id);
3549         perf_output_copy(&handle, comm_event->comm,
3550                                    comm_event->comm_size);
3551         perf_output_end(&handle);
3552 }
3553
3554 static int perf_event_comm_match(struct perf_event *event)
3555 {
3556         if (event->state < PERF_EVENT_STATE_INACTIVE)
3557                 return 0;
3558
3559         if (event->cpu != -1 && event->cpu != smp_processor_id())
3560                 return 0;
3561
3562         if (event->attr.comm)
3563                 return 1;
3564
3565         return 0;
3566 }
3567
3568 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3569                                   struct perf_comm_event *comm_event)
3570 {
3571         struct perf_event *event;
3572
3573         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3574                 if (perf_event_comm_match(event))
3575                         perf_event_comm_output(event, comm_event);
3576         }
3577 }
3578
3579 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3580 {
3581         struct perf_cpu_context *cpuctx;
3582         struct perf_event_context *ctx;
3583         unsigned int size;
3584         char comm[TASK_COMM_LEN];
3585
3586         memset(comm, 0, sizeof(comm));
3587         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3588         size = ALIGN(strlen(comm)+1, sizeof(u64));
3589
3590         comm_event->comm = comm;
3591         comm_event->comm_size = size;
3592
3593         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3594
3595         rcu_read_lock();
3596         cpuctx = &get_cpu_var(perf_cpu_context);
3597         perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3598         ctx = rcu_dereference(current->perf_event_ctxp);
3599         if (ctx)
3600                 perf_event_comm_ctx(ctx, comm_event);
3601         put_cpu_var(perf_cpu_context);
3602         rcu_read_unlock();
3603 }
3604
3605 void perf_event_comm(struct task_struct *task)
3606 {
3607         struct perf_comm_event comm_event;
3608
3609         if (task->perf_event_ctxp)
3610                 perf_event_enable_on_exec(task);
3611
3612         if (!atomic_read(&nr_comm_events))
3613                 return;
3614
3615         comm_event = (struct perf_comm_event){
3616                 .task   = task,
3617                 /* .comm      */
3618                 /* .comm_size */
3619                 .event_id  = {
3620                         .header = {
3621                                 .type = PERF_RECORD_COMM,
3622                                 .misc = 0,
3623                                 /* .size */
3624                         },
3625                         /* .pid */
3626                         /* .tid */
3627                 },
3628         };
3629
3630         perf_event_comm_event(&comm_event);
3631 }
3632
3633 /*
3634  * mmap tracking
3635  */
3636
3637 struct perf_mmap_event {
3638         struct vm_area_struct   *vma;
3639
3640         const char              *file_name;
3641         int                     file_size;
3642
3643         struct {
3644                 struct perf_event_header        header;
3645
3646                 u32                             pid;
3647                 u32                             tid;
3648                 u64                             start;
3649                 u64                             len;
3650                 u64                             pgoff;
3651         } event_id;
3652 };
3653
3654 static void perf_event_mmap_output(struct perf_event *event,
3655                                      struct perf_mmap_event *mmap_event)
3656 {
3657         struct perf_output_handle handle;
3658         int size = mmap_event->event_id.header.size;
3659         int ret = perf_output_begin(&handle, event, size, 0, 0);
3660
3661         if (ret)
3662                 return;
3663
3664         mmap_event->event_id.pid = perf_event_pid(event, current);
3665         mmap_event->event_id.tid = perf_event_tid(event, current);
3666
3667         perf_output_put(&handle, mmap_event->event_id);
3668         perf_output_copy(&handle, mmap_event->file_name,
3669                                    mmap_event->file_size);
3670         perf_output_end(&handle);
3671 }
3672
3673 static int perf_event_mmap_match(struct perf_event *event,
3674                                    struct perf_mmap_event *mmap_event)
3675 {
3676         if (event->state < PERF_EVENT_STATE_INACTIVE)
3677                 return 0;
3678
3679         if (event->cpu != -1 && event->cpu != smp_processor_id())
3680                 return 0;
3681
3682         if (event->attr.mmap)
3683                 return 1;
3684
3685         return 0;
3686 }
3687
3688 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3689                                   struct perf_mmap_event *mmap_event)
3690 {
3691         struct perf_event *event;
3692
3693         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3694                 if (perf_event_mmap_match(event, mmap_event))
3695                         perf_event_mmap_output(event, mmap_event);
3696         }
3697 }
3698
3699 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3700 {
3701         struct perf_cpu_context *cpuctx;
3702         struct perf_event_context *ctx;
3703         struct vm_area_struct *vma = mmap_event->vma;
3704         struct file *file = vma->vm_file;
3705         unsigned int size;
3706         char tmp[16];
3707         char *buf = NULL;
3708         const char *name;
3709
3710         memset(tmp, 0, sizeof(tmp));
3711
3712         if (file) {
3713                 /*
3714                  * d_path works from the end of the buffer backwards, so we
3715                  * need to add enough zero bytes after the string to handle
3716                  * the 64bit alignment we do later.
3717                  */
3718                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3719                 if (!buf) {
3720                         name = strncpy(tmp, "//enomem", sizeof(tmp));
3721                         goto got_name;
3722                 }
3723                 name = d_path(&file->f_path, buf, PATH_MAX);
3724                 if (IS_ERR(name)) {
3725                         name = strncpy(tmp, "//toolong", sizeof(tmp));
3726                         goto got_name;
3727                 }
3728         } else {
3729                 if (arch_vma_name(mmap_event->vma)) {
3730                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3731                                        sizeof(tmp));
3732                         goto got_name;
3733                 }
3734
3735                 if (!vma->vm_mm) {
3736                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
3737                         goto got_name;
3738                 }
3739
3740                 name = strncpy(tmp, "//anon", sizeof(tmp));
3741                 goto got_name;
3742         }
3743
3744 got_name:
3745         size = ALIGN(strlen(name)+1, sizeof(u64));
3746
3747         mmap_event->file_name = name;
3748         mmap_event->file_size = size;
3749
3750         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3751
3752         rcu_read_lock();
3753         cpuctx = &get_cpu_var(perf_cpu_context);
3754         perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3755         ctx = rcu_dereference(current->perf_event_ctxp);
3756         if (ctx)
3757                 perf_event_mmap_ctx(ctx, mmap_event);
3758         put_cpu_var(perf_cpu_context);
3759         rcu_read_unlock();
3760
3761         kfree(buf);
3762 }
3763
3764 void __perf_event_mmap(struct vm_area_struct *vma)
3765 {
3766         struct perf_mmap_event mmap_event;
3767
3768         if (!atomic_read(&nr_mmap_events))
3769                 return;
3770
3771         mmap_event = (struct perf_mmap_event){
3772                 .vma    = vma,
3773                 /* .file_name */
3774                 /* .file_size */
3775                 .event_id  = {
3776                         .header = {
3777                                 .type = PERF_RECORD_MMAP,
3778                                 .misc = PERF_RECORD_MISC_USER,
3779                                 /* .size */
3780                         },
3781                         /* .pid */
3782                         /* .tid */
3783                         .start  = vma->vm_start,
3784                         .len    = vma->vm_end - vma->vm_start,
3785                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3786                 },
3787         };
3788
3789         perf_event_mmap_event(&mmap_event);
3790 }
3791
3792 /*
3793  * IRQ throttle logging
3794  */
3795
3796 static void perf_log_throttle(struct perf_event *event, int enable)
3797 {
3798         struct perf_output_handle handle;
3799         int ret;
3800
3801         struct {
3802                 struct perf_event_header        header;
3803                 u64                             time;
3804                 u64                             id;
3805                 u64                             stream_id;
3806         } throttle_event = {
3807                 .header = {
3808                         .type = PERF_RECORD_THROTTLE,
3809                         .misc = 0,
3810                         .size = sizeof(throttle_event),
3811                 },
3812                 .time           = perf_clock(),
3813                 .id             = primary_event_id(event),
3814                 .stream_id      = event->id,
3815         };
3816
3817         if (enable)
3818                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3819
3820         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3821         if (ret)
3822                 return;
3823
3824         perf_output_put(&handle, throttle_event);
3825         perf_output_end(&handle);
3826 }
3827
3828 /*
3829  * Generic event overflow handling, sampling.
3830  */
3831
3832 static int __perf_event_overflow(struct perf_event *event, int nmi,
3833                                    int throttle, struct perf_sample_data *data,
3834                                    struct pt_regs *regs)
3835 {
3836         int events = atomic_read(&event->event_limit);
3837         struct hw_perf_event *hwc = &event->hw;
3838         int ret = 0;
3839
3840         throttle = (throttle && event->pmu->unthrottle != NULL);
3841
3842         if (!throttle) {
3843                 hwc->interrupts++;
3844         } else {
3845                 if (hwc->interrupts != MAX_INTERRUPTS) {
3846                         hwc->interrupts++;
3847                         if (HZ * hwc->interrupts >
3848                                         (u64)sysctl_perf_event_sample_rate) {
3849                                 hwc->interrupts = MAX_INTERRUPTS;
3850                                 perf_log_throttle(event, 0);
3851                                 ret = 1;
3852                         }
3853                 } else {
3854                         /*
3855                          * Keep re-disabling events even though on the previous
3856                          * pass we disabled it - just in case we raced with a
3857                          * sched-in and the event got enabled again:
3858                          */
3859                         ret = 1;
3860                 }
3861         }
3862
3863         if (event->attr.freq) {
3864                 u64 now = perf_clock();
3865                 s64 delta = now - hwc->freq_time_stamp;
3866
3867                 hwc->freq_time_stamp = now;
3868
3869                 if (delta > 0 && delta < 2*TICK_NSEC)
3870                         perf_adjust_period(event, delta, hwc->last_period);
3871         }
3872
3873         /*
3874          * XXX event_limit might not quite work as expected on inherited
3875          * events
3876          */
3877
3878         event->pending_kill = POLL_IN;
3879         if (events && atomic_dec_and_test(&event->event_limit)) {
3880                 ret = 1;
3881                 event->pending_kill = POLL_HUP;
3882                 if (nmi) {
3883                         event->pending_disable = 1;
3884                         perf_pending_queue(&event->pending,
3885                                            perf_pending_event);
3886                 } else
3887                         perf_event_disable(event);
3888         }
3889
3890         if (event->overflow_handler)
3891                 event->overflow_handler(event, nmi, data, regs);
3892         else
3893                 perf_event_output(event, nmi, data, regs);
3894
3895         return ret;
3896 }
3897
3898 int perf_event_overflow(struct perf_event *event, int nmi,
3899                           struct perf_sample_data *data,
3900                           struct pt_regs *regs)
3901 {
3902         return __perf_event_overflow(event, nmi, 1, data, regs);
3903 }
3904
3905 /*
3906  * Generic software event infrastructure
3907  */
3908
3909 /*
3910  * We directly increment event->count and keep a second value in
3911  * event->hw.period_left to count intervals. This period event
3912  * is kept in the range [-sample_period, 0] so that we can use the
3913  * sign as trigger.
3914  */
3915
3916 static u64 perf_swevent_set_period(struct perf_event *event)
3917 {
3918         struct hw_perf_event *hwc = &event->hw;
3919         u64 period = hwc->last_period;
3920         u64 nr, offset;
3921         s64 old, val;
3922
3923         hwc->last_period = hwc->sample_period;
3924
3925 again:
3926         old = val = atomic64_read(&hwc->period_left);
3927         if (val < 0)
3928                 return 0;
3929
3930         nr = div64_u64(period + val, period);
3931         offset = nr * period;
3932         val -= offset;
3933         if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3934                 goto again;
3935
3936         return nr;
3937 }
3938
3939 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3940                                     int nmi, struct perf_sample_data *data,
3941                                     struct pt_regs *regs)
3942 {
3943         struct hw_perf_event *hwc = &event->hw;
3944         int throttle = 0;
3945
3946         data->period = event->hw.last_period;
3947         if (!overflow)
3948                 overflow = perf_swevent_set_period(event);
3949
3950         if (hwc->interrupts == MAX_INTERRUPTS)
3951                 return;
3952
3953         for (; overflow; overflow--) {
3954                 if (__perf_event_overflow(event, nmi, throttle,
3955                                             data, regs)) {
3956                         /*
3957                          * We inhibit the overflow from happening when
3958                          * hwc->interrupts == MAX_INTERRUPTS.
3959                          */
3960                         break;
3961                 }
3962                 throttle = 1;
3963         }
3964 }
3965
3966 static void perf_swevent_unthrottle(struct perf_event *event)
3967 {
3968         /*
3969          * Nothing to do, we already reset hwc->interrupts.
3970          */
3971 }
3972
3973 static void perf_swevent_add(struct perf_event *event, u64 nr,
3974                                int nmi, struct perf_sample_data *data,
3975                                struct pt_regs *regs)
3976 {
3977         struct hw_perf_event *hwc = &event->hw;
3978
3979         atomic64_add(nr, &event->count);
3980
3981         if (!regs)
3982                 return;
3983
3984         if (!hwc->sample_period)
3985                 return;
3986
3987         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3988                 return perf_swevent_overflow(event, 1, nmi, data, regs);
3989
3990         if (atomic64_add_negative(nr, &hwc->period_left))
3991                 return;
3992
3993         perf_swevent_overflow(event, 0, nmi, data, regs);
3994 }
3995
3996 static int perf_tp_event_match(struct perf_event *event,
3997                                 struct perf_sample_data *data);
3998
3999 static int perf_exclude_event(struct perf_event *event,
4000                               struct pt_regs *regs)
4001 {
4002         if (regs) {
4003                 if (event->attr.exclude_user && user_mode(regs))
4004                         return 1;
4005
4006                 if (event->attr.exclude_kernel && !user_mode(regs))
4007                         return 1;
4008         }
4009
4010         return 0;
4011 }
4012
4013 static int perf_swevent_match(struct perf_event *event,
4014                                 enum perf_type_id type,
4015                                 u32 event_id,
4016                                 struct perf_sample_data *data,
4017                                 struct pt_regs *regs)
4018 {
4019         if (event->attr.type != type)
4020                 return 0;
4021
4022         if (event->attr.config != event_id)
4023                 return 0;
4024
4025         if (perf_exclude_event(event, regs))
4026                 return 0;
4027
4028         if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4029             !perf_tp_event_match(event, data))
4030                 return 0;
4031
4032         return 1;
4033 }
4034
4035 static inline u64 swevent_hash(u64 type, u32 event_id)
4036 {
4037         u64 val = event_id | (type << 32);
4038
4039         return hash_64(val, SWEVENT_HLIST_BITS);
4040 }
4041
4042 static struct hlist_head *
4043 find_swevent_head(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4044 {
4045         u64 hash;
4046         struct swevent_hlist *hlist;
4047
4048         hash = swevent_hash(type, event_id);
4049
4050         hlist = rcu_dereference(ctx->swevent_hlist);
4051         if (!hlist)
4052                 return NULL;
4053
4054         return &hlist->heads[hash];
4055 }
4056
4057 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4058                                     u64 nr, int nmi,
4059                                     struct perf_sample_data *data,
4060                                     struct pt_regs *regs)
4061 {
4062         struct perf_cpu_context *cpuctx;
4063         struct perf_event *event;
4064         struct hlist_node *node;
4065         struct hlist_head *head;
4066
4067         cpuctx = &__get_cpu_var(perf_cpu_context);
4068
4069         rcu_read_lock();
4070
4071         head = find_swevent_head(cpuctx, type, event_id);
4072
4073         if (!head)
4074                 goto end;
4075
4076         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4077                 if (perf_swevent_match(event, type, event_id, data, regs))
4078                         perf_swevent_add(event, nr, nmi, data, regs);
4079         }
4080 end:
4081         rcu_read_unlock();
4082 }
4083
4084 int perf_swevent_get_recursion_context(void)
4085 {
4086         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4087         int rctx;
4088
4089         if (in_nmi())
4090                 rctx = 3;
4091         else if (in_irq())
4092                 rctx = 2;
4093         else if (in_softirq())
4094                 rctx = 1;
4095         else
4096                 rctx = 0;
4097
4098         if (cpuctx->recursion[rctx]) {
4099                 put_cpu_var(perf_cpu_context);
4100                 return -1;
4101         }
4102
4103         cpuctx->recursion[rctx]++;
4104         barrier();
4105
4106         return rctx;
4107 }
4108 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4109
4110 void perf_swevent_put_recursion_context(int rctx)
4111 {
4112         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4113         barrier();
4114         cpuctx->recursion[rctx]--;
4115         put_cpu_var(perf_cpu_context);
4116 }
4117 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4118
4119
4120 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4121                             struct pt_regs *regs, u64 addr)
4122 {
4123         struct perf_sample_data data;
4124         int rctx;
4125
4126         rctx = perf_swevent_get_recursion_context();
4127         if (rctx < 0)
4128                 return;
4129
4130         perf_sample_data_init(&data, addr);
4131
4132         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4133
4134         perf_swevent_put_recursion_context(rctx);
4135 }
4136
4137 static void perf_swevent_read(struct perf_event *event)
4138 {
4139 }
4140
4141 static int perf_swevent_enable(struct perf_event *event)
4142 {
4143         struct hw_perf_event *hwc = &event->hw;
4144         struct perf_cpu_context *cpuctx;
4145         struct hlist_head *head;
4146
4147         cpuctx = &__get_cpu_var(perf_cpu_context);
4148
4149         if (hwc->sample_period) {
4150                 hwc->last_period = hwc->sample_period;
4151                 perf_swevent_set_period(event);
4152         }
4153
4154         head = find_swevent_head(cpuctx, event->attr.type, event->attr.config);
4155         if (WARN_ON_ONCE(!head))
4156                 return -EINVAL;
4157
4158         hlist_add_head_rcu(&event->hlist_entry, head);
4159
4160         return 0;
4161 }
4162
4163 static void perf_swevent_disable(struct perf_event *event)
4164 {
4165         hlist_del_rcu(&event->hlist_entry);
4166 }
4167
4168 static const struct pmu perf_ops_generic = {
4169         .enable         = perf_swevent_enable,
4170         .disable        = perf_swevent_disable,
4171         .read           = perf_swevent_read,
4172         .unthrottle     = perf_swevent_unthrottle,
4173 };
4174
4175 /*
4176  * hrtimer based swevent callback
4177  */
4178
4179 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4180 {
4181         enum hrtimer_restart ret = HRTIMER_RESTART;
4182         struct perf_sample_data data;
4183         struct pt_regs *regs;
4184         struct perf_event *event;
4185         u64 period;
4186
4187         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4188         event->pmu->read(event);
4189
4190         perf_sample_data_init(&data, 0);
4191         data.period = event->hw.last_period;
4192         regs = get_irq_regs();
4193
4194         if (regs && !perf_exclude_event(event, regs)) {
4195                 if (!(event->attr.exclude_idle && current->pid == 0))
4196                         if (perf_event_overflow(event, 0, &data, regs))
4197                                 ret = HRTIMER_NORESTART;
4198         }
4199
4200         period = max_t(u64, 10000, event->hw.sample_period);
4201         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4202
4203         return ret;
4204 }
4205
4206 static void perf_swevent_start_hrtimer(struct perf_event *event)
4207 {
4208         struct hw_perf_event *hwc = &event->hw;
4209
4210         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4211         hwc->hrtimer.function = perf_swevent_hrtimer;
4212         if (hwc->sample_period) {
4213                 u64 period;
4214
4215                 if (hwc->remaining) {
4216                         if (hwc->remaining < 0)
4217                                 period = 10000;
4218                         else
4219                                 period = hwc->remaining;
4220                         hwc->remaining = 0;
4221                 } else {
4222                         period = max_t(u64, 10000, hwc->sample_period);
4223                 }
4224                 __hrtimer_start_range_ns(&hwc->hrtimer,
4225                                 ns_to_ktime(period), 0,
4226                                 HRTIMER_MODE_REL, 0);
4227         }
4228 }
4229
4230 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4231 {
4232         struct hw_perf_event *hwc = &event->hw;
4233
4234         if (hwc->sample_period) {
4235                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4236                 hwc->remaining = ktime_to_ns(remaining);
4237
4238                 hrtimer_cancel(&hwc->hrtimer);
4239         }
4240 }
4241
4242 /*
4243  * Software event: cpu wall time clock
4244  */
4245
4246 static void cpu_clock_perf_event_update(struct perf_event *event)
4247 {
4248         int cpu = raw_smp_processor_id();
4249         s64 prev;
4250         u64 now;
4251
4252         now = cpu_clock(cpu);
4253         prev = atomic64_xchg(&event->hw.prev_count, now);
4254         atomic64_add(now - prev, &event->count);
4255 }
4256
4257 static int cpu_clock_perf_event_enable(struct perf_event *event)
4258 {
4259         struct hw_perf_event *hwc = &event->hw;
4260         int cpu = raw_smp_processor_id();
4261
4262         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4263         perf_swevent_start_hrtimer(event);
4264
4265         return 0;
4266 }
4267
4268 static void cpu_clock_perf_event_disable(struct perf_event *event)
4269 {
4270         perf_swevent_cancel_hrtimer(event);
4271         cpu_clock_perf_event_update(event);
4272 }
4273
4274 static void cpu_clock_perf_event_read(struct perf_event *event)
4275 {
4276         cpu_clock_perf_event_update(event);
4277 }
4278
4279 static const struct pmu perf_ops_cpu_clock = {
4280         .enable         = cpu_clock_perf_event_enable,
4281         .disable        = cpu_clock_perf_event_disable,
4282         .read           = cpu_clock_perf_event_read,
4283 };
4284
4285 /*
4286  * Software event: task time clock
4287  */
4288
4289 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4290 {
4291         u64 prev;
4292         s64 delta;
4293
4294         prev = atomic64_xchg(&event->hw.prev_count, now);
4295         delta = now - prev;
4296         atomic64_add(delta, &event->count);
4297 }
4298
4299 static int task_clock_perf_event_enable(struct perf_event *event)
4300 {
4301         struct hw_perf_event *hwc = &event->hw;
4302         u64 now;
4303
4304         now = event->ctx->time;
4305
4306         atomic64_set(&hwc->prev_count, now);
4307
4308         perf_swevent_start_hrtimer(event);
4309
4310         return 0;
4311 }
4312
4313 static void task_clock_perf_event_disable(struct perf_event *event)
4314 {
4315         perf_swevent_cancel_hrtimer(event);
4316         task_clock_perf_event_update(event, event->ctx->time);
4317
4318 }
4319
4320 static void task_clock_perf_event_read(struct perf_event *event)
4321 {
4322         u64 time;
4323
4324         if (!in_nmi()) {
4325                 update_context_time(event->ctx);
4326                 time = event->ctx->time;
4327         } else {
4328                 u64 now = perf_clock();
4329                 u64 delta = now - event->ctx->timestamp;
4330                 time = event->ctx->time + delta;
4331         }
4332
4333         task_clock_perf_event_update(event, time);
4334 }
4335
4336 static const struct pmu perf_ops_task_clock = {
4337         .enable         = task_clock_perf_event_enable,
4338         .disable        = task_clock_perf_event_disable,
4339         .read           = task_clock_perf_event_read,
4340 };
4341
4342 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4343 {
4344         struct swevent_hlist *hlist;
4345
4346         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4347         kfree(hlist);
4348 }
4349
4350 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4351 {
4352         struct swevent_hlist *hlist;
4353
4354         if (!cpuctx->swevent_hlist)
4355                 return;
4356
4357         hlist = cpuctx->swevent_hlist;
4358         rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4359         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4360 }
4361
4362 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4363 {
4364         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4365
4366         mutex_lock(&cpuctx->hlist_mutex);
4367
4368         if (!--cpuctx->hlist_refcount)
4369                 swevent_hlist_release(cpuctx);
4370
4371         mutex_unlock(&cpuctx->hlist_mutex);
4372 }
4373
4374 static void swevent_hlist_put(struct perf_event *event)
4375 {
4376         int cpu;
4377
4378         if (event->cpu != -1) {
4379                 swevent_hlist_put_cpu(event, event->cpu);
4380                 return;
4381         }
4382
4383         for_each_possible_cpu(cpu)
4384                 swevent_hlist_put_cpu(event, cpu);
4385 }
4386
4387 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4388 {
4389         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4390         int err = 0;
4391
4392         mutex_lock(&cpuctx->hlist_mutex);
4393
4394         if (!cpuctx->swevent_hlist && cpu_online(cpu)) {
4395                 struct swevent_hlist *hlist;
4396
4397                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4398                 if (!hlist) {
4399                         err = -ENOMEM;
4400                         goto exit;
4401                 }
4402                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4403         }
4404         cpuctx->hlist_refcount++;
4405  exit:
4406         mutex_unlock(&cpuctx->hlist_mutex);
4407
4408         return err;
4409 }
4410
4411 static int swevent_hlist_get(struct perf_event *event)
4412 {
4413         int err;
4414         int cpu, failed_cpu;
4415
4416         if (event->cpu != -1)
4417                 return swevent_hlist_get_cpu(event, event->cpu);
4418
4419         get_online_cpus();
4420         for_each_possible_cpu(cpu) {
4421                 err = swevent_hlist_get_cpu(event, cpu);
4422                 if (err) {
4423                         failed_cpu = cpu;
4424                         goto fail;
4425                 }
4426         }
4427         put_online_cpus();
4428
4429         return 0;
4430  fail:
4431         for_each_possible_cpu(cpu) {
4432                 if (cpu == failed_cpu)
4433                         break;
4434                 swevent_hlist_put_cpu(event, cpu);
4435         }
4436
4437         put_online_cpus();
4438         return err;
4439 }
4440
4441 #ifdef CONFIG_EVENT_TRACING
4442
4443 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4444                    int entry_size, struct pt_regs *regs)
4445 {
4446         struct perf_sample_data data;
4447         struct perf_raw_record raw = {
4448                 .size = entry_size,
4449                 .data = record,
4450         };
4451
4452         perf_sample_data_init(&data, addr);
4453         data.raw = &raw;
4454
4455         /* Trace events already protected against recursion */
4456         do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4457                          &data, regs);
4458 }
4459 EXPORT_SYMBOL_GPL(perf_tp_event);
4460
4461 static int perf_tp_event_match(struct perf_event *event,
4462                                 struct perf_sample_data *data)
4463 {
4464         void *record = data->raw->data;
4465
4466         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4467                 return 1;
4468         return 0;
4469 }
4470
4471 static void tp_perf_event_destroy(struct perf_event *event)
4472 {
4473         perf_trace_disable(event->attr.config);
4474         swevent_hlist_put(event);
4475 }
4476
4477 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4478 {
4479         int err;
4480
4481         /*
4482          * Raw tracepoint data is a severe data leak, only allow root to
4483          * have these.
4484          */
4485         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4486                         perf_paranoid_tracepoint_raw() &&
4487                         !capable(CAP_SYS_ADMIN))
4488                 return ERR_PTR(-EPERM);
4489
4490         if (perf_trace_enable(event->attr.config))
4491                 return NULL;
4492
4493         event->destroy = tp_perf_event_destroy;
4494         err = swevent_hlist_get(event);
4495         if (err) {
4496                 perf_trace_disable(event->attr.config);
4497                 return ERR_PTR(err);
4498         }
4499
4500         return &perf_ops_generic;
4501 }
4502
4503 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4504 {
4505         char *filter_str;
4506         int ret;
4507
4508         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4509                 return -EINVAL;
4510
4511         filter_str = strndup_user(arg, PAGE_SIZE);
4512         if (IS_ERR(filter_str))
4513                 return PTR_ERR(filter_str);
4514
4515         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4516
4517         kfree(filter_str);
4518         return ret;
4519 }
4520
4521 static void perf_event_free_filter(struct perf_event *event)
4522 {
4523         ftrace_profile_free_filter(event);
4524 }
4525
4526 #else
4527
4528 static int perf_tp_event_match(struct perf_event *event,
4529                                 struct perf_sample_data *data)
4530 {
4531         return 1;
4532 }
4533
4534 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4535 {
4536         return NULL;
4537 }
4538
4539 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4540 {
4541         return -ENOENT;
4542 }
4543
4544 static void perf_event_free_filter(struct perf_event *event)
4545 {
4546 }
4547
4548 #endif /* CONFIG_EVENT_TRACING */
4549
4550 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4551 static void bp_perf_event_destroy(struct perf_event *event)
4552 {
4553         release_bp_slot(event);
4554 }
4555
4556 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4557 {
4558         int err;
4559
4560         err = register_perf_hw_breakpoint(bp);
4561         if (err)
4562                 return ERR_PTR(err);
4563
4564         bp->destroy = bp_perf_event_destroy;
4565
4566         return &perf_ops_bp;
4567 }
4568
4569 void perf_bp_event(struct perf_event *bp, void *data)
4570 {
4571         struct perf_sample_data sample;
4572         struct pt_regs *regs = data;
4573
4574         perf_sample_data_init(&sample, bp->attr.bp_addr);
4575
4576         if (!perf_exclude_event(bp, regs))
4577                 perf_swevent_add(bp, 1, 1, &sample, regs);
4578 }
4579 #else
4580 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4581 {
4582         return NULL;
4583 }
4584
4585 void perf_bp_event(struct perf_event *bp, void *regs)
4586 {
4587 }
4588 #endif
4589
4590 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4591
4592 static void sw_perf_event_destroy(struct perf_event *event)
4593 {
4594         u64 event_id = event->attr.config;
4595
4596         WARN_ON(event->parent);
4597
4598         atomic_dec(&perf_swevent_enabled[event_id]);
4599         swevent_hlist_put(event);
4600 }
4601
4602 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4603 {
4604         const struct pmu *pmu = NULL;
4605         u64 event_id = event->attr.config;
4606
4607         /*
4608          * Software events (currently) can't in general distinguish
4609          * between user, kernel and hypervisor events.
4610          * However, context switches and cpu migrations are considered
4611          * to be kernel events, and page faults are never hypervisor
4612          * events.
4613          */
4614         switch (event_id) {
4615         case PERF_COUNT_SW_CPU_CLOCK:
4616                 pmu = &perf_ops_cpu_clock;
4617
4618                 break;
4619         case PERF_COUNT_SW_TASK_CLOCK:
4620                 /*
4621                  * If the user instantiates this as a per-cpu event,
4622                  * use the cpu_clock event instead.
4623                  */
4624                 if (event->ctx->task)
4625                         pmu = &perf_ops_task_clock;
4626                 else
4627                         pmu = &perf_ops_cpu_clock;
4628
4629                 break;
4630         case PERF_COUNT_SW_PAGE_FAULTS:
4631         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4632         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4633         case PERF_COUNT_SW_CONTEXT_SWITCHES:
4634         case PERF_COUNT_SW_CPU_MIGRATIONS:
4635         case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4636         case PERF_COUNT_SW_EMULATION_FAULTS:
4637                 if (!event->parent) {
4638                         int err;
4639
4640                         err = swevent_hlist_get(event);
4641                         if (err)
4642                                 return ERR_PTR(err);
4643
4644                         atomic_inc(&perf_swevent_enabled[event_id]);
4645                         event->destroy = sw_perf_event_destroy;
4646                 }
4647                 pmu = &perf_ops_generic;
4648                 break;
4649         }
4650
4651         return pmu;
4652 }
4653
4654 /*
4655  * Allocate and initialize a event structure
4656  */
4657 static struct perf_event *
4658 perf_event_alloc(struct perf_event_attr *attr,
4659                    int cpu,
4660                    struct perf_event_context *ctx,
4661                    struct perf_event *group_leader,
4662                    struct perf_event *parent_event,
4663                    perf_overflow_handler_t overflow_handler,
4664                    gfp_t gfpflags)
4665 {
4666         const struct pmu *pmu;
4667         struct perf_event *event;
4668         struct hw_perf_event *hwc;
4669         long err;
4670
4671         event = kzalloc(sizeof(*event), gfpflags);
4672         if (!event)
4673                 return ERR_PTR(-ENOMEM);
4674
4675         /*
4676          * Single events are their own group leaders, with an
4677          * empty sibling list:
4678          */
4679         if (!group_leader)
4680                 group_leader = event;
4681
4682         mutex_init(&event->child_mutex);
4683         INIT_LIST_HEAD(&event->child_list);
4684
4685         INIT_LIST_HEAD(&event->group_entry);
4686         INIT_LIST_HEAD(&event->event_entry);
4687         INIT_LIST_HEAD(&event->sibling_list);
4688         init_waitqueue_head(&event->waitq);
4689
4690         mutex_init(&event->mmap_mutex);
4691
4692         event->cpu              = cpu;
4693         event->attr             = *attr;
4694         event->group_leader     = group_leader;
4695         event->pmu              = NULL;
4696         event->ctx              = ctx;
4697         event->oncpu            = -1;
4698
4699         event->parent           = parent_event;
4700
4701         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
4702         event->id               = atomic64_inc_return(&perf_event_id);
4703
4704         event->state            = PERF_EVENT_STATE_INACTIVE;
4705
4706         if (!overflow_handler && parent_event)
4707                 overflow_handler = parent_event->overflow_handler;
4708         
4709         event->overflow_handler = overflow_handler;
4710
4711         if (attr->disabled)
4712                 event->state = PERF_EVENT_STATE_OFF;
4713
4714         pmu = NULL;
4715
4716         hwc = &event->hw;
4717         hwc->sample_period = attr->sample_period;
4718         if (attr->freq && attr->sample_freq)
4719                 hwc->sample_period = 1;
4720         hwc->last_period = hwc->sample_period;
4721
4722         atomic64_set(&hwc->period_left, hwc->sample_period);
4723
4724         /*
4725          * we currently do not support PERF_FORMAT_GROUP on inherited events
4726          */
4727         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4728                 goto done;
4729
4730         switch (attr->type) {
4731         case PERF_TYPE_RAW:
4732         case PERF_TYPE_HARDWARE:
4733         case PERF_TYPE_HW_CACHE:
4734                 pmu = hw_perf_event_init(event);
4735                 break;
4736
4737         case PERF_TYPE_SOFTWARE:
4738                 pmu = sw_perf_event_init(event);
4739                 break;
4740
4741         case PERF_TYPE_TRACEPOINT:
4742                 pmu = tp_perf_event_init(event);
4743                 break;
4744
4745         case PERF_TYPE_BREAKPOINT:
4746                 pmu = bp_perf_event_init(event);
4747                 break;
4748
4749
4750         default:
4751                 break;
4752         }
4753 done:
4754         err = 0;
4755         if (!pmu)
4756                 err = -EINVAL;
4757         else if (IS_ERR(pmu))
4758                 err = PTR_ERR(pmu);
4759
4760         if (err) {
4761                 if (event->ns)
4762                         put_pid_ns(event->ns);
4763                 kfree(event);
4764                 return ERR_PTR(err);
4765         }
4766
4767         event->pmu = pmu;
4768
4769         if (!event->parent) {
4770                 atomic_inc(&nr_events);
4771                 if (event->attr.mmap)
4772                         atomic_inc(&nr_mmap_events);
4773                 if (event->attr.comm)
4774                         atomic_inc(&nr_comm_events);
4775                 if (event->attr.task)
4776                         atomic_inc(&nr_task_events);
4777         }
4778
4779         return event;
4780 }
4781
4782 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4783                           struct perf_event_attr *attr)
4784 {
4785         u32 size;
4786         int ret;
4787
4788         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4789                 return -EFAULT;
4790
4791         /*
4792          * zero the full structure, so that a short copy will be nice.
4793          */
4794         memset(attr, 0, sizeof(*attr));
4795
4796         ret = get_user(size, &uattr->size);
4797         if (ret)
4798                 return ret;
4799
4800         if (size > PAGE_SIZE)   /* silly large */
4801                 goto err_size;
4802
4803         if (!size)              /* abi compat */
4804                 size = PERF_ATTR_SIZE_VER0;
4805
4806         if (size < PERF_ATTR_SIZE_VER0)
4807                 goto err_size;
4808
4809         /*
4810          * If we're handed a bigger struct than we know of,
4811          * ensure all the unknown bits are 0 - i.e. new
4812          * user-space does not rely on any kernel feature
4813          * extensions we dont know about yet.
4814          */
4815         if (size > sizeof(*attr)) {
4816                 unsigned char __user *addr;
4817                 unsigned char __user *end;
4818                 unsigned char val;
4819
4820                 addr = (void __user *)uattr + sizeof(*attr);
4821                 end  = (void __user *)uattr + size;
4822
4823                 for (; addr < end; addr++) {
4824                         ret = get_user(val, addr);
4825                         if (ret)
4826                                 return ret;
4827                         if (val)
4828                                 goto err_size;
4829                 }
4830                 size = sizeof(*attr);
4831         }
4832
4833         ret = copy_from_user(attr, uattr, size);
4834         if (ret)
4835                 return -EFAULT;
4836
4837         /*
4838          * If the type exists, the corresponding creation will verify
4839          * the attr->config.
4840          */
4841         if (attr->type >= PERF_TYPE_MAX)
4842                 return -EINVAL;
4843
4844         if (attr->__reserved_1)
4845                 return -EINVAL;
4846
4847         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4848                 return -EINVAL;
4849
4850         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4851                 return -EINVAL;
4852
4853 out:
4854         return ret;
4855
4856 err_size:
4857         put_user(sizeof(*attr), &uattr->size);
4858         ret = -E2BIG;
4859         goto out;
4860 }
4861
4862 static int perf_event_set_output(struct perf_event *event, int output_fd)
4863 {
4864         struct perf_event *output_event = NULL;
4865         struct file *output_file = NULL;
4866         struct perf_event *old_output;
4867         int fput_needed = 0;
4868         int ret = -EINVAL;
4869
4870         if (!output_fd)
4871                 goto set;
4872
4873         output_file = fget_light(output_fd, &fput_needed);
4874         if (!output_file)
4875                 return -EBADF;
4876
4877         if (output_file->f_op != &perf_fops)
4878                 goto out;
4879
4880         output_event = output_file->private_data;
4881
4882         /* Don't chain output fds */
4883         if (output_event->output)
4884                 goto out;
4885
4886         /* Don't set an output fd when we already have an output channel */
4887         if (event->data)
4888                 goto out;
4889
4890         atomic_long_inc(&output_file->f_count);
4891
4892 set:
4893         mutex_lock(&event->mmap_mutex);
4894         old_output = event->output;
4895         rcu_assign_pointer(event->output, output_event);
4896         mutex_unlock(&event->mmap_mutex);
4897
4898         if (old_output) {
4899                 /*
4900                  * we need to make sure no existing perf_output_*()
4901                  * is still referencing this event.
4902                  */
4903                 synchronize_rcu();
4904                 fput(old_output->filp);
4905         }
4906
4907         ret = 0;
4908 out:
4909         fput_light(output_file, fput_needed);
4910         return ret;
4911 }
4912
4913 /**
4914  * sys_perf_event_open - open a performance event, associate it to a task/cpu
4915  *
4916  * @attr_uptr:  event_id type attributes for monitoring/sampling
4917  * @pid:                target pid
4918  * @cpu:                target cpu
4919  * @group_fd:           group leader event fd
4920  */
4921 SYSCALL_DEFINE5(perf_event_open,
4922                 struct perf_event_attr __user *, attr_uptr,
4923                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4924 {
4925         struct perf_event *event, *group_leader;
4926         struct perf_event_attr attr;
4927         struct perf_event_context *ctx;
4928         struct file *event_file = NULL;
4929         struct file *group_file = NULL;
4930         int fput_needed = 0;
4931         int fput_needed2 = 0;
4932         int err;
4933
4934         /* for future expandability... */
4935         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4936                 return -EINVAL;
4937
4938         err = perf_copy_attr(attr_uptr, &attr);
4939         if (err)
4940                 return err;
4941
4942         if (!attr.exclude_kernel) {
4943                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4944                         return -EACCES;
4945         }
4946
4947         if (attr.freq) {
4948                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4949                         return -EINVAL;
4950         }
4951
4952         /*
4953          * Get the target context (task or percpu):
4954          */
4955         ctx = find_get_context(pid, cpu);
4956         if (IS_ERR(ctx))
4957                 return PTR_ERR(ctx);
4958
4959         /*
4960          * Look up the group leader (we will attach this event to it):
4961          */
4962         group_leader = NULL;
4963         if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4964                 err = -EINVAL;
4965                 group_file = fget_light(group_fd, &fput_needed);
4966                 if (!group_file)
4967                         goto err_put_context;
4968                 if (group_file->f_op != &perf_fops)
4969                         goto err_put_context;
4970
4971                 group_leader = group_file->private_data;
4972                 /*
4973                  * Do not allow a recursive hierarchy (this new sibling
4974                  * becoming part of another group-sibling):
4975                  */
4976                 if (group_leader->group_leader != group_leader)
4977                         goto err_put_context;
4978                 /*
4979                  * Do not allow to attach to a group in a different
4980                  * task or CPU context:
4981                  */
4982                 if (group_leader->ctx != ctx)
4983                         goto err_put_context;
4984                 /*
4985                  * Only a group leader can be exclusive or pinned
4986                  */
4987                 if (attr.exclusive || attr.pinned)
4988                         goto err_put_context;
4989         }
4990
4991         event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4992                                      NULL, NULL, GFP_KERNEL);
4993         err = PTR_ERR(event);
4994         if (IS_ERR(event))
4995                 goto err_put_context;
4996
4997         err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4998         if (err < 0)
4999                 goto err_free_put_context;
5000
5001         event_file = fget_light(err, &fput_needed2);
5002         if (!event_file)
5003                 goto err_free_put_context;
5004
5005         if (flags & PERF_FLAG_FD_OUTPUT) {
5006                 err = perf_event_set_output(event, group_fd);
5007                 if (err)
5008                         goto err_fput_free_put_context;
5009         }
5010
5011         event->filp = event_file;
5012         WARN_ON_ONCE(ctx->parent_ctx);
5013         mutex_lock(&ctx->mutex);
5014         perf_install_in_context(ctx, event, cpu);
5015         ++ctx->generation;
5016         mutex_unlock(&ctx->mutex);
5017
5018         event->owner = current;
5019         get_task_struct(current);
5020         mutex_lock(&current->perf_event_mutex);
5021         list_add_tail(&event->owner_entry, &current->perf_event_list);
5022         mutex_unlock(&current->perf_event_mutex);
5023
5024 err_fput_free_put_context:
5025         fput_light(event_file, fput_needed2);
5026
5027 err_free_put_context:
5028         if (err < 0)
5029                 free_event(event);
5030
5031 err_put_context:
5032         if (err < 0)
5033                 put_ctx(ctx);
5034
5035         fput_light(group_file, fput_needed);
5036
5037         return err;
5038 }
5039
5040 /**
5041  * perf_event_create_kernel_counter
5042  *
5043  * @attr: attributes of the counter to create
5044  * @cpu: cpu in which the counter is bound
5045  * @pid: task to profile
5046  */
5047 struct perf_event *
5048 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5049                                  pid_t pid,
5050                                  perf_overflow_handler_t overflow_handler)
5051 {
5052         struct perf_event *event;
5053         struct perf_event_context *ctx;
5054         int err;
5055
5056         /*
5057          * Get the target context (task or percpu):
5058          */
5059
5060         ctx = find_get_context(pid, cpu);
5061         if (IS_ERR(ctx)) {
5062                 err = PTR_ERR(ctx);
5063                 goto err_exit;
5064         }
5065
5066         event = perf_event_alloc(attr, cpu, ctx, NULL,
5067                                  NULL, overflow_handler, GFP_KERNEL);
5068         if (IS_ERR(event)) {
5069                 err = PTR_ERR(event);
5070                 goto err_put_context;
5071         }
5072
5073         event->filp = NULL;
5074         WARN_ON_ONCE(ctx->parent_ctx);
5075         mutex_lock(&ctx->mutex);
5076         perf_install_in_context(ctx, event, cpu);
5077         ++ctx->generation;
5078         mutex_unlock(&ctx->mutex);
5079
5080         event->owner = current;
5081         get_task_struct(current);
5082         mutex_lock(&current->perf_event_mutex);
5083         list_add_tail(&event->owner_entry, &current->perf_event_list);
5084         mutex_unlock(&current->perf_event_mutex);
5085
5086         return event;
5087
5088  err_put_context:
5089         put_ctx(ctx);
5090  err_exit:
5091         return ERR_PTR(err);
5092 }
5093 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5094
5095 /*
5096  * inherit a event from parent task to child task:
5097  */
5098 static struct perf_event *
5099 inherit_event(struct perf_event *parent_event,
5100               struct task_struct *parent,
5101               struct perf_event_context *parent_ctx,
5102               struct task_struct *child,
5103               struct perf_event *group_leader,
5104               struct perf_event_context *child_ctx)
5105 {
5106         struct perf_event *child_event;
5107
5108         /*
5109          * Instead of creating recursive hierarchies of events,
5110          * we link inherited events back to the original parent,
5111          * which has a filp for sure, which we use as the reference
5112          * count:
5113          */
5114         if (parent_event->parent)
5115                 parent_event = parent_event->parent;
5116
5117         child_event = perf_event_alloc(&parent_event->attr,
5118                                            parent_event->cpu, child_ctx,
5119                                            group_leader, parent_event,
5120                                            NULL, GFP_KERNEL);
5121         if (IS_ERR(child_event))
5122                 return child_event;
5123         get_ctx(child_ctx);
5124
5125         /*
5126          * Make the child state follow the state of the parent event,
5127          * not its attr.disabled bit.  We hold the parent's mutex,
5128          * so we won't race with perf_event_{en, dis}able_family.
5129          */
5130         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5131                 child_event->state = PERF_EVENT_STATE_INACTIVE;
5132         else
5133                 child_event->state = PERF_EVENT_STATE_OFF;
5134
5135         if (parent_event->attr.freq) {
5136                 u64 sample_period = parent_event->hw.sample_period;
5137                 struct hw_perf_event *hwc = &child_event->hw;
5138
5139                 hwc->sample_period = sample_period;
5140                 hwc->last_period   = sample_period;
5141
5142                 atomic64_set(&hwc->period_left, sample_period);
5143         }
5144
5145         child_event->overflow_handler = parent_event->overflow_handler;
5146
5147         /*
5148          * Link it up in the child's context:
5149          */
5150         add_event_to_ctx(child_event, child_ctx);
5151
5152         /*
5153          * Get a reference to the parent filp - we will fput it
5154          * when the child event exits. This is safe to do because
5155          * we are in the parent and we know that the filp still
5156          * exists and has a nonzero count:
5157          */
5158         atomic_long_inc(&parent_event->filp->f_count);
5159
5160         /*
5161          * Link this into the parent event's child list
5162          */
5163         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5164         mutex_lock(&parent_event->child_mutex);
5165         list_add_tail(&child_event->child_list, &parent_event->child_list);
5166         mutex_unlock(&parent_event->child_mutex);
5167
5168         return child_event;
5169 }
5170
5171 static int inherit_group(struct perf_event *parent_event,
5172               struct task_struct *parent,
5173               struct perf_event_context *parent_ctx,
5174               struct task_struct *child,
5175               struct perf_event_context *child_ctx)
5176 {
5177         struct perf_event *leader;
5178         struct perf_event *sub;
5179         struct perf_event *child_ctr;
5180
5181         leader = inherit_event(parent_event, parent, parent_ctx,
5182                                  child, NULL, child_ctx);
5183         if (IS_ERR(leader))
5184                 return PTR_ERR(leader);
5185         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5186                 child_ctr = inherit_event(sub, parent, parent_ctx,
5187                                             child, leader, child_ctx);
5188                 if (IS_ERR(child_ctr))
5189                         return PTR_ERR(child_ctr);
5190         }
5191         return 0;
5192 }
5193
5194 static void sync_child_event(struct perf_event *child_event,
5195                                struct task_struct *child)
5196 {
5197         struct perf_event *parent_event = child_event->parent;
5198         u64 child_val;
5199
5200         if (child_event->attr.inherit_stat)
5201                 perf_event_read_event(child_event, child);
5202
5203         child_val = atomic64_read(&child_event->count);
5204
5205         /*
5206          * Add back the child's count to the parent's count:
5207          */
5208         atomic64_add(child_val, &parent_event->count);
5209         atomic64_add(child_event->total_time_enabled,
5210                      &parent_event->child_total_time_enabled);
5211         atomic64_add(child_event->total_time_running,
5212                      &parent_event->child_total_time_running);
5213
5214         /*
5215          * Remove this event from the parent's list
5216          */
5217         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5218         mutex_lock(&parent_event->child_mutex);
5219         list_del_init(&child_event->child_list);
5220         mutex_unlock(&parent_event->child_mutex);
5221
5222         /*
5223          * Release the parent event, if this was the last
5224          * reference to it.
5225          */
5226         fput(parent_event->filp);
5227 }
5228
5229 static void
5230 __perf_event_exit_task(struct perf_event *child_event,
5231                          struct perf_event_context *child_ctx,
5232                          struct task_struct *child)
5233 {
5234         struct perf_event *parent_event;
5235
5236         perf_event_remove_from_context(child_event);
5237
5238         parent_event = child_event->parent;
5239         /*
5240          * It can happen that parent exits first, and has events
5241          * that are still around due to the child reference. These
5242          * events need to be zapped - but otherwise linger.
5243          */
5244         if (parent_event) {
5245                 sync_child_event(child_event, child);
5246                 free_event(child_event);
5247         }
5248 }
5249
5250 /*
5251  * When a child task exits, feed back event values to parent events.
5252  */
5253 void perf_event_exit_task(struct task_struct *child)
5254 {
5255         struct perf_event *child_event, *tmp;
5256         struct perf_event_context *child_ctx;
5257         unsigned long flags;
5258
5259         if (likely(!child->perf_event_ctxp)) {
5260                 perf_event_task(child, NULL, 0);
5261                 return;
5262         }
5263
5264         local_irq_save(flags);
5265         /*
5266          * We can't reschedule here because interrupts are disabled,
5267          * and either child is current or it is a task that can't be
5268          * scheduled, so we are now safe from rescheduling changing
5269          * our context.
5270          */
5271         child_ctx = child->perf_event_ctxp;
5272         __perf_event_task_sched_out(child_ctx);
5273
5274         /*
5275          * Take the context lock here so that if find_get_context is
5276          * reading child->perf_event_ctxp, we wait until it has
5277          * incremented the context's refcount before we do put_ctx below.
5278          */
5279         raw_spin_lock(&child_ctx->lock);
5280         child->perf_event_ctxp = NULL;
5281         /*
5282          * If this context is a clone; unclone it so it can't get
5283          * swapped to another process while we're removing all
5284          * the events from it.
5285          */
5286         unclone_ctx(child_ctx);
5287         update_context_time(child_ctx);
5288         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5289
5290         /*
5291          * Report the task dead after unscheduling the events so that we
5292          * won't get any samples after PERF_RECORD_EXIT. We can however still
5293          * get a few PERF_RECORD_READ events.
5294          */
5295         perf_event_task(child, child_ctx, 0);
5296
5297         /*
5298          * We can recurse on the same lock type through:
5299          *
5300          *   __perf_event_exit_task()
5301          *     sync_child_event()
5302          *       fput(parent_event->filp)
5303          *         perf_release()
5304          *           mutex_lock(&ctx->mutex)
5305          *
5306          * But since its the parent context it won't be the same instance.
5307          */
5308         mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5309
5310 again:
5311         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5312                                  group_entry)
5313                 __perf_event_exit_task(child_event, child_ctx, child);
5314
5315         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5316                                  group_entry)
5317                 __perf_event_exit_task(child_event, child_ctx, child);
5318
5319         /*
5320          * If the last event was a group event, it will have appended all
5321          * its siblings to the list, but we obtained 'tmp' before that which
5322          * will still point to the list head terminating the iteration.
5323          */
5324         if (!list_empty(&child_ctx->pinned_groups) ||
5325             !list_empty(&child_ctx->flexible_groups))
5326                 goto again;
5327
5328         mutex_unlock(&child_ctx->mutex);
5329
5330         put_ctx(child_ctx);
5331 }
5332
5333 static void perf_free_event(struct perf_event *event,
5334                             struct perf_event_context *ctx)
5335 {
5336         struct perf_event *parent = event->parent;
5337
5338         if (WARN_ON_ONCE(!parent))
5339                 return;
5340
5341         mutex_lock(&parent->child_mutex);
5342         list_del_init(&event->child_list);
5343         mutex_unlock(&parent->child_mutex);
5344
5345         fput(parent->filp);
5346
5347         list_del_event(event, ctx);
5348         free_event(event);
5349 }
5350
5351 /*
5352  * free an unexposed, unused context as created by inheritance by
5353  * init_task below, used by fork() in case of fail.
5354  */
5355 void perf_event_free_task(struct task_struct *task)
5356 {
5357         struct perf_event_context *ctx = task->perf_event_ctxp;
5358         struct perf_event *event, *tmp;
5359
5360         if (!ctx)
5361                 return;
5362
5363         mutex_lock(&ctx->mutex);
5364 again:
5365         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5366                 perf_free_event(event, ctx);
5367
5368         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5369                                  group_entry)
5370                 perf_free_event(event, ctx);
5371
5372         if (!list_empty(&ctx->pinned_groups) ||
5373             !list_empty(&ctx->flexible_groups))
5374                 goto again;
5375
5376         mutex_unlock(&ctx->mutex);
5377
5378         put_ctx(ctx);
5379 }
5380
5381 static int
5382 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5383                    struct perf_event_context *parent_ctx,
5384                    struct task_struct *child,
5385                    int *inherited_all)
5386 {
5387         int ret;
5388         struct perf_event_context *child_ctx = child->perf_event_ctxp;
5389
5390         if (!event->attr.inherit) {
5391                 *inherited_all = 0;
5392                 return 0;
5393         }
5394
5395         if (!child_ctx) {
5396                 /*
5397                  * This is executed from the parent task context, so
5398                  * inherit events that have been marked for cloning.
5399                  * First allocate and initialize a context for the
5400                  * child.
5401                  */
5402
5403                 child_ctx = kzalloc(sizeof(struct perf_event_context),
5404                                     GFP_KERNEL);
5405                 if (!child_ctx)
5406                         return -ENOMEM;
5407
5408                 __perf_event_init_context(child_ctx, child);
5409                 child->perf_event_ctxp = child_ctx;
5410                 get_task_struct(child);
5411         }
5412
5413         ret = inherit_group(event, parent, parent_ctx,
5414                             child, child_ctx);
5415
5416         if (ret)
5417                 *inherited_all = 0;
5418
5419         return ret;
5420 }
5421
5422
5423 /*
5424  * Initialize the perf_event context in task_struct
5425  */
5426 int perf_event_init_task(struct task_struct *child)
5427 {
5428         struct perf_event_context *child_ctx, *parent_ctx;
5429         struct perf_event_context *cloned_ctx;
5430         struct perf_event *event;
5431         struct task_struct *parent = current;
5432         int inherited_all = 1;
5433         int ret = 0;
5434
5435         child->perf_event_ctxp = NULL;
5436
5437         mutex_init(&child->perf_event_mutex);
5438         INIT_LIST_HEAD(&child->perf_event_list);
5439
5440         if (likely(!parent->perf_event_ctxp))
5441                 return 0;
5442
5443         /*
5444          * If the parent's context is a clone, pin it so it won't get
5445          * swapped under us.
5446          */
5447         parent_ctx = perf_pin_task_context(parent);
5448
5449         /*
5450          * No need to check if parent_ctx != NULL here; since we saw
5451          * it non-NULL earlier, the only reason for it to become NULL
5452          * is if we exit, and since we're currently in the middle of
5453          * a fork we can't be exiting at the same time.
5454          */
5455
5456         /*
5457          * Lock the parent list. No need to lock the child - not PID
5458          * hashed yet and not running, so nobody can access it.
5459          */
5460         mutex_lock(&parent_ctx->mutex);
5461
5462         /*
5463          * We dont have to disable NMIs - we are only looking at
5464          * the list, not manipulating it:
5465          */
5466         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5467                 ret = inherit_task_group(event, parent, parent_ctx, child,
5468                                          &inherited_all);
5469                 if (ret)
5470                         break;
5471         }
5472
5473         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5474                 ret = inherit_task_group(event, parent, parent_ctx, child,
5475                                          &inherited_all);
5476                 if (ret)
5477                         break;
5478         }
5479
5480         child_ctx = child->perf_event_ctxp;
5481
5482         if (child_ctx && inherited_all) {
5483                 /*
5484                  * Mark the child context as a clone of the parent
5485                  * context, or of whatever the parent is a clone of.
5486                  * Note that if the parent is a clone, it could get
5487                  * uncloned at any point, but that doesn't matter
5488                  * because the list of events and the generation
5489                  * count can't have changed since we took the mutex.
5490                  */
5491                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5492                 if (cloned_ctx) {
5493                         child_ctx->parent_ctx = cloned_ctx;
5494                         child_ctx->parent_gen = parent_ctx->parent_gen;
5495                 } else {
5496                         child_ctx->parent_ctx = parent_ctx;
5497                         child_ctx->parent_gen = parent_ctx->generation;
5498                 }
5499                 get_ctx(child_ctx->parent_ctx);
5500         }
5501
5502         mutex_unlock(&parent_ctx->mutex);
5503
5504         perf_unpin_context(parent_ctx);
5505
5506         return ret;
5507 }
5508
5509 static void __init perf_event_init_all_cpus(void)
5510 {
5511         int cpu;
5512         struct perf_cpu_context *cpuctx;
5513
5514         for_each_possible_cpu(cpu) {
5515                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5516                 mutex_init(&cpuctx->hlist_mutex);
5517                 __perf_event_init_context(&cpuctx->ctx, NULL);
5518         }
5519 }
5520
5521 static void __cpuinit perf_event_init_cpu(int cpu)
5522 {
5523         struct perf_cpu_context *cpuctx;
5524
5525         cpuctx = &per_cpu(perf_cpu_context, cpu);
5526
5527         spin_lock(&perf_resource_lock);
5528         cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5529         spin_unlock(&perf_resource_lock);
5530
5531         mutex_lock(&cpuctx->hlist_mutex);
5532         if (cpuctx->hlist_refcount > 0) {
5533                 struct swevent_hlist *hlist;
5534
5535                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5536                 WARN_ON_ONCE(!hlist);
5537                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5538         }
5539         mutex_unlock(&cpuctx->hlist_mutex);
5540 }
5541
5542 #ifdef CONFIG_HOTPLUG_CPU
5543 static void __perf_event_exit_cpu(void *info)
5544 {
5545         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5546         struct perf_event_context *ctx = &cpuctx->ctx;
5547         struct perf_event *event, *tmp;
5548
5549         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5550                 __perf_event_remove_from_context(event);
5551         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5552                 __perf_event_remove_from_context(event);
5553 }
5554 static void perf_event_exit_cpu(int cpu)
5555 {
5556         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5557         struct perf_event_context *ctx = &cpuctx->ctx;
5558
5559         mutex_lock(&cpuctx->hlist_mutex);
5560         swevent_hlist_release(cpuctx);
5561         mutex_unlock(&cpuctx->hlist_mutex);
5562
5563         mutex_lock(&ctx->mutex);
5564         smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5565         mutex_unlock(&ctx->mutex);
5566 }
5567 #else
5568 static inline void perf_event_exit_cpu(int cpu) { }
5569 #endif
5570
5571 static int __cpuinit
5572 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5573 {
5574         unsigned int cpu = (long)hcpu;
5575
5576         switch (action) {
5577
5578         case CPU_UP_PREPARE:
5579         case CPU_UP_PREPARE_FROZEN:
5580                 perf_event_init_cpu(cpu);
5581                 break;
5582
5583         case CPU_DOWN_PREPARE:
5584         case CPU_DOWN_PREPARE_FROZEN:
5585                 perf_event_exit_cpu(cpu);
5586                 break;
5587
5588         default:
5589                 break;
5590         }
5591
5592         return NOTIFY_OK;
5593 }
5594
5595 /*
5596  * This has to have a higher priority than migration_notifier in sched.c.
5597  */
5598 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5599         .notifier_call          = perf_cpu_notify,
5600         .priority               = 20,
5601 };
5602
5603 void __init perf_event_init(void)
5604 {
5605         perf_event_init_all_cpus();
5606         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5607                         (void *)(long)smp_processor_id());
5608         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5609                         (void *)(long)smp_processor_id());
5610         register_cpu_notifier(&perf_cpu_nb);
5611 }
5612
5613 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5614                                         struct sysdev_class_attribute *attr,
5615                                         char *buf)
5616 {
5617         return sprintf(buf, "%d\n", perf_reserved_percpu);
5618 }
5619
5620 static ssize_t
5621 perf_set_reserve_percpu(struct sysdev_class *class,
5622                         struct sysdev_class_attribute *attr,
5623                         const char *buf,
5624                         size_t count)
5625 {
5626         struct perf_cpu_context *cpuctx;
5627         unsigned long val;
5628         int err, cpu, mpt;
5629
5630         err = strict_strtoul(buf, 10, &val);
5631         if (err)
5632                 return err;
5633         if (val > perf_max_events)
5634                 return -EINVAL;
5635
5636         spin_lock(&perf_resource_lock);
5637         perf_reserved_percpu = val;
5638         for_each_online_cpu(cpu) {
5639                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5640                 raw_spin_lock_irq(&cpuctx->ctx.lock);
5641                 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5642                           perf_max_events - perf_reserved_percpu);
5643                 cpuctx->max_pertask = mpt;
5644                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5645         }
5646         spin_unlock(&perf_resource_lock);
5647
5648         return count;
5649 }
5650
5651 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5652                                     struct sysdev_class_attribute *attr,
5653                                     char *buf)
5654 {
5655         return sprintf(buf, "%d\n", perf_overcommit);
5656 }
5657
5658 static ssize_t
5659 perf_set_overcommit(struct sysdev_class *class,
5660                     struct sysdev_class_attribute *attr,
5661                     const char *buf, size_t count)
5662 {
5663         unsigned long val;
5664         int err;
5665
5666         err = strict_strtoul(buf, 10, &val);
5667         if (err)
5668                 return err;
5669         if (val > 1)
5670                 return -EINVAL;
5671
5672         spin_lock(&perf_resource_lock);
5673         perf_overcommit = val;
5674         spin_unlock(&perf_resource_lock);
5675
5676         return count;
5677 }
5678
5679 static SYSDEV_CLASS_ATTR(
5680                                 reserve_percpu,
5681                                 0644,
5682                                 perf_show_reserve_percpu,
5683                                 perf_set_reserve_percpu
5684                         );
5685
5686 static SYSDEV_CLASS_ATTR(
5687                                 overcommit,
5688                                 0644,
5689                                 perf_show_overcommit,
5690                                 perf_set_overcommit
5691                         );
5692
5693 static struct attribute *perfclass_attrs[] = {
5694         &attr_reserve_percpu.attr,
5695         &attr_overcommit.attr,
5696         NULL
5697 };
5698
5699 static struct attribute_group perfclass_attr_group = {
5700         .attrs                  = perfclass_attrs,
5701         .name                   = "perf_events",
5702 };
5703
5704 static int __init perf_event_sysfs_init(void)
5705 {
5706         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5707                                   &perfclass_attr_group);
5708 }
5709 device_initcall(perf_event_sysfs_init);