perf_counter: uncouple data_head updates from wakeups
[pandora-kernel.git] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_mmap_tracking __read_mostly;
43 static atomic_t nr_munmap_tracking __read_mostly;
44 static atomic_t nr_comm_tracking __read_mostly;
45
46 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
47
48 /*
49  * Lock for (sysadmin-configurable) counter reservations:
50  */
51 static DEFINE_SPINLOCK(perf_resource_lock);
52
53 /*
54  * Architecture provided APIs - weak aliases:
55  */
56 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
57 {
58         return NULL;
59 }
60
61 u64 __weak hw_perf_save_disable(void)           { return 0; }
62 void __weak hw_perf_restore(u64 ctrl)           { barrier(); }
63 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
64 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
65                struct perf_cpu_context *cpuctx,
66                struct perf_counter_context *ctx, int cpu)
67 {
68         return 0;
69 }
70
71 void __weak perf_counter_print_debug(void)      { }
72
73 static void
74 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
75 {
76         struct perf_counter *group_leader = counter->group_leader;
77
78         /*
79          * Depending on whether it is a standalone or sibling counter,
80          * add it straight to the context's counter list, or to the group
81          * leader's sibling list:
82          */
83         if (counter->group_leader == counter)
84                 list_add_tail(&counter->list_entry, &ctx->counter_list);
85         else {
86                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
87                 group_leader->nr_siblings++;
88         }
89
90         list_add_rcu(&counter->event_entry, &ctx->event_list);
91 }
92
93 static void
94 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
95 {
96         struct perf_counter *sibling, *tmp;
97
98         list_del_init(&counter->list_entry);
99         list_del_rcu(&counter->event_entry);
100
101         if (counter->group_leader != counter)
102                 counter->group_leader->nr_siblings--;
103
104         /*
105          * If this was a group counter with sibling counters then
106          * upgrade the siblings to singleton counters by adding them
107          * to the context list directly:
108          */
109         list_for_each_entry_safe(sibling, tmp,
110                                  &counter->sibling_list, list_entry) {
111
112                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
113                 sibling->group_leader = sibling;
114         }
115 }
116
117 static void
118 counter_sched_out(struct perf_counter *counter,
119                   struct perf_cpu_context *cpuctx,
120                   struct perf_counter_context *ctx)
121 {
122         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
123                 return;
124
125         counter->state = PERF_COUNTER_STATE_INACTIVE;
126         counter->tstamp_stopped = ctx->time;
127         counter->pmu->disable(counter);
128         counter->oncpu = -1;
129
130         if (!is_software_counter(counter))
131                 cpuctx->active_oncpu--;
132         ctx->nr_active--;
133         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
134                 cpuctx->exclusive = 0;
135 }
136
137 static void
138 group_sched_out(struct perf_counter *group_counter,
139                 struct perf_cpu_context *cpuctx,
140                 struct perf_counter_context *ctx)
141 {
142         struct perf_counter *counter;
143
144         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
145                 return;
146
147         counter_sched_out(group_counter, cpuctx, ctx);
148
149         /*
150          * Schedule out siblings (if any):
151          */
152         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
153                 counter_sched_out(counter, cpuctx, ctx);
154
155         if (group_counter->hw_event.exclusive)
156                 cpuctx->exclusive = 0;
157 }
158
159 /*
160  * Cross CPU call to remove a performance counter
161  *
162  * We disable the counter on the hardware level first. After that we
163  * remove it from the context list.
164  */
165 static void __perf_counter_remove_from_context(void *info)
166 {
167         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
168         struct perf_counter *counter = info;
169         struct perf_counter_context *ctx = counter->ctx;
170         unsigned long flags;
171         u64 perf_flags;
172
173         /*
174          * If this is a task context, we need to check whether it is
175          * the current task context of this cpu. If not it has been
176          * scheduled out before the smp call arrived.
177          */
178         if (ctx->task && cpuctx->task_ctx != ctx)
179                 return;
180
181         spin_lock_irqsave(&ctx->lock, flags);
182
183         counter_sched_out(counter, cpuctx, ctx);
184
185         counter->task = NULL;
186         ctx->nr_counters--;
187
188         /*
189          * Protect the list operation against NMI by disabling the
190          * counters on a global level. NOP for non NMI based counters.
191          */
192         perf_flags = hw_perf_save_disable();
193         list_del_counter(counter, ctx);
194         hw_perf_restore(perf_flags);
195
196         if (!ctx->task) {
197                 /*
198                  * Allow more per task counters with respect to the
199                  * reservation:
200                  */
201                 cpuctx->max_pertask =
202                         min(perf_max_counters - ctx->nr_counters,
203                             perf_max_counters - perf_reserved_percpu);
204         }
205
206         spin_unlock_irqrestore(&ctx->lock, flags);
207 }
208
209
210 /*
211  * Remove the counter from a task's (or a CPU's) list of counters.
212  *
213  * Must be called with counter->mutex and ctx->mutex held.
214  *
215  * CPU counters are removed with a smp call. For task counters we only
216  * call when the task is on a CPU.
217  */
218 static void perf_counter_remove_from_context(struct perf_counter *counter)
219 {
220         struct perf_counter_context *ctx = counter->ctx;
221         struct task_struct *task = ctx->task;
222
223         if (!task) {
224                 /*
225                  * Per cpu counters are removed via an smp call and
226                  * the removal is always sucessful.
227                  */
228                 smp_call_function_single(counter->cpu,
229                                          __perf_counter_remove_from_context,
230                                          counter, 1);
231                 return;
232         }
233
234 retry:
235         task_oncpu_function_call(task, __perf_counter_remove_from_context,
236                                  counter);
237
238         spin_lock_irq(&ctx->lock);
239         /*
240          * If the context is active we need to retry the smp call.
241          */
242         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
243                 spin_unlock_irq(&ctx->lock);
244                 goto retry;
245         }
246
247         /*
248          * The lock prevents that this context is scheduled in so we
249          * can remove the counter safely, if the call above did not
250          * succeed.
251          */
252         if (!list_empty(&counter->list_entry)) {
253                 ctx->nr_counters--;
254                 list_del_counter(counter, ctx);
255                 counter->task = NULL;
256         }
257         spin_unlock_irq(&ctx->lock);
258 }
259
260 static inline u64 perf_clock(void)
261 {
262         return cpu_clock(smp_processor_id());
263 }
264
265 /*
266  * Update the record of the current time in a context.
267  */
268 static void update_context_time(struct perf_counter_context *ctx)
269 {
270         u64 now = perf_clock();
271
272         ctx->time += now - ctx->timestamp;
273         ctx->timestamp = now;
274 }
275
276 /*
277  * Update the total_time_enabled and total_time_running fields for a counter.
278  */
279 static void update_counter_times(struct perf_counter *counter)
280 {
281         struct perf_counter_context *ctx = counter->ctx;
282         u64 run_end;
283
284         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
285                 return;
286
287         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
288
289         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
290                 run_end = counter->tstamp_stopped;
291         else
292                 run_end = ctx->time;
293
294         counter->total_time_running = run_end - counter->tstamp_running;
295 }
296
297 /*
298  * Update total_time_enabled and total_time_running for all counters in a group.
299  */
300 static void update_group_times(struct perf_counter *leader)
301 {
302         struct perf_counter *counter;
303
304         update_counter_times(leader);
305         list_for_each_entry(counter, &leader->sibling_list, list_entry)
306                 update_counter_times(counter);
307 }
308
309 /*
310  * Cross CPU call to disable a performance counter
311  */
312 static void __perf_counter_disable(void *info)
313 {
314         struct perf_counter *counter = info;
315         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
316         struct perf_counter_context *ctx = counter->ctx;
317         unsigned long flags;
318
319         /*
320          * If this is a per-task counter, need to check whether this
321          * counter's task is the current task on this cpu.
322          */
323         if (ctx->task && cpuctx->task_ctx != ctx)
324                 return;
325
326         spin_lock_irqsave(&ctx->lock, flags);
327
328         /*
329          * If the counter is on, turn it off.
330          * If it is in error state, leave it in error state.
331          */
332         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
333                 update_context_time(ctx);
334                 update_counter_times(counter);
335                 if (counter == counter->group_leader)
336                         group_sched_out(counter, cpuctx, ctx);
337                 else
338                         counter_sched_out(counter, cpuctx, ctx);
339                 counter->state = PERF_COUNTER_STATE_OFF;
340         }
341
342         spin_unlock_irqrestore(&ctx->lock, flags);
343 }
344
345 /*
346  * Disable a counter.
347  */
348 static void perf_counter_disable(struct perf_counter *counter)
349 {
350         struct perf_counter_context *ctx = counter->ctx;
351         struct task_struct *task = ctx->task;
352
353         if (!task) {
354                 /*
355                  * Disable the counter on the cpu that it's on
356                  */
357                 smp_call_function_single(counter->cpu, __perf_counter_disable,
358                                          counter, 1);
359                 return;
360         }
361
362  retry:
363         task_oncpu_function_call(task, __perf_counter_disable, counter);
364
365         spin_lock_irq(&ctx->lock);
366         /*
367          * If the counter is still active, we need to retry the cross-call.
368          */
369         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
370                 spin_unlock_irq(&ctx->lock);
371                 goto retry;
372         }
373
374         /*
375          * Since we have the lock this context can't be scheduled
376          * in, so we can change the state safely.
377          */
378         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
379                 update_counter_times(counter);
380                 counter->state = PERF_COUNTER_STATE_OFF;
381         }
382
383         spin_unlock_irq(&ctx->lock);
384 }
385
386 /*
387  * Disable a counter and all its children.
388  */
389 static void perf_counter_disable_family(struct perf_counter *counter)
390 {
391         struct perf_counter *child;
392
393         perf_counter_disable(counter);
394
395         /*
396          * Lock the mutex to protect the list of children
397          */
398         mutex_lock(&counter->mutex);
399         list_for_each_entry(child, &counter->child_list, child_list)
400                 perf_counter_disable(child);
401         mutex_unlock(&counter->mutex);
402 }
403
404 static int
405 counter_sched_in(struct perf_counter *counter,
406                  struct perf_cpu_context *cpuctx,
407                  struct perf_counter_context *ctx,
408                  int cpu)
409 {
410         if (counter->state <= PERF_COUNTER_STATE_OFF)
411                 return 0;
412
413         counter->state = PERF_COUNTER_STATE_ACTIVE;
414         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
415         /*
416          * The new state must be visible before we turn it on in the hardware:
417          */
418         smp_wmb();
419
420         if (counter->pmu->enable(counter)) {
421                 counter->state = PERF_COUNTER_STATE_INACTIVE;
422                 counter->oncpu = -1;
423                 return -EAGAIN;
424         }
425
426         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
427
428         if (!is_software_counter(counter))
429                 cpuctx->active_oncpu++;
430         ctx->nr_active++;
431
432         if (counter->hw_event.exclusive)
433                 cpuctx->exclusive = 1;
434
435         return 0;
436 }
437
438 /*
439  * Return 1 for a group consisting entirely of software counters,
440  * 0 if the group contains any hardware counters.
441  */
442 static int is_software_only_group(struct perf_counter *leader)
443 {
444         struct perf_counter *counter;
445
446         if (!is_software_counter(leader))
447                 return 0;
448
449         list_for_each_entry(counter, &leader->sibling_list, list_entry)
450                 if (!is_software_counter(counter))
451                         return 0;
452
453         return 1;
454 }
455
456 /*
457  * Work out whether we can put this counter group on the CPU now.
458  */
459 static int group_can_go_on(struct perf_counter *counter,
460                            struct perf_cpu_context *cpuctx,
461                            int can_add_hw)
462 {
463         /*
464          * Groups consisting entirely of software counters can always go on.
465          */
466         if (is_software_only_group(counter))
467                 return 1;
468         /*
469          * If an exclusive group is already on, no other hardware
470          * counters can go on.
471          */
472         if (cpuctx->exclusive)
473                 return 0;
474         /*
475          * If this group is exclusive and there are already
476          * counters on the CPU, it can't go on.
477          */
478         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
479                 return 0;
480         /*
481          * Otherwise, try to add it if all previous groups were able
482          * to go on.
483          */
484         return can_add_hw;
485 }
486
487 static void add_counter_to_ctx(struct perf_counter *counter,
488                                struct perf_counter_context *ctx)
489 {
490         list_add_counter(counter, ctx);
491         ctx->nr_counters++;
492         counter->prev_state = PERF_COUNTER_STATE_OFF;
493         counter->tstamp_enabled = ctx->time;
494         counter->tstamp_running = ctx->time;
495         counter->tstamp_stopped = ctx->time;
496 }
497
498 /*
499  * Cross CPU call to install and enable a performance counter
500  */
501 static void __perf_install_in_context(void *info)
502 {
503         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
504         struct perf_counter *counter = info;
505         struct perf_counter_context *ctx = counter->ctx;
506         struct perf_counter *leader = counter->group_leader;
507         int cpu = smp_processor_id();
508         unsigned long flags;
509         u64 perf_flags;
510         int err;
511
512         /*
513          * If this is a task context, we need to check whether it is
514          * the current task context of this cpu. If not it has been
515          * scheduled out before the smp call arrived.
516          */
517         if (ctx->task && cpuctx->task_ctx != ctx)
518                 return;
519
520         spin_lock_irqsave(&ctx->lock, flags);
521         update_context_time(ctx);
522
523         /*
524          * Protect the list operation against NMI by disabling the
525          * counters on a global level. NOP for non NMI based counters.
526          */
527         perf_flags = hw_perf_save_disable();
528
529         add_counter_to_ctx(counter, ctx);
530
531         /*
532          * Don't put the counter on if it is disabled or if
533          * it is in a group and the group isn't on.
534          */
535         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
536             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
537                 goto unlock;
538
539         /*
540          * An exclusive counter can't go on if there are already active
541          * hardware counters, and no hardware counter can go on if there
542          * is already an exclusive counter on.
543          */
544         if (!group_can_go_on(counter, cpuctx, 1))
545                 err = -EEXIST;
546         else
547                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
548
549         if (err) {
550                 /*
551                  * This counter couldn't go on.  If it is in a group
552                  * then we have to pull the whole group off.
553                  * If the counter group is pinned then put it in error state.
554                  */
555                 if (leader != counter)
556                         group_sched_out(leader, cpuctx, ctx);
557                 if (leader->hw_event.pinned) {
558                         update_group_times(leader);
559                         leader->state = PERF_COUNTER_STATE_ERROR;
560                 }
561         }
562
563         if (!err && !ctx->task && cpuctx->max_pertask)
564                 cpuctx->max_pertask--;
565
566  unlock:
567         hw_perf_restore(perf_flags);
568
569         spin_unlock_irqrestore(&ctx->lock, flags);
570 }
571
572 /*
573  * Attach a performance counter to a context
574  *
575  * First we add the counter to the list with the hardware enable bit
576  * in counter->hw_config cleared.
577  *
578  * If the counter is attached to a task which is on a CPU we use a smp
579  * call to enable it in the task context. The task might have been
580  * scheduled away, but we check this in the smp call again.
581  *
582  * Must be called with ctx->mutex held.
583  */
584 static void
585 perf_install_in_context(struct perf_counter_context *ctx,
586                         struct perf_counter *counter,
587                         int cpu)
588 {
589         struct task_struct *task = ctx->task;
590
591         if (!task) {
592                 /*
593                  * Per cpu counters are installed via an smp call and
594                  * the install is always sucessful.
595                  */
596                 smp_call_function_single(cpu, __perf_install_in_context,
597                                          counter, 1);
598                 return;
599         }
600
601         counter->task = task;
602 retry:
603         task_oncpu_function_call(task, __perf_install_in_context,
604                                  counter);
605
606         spin_lock_irq(&ctx->lock);
607         /*
608          * we need to retry the smp call.
609          */
610         if (ctx->is_active && list_empty(&counter->list_entry)) {
611                 spin_unlock_irq(&ctx->lock);
612                 goto retry;
613         }
614
615         /*
616          * The lock prevents that this context is scheduled in so we
617          * can add the counter safely, if it the call above did not
618          * succeed.
619          */
620         if (list_empty(&counter->list_entry))
621                 add_counter_to_ctx(counter, ctx);
622         spin_unlock_irq(&ctx->lock);
623 }
624
625 /*
626  * Cross CPU call to enable a performance counter
627  */
628 static void __perf_counter_enable(void *info)
629 {
630         struct perf_counter *counter = info;
631         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
632         struct perf_counter_context *ctx = counter->ctx;
633         struct perf_counter *leader = counter->group_leader;
634         unsigned long flags;
635         int err;
636
637         /*
638          * If this is a per-task counter, need to check whether this
639          * counter's task is the current task on this cpu.
640          */
641         if (ctx->task && cpuctx->task_ctx != ctx)
642                 return;
643
644         spin_lock_irqsave(&ctx->lock, flags);
645         update_context_time(ctx);
646
647         counter->prev_state = counter->state;
648         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
649                 goto unlock;
650         counter->state = PERF_COUNTER_STATE_INACTIVE;
651         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
652
653         /*
654          * If the counter is in a group and isn't the group leader,
655          * then don't put it on unless the group is on.
656          */
657         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
658                 goto unlock;
659
660         if (!group_can_go_on(counter, cpuctx, 1))
661                 err = -EEXIST;
662         else
663                 err = counter_sched_in(counter, cpuctx, ctx,
664                                        smp_processor_id());
665
666         if (err) {
667                 /*
668                  * If this counter can't go on and it's part of a
669                  * group, then the whole group has to come off.
670                  */
671                 if (leader != counter)
672                         group_sched_out(leader, cpuctx, ctx);
673                 if (leader->hw_event.pinned) {
674                         update_group_times(leader);
675                         leader->state = PERF_COUNTER_STATE_ERROR;
676                 }
677         }
678
679  unlock:
680         spin_unlock_irqrestore(&ctx->lock, flags);
681 }
682
683 /*
684  * Enable a counter.
685  */
686 static void perf_counter_enable(struct perf_counter *counter)
687 {
688         struct perf_counter_context *ctx = counter->ctx;
689         struct task_struct *task = ctx->task;
690
691         if (!task) {
692                 /*
693                  * Enable the counter on the cpu that it's on
694                  */
695                 smp_call_function_single(counter->cpu, __perf_counter_enable,
696                                          counter, 1);
697                 return;
698         }
699
700         spin_lock_irq(&ctx->lock);
701         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
702                 goto out;
703
704         /*
705          * If the counter is in error state, clear that first.
706          * That way, if we see the counter in error state below, we
707          * know that it has gone back into error state, as distinct
708          * from the task having been scheduled away before the
709          * cross-call arrived.
710          */
711         if (counter->state == PERF_COUNTER_STATE_ERROR)
712                 counter->state = PERF_COUNTER_STATE_OFF;
713
714  retry:
715         spin_unlock_irq(&ctx->lock);
716         task_oncpu_function_call(task, __perf_counter_enable, counter);
717
718         spin_lock_irq(&ctx->lock);
719
720         /*
721          * If the context is active and the counter is still off,
722          * we need to retry the cross-call.
723          */
724         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
725                 goto retry;
726
727         /*
728          * Since we have the lock this context can't be scheduled
729          * in, so we can change the state safely.
730          */
731         if (counter->state == PERF_COUNTER_STATE_OFF) {
732                 counter->state = PERF_COUNTER_STATE_INACTIVE;
733                 counter->tstamp_enabled =
734                         ctx->time - counter->total_time_enabled;
735         }
736  out:
737         spin_unlock_irq(&ctx->lock);
738 }
739
740 static void perf_counter_refresh(struct perf_counter *counter, int refresh)
741 {
742         atomic_add(refresh, &counter->event_limit);
743         perf_counter_enable(counter);
744 }
745
746 /*
747  * Enable a counter and all its children.
748  */
749 static void perf_counter_enable_family(struct perf_counter *counter)
750 {
751         struct perf_counter *child;
752
753         perf_counter_enable(counter);
754
755         /*
756          * Lock the mutex to protect the list of children
757          */
758         mutex_lock(&counter->mutex);
759         list_for_each_entry(child, &counter->child_list, child_list)
760                 perf_counter_enable(child);
761         mutex_unlock(&counter->mutex);
762 }
763
764 void __perf_counter_sched_out(struct perf_counter_context *ctx,
765                               struct perf_cpu_context *cpuctx)
766 {
767         struct perf_counter *counter;
768         u64 flags;
769
770         spin_lock(&ctx->lock);
771         ctx->is_active = 0;
772         if (likely(!ctx->nr_counters))
773                 goto out;
774         update_context_time(ctx);
775
776         flags = hw_perf_save_disable();
777         if (ctx->nr_active) {
778                 list_for_each_entry(counter, &ctx->counter_list, list_entry)
779                         group_sched_out(counter, cpuctx, ctx);
780         }
781         hw_perf_restore(flags);
782  out:
783         spin_unlock(&ctx->lock);
784 }
785
786 /*
787  * Called from scheduler to remove the counters of the current task,
788  * with interrupts disabled.
789  *
790  * We stop each counter and update the counter value in counter->count.
791  *
792  * This does not protect us against NMI, but disable()
793  * sets the disabled bit in the control field of counter _before_
794  * accessing the counter control register. If a NMI hits, then it will
795  * not restart the counter.
796  */
797 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
798 {
799         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
800         struct perf_counter_context *ctx = &task->perf_counter_ctx;
801         struct pt_regs *regs;
802
803         if (likely(!cpuctx->task_ctx))
804                 return;
805
806         update_context_time(ctx);
807
808         regs = task_pt_regs(task);
809         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
810         __perf_counter_sched_out(ctx, cpuctx);
811
812         cpuctx->task_ctx = NULL;
813 }
814
815 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
816 {
817         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
818 }
819
820 static int
821 group_sched_in(struct perf_counter *group_counter,
822                struct perf_cpu_context *cpuctx,
823                struct perf_counter_context *ctx,
824                int cpu)
825 {
826         struct perf_counter *counter, *partial_group;
827         int ret;
828
829         if (group_counter->state == PERF_COUNTER_STATE_OFF)
830                 return 0;
831
832         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
833         if (ret)
834                 return ret < 0 ? ret : 0;
835
836         group_counter->prev_state = group_counter->state;
837         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
838                 return -EAGAIN;
839
840         /*
841          * Schedule in siblings as one group (if any):
842          */
843         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
844                 counter->prev_state = counter->state;
845                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
846                         partial_group = counter;
847                         goto group_error;
848                 }
849         }
850
851         return 0;
852
853 group_error:
854         /*
855          * Groups can be scheduled in as one unit only, so undo any
856          * partial group before returning:
857          */
858         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
859                 if (counter == partial_group)
860                         break;
861                 counter_sched_out(counter, cpuctx, ctx);
862         }
863         counter_sched_out(group_counter, cpuctx, ctx);
864
865         return -EAGAIN;
866 }
867
868 static void
869 __perf_counter_sched_in(struct perf_counter_context *ctx,
870                         struct perf_cpu_context *cpuctx, int cpu)
871 {
872         struct perf_counter *counter;
873         u64 flags;
874         int can_add_hw = 1;
875
876         spin_lock(&ctx->lock);
877         ctx->is_active = 1;
878         if (likely(!ctx->nr_counters))
879                 goto out;
880
881         ctx->timestamp = perf_clock();
882
883         flags = hw_perf_save_disable();
884
885         /*
886          * First go through the list and put on any pinned groups
887          * in order to give them the best chance of going on.
888          */
889         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
890                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
891                     !counter->hw_event.pinned)
892                         continue;
893                 if (counter->cpu != -1 && counter->cpu != cpu)
894                         continue;
895
896                 if (group_can_go_on(counter, cpuctx, 1))
897                         group_sched_in(counter, cpuctx, ctx, cpu);
898
899                 /*
900                  * If this pinned group hasn't been scheduled,
901                  * put it in error state.
902                  */
903                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
904                         update_group_times(counter);
905                         counter->state = PERF_COUNTER_STATE_ERROR;
906                 }
907         }
908
909         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
910                 /*
911                  * Ignore counters in OFF or ERROR state, and
912                  * ignore pinned counters since we did them already.
913                  */
914                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
915                     counter->hw_event.pinned)
916                         continue;
917
918                 /*
919                  * Listen to the 'cpu' scheduling filter constraint
920                  * of counters:
921                  */
922                 if (counter->cpu != -1 && counter->cpu != cpu)
923                         continue;
924
925                 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
926                         if (group_sched_in(counter, cpuctx, ctx, cpu))
927                                 can_add_hw = 0;
928                 }
929         }
930         hw_perf_restore(flags);
931  out:
932         spin_unlock(&ctx->lock);
933 }
934
935 /*
936  * Called from scheduler to add the counters of the current task
937  * with interrupts disabled.
938  *
939  * We restore the counter value and then enable it.
940  *
941  * This does not protect us against NMI, but enable()
942  * sets the enabled bit in the control field of counter _before_
943  * accessing the counter control register. If a NMI hits, then it will
944  * keep the counter running.
945  */
946 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
947 {
948         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
949         struct perf_counter_context *ctx = &task->perf_counter_ctx;
950
951         __perf_counter_sched_in(ctx, cpuctx, cpu);
952         cpuctx->task_ctx = ctx;
953 }
954
955 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
956 {
957         struct perf_counter_context *ctx = &cpuctx->ctx;
958
959         __perf_counter_sched_in(ctx, cpuctx, cpu);
960 }
961
962 int perf_counter_task_disable(void)
963 {
964         struct task_struct *curr = current;
965         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
966         struct perf_counter *counter;
967         unsigned long flags;
968         u64 perf_flags;
969         int cpu;
970
971         if (likely(!ctx->nr_counters))
972                 return 0;
973
974         local_irq_save(flags);
975         cpu = smp_processor_id();
976
977         perf_counter_task_sched_out(curr, cpu);
978
979         spin_lock(&ctx->lock);
980
981         /*
982          * Disable all the counters:
983          */
984         perf_flags = hw_perf_save_disable();
985
986         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
987                 if (counter->state != PERF_COUNTER_STATE_ERROR) {
988                         update_group_times(counter);
989                         counter->state = PERF_COUNTER_STATE_OFF;
990                 }
991         }
992
993         hw_perf_restore(perf_flags);
994
995         spin_unlock_irqrestore(&ctx->lock, flags);
996
997         return 0;
998 }
999
1000 int perf_counter_task_enable(void)
1001 {
1002         struct task_struct *curr = current;
1003         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1004         struct perf_counter *counter;
1005         unsigned long flags;
1006         u64 perf_flags;
1007         int cpu;
1008
1009         if (likely(!ctx->nr_counters))
1010                 return 0;
1011
1012         local_irq_save(flags);
1013         cpu = smp_processor_id();
1014
1015         perf_counter_task_sched_out(curr, cpu);
1016
1017         spin_lock(&ctx->lock);
1018
1019         /*
1020          * Disable all the counters:
1021          */
1022         perf_flags = hw_perf_save_disable();
1023
1024         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1025                 if (counter->state > PERF_COUNTER_STATE_OFF)
1026                         continue;
1027                 counter->state = PERF_COUNTER_STATE_INACTIVE;
1028                 counter->tstamp_enabled =
1029                         ctx->time - counter->total_time_enabled;
1030                 counter->hw_event.disabled = 0;
1031         }
1032         hw_perf_restore(perf_flags);
1033
1034         spin_unlock(&ctx->lock);
1035
1036         perf_counter_task_sched_in(curr, cpu);
1037
1038         local_irq_restore(flags);
1039
1040         return 0;
1041 }
1042
1043 /*
1044  * Round-robin a context's counters:
1045  */
1046 static void rotate_ctx(struct perf_counter_context *ctx)
1047 {
1048         struct perf_counter *counter;
1049         u64 perf_flags;
1050
1051         if (!ctx->nr_counters)
1052                 return;
1053
1054         spin_lock(&ctx->lock);
1055         /*
1056          * Rotate the first entry last (works just fine for group counters too):
1057          */
1058         perf_flags = hw_perf_save_disable();
1059         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1060                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1061                 break;
1062         }
1063         hw_perf_restore(perf_flags);
1064
1065         spin_unlock(&ctx->lock);
1066 }
1067
1068 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1069 {
1070         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1071         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1072
1073         perf_counter_cpu_sched_out(cpuctx);
1074         perf_counter_task_sched_out(curr, cpu);
1075
1076         rotate_ctx(&cpuctx->ctx);
1077         rotate_ctx(ctx);
1078
1079         perf_counter_cpu_sched_in(cpuctx, cpu);
1080         perf_counter_task_sched_in(curr, cpu);
1081 }
1082
1083 /*
1084  * Cross CPU call to read the hardware counter
1085  */
1086 static void __read(void *info)
1087 {
1088         struct perf_counter *counter = info;
1089         struct perf_counter_context *ctx = counter->ctx;
1090         unsigned long flags;
1091
1092         local_irq_save(flags);
1093         if (ctx->is_active)
1094                 update_context_time(ctx);
1095         counter->pmu->read(counter);
1096         update_counter_times(counter);
1097         local_irq_restore(flags);
1098 }
1099
1100 static u64 perf_counter_read(struct perf_counter *counter)
1101 {
1102         /*
1103          * If counter is enabled and currently active on a CPU, update the
1104          * value in the counter structure:
1105          */
1106         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1107                 smp_call_function_single(counter->oncpu,
1108                                          __read, counter, 1);
1109         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1110                 update_counter_times(counter);
1111         }
1112
1113         return atomic64_read(&counter->count);
1114 }
1115
1116 static void put_context(struct perf_counter_context *ctx)
1117 {
1118         if (ctx->task)
1119                 put_task_struct(ctx->task);
1120 }
1121
1122 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1123 {
1124         struct perf_cpu_context *cpuctx;
1125         struct perf_counter_context *ctx;
1126         struct task_struct *task;
1127
1128         /*
1129          * If cpu is not a wildcard then this is a percpu counter:
1130          */
1131         if (cpu != -1) {
1132                 /* Must be root to operate on a CPU counter: */
1133                 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1134                         return ERR_PTR(-EACCES);
1135
1136                 if (cpu < 0 || cpu > num_possible_cpus())
1137                         return ERR_PTR(-EINVAL);
1138
1139                 /*
1140                  * We could be clever and allow to attach a counter to an
1141                  * offline CPU and activate it when the CPU comes up, but
1142                  * that's for later.
1143                  */
1144                 if (!cpu_isset(cpu, cpu_online_map))
1145                         return ERR_PTR(-ENODEV);
1146
1147                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1148                 ctx = &cpuctx->ctx;
1149
1150                 return ctx;
1151         }
1152
1153         rcu_read_lock();
1154         if (!pid)
1155                 task = current;
1156         else
1157                 task = find_task_by_vpid(pid);
1158         if (task)
1159                 get_task_struct(task);
1160         rcu_read_unlock();
1161
1162         if (!task)
1163                 return ERR_PTR(-ESRCH);
1164
1165         ctx = &task->perf_counter_ctx;
1166         ctx->task = task;
1167
1168         /* Reuse ptrace permission checks for now. */
1169         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1170                 put_context(ctx);
1171                 return ERR_PTR(-EACCES);
1172         }
1173
1174         return ctx;
1175 }
1176
1177 static void free_counter_rcu(struct rcu_head *head)
1178 {
1179         struct perf_counter *counter;
1180
1181         counter = container_of(head, struct perf_counter, rcu_head);
1182         kfree(counter);
1183 }
1184
1185 static void perf_pending_sync(struct perf_counter *counter);
1186
1187 static void free_counter(struct perf_counter *counter)
1188 {
1189         perf_pending_sync(counter);
1190
1191         if (counter->hw_event.mmap)
1192                 atomic_dec(&nr_mmap_tracking);
1193         if (counter->hw_event.munmap)
1194                 atomic_dec(&nr_munmap_tracking);
1195         if (counter->hw_event.comm)
1196                 atomic_dec(&nr_comm_tracking);
1197
1198         if (counter->destroy)
1199                 counter->destroy(counter);
1200
1201         call_rcu(&counter->rcu_head, free_counter_rcu);
1202 }
1203
1204 /*
1205  * Called when the last reference to the file is gone.
1206  */
1207 static int perf_release(struct inode *inode, struct file *file)
1208 {
1209         struct perf_counter *counter = file->private_data;
1210         struct perf_counter_context *ctx = counter->ctx;
1211
1212         file->private_data = NULL;
1213
1214         mutex_lock(&ctx->mutex);
1215         mutex_lock(&counter->mutex);
1216
1217         perf_counter_remove_from_context(counter);
1218
1219         mutex_unlock(&counter->mutex);
1220         mutex_unlock(&ctx->mutex);
1221
1222         free_counter(counter);
1223         put_context(ctx);
1224
1225         return 0;
1226 }
1227
1228 /*
1229  * Read the performance counter - simple non blocking version for now
1230  */
1231 static ssize_t
1232 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1233 {
1234         u64 values[3];
1235         int n;
1236
1237         /*
1238          * Return end-of-file for a read on a counter that is in
1239          * error state (i.e. because it was pinned but it couldn't be
1240          * scheduled on to the CPU at some point).
1241          */
1242         if (counter->state == PERF_COUNTER_STATE_ERROR)
1243                 return 0;
1244
1245         mutex_lock(&counter->mutex);
1246         values[0] = perf_counter_read(counter);
1247         n = 1;
1248         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1249                 values[n++] = counter->total_time_enabled +
1250                         atomic64_read(&counter->child_total_time_enabled);
1251         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1252                 values[n++] = counter->total_time_running +
1253                         atomic64_read(&counter->child_total_time_running);
1254         mutex_unlock(&counter->mutex);
1255
1256         if (count < n * sizeof(u64))
1257                 return -EINVAL;
1258         count = n * sizeof(u64);
1259
1260         if (copy_to_user(buf, values, count))
1261                 return -EFAULT;
1262
1263         return count;
1264 }
1265
1266 static ssize_t
1267 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1268 {
1269         struct perf_counter *counter = file->private_data;
1270
1271         return perf_read_hw(counter, buf, count);
1272 }
1273
1274 static unsigned int perf_poll(struct file *file, poll_table *wait)
1275 {
1276         struct perf_counter *counter = file->private_data;
1277         struct perf_mmap_data *data;
1278         unsigned int events = POLL_HUP;
1279
1280         rcu_read_lock();
1281         data = rcu_dereference(counter->data);
1282         if (data)
1283                 events = atomic_xchg(&data->poll, 0);
1284         rcu_read_unlock();
1285
1286         poll_wait(file, &counter->waitq, wait);
1287
1288         return events;
1289 }
1290
1291 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1292 {
1293         struct perf_counter *counter = file->private_data;
1294         int err = 0;
1295
1296         switch (cmd) {
1297         case PERF_COUNTER_IOC_ENABLE:
1298                 perf_counter_enable_family(counter);
1299                 break;
1300         case PERF_COUNTER_IOC_DISABLE:
1301                 perf_counter_disable_family(counter);
1302                 break;
1303         case PERF_COUNTER_IOC_REFRESH:
1304                 perf_counter_refresh(counter, arg);
1305                 break;
1306         default:
1307                 err = -ENOTTY;
1308         }
1309         return err;
1310 }
1311
1312 /*
1313  * Callers need to ensure there can be no nesting of this function, otherwise
1314  * the seqlock logic goes bad. We can not serialize this because the arch
1315  * code calls this from NMI context.
1316  */
1317 void perf_counter_update_userpage(struct perf_counter *counter)
1318 {
1319         struct perf_mmap_data *data;
1320         struct perf_counter_mmap_page *userpg;
1321
1322         rcu_read_lock();
1323         data = rcu_dereference(counter->data);
1324         if (!data)
1325                 goto unlock;
1326
1327         userpg = data->user_page;
1328
1329         /*
1330          * Disable preemption so as to not let the corresponding user-space
1331          * spin too long if we get preempted.
1332          */
1333         preempt_disable();
1334         ++userpg->lock;
1335         barrier();
1336         userpg->index = counter->hw.idx;
1337         userpg->offset = atomic64_read(&counter->count);
1338         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1339                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1340
1341         barrier();
1342         ++userpg->lock;
1343         preempt_enable();
1344 unlock:
1345         rcu_read_unlock();
1346 }
1347
1348 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1349 {
1350         struct perf_counter *counter = vma->vm_file->private_data;
1351         struct perf_mmap_data *data;
1352         int ret = VM_FAULT_SIGBUS;
1353
1354         rcu_read_lock();
1355         data = rcu_dereference(counter->data);
1356         if (!data)
1357                 goto unlock;
1358
1359         if (vmf->pgoff == 0) {
1360                 vmf->page = virt_to_page(data->user_page);
1361         } else {
1362                 int nr = vmf->pgoff - 1;
1363
1364                 if ((unsigned)nr > data->nr_pages)
1365                         goto unlock;
1366
1367                 vmf->page = virt_to_page(data->data_pages[nr]);
1368         }
1369         get_page(vmf->page);
1370         ret = 0;
1371 unlock:
1372         rcu_read_unlock();
1373
1374         return ret;
1375 }
1376
1377 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1378 {
1379         struct perf_mmap_data *data;
1380         unsigned long size;
1381         int i;
1382
1383         WARN_ON(atomic_read(&counter->mmap_count));
1384
1385         size = sizeof(struct perf_mmap_data);
1386         size += nr_pages * sizeof(void *);
1387
1388         data = kzalloc(size, GFP_KERNEL);
1389         if (!data)
1390                 goto fail;
1391
1392         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1393         if (!data->user_page)
1394                 goto fail_user_page;
1395
1396         for (i = 0; i < nr_pages; i++) {
1397                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1398                 if (!data->data_pages[i])
1399                         goto fail_data_pages;
1400         }
1401
1402         data->nr_pages = nr_pages;
1403
1404         rcu_assign_pointer(counter->data, data);
1405
1406         return 0;
1407
1408 fail_data_pages:
1409         for (i--; i >= 0; i--)
1410                 free_page((unsigned long)data->data_pages[i]);
1411
1412         free_page((unsigned long)data->user_page);
1413
1414 fail_user_page:
1415         kfree(data);
1416
1417 fail:
1418         return -ENOMEM;
1419 }
1420
1421 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1422 {
1423         struct perf_mmap_data *data = container_of(rcu_head,
1424                         struct perf_mmap_data, rcu_head);
1425         int i;
1426
1427         free_page((unsigned long)data->user_page);
1428         for (i = 0; i < data->nr_pages; i++)
1429                 free_page((unsigned long)data->data_pages[i]);
1430         kfree(data);
1431 }
1432
1433 static void perf_mmap_data_free(struct perf_counter *counter)
1434 {
1435         struct perf_mmap_data *data = counter->data;
1436
1437         WARN_ON(atomic_read(&counter->mmap_count));
1438
1439         rcu_assign_pointer(counter->data, NULL);
1440         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1441 }
1442
1443 static void perf_mmap_open(struct vm_area_struct *vma)
1444 {
1445         struct perf_counter *counter = vma->vm_file->private_data;
1446
1447         atomic_inc(&counter->mmap_count);
1448 }
1449
1450 static void perf_mmap_close(struct vm_area_struct *vma)
1451 {
1452         struct perf_counter *counter = vma->vm_file->private_data;
1453
1454         if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1455                                       &counter->mmap_mutex)) {
1456                 vma->vm_mm->locked_vm -= counter->data->nr_pages + 1;
1457                 perf_mmap_data_free(counter);
1458                 mutex_unlock(&counter->mmap_mutex);
1459         }
1460 }
1461
1462 static struct vm_operations_struct perf_mmap_vmops = {
1463         .open  = perf_mmap_open,
1464         .close = perf_mmap_close,
1465         .fault = perf_mmap_fault,
1466 };
1467
1468 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1469 {
1470         struct perf_counter *counter = file->private_data;
1471         unsigned long vma_size;
1472         unsigned long nr_pages;
1473         unsigned long locked, lock_limit;
1474         int ret = 0;
1475
1476         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1477                 return -EINVAL;
1478
1479         vma_size = vma->vm_end - vma->vm_start;
1480         nr_pages = (vma_size / PAGE_SIZE) - 1;
1481
1482         /*
1483          * If we have data pages ensure they're a power-of-two number, so we
1484          * can do bitmasks instead of modulo.
1485          */
1486         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1487                 return -EINVAL;
1488
1489         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1490                 return -EINVAL;
1491
1492         if (vma->vm_pgoff != 0)
1493                 return -EINVAL;
1494
1495         mutex_lock(&counter->mmap_mutex);
1496         if (atomic_inc_not_zero(&counter->mmap_count)) {
1497                 if (nr_pages != counter->data->nr_pages)
1498                         ret = -EINVAL;
1499                 goto unlock;
1500         }
1501
1502         locked = vma->vm_mm->locked_vm;
1503         locked += nr_pages + 1;
1504
1505         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1506         lock_limit >>= PAGE_SHIFT;
1507
1508         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1509                 ret = -EPERM;
1510                 goto unlock;
1511         }
1512
1513         WARN_ON(counter->data);
1514         ret = perf_mmap_data_alloc(counter, nr_pages);
1515         if (ret)
1516                 goto unlock;
1517
1518         atomic_set(&counter->mmap_count, 1);
1519         vma->vm_mm->locked_vm += nr_pages + 1;
1520 unlock:
1521         mutex_unlock(&counter->mmap_mutex);
1522
1523         vma->vm_flags &= ~VM_MAYWRITE;
1524         vma->vm_flags |= VM_RESERVED;
1525         vma->vm_ops = &perf_mmap_vmops;
1526
1527         return ret;
1528 }
1529
1530 static int perf_fasync(int fd, struct file *filp, int on)
1531 {
1532         struct perf_counter *counter = filp->private_data;
1533         struct inode *inode = filp->f_path.dentry->d_inode;
1534         int retval;
1535
1536         mutex_lock(&inode->i_mutex);
1537         retval = fasync_helper(fd, filp, on, &counter->fasync);
1538         mutex_unlock(&inode->i_mutex);
1539
1540         if (retval < 0)
1541                 return retval;
1542
1543         return 0;
1544 }
1545
1546 static const struct file_operations perf_fops = {
1547         .release                = perf_release,
1548         .read                   = perf_read,
1549         .poll                   = perf_poll,
1550         .unlocked_ioctl         = perf_ioctl,
1551         .compat_ioctl           = perf_ioctl,
1552         .mmap                   = perf_mmap,
1553         .fasync                 = perf_fasync,
1554 };
1555
1556 /*
1557  * Perf counter wakeup
1558  *
1559  * If there's data, ensure we set the poll() state and publish everything
1560  * to user-space before waking everybody up.
1561  */
1562
1563 void perf_counter_wakeup(struct perf_counter *counter)
1564 {
1565         wake_up_all(&counter->waitq);
1566
1567         if (counter->pending_kill) {
1568                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1569                 counter->pending_kill = 0;
1570         }
1571 }
1572
1573 /*
1574  * Pending wakeups
1575  *
1576  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1577  *
1578  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1579  * single linked list and use cmpxchg() to add entries lockless.
1580  */
1581
1582 static void perf_pending_counter(struct perf_pending_entry *entry)
1583 {
1584         struct perf_counter *counter = container_of(entry,
1585                         struct perf_counter, pending);
1586
1587         if (counter->pending_disable) {
1588                 counter->pending_disable = 0;
1589                 perf_counter_disable(counter);
1590         }
1591
1592         if (counter->pending_wakeup) {
1593                 counter->pending_wakeup = 0;
1594                 perf_counter_wakeup(counter);
1595         }
1596 }
1597
1598 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1599
1600 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1601         PENDING_TAIL,
1602 };
1603
1604 static void perf_pending_queue(struct perf_pending_entry *entry,
1605                                void (*func)(struct perf_pending_entry *))
1606 {
1607         struct perf_pending_entry **head;
1608
1609         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1610                 return;
1611
1612         entry->func = func;
1613
1614         head = &get_cpu_var(perf_pending_head);
1615
1616         do {
1617                 entry->next = *head;
1618         } while (cmpxchg(head, entry->next, entry) != entry->next);
1619
1620         set_perf_counter_pending();
1621
1622         put_cpu_var(perf_pending_head);
1623 }
1624
1625 static int __perf_pending_run(void)
1626 {
1627         struct perf_pending_entry *list;
1628         int nr = 0;
1629
1630         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1631         while (list != PENDING_TAIL) {
1632                 void (*func)(struct perf_pending_entry *);
1633                 struct perf_pending_entry *entry = list;
1634
1635                 list = list->next;
1636
1637                 func = entry->func;
1638                 entry->next = NULL;
1639                 /*
1640                  * Ensure we observe the unqueue before we issue the wakeup,
1641                  * so that we won't be waiting forever.
1642                  * -- see perf_not_pending().
1643                  */
1644                 smp_wmb();
1645
1646                 func(entry);
1647                 nr++;
1648         }
1649
1650         return nr;
1651 }
1652
1653 static inline int perf_not_pending(struct perf_counter *counter)
1654 {
1655         /*
1656          * If we flush on whatever cpu we run, there is a chance we don't
1657          * need to wait.
1658          */
1659         get_cpu();
1660         __perf_pending_run();
1661         put_cpu();
1662
1663         /*
1664          * Ensure we see the proper queue state before going to sleep
1665          * so that we do not miss the wakeup. -- see perf_pending_handle()
1666          */
1667         smp_rmb();
1668         return counter->pending.next == NULL;
1669 }
1670
1671 static void perf_pending_sync(struct perf_counter *counter)
1672 {
1673         wait_event(counter->waitq, perf_not_pending(counter));
1674 }
1675
1676 void perf_counter_do_pending(void)
1677 {
1678         __perf_pending_run();
1679 }
1680
1681 /*
1682  * Callchain support -- arch specific
1683  */
1684
1685 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1686 {
1687         return NULL;
1688 }
1689
1690 /*
1691  * Output
1692  */
1693
1694 struct perf_output_handle {
1695         struct perf_counter     *counter;
1696         struct perf_mmap_data   *data;
1697         unsigned int            offset;
1698         unsigned int            head;
1699         int                     nmi;
1700         int                     overflow;
1701         int                     locked;
1702         unsigned long           flags;
1703 };
1704
1705 static void perf_output_wakeup(struct perf_output_handle *handle)
1706 {
1707         atomic_set(&handle->data->poll, POLL_IN);
1708
1709         if (handle->nmi) {
1710                 handle->counter->pending_wakeup = 1;
1711                 perf_pending_queue(&handle->counter->pending,
1712                                    perf_pending_counter);
1713         } else
1714                 perf_counter_wakeup(handle->counter);
1715 }
1716
1717 /*
1718  * Curious locking construct.
1719  *
1720  * We need to ensure a later event doesn't publish a head when a former
1721  * event isn't done writing. However since we need to deal with NMIs we
1722  * cannot fully serialize things.
1723  *
1724  * What we do is serialize between CPUs so we only have to deal with NMI
1725  * nesting on a single CPU.
1726  *
1727  * We only publish the head (and generate a wakeup) when the outer-most
1728  * event completes.
1729  */
1730 static void perf_output_lock(struct perf_output_handle *handle)
1731 {
1732         struct perf_mmap_data *data = handle->data;
1733         int cpu;
1734
1735         handle->locked = 0;
1736
1737         local_irq_save(handle->flags);
1738         cpu = smp_processor_id();
1739
1740         if (in_nmi() && atomic_read(&data->lock) == cpu)
1741                 return;
1742
1743         while (atomic_cmpxchg(&data->lock, 0, cpu) != 0)
1744                 cpu_relax();
1745
1746         handle->locked = 1;
1747 }
1748
1749 static void perf_output_unlock(struct perf_output_handle *handle)
1750 {
1751         struct perf_mmap_data *data = handle->data;
1752         int head, cpu;
1753
1754         data->done_head = data->head;
1755
1756         if (!handle->locked)
1757                 goto out;
1758
1759 again:
1760         /*
1761          * The xchg implies a full barrier that ensures all writes are done
1762          * before we publish the new head, matched by a rmb() in userspace when
1763          * reading this position.
1764          */
1765         while ((head = atomic_xchg(&data->done_head, 0)))
1766                 data->user_page->data_head = head;
1767
1768         /*
1769          * NMI can happen here, which means we can miss a done_head update.
1770          */
1771
1772         cpu = atomic_xchg(&data->lock, 0);
1773         WARN_ON_ONCE(cpu != smp_processor_id());
1774
1775         /*
1776          * Therefore we have to validate we did not indeed do so.
1777          */
1778         if (unlikely(atomic_read(&data->done_head))) {
1779                 /*
1780                  * Since we had it locked, we can lock it again.
1781                  */
1782                 while (atomic_cmpxchg(&data->lock, 0, cpu) != 0)
1783                         cpu_relax();
1784
1785                 goto again;
1786         }
1787
1788         if (atomic_xchg(&data->wakeup, 0))
1789                 perf_output_wakeup(handle);
1790 out:
1791         local_irq_restore(handle->flags);
1792 }
1793
1794 static int perf_output_begin(struct perf_output_handle *handle,
1795                              struct perf_counter *counter, unsigned int size,
1796                              int nmi, int overflow)
1797 {
1798         struct perf_mmap_data *data;
1799         unsigned int offset, head;
1800
1801         rcu_read_lock();
1802         data = rcu_dereference(counter->data);
1803         if (!data)
1804                 goto out;
1805
1806         handle->data     = data;
1807         handle->counter  = counter;
1808         handle->nmi      = nmi;
1809         handle->overflow = overflow;
1810
1811         if (!data->nr_pages)
1812                 goto fail;
1813
1814         perf_output_lock(handle);
1815
1816         do {
1817                 offset = head = atomic_read(&data->head);
1818                 head += size;
1819         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1820
1821         handle->offset  = offset;
1822         handle->head    = head;
1823
1824         if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
1825                 atomic_set(&data->wakeup, 1);
1826
1827         return 0;
1828
1829 fail:
1830         perf_output_wakeup(handle);
1831 out:
1832         rcu_read_unlock();
1833
1834         return -ENOSPC;
1835 }
1836
1837 static void perf_output_copy(struct perf_output_handle *handle,
1838                              void *buf, unsigned int len)
1839 {
1840         unsigned int pages_mask;
1841         unsigned int offset;
1842         unsigned int size;
1843         void **pages;
1844
1845         offset          = handle->offset;
1846         pages_mask      = handle->data->nr_pages - 1;
1847         pages           = handle->data->data_pages;
1848
1849         do {
1850                 unsigned int page_offset;
1851                 int nr;
1852
1853                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
1854                 page_offset = offset & (PAGE_SIZE - 1);
1855                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1856
1857                 memcpy(pages[nr] + page_offset, buf, size);
1858
1859                 len         -= size;
1860                 buf         += size;
1861                 offset      += size;
1862         } while (len);
1863
1864         handle->offset = offset;
1865
1866         WARN_ON_ONCE(handle->offset > handle->head);
1867 }
1868
1869 #define perf_output_put(handle, x) \
1870         perf_output_copy((handle), &(x), sizeof(x))
1871
1872 static void perf_output_end(struct perf_output_handle *handle)
1873 {
1874         struct perf_counter *counter = handle->counter;
1875         struct perf_mmap_data *data = handle->data;
1876
1877         int wakeup_events = counter->hw_event.wakeup_events;
1878
1879         if (handle->overflow && wakeup_events) {
1880                 int events = atomic_inc_return(&data->events);
1881                 if (events >= wakeup_events) {
1882                         atomic_sub(wakeup_events, &data->events);
1883                         atomic_set(&data->wakeup, 1);
1884                 }
1885         }
1886
1887         perf_output_unlock(handle);
1888         rcu_read_unlock();
1889 }
1890
1891 static void perf_counter_output(struct perf_counter *counter,
1892                                 int nmi, struct pt_regs *regs, u64 addr)
1893 {
1894         int ret;
1895         u64 record_type = counter->hw_event.record_type;
1896         struct perf_output_handle handle;
1897         struct perf_event_header header;
1898         u64 ip;
1899         struct {
1900                 u32 pid, tid;
1901         } tid_entry;
1902         struct {
1903                 u64 event;
1904                 u64 counter;
1905         } group_entry;
1906         struct perf_callchain_entry *callchain = NULL;
1907         int callchain_size = 0;
1908         u64 time;
1909
1910         header.type = 0;
1911         header.size = sizeof(header);
1912
1913         header.misc = PERF_EVENT_MISC_OVERFLOW;
1914         header.misc |= user_mode(regs) ?
1915                 PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;
1916
1917         if (record_type & PERF_RECORD_IP) {
1918                 ip = instruction_pointer(regs);
1919                 header.type |= PERF_RECORD_IP;
1920                 header.size += sizeof(ip);
1921         }
1922
1923         if (record_type & PERF_RECORD_TID) {
1924                 /* namespace issues */
1925                 tid_entry.pid = current->group_leader->pid;
1926                 tid_entry.tid = current->pid;
1927
1928                 header.type |= PERF_RECORD_TID;
1929                 header.size += sizeof(tid_entry);
1930         }
1931
1932         if (record_type & PERF_RECORD_TIME) {
1933                 /*
1934                  * Maybe do better on x86 and provide cpu_clock_nmi()
1935                  */
1936                 time = sched_clock();
1937
1938                 header.type |= PERF_RECORD_TIME;
1939                 header.size += sizeof(u64);
1940         }
1941
1942         if (record_type & PERF_RECORD_ADDR) {
1943                 header.type |= PERF_RECORD_ADDR;
1944                 header.size += sizeof(u64);
1945         }
1946
1947         if (record_type & PERF_RECORD_GROUP) {
1948                 header.type |= PERF_RECORD_GROUP;
1949                 header.size += sizeof(u64) +
1950                         counter->nr_siblings * sizeof(group_entry);
1951         }
1952
1953         if (record_type & PERF_RECORD_CALLCHAIN) {
1954                 callchain = perf_callchain(regs);
1955
1956                 if (callchain) {
1957                         callchain_size = (1 + callchain->nr) * sizeof(u64);
1958
1959                         header.type |= PERF_RECORD_CALLCHAIN;
1960                         header.size += callchain_size;
1961                 }
1962         }
1963
1964         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
1965         if (ret)
1966                 return;
1967
1968         perf_output_put(&handle, header);
1969
1970         if (record_type & PERF_RECORD_IP)
1971                 perf_output_put(&handle, ip);
1972
1973         if (record_type & PERF_RECORD_TID)
1974                 perf_output_put(&handle, tid_entry);
1975
1976         if (record_type & PERF_RECORD_TIME)
1977                 perf_output_put(&handle, time);
1978
1979         if (record_type & PERF_RECORD_ADDR)
1980                 perf_output_put(&handle, addr);
1981
1982         if (record_type & PERF_RECORD_GROUP) {
1983                 struct perf_counter *leader, *sub;
1984                 u64 nr = counter->nr_siblings;
1985
1986                 perf_output_put(&handle, nr);
1987
1988                 leader = counter->group_leader;
1989                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1990                         if (sub != counter)
1991                                 sub->pmu->read(sub);
1992
1993                         group_entry.event = sub->hw_event.config;
1994                         group_entry.counter = atomic64_read(&sub->count);
1995
1996                         perf_output_put(&handle, group_entry);
1997                 }
1998         }
1999
2000         if (callchain)
2001                 perf_output_copy(&handle, callchain, callchain_size);
2002
2003         perf_output_end(&handle);
2004 }
2005
2006 /*
2007  * comm tracking
2008  */
2009
2010 struct perf_comm_event {
2011         struct task_struct      *task;
2012         char                    *comm;
2013         int                     comm_size;
2014
2015         struct {
2016                 struct perf_event_header        header;
2017
2018                 u32                             pid;
2019                 u32                             tid;
2020         } event;
2021 };
2022
2023 static void perf_counter_comm_output(struct perf_counter *counter,
2024                                      struct perf_comm_event *comm_event)
2025 {
2026         struct perf_output_handle handle;
2027         int size = comm_event->event.header.size;
2028         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2029
2030         if (ret)
2031                 return;
2032
2033         perf_output_put(&handle, comm_event->event);
2034         perf_output_copy(&handle, comm_event->comm,
2035                                    comm_event->comm_size);
2036         perf_output_end(&handle);
2037 }
2038
2039 static int perf_counter_comm_match(struct perf_counter *counter,
2040                                    struct perf_comm_event *comm_event)
2041 {
2042         if (counter->hw_event.comm &&
2043             comm_event->event.header.type == PERF_EVENT_COMM)
2044                 return 1;
2045
2046         return 0;
2047 }
2048
2049 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2050                                   struct perf_comm_event *comm_event)
2051 {
2052         struct perf_counter *counter;
2053
2054         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2055                 return;
2056
2057         rcu_read_lock();
2058         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2059                 if (perf_counter_comm_match(counter, comm_event))
2060                         perf_counter_comm_output(counter, comm_event);
2061         }
2062         rcu_read_unlock();
2063 }
2064
2065 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2066 {
2067         struct perf_cpu_context *cpuctx;
2068         unsigned int size;
2069         char *comm = comm_event->task->comm;
2070
2071         size = ALIGN(strlen(comm)+1, sizeof(u64));
2072
2073         comm_event->comm = comm;
2074         comm_event->comm_size = size;
2075
2076         comm_event->event.header.size = sizeof(comm_event->event) + size;
2077
2078         cpuctx = &get_cpu_var(perf_cpu_context);
2079         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2080         put_cpu_var(perf_cpu_context);
2081
2082         perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
2083 }
2084
2085 void perf_counter_comm(struct task_struct *task)
2086 {
2087         struct perf_comm_event comm_event;
2088
2089         if (!atomic_read(&nr_comm_tracking))
2090                 return;
2091        
2092         comm_event = (struct perf_comm_event){
2093                 .task   = task,
2094                 .event  = {
2095                         .header = { .type = PERF_EVENT_COMM, },
2096                         .pid    = task->group_leader->pid,
2097                         .tid    = task->pid,
2098                 },
2099         };
2100
2101         perf_counter_comm_event(&comm_event);
2102 }
2103
2104 /*
2105  * mmap tracking
2106  */
2107
2108 struct perf_mmap_event {
2109         struct file     *file;
2110         char            *file_name;
2111         int             file_size;
2112
2113         struct {
2114                 struct perf_event_header        header;
2115
2116                 u32                             pid;
2117                 u32                             tid;
2118                 u64                             start;
2119                 u64                             len;
2120                 u64                             pgoff;
2121         } event;
2122 };
2123
2124 static void perf_counter_mmap_output(struct perf_counter *counter,
2125                                      struct perf_mmap_event *mmap_event)
2126 {
2127         struct perf_output_handle handle;
2128         int size = mmap_event->event.header.size;
2129         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2130
2131         if (ret)
2132                 return;
2133
2134         perf_output_put(&handle, mmap_event->event);
2135         perf_output_copy(&handle, mmap_event->file_name,
2136                                    mmap_event->file_size);
2137         perf_output_end(&handle);
2138 }
2139
2140 static int perf_counter_mmap_match(struct perf_counter *counter,
2141                                    struct perf_mmap_event *mmap_event)
2142 {
2143         if (counter->hw_event.mmap &&
2144             mmap_event->event.header.type == PERF_EVENT_MMAP)
2145                 return 1;
2146
2147         if (counter->hw_event.munmap &&
2148             mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2149                 return 1;
2150
2151         return 0;
2152 }
2153
2154 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2155                                   struct perf_mmap_event *mmap_event)
2156 {
2157         struct perf_counter *counter;
2158
2159         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2160                 return;
2161
2162         rcu_read_lock();
2163         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2164                 if (perf_counter_mmap_match(counter, mmap_event))
2165                         perf_counter_mmap_output(counter, mmap_event);
2166         }
2167         rcu_read_unlock();
2168 }
2169
2170 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2171 {
2172         struct perf_cpu_context *cpuctx;
2173         struct file *file = mmap_event->file;
2174         unsigned int size;
2175         char tmp[16];
2176         char *buf = NULL;
2177         char *name;
2178
2179         if (file) {
2180                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2181                 if (!buf) {
2182                         name = strncpy(tmp, "//enomem", sizeof(tmp));
2183                         goto got_name;
2184                 }
2185                 name = d_path(&file->f_path, buf, PATH_MAX);
2186                 if (IS_ERR(name)) {
2187                         name = strncpy(tmp, "//toolong", sizeof(tmp));
2188                         goto got_name;
2189                 }
2190         } else {
2191                 name = strncpy(tmp, "//anon", sizeof(tmp));
2192                 goto got_name;
2193         }
2194
2195 got_name:
2196         size = ALIGN(strlen(name)+1, sizeof(u64));
2197
2198         mmap_event->file_name = name;
2199         mmap_event->file_size = size;
2200
2201         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2202
2203         cpuctx = &get_cpu_var(perf_cpu_context);
2204         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2205         put_cpu_var(perf_cpu_context);
2206
2207         perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2208
2209         kfree(buf);
2210 }
2211
2212 void perf_counter_mmap(unsigned long addr, unsigned long len,
2213                        unsigned long pgoff, struct file *file)
2214 {
2215         struct perf_mmap_event mmap_event;
2216
2217         if (!atomic_read(&nr_mmap_tracking))
2218                 return;
2219
2220         mmap_event = (struct perf_mmap_event){
2221                 .file   = file,
2222                 .event  = {
2223                         .header = { .type = PERF_EVENT_MMAP, },
2224                         .pid    = current->group_leader->pid,
2225                         .tid    = current->pid,
2226                         .start  = addr,
2227                         .len    = len,
2228                         .pgoff  = pgoff,
2229                 },
2230         };
2231
2232         perf_counter_mmap_event(&mmap_event);
2233 }
2234
2235 void perf_counter_munmap(unsigned long addr, unsigned long len,
2236                          unsigned long pgoff, struct file *file)
2237 {
2238         struct perf_mmap_event mmap_event;
2239
2240         if (!atomic_read(&nr_munmap_tracking))
2241                 return;
2242
2243         mmap_event = (struct perf_mmap_event){
2244                 .file   = file,
2245                 .event  = {
2246                         .header = { .type = PERF_EVENT_MUNMAP, },
2247                         .pid    = current->group_leader->pid,
2248                         .tid    = current->pid,
2249                         .start  = addr,
2250                         .len    = len,
2251                         .pgoff  = pgoff,
2252                 },
2253         };
2254
2255         perf_counter_mmap_event(&mmap_event);
2256 }
2257
2258 /*
2259  * Generic counter overflow handling.
2260  */
2261
2262 int perf_counter_overflow(struct perf_counter *counter,
2263                           int nmi, struct pt_regs *regs, u64 addr)
2264 {
2265         int events = atomic_read(&counter->event_limit);
2266         int ret = 0;
2267
2268         counter->pending_kill = POLL_IN;
2269         if (events && atomic_dec_and_test(&counter->event_limit)) {
2270                 ret = 1;
2271                 counter->pending_kill = POLL_HUP;
2272                 if (nmi) {
2273                         counter->pending_disable = 1;
2274                         perf_pending_queue(&counter->pending,
2275                                            perf_pending_counter);
2276                 } else
2277                         perf_counter_disable(counter);
2278         }
2279
2280         perf_counter_output(counter, nmi, regs, addr);
2281         return ret;
2282 }
2283
2284 /*
2285  * Generic software counter infrastructure
2286  */
2287
2288 static void perf_swcounter_update(struct perf_counter *counter)
2289 {
2290         struct hw_perf_counter *hwc = &counter->hw;
2291         u64 prev, now;
2292         s64 delta;
2293
2294 again:
2295         prev = atomic64_read(&hwc->prev_count);
2296         now = atomic64_read(&hwc->count);
2297         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2298                 goto again;
2299
2300         delta = now - prev;
2301
2302         atomic64_add(delta, &counter->count);
2303         atomic64_sub(delta, &hwc->period_left);
2304 }
2305
2306 static void perf_swcounter_set_period(struct perf_counter *counter)
2307 {
2308         struct hw_perf_counter *hwc = &counter->hw;
2309         s64 left = atomic64_read(&hwc->period_left);
2310         s64 period = hwc->irq_period;
2311
2312         if (unlikely(left <= -period)) {
2313                 left = period;
2314                 atomic64_set(&hwc->period_left, left);
2315         }
2316
2317         if (unlikely(left <= 0)) {
2318                 left += period;
2319                 atomic64_add(period, &hwc->period_left);
2320         }
2321
2322         atomic64_set(&hwc->prev_count, -left);
2323         atomic64_set(&hwc->count, -left);
2324 }
2325
2326 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2327 {
2328         enum hrtimer_restart ret = HRTIMER_RESTART;
2329         struct perf_counter *counter;
2330         struct pt_regs *regs;
2331
2332         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2333         counter->pmu->read(counter);
2334
2335         regs = get_irq_regs();
2336         /*
2337          * In case we exclude kernel IPs or are somehow not in interrupt
2338          * context, provide the next best thing, the user IP.
2339          */
2340         if ((counter->hw_event.exclude_kernel || !regs) &&
2341                         !counter->hw_event.exclude_user)
2342                 regs = task_pt_regs(current);
2343
2344         if (regs) {
2345                 if (perf_counter_overflow(counter, 0, regs, 0))
2346                         ret = HRTIMER_NORESTART;
2347         }
2348
2349         hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2350
2351         return ret;
2352 }
2353
2354 static void perf_swcounter_overflow(struct perf_counter *counter,
2355                                     int nmi, struct pt_regs *regs, u64 addr)
2356 {
2357         perf_swcounter_update(counter);
2358         perf_swcounter_set_period(counter);
2359         if (perf_counter_overflow(counter, nmi, regs, addr))
2360                 /* soft-disable the counter */
2361                 ;
2362
2363 }
2364
2365 static int perf_swcounter_match(struct perf_counter *counter,
2366                                 enum perf_event_types type,
2367                                 u32 event, struct pt_regs *regs)
2368 {
2369         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2370                 return 0;
2371
2372         if (perf_event_raw(&counter->hw_event))
2373                 return 0;
2374
2375         if (perf_event_type(&counter->hw_event) != type)
2376                 return 0;
2377
2378         if (perf_event_id(&counter->hw_event) != event)
2379                 return 0;
2380
2381         if (counter->hw_event.exclude_user && user_mode(regs))
2382                 return 0;
2383
2384         if (counter->hw_event.exclude_kernel && !user_mode(regs))
2385                 return 0;
2386
2387         return 1;
2388 }
2389
2390 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2391                                int nmi, struct pt_regs *regs, u64 addr)
2392 {
2393         int neg = atomic64_add_negative(nr, &counter->hw.count);
2394         if (counter->hw.irq_period && !neg)
2395                 perf_swcounter_overflow(counter, nmi, regs, addr);
2396 }
2397
2398 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2399                                      enum perf_event_types type, u32 event,
2400                                      u64 nr, int nmi, struct pt_regs *regs,
2401                                      u64 addr)
2402 {
2403         struct perf_counter *counter;
2404
2405         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2406                 return;
2407
2408         rcu_read_lock();
2409         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2410                 if (perf_swcounter_match(counter, type, event, regs))
2411                         perf_swcounter_add(counter, nr, nmi, regs, addr);
2412         }
2413         rcu_read_unlock();
2414 }
2415
2416 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2417 {
2418         if (in_nmi())
2419                 return &cpuctx->recursion[3];
2420
2421         if (in_irq())
2422                 return &cpuctx->recursion[2];
2423
2424         if (in_softirq())
2425                 return &cpuctx->recursion[1];
2426
2427         return &cpuctx->recursion[0];
2428 }
2429
2430 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2431                                    u64 nr, int nmi, struct pt_regs *regs,
2432                                    u64 addr)
2433 {
2434         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2435         int *recursion = perf_swcounter_recursion_context(cpuctx);
2436
2437         if (*recursion)
2438                 goto out;
2439
2440         (*recursion)++;
2441         barrier();
2442
2443         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2444                                  nr, nmi, regs, addr);
2445         if (cpuctx->task_ctx) {
2446                 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2447                                          nr, nmi, regs, addr);
2448         }
2449
2450         barrier();
2451         (*recursion)--;
2452
2453 out:
2454         put_cpu_var(perf_cpu_context);
2455 }
2456
2457 void
2458 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2459 {
2460         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2461 }
2462
2463 static void perf_swcounter_read(struct perf_counter *counter)
2464 {
2465         perf_swcounter_update(counter);
2466 }
2467
2468 static int perf_swcounter_enable(struct perf_counter *counter)
2469 {
2470         perf_swcounter_set_period(counter);
2471         return 0;
2472 }
2473
2474 static void perf_swcounter_disable(struct perf_counter *counter)
2475 {
2476         perf_swcounter_update(counter);
2477 }
2478
2479 static const struct pmu perf_ops_generic = {
2480         .enable         = perf_swcounter_enable,
2481         .disable        = perf_swcounter_disable,
2482         .read           = perf_swcounter_read,
2483 };
2484
2485 /*
2486  * Software counter: cpu wall time clock
2487  */
2488
2489 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2490 {
2491         int cpu = raw_smp_processor_id();
2492         s64 prev;
2493         u64 now;
2494
2495         now = cpu_clock(cpu);
2496         prev = atomic64_read(&counter->hw.prev_count);
2497         atomic64_set(&counter->hw.prev_count, now);
2498         atomic64_add(now - prev, &counter->count);
2499 }
2500
2501 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2502 {
2503         struct hw_perf_counter *hwc = &counter->hw;
2504         int cpu = raw_smp_processor_id();
2505
2506         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2507         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2508         hwc->hrtimer.function = perf_swcounter_hrtimer;
2509         if (hwc->irq_period) {
2510                 __hrtimer_start_range_ns(&hwc->hrtimer,
2511                                 ns_to_ktime(hwc->irq_period), 0,
2512                                 HRTIMER_MODE_REL, 0);
2513         }
2514
2515         return 0;
2516 }
2517
2518 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2519 {
2520         hrtimer_cancel(&counter->hw.hrtimer);
2521         cpu_clock_perf_counter_update(counter);
2522 }
2523
2524 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2525 {
2526         cpu_clock_perf_counter_update(counter);
2527 }
2528
2529 static const struct pmu perf_ops_cpu_clock = {
2530         .enable         = cpu_clock_perf_counter_enable,
2531         .disable        = cpu_clock_perf_counter_disable,
2532         .read           = cpu_clock_perf_counter_read,
2533 };
2534
2535 /*
2536  * Software counter: task time clock
2537  */
2538
2539 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2540 {
2541         u64 prev;
2542         s64 delta;
2543
2544         prev = atomic64_xchg(&counter->hw.prev_count, now);
2545         delta = now - prev;
2546         atomic64_add(delta, &counter->count);
2547 }
2548
2549 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2550 {
2551         struct hw_perf_counter *hwc = &counter->hw;
2552         u64 now;
2553
2554         now = counter->ctx->time;
2555
2556         atomic64_set(&hwc->prev_count, now);
2557         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2558         hwc->hrtimer.function = perf_swcounter_hrtimer;
2559         if (hwc->irq_period) {
2560                 __hrtimer_start_range_ns(&hwc->hrtimer,
2561                                 ns_to_ktime(hwc->irq_period), 0,
2562                                 HRTIMER_MODE_REL, 0);
2563         }
2564
2565         return 0;
2566 }
2567
2568 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2569 {
2570         hrtimer_cancel(&counter->hw.hrtimer);
2571         task_clock_perf_counter_update(counter, counter->ctx->time);
2572
2573 }
2574
2575 static void task_clock_perf_counter_read(struct perf_counter *counter)
2576 {
2577         u64 time;
2578
2579         if (!in_nmi()) {
2580                 update_context_time(counter->ctx);
2581                 time = counter->ctx->time;
2582         } else {
2583                 u64 now = perf_clock();
2584                 u64 delta = now - counter->ctx->timestamp;
2585                 time = counter->ctx->time + delta;
2586         }
2587
2588         task_clock_perf_counter_update(counter, time);
2589 }
2590
2591 static const struct pmu perf_ops_task_clock = {
2592         .enable         = task_clock_perf_counter_enable,
2593         .disable        = task_clock_perf_counter_disable,
2594         .read           = task_clock_perf_counter_read,
2595 };
2596
2597 /*
2598  * Software counter: cpu migrations
2599  */
2600
2601 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2602 {
2603         struct task_struct *curr = counter->ctx->task;
2604
2605         if (curr)
2606                 return curr->se.nr_migrations;
2607         return cpu_nr_migrations(smp_processor_id());
2608 }
2609
2610 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2611 {
2612         u64 prev, now;
2613         s64 delta;
2614
2615         prev = atomic64_read(&counter->hw.prev_count);
2616         now = get_cpu_migrations(counter);
2617
2618         atomic64_set(&counter->hw.prev_count, now);
2619
2620         delta = now - prev;
2621
2622         atomic64_add(delta, &counter->count);
2623 }
2624
2625 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2626 {
2627         cpu_migrations_perf_counter_update(counter);
2628 }
2629
2630 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2631 {
2632         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2633                 atomic64_set(&counter->hw.prev_count,
2634                              get_cpu_migrations(counter));
2635         return 0;
2636 }
2637
2638 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2639 {
2640         cpu_migrations_perf_counter_update(counter);
2641 }
2642
2643 static const struct pmu perf_ops_cpu_migrations = {
2644         .enable         = cpu_migrations_perf_counter_enable,
2645         .disable        = cpu_migrations_perf_counter_disable,
2646         .read           = cpu_migrations_perf_counter_read,
2647 };
2648
2649 #ifdef CONFIG_EVENT_PROFILE
2650 void perf_tpcounter_event(int event_id)
2651 {
2652         struct pt_regs *regs = get_irq_regs();
2653
2654         if (!regs)
2655                 regs = task_pt_regs(current);
2656
2657         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2658 }
2659 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2660
2661 extern int ftrace_profile_enable(int);
2662 extern void ftrace_profile_disable(int);
2663
2664 static void tp_perf_counter_destroy(struct perf_counter *counter)
2665 {
2666         ftrace_profile_disable(perf_event_id(&counter->hw_event));
2667 }
2668
2669 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2670 {
2671         int event_id = perf_event_id(&counter->hw_event);
2672         int ret;
2673
2674         ret = ftrace_profile_enable(event_id);
2675         if (ret)
2676                 return NULL;
2677
2678         counter->destroy = tp_perf_counter_destroy;
2679         counter->hw.irq_period = counter->hw_event.irq_period;
2680
2681         return &perf_ops_generic;
2682 }
2683 #else
2684 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2685 {
2686         return NULL;
2687 }
2688 #endif
2689
2690 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2691 {
2692         struct perf_counter_hw_event *hw_event = &counter->hw_event;
2693         const struct pmu *pmu = NULL;
2694         struct hw_perf_counter *hwc = &counter->hw;
2695
2696         /*
2697          * Software counters (currently) can't in general distinguish
2698          * between user, kernel and hypervisor events.
2699          * However, context switches and cpu migrations are considered
2700          * to be kernel events, and page faults are never hypervisor
2701          * events.
2702          */
2703         switch (perf_event_id(&counter->hw_event)) {
2704         case PERF_COUNT_CPU_CLOCK:
2705                 pmu = &perf_ops_cpu_clock;
2706
2707                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2708                         hw_event->irq_period = 10000;
2709                 break;
2710         case PERF_COUNT_TASK_CLOCK:
2711                 /*
2712                  * If the user instantiates this as a per-cpu counter,
2713                  * use the cpu_clock counter instead.
2714                  */
2715                 if (counter->ctx->task)
2716                         pmu = &perf_ops_task_clock;
2717                 else
2718                         pmu = &perf_ops_cpu_clock;
2719
2720                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2721                         hw_event->irq_period = 10000;
2722                 break;
2723         case PERF_COUNT_PAGE_FAULTS:
2724         case PERF_COUNT_PAGE_FAULTS_MIN:
2725         case PERF_COUNT_PAGE_FAULTS_MAJ:
2726         case PERF_COUNT_CONTEXT_SWITCHES:
2727                 pmu = &perf_ops_generic;
2728                 break;
2729         case PERF_COUNT_CPU_MIGRATIONS:
2730                 if (!counter->hw_event.exclude_kernel)
2731                         pmu = &perf_ops_cpu_migrations;
2732                 break;
2733         }
2734
2735         if (pmu)
2736                 hwc->irq_period = hw_event->irq_period;
2737
2738         return pmu;
2739 }
2740
2741 /*
2742  * Allocate and initialize a counter structure
2743  */
2744 static struct perf_counter *
2745 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2746                    int cpu,
2747                    struct perf_counter_context *ctx,
2748                    struct perf_counter *group_leader,
2749                    gfp_t gfpflags)
2750 {
2751         const struct pmu *pmu;
2752         struct perf_counter *counter;
2753         long err;
2754
2755         counter = kzalloc(sizeof(*counter), gfpflags);
2756         if (!counter)
2757                 return ERR_PTR(-ENOMEM);
2758
2759         /*
2760          * Single counters are their own group leaders, with an
2761          * empty sibling list:
2762          */
2763         if (!group_leader)
2764                 group_leader = counter;
2765
2766         mutex_init(&counter->mutex);
2767         INIT_LIST_HEAD(&counter->list_entry);
2768         INIT_LIST_HEAD(&counter->event_entry);
2769         INIT_LIST_HEAD(&counter->sibling_list);
2770         init_waitqueue_head(&counter->waitq);
2771
2772         mutex_init(&counter->mmap_mutex);
2773
2774         INIT_LIST_HEAD(&counter->child_list);
2775
2776         counter->cpu                    = cpu;
2777         counter->hw_event               = *hw_event;
2778         counter->group_leader           = group_leader;
2779         counter->pmu                    = NULL;
2780         counter->ctx                    = ctx;
2781
2782         counter->state = PERF_COUNTER_STATE_INACTIVE;
2783         if (hw_event->disabled)
2784                 counter->state = PERF_COUNTER_STATE_OFF;
2785
2786         pmu = NULL;
2787
2788         if (perf_event_raw(hw_event)) {
2789                 pmu = hw_perf_counter_init(counter);
2790                 goto done;
2791         }
2792
2793         switch (perf_event_type(hw_event)) {
2794         case PERF_TYPE_HARDWARE:
2795                 pmu = hw_perf_counter_init(counter);
2796                 break;
2797
2798         case PERF_TYPE_SOFTWARE:
2799                 pmu = sw_perf_counter_init(counter);
2800                 break;
2801
2802         case PERF_TYPE_TRACEPOINT:
2803                 pmu = tp_perf_counter_init(counter);
2804                 break;
2805         }
2806 done:
2807         err = 0;
2808         if (!pmu)
2809                 err = -EINVAL;
2810         else if (IS_ERR(pmu))
2811                 err = PTR_ERR(pmu);
2812
2813         if (err) {
2814                 kfree(counter);
2815                 return ERR_PTR(err);
2816         }
2817
2818         counter->pmu = pmu;
2819
2820         if (counter->hw_event.mmap)
2821                 atomic_inc(&nr_mmap_tracking);
2822         if (counter->hw_event.munmap)
2823                 atomic_inc(&nr_munmap_tracking);
2824         if (counter->hw_event.comm)
2825                 atomic_inc(&nr_comm_tracking);
2826
2827         return counter;
2828 }
2829
2830 /**
2831  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2832  *
2833  * @hw_event_uptr:      event type attributes for monitoring/sampling
2834  * @pid:                target pid
2835  * @cpu:                target cpu
2836  * @group_fd:           group leader counter fd
2837  */
2838 SYSCALL_DEFINE5(perf_counter_open,
2839                 const struct perf_counter_hw_event __user *, hw_event_uptr,
2840                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2841 {
2842         struct perf_counter *counter, *group_leader;
2843         struct perf_counter_hw_event hw_event;
2844         struct perf_counter_context *ctx;
2845         struct file *counter_file = NULL;
2846         struct file *group_file = NULL;
2847         int fput_needed = 0;
2848         int fput_needed2 = 0;
2849         int ret;
2850
2851         /* for future expandability... */
2852         if (flags)
2853                 return -EINVAL;
2854
2855         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2856                 return -EFAULT;
2857
2858         /*
2859          * Get the target context (task or percpu):
2860          */
2861         ctx = find_get_context(pid, cpu);
2862         if (IS_ERR(ctx))
2863                 return PTR_ERR(ctx);
2864
2865         /*
2866          * Look up the group leader (we will attach this counter to it):
2867          */
2868         group_leader = NULL;
2869         if (group_fd != -1) {
2870                 ret = -EINVAL;
2871                 group_file = fget_light(group_fd, &fput_needed);
2872                 if (!group_file)
2873                         goto err_put_context;
2874                 if (group_file->f_op != &perf_fops)
2875                         goto err_put_context;
2876
2877                 group_leader = group_file->private_data;
2878                 /*
2879                  * Do not allow a recursive hierarchy (this new sibling
2880                  * becoming part of another group-sibling):
2881                  */
2882                 if (group_leader->group_leader != group_leader)
2883                         goto err_put_context;
2884                 /*
2885                  * Do not allow to attach to a group in a different
2886                  * task or CPU context:
2887                  */
2888                 if (group_leader->ctx != ctx)
2889                         goto err_put_context;
2890                 /*
2891                  * Only a group leader can be exclusive or pinned
2892                  */
2893                 if (hw_event.exclusive || hw_event.pinned)
2894                         goto err_put_context;
2895         }
2896
2897         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2898                                      GFP_KERNEL);
2899         ret = PTR_ERR(counter);
2900         if (IS_ERR(counter))
2901                 goto err_put_context;
2902
2903         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2904         if (ret < 0)
2905                 goto err_free_put_context;
2906
2907         counter_file = fget_light(ret, &fput_needed2);
2908         if (!counter_file)
2909                 goto err_free_put_context;
2910
2911         counter->filp = counter_file;
2912         mutex_lock(&ctx->mutex);
2913         perf_install_in_context(ctx, counter, cpu);
2914         mutex_unlock(&ctx->mutex);
2915
2916         fput_light(counter_file, fput_needed2);
2917
2918 out_fput:
2919         fput_light(group_file, fput_needed);
2920
2921         return ret;
2922
2923 err_free_put_context:
2924         kfree(counter);
2925
2926 err_put_context:
2927         put_context(ctx);
2928
2929         goto out_fput;
2930 }
2931
2932 /*
2933  * Initialize the perf_counter context in a task_struct:
2934  */
2935 static void
2936 __perf_counter_init_context(struct perf_counter_context *ctx,
2937                             struct task_struct *task)
2938 {
2939         memset(ctx, 0, sizeof(*ctx));
2940         spin_lock_init(&ctx->lock);
2941         mutex_init(&ctx->mutex);
2942         INIT_LIST_HEAD(&ctx->counter_list);
2943         INIT_LIST_HEAD(&ctx->event_list);
2944         ctx->task = task;
2945 }
2946
2947 /*
2948  * inherit a counter from parent task to child task:
2949  */
2950 static struct perf_counter *
2951 inherit_counter(struct perf_counter *parent_counter,
2952               struct task_struct *parent,
2953               struct perf_counter_context *parent_ctx,
2954               struct task_struct *child,
2955               struct perf_counter *group_leader,
2956               struct perf_counter_context *child_ctx)
2957 {
2958         struct perf_counter *child_counter;
2959
2960         /*
2961          * Instead of creating recursive hierarchies of counters,
2962          * we link inherited counters back to the original parent,
2963          * which has a filp for sure, which we use as the reference
2964          * count:
2965          */
2966         if (parent_counter->parent)
2967                 parent_counter = parent_counter->parent;
2968
2969         child_counter = perf_counter_alloc(&parent_counter->hw_event,
2970                                            parent_counter->cpu, child_ctx,
2971                                            group_leader, GFP_KERNEL);
2972         if (IS_ERR(child_counter))
2973                 return child_counter;
2974
2975         /*
2976          * Link it up in the child's context:
2977          */
2978         child_counter->task = child;
2979         add_counter_to_ctx(child_counter, child_ctx);
2980
2981         child_counter->parent = parent_counter;
2982         /*
2983          * inherit into child's child as well:
2984          */
2985         child_counter->hw_event.inherit = 1;
2986
2987         /*
2988          * Get a reference to the parent filp - we will fput it
2989          * when the child counter exits. This is safe to do because
2990          * we are in the parent and we know that the filp still
2991          * exists and has a nonzero count:
2992          */
2993         atomic_long_inc(&parent_counter->filp->f_count);
2994
2995         /*
2996          * Link this into the parent counter's child list
2997          */
2998         mutex_lock(&parent_counter->mutex);
2999         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3000
3001         /*
3002          * Make the child state follow the state of the parent counter,
3003          * not its hw_event.disabled bit.  We hold the parent's mutex,
3004          * so we won't race with perf_counter_{en,dis}able_family.
3005          */
3006         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3007                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3008         else
3009                 child_counter->state = PERF_COUNTER_STATE_OFF;
3010
3011         mutex_unlock(&parent_counter->mutex);
3012
3013         return child_counter;
3014 }
3015
3016 static int inherit_group(struct perf_counter *parent_counter,
3017               struct task_struct *parent,
3018               struct perf_counter_context *parent_ctx,
3019               struct task_struct *child,
3020               struct perf_counter_context *child_ctx)
3021 {
3022         struct perf_counter *leader;
3023         struct perf_counter *sub;
3024         struct perf_counter *child_ctr;
3025
3026         leader = inherit_counter(parent_counter, parent, parent_ctx,
3027                                  child, NULL, child_ctx);
3028         if (IS_ERR(leader))
3029                 return PTR_ERR(leader);
3030         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3031                 child_ctr = inherit_counter(sub, parent, parent_ctx,
3032                                             child, leader, child_ctx);
3033                 if (IS_ERR(child_ctr))
3034                         return PTR_ERR(child_ctr);
3035         }
3036         return 0;
3037 }
3038
3039 static void sync_child_counter(struct perf_counter *child_counter,
3040                                struct perf_counter *parent_counter)
3041 {
3042         u64 parent_val, child_val;
3043
3044         parent_val = atomic64_read(&parent_counter->count);
3045         child_val = atomic64_read(&child_counter->count);
3046
3047         /*
3048          * Add back the child's count to the parent's count:
3049          */
3050         atomic64_add(child_val, &parent_counter->count);
3051         atomic64_add(child_counter->total_time_enabled,
3052                      &parent_counter->child_total_time_enabled);
3053         atomic64_add(child_counter->total_time_running,
3054                      &parent_counter->child_total_time_running);
3055
3056         /*
3057          * Remove this counter from the parent's list
3058          */
3059         mutex_lock(&parent_counter->mutex);
3060         list_del_init(&child_counter->child_list);
3061         mutex_unlock(&parent_counter->mutex);
3062
3063         /*
3064          * Release the parent counter, if this was the last
3065          * reference to it.
3066          */
3067         fput(parent_counter->filp);
3068 }
3069
3070 static void
3071 __perf_counter_exit_task(struct task_struct *child,
3072                          struct perf_counter *child_counter,
3073                          struct perf_counter_context *child_ctx)
3074 {
3075         struct perf_counter *parent_counter;
3076         struct perf_counter *sub, *tmp;
3077
3078         /*
3079          * If we do not self-reap then we have to wait for the
3080          * child task to unschedule (it will happen for sure),
3081          * so that its counter is at its final count. (This
3082          * condition triggers rarely - child tasks usually get
3083          * off their CPU before the parent has a chance to
3084          * get this far into the reaping action)
3085          */
3086         if (child != current) {
3087                 wait_task_inactive(child, 0);
3088                 list_del_init(&child_counter->list_entry);
3089                 update_counter_times(child_counter);
3090         } else {
3091                 struct perf_cpu_context *cpuctx;
3092                 unsigned long flags;
3093                 u64 perf_flags;
3094
3095                 /*
3096                  * Disable and unlink this counter.
3097                  *
3098                  * Be careful about zapping the list - IRQ/NMI context
3099                  * could still be processing it:
3100                  */
3101                 local_irq_save(flags);
3102                 perf_flags = hw_perf_save_disable();
3103
3104                 cpuctx = &__get_cpu_var(perf_cpu_context);
3105
3106                 group_sched_out(child_counter, cpuctx, child_ctx);
3107                 update_counter_times(child_counter);
3108
3109                 list_del_init(&child_counter->list_entry);
3110
3111                 child_ctx->nr_counters--;
3112
3113                 hw_perf_restore(perf_flags);
3114                 local_irq_restore(flags);
3115         }
3116
3117         parent_counter = child_counter->parent;
3118         /*
3119          * It can happen that parent exits first, and has counters
3120          * that are still around due to the child reference. These
3121          * counters need to be zapped - but otherwise linger.
3122          */
3123         if (parent_counter) {
3124                 sync_child_counter(child_counter, parent_counter);
3125                 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
3126                                          list_entry) {
3127                         if (sub->parent) {
3128                                 sync_child_counter(sub, sub->parent);
3129                                 free_counter(sub);
3130                         }
3131                 }
3132                 free_counter(child_counter);
3133         }
3134 }
3135
3136 /*
3137  * When a child task exits, feed back counter values to parent counters.
3138  *
3139  * Note: we may be running in child context, but the PID is not hashed
3140  * anymore so new counters will not be added.
3141  */
3142 void perf_counter_exit_task(struct task_struct *child)
3143 {
3144         struct perf_counter *child_counter, *tmp;
3145         struct perf_counter_context *child_ctx;
3146
3147         child_ctx = &child->perf_counter_ctx;
3148
3149         if (likely(!child_ctx->nr_counters))
3150                 return;
3151
3152         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3153                                  list_entry)
3154                 __perf_counter_exit_task(child, child_counter, child_ctx);
3155 }
3156
3157 /*
3158  * Initialize the perf_counter context in task_struct
3159  */
3160 void perf_counter_init_task(struct task_struct *child)
3161 {
3162         struct perf_counter_context *child_ctx, *parent_ctx;
3163         struct perf_counter *counter;
3164         struct task_struct *parent = current;
3165
3166         child_ctx  =  &child->perf_counter_ctx;
3167         parent_ctx = &parent->perf_counter_ctx;
3168
3169         __perf_counter_init_context(child_ctx, child);
3170
3171         /*
3172          * This is executed from the parent task context, so inherit
3173          * counters that have been marked for cloning:
3174          */
3175
3176         if (likely(!parent_ctx->nr_counters))
3177                 return;
3178
3179         /*
3180          * Lock the parent list. No need to lock the child - not PID
3181          * hashed yet and not running, so nobody can access it.
3182          */
3183         mutex_lock(&parent_ctx->mutex);
3184
3185         /*
3186          * We dont have to disable NMIs - we are only looking at
3187          * the list, not manipulating it:
3188          */
3189         list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3190                 if (!counter->hw_event.inherit)
3191                         continue;
3192
3193                 if (inherit_group(counter, parent,
3194                                   parent_ctx, child, child_ctx))
3195                         break;
3196         }
3197
3198         mutex_unlock(&parent_ctx->mutex);
3199 }
3200
3201 static void __cpuinit perf_counter_init_cpu(int cpu)
3202 {
3203         struct perf_cpu_context *cpuctx;
3204
3205         cpuctx = &per_cpu(perf_cpu_context, cpu);
3206         __perf_counter_init_context(&cpuctx->ctx, NULL);
3207
3208         spin_lock(&perf_resource_lock);
3209         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3210         spin_unlock(&perf_resource_lock);
3211
3212         hw_perf_counter_setup(cpu);
3213 }
3214
3215 #ifdef CONFIG_HOTPLUG_CPU
3216 static void __perf_counter_exit_cpu(void *info)
3217 {
3218         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3219         struct perf_counter_context *ctx = &cpuctx->ctx;
3220         struct perf_counter *counter, *tmp;
3221
3222         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3223                 __perf_counter_remove_from_context(counter);
3224 }
3225 static void perf_counter_exit_cpu(int cpu)
3226 {
3227         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3228         struct perf_counter_context *ctx = &cpuctx->ctx;
3229
3230         mutex_lock(&ctx->mutex);
3231         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3232         mutex_unlock(&ctx->mutex);
3233 }
3234 #else
3235 static inline void perf_counter_exit_cpu(int cpu) { }
3236 #endif
3237
3238 static int __cpuinit
3239 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3240 {
3241         unsigned int cpu = (long)hcpu;
3242
3243         switch (action) {
3244
3245         case CPU_UP_PREPARE:
3246         case CPU_UP_PREPARE_FROZEN:
3247                 perf_counter_init_cpu(cpu);
3248                 break;
3249
3250         case CPU_DOWN_PREPARE:
3251         case CPU_DOWN_PREPARE_FROZEN:
3252                 perf_counter_exit_cpu(cpu);
3253                 break;
3254
3255         default:
3256                 break;
3257         }
3258
3259         return NOTIFY_OK;
3260 }
3261
3262 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3263         .notifier_call          = perf_cpu_notify,
3264 };
3265
3266 void __init perf_counter_init(void)
3267 {
3268         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3269                         (void *)(long)smp_processor_id());
3270         register_cpu_notifier(&perf_cpu_nb);
3271 }
3272
3273 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3274 {
3275         return sprintf(buf, "%d\n", perf_reserved_percpu);
3276 }
3277
3278 static ssize_t
3279 perf_set_reserve_percpu(struct sysdev_class *class,
3280                         const char *buf,
3281                         size_t count)
3282 {
3283         struct perf_cpu_context *cpuctx;
3284         unsigned long val;
3285         int err, cpu, mpt;
3286
3287         err = strict_strtoul(buf, 10, &val);
3288         if (err)
3289                 return err;
3290         if (val > perf_max_counters)
3291                 return -EINVAL;
3292
3293         spin_lock(&perf_resource_lock);
3294         perf_reserved_percpu = val;
3295         for_each_online_cpu(cpu) {
3296                 cpuctx = &per_cpu(perf_cpu_context, cpu);
3297                 spin_lock_irq(&cpuctx->ctx.lock);
3298                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3299                           perf_max_counters - perf_reserved_percpu);
3300                 cpuctx->max_pertask = mpt;
3301                 spin_unlock_irq(&cpuctx->ctx.lock);
3302         }
3303         spin_unlock(&perf_resource_lock);
3304
3305         return count;
3306 }
3307
3308 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3309 {
3310         return sprintf(buf, "%d\n", perf_overcommit);
3311 }
3312
3313 static ssize_t
3314 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3315 {
3316         unsigned long val;
3317         int err;
3318
3319         err = strict_strtoul(buf, 10, &val);
3320         if (err)
3321                 return err;
3322         if (val > 1)
3323                 return -EINVAL;
3324
3325         spin_lock(&perf_resource_lock);
3326         perf_overcommit = val;
3327         spin_unlock(&perf_resource_lock);
3328
3329         return count;
3330 }
3331
3332 static SYSDEV_CLASS_ATTR(
3333                                 reserve_percpu,
3334                                 0644,
3335                                 perf_show_reserve_percpu,
3336                                 perf_set_reserve_percpu
3337                         );
3338
3339 static SYSDEV_CLASS_ATTR(
3340                                 overcommit,
3341                                 0644,
3342                                 perf_show_overcommit,
3343                                 perf_set_overcommit
3344                         );
3345
3346 static struct attribute *perfclass_attrs[] = {
3347         &attr_reserve_percpu.attr,
3348         &attr_overcommit.attr,
3349         NULL
3350 };
3351
3352 static struct attribute_group perfclass_attr_group = {
3353         .attrs                  = perfclass_attrs,
3354         .name                   = "perf_counters",
3355 };
3356
3357 static int __init perf_counter_sysfs_init(void)
3358 {
3359         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3360                                   &perfclass_attr_group);
3361 }
3362 device_initcall(perf_counter_sysfs_init);