perf_counter: Implement more accurate per task statistics
[pandora-kernel.git] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_counters __read_mostly;
44 static atomic_t nr_comm_counters __read_mostly;
45
46 /*
47  * perf counter paranoia level:
48  *  0 - not paranoid
49  *  1 - disallow cpu counters to unpriv
50  *  2 - disallow kernel profiling to unpriv
51  */
52 int sysctl_perf_counter_paranoid __read_mostly;
53
54 static inline bool perf_paranoid_cpu(void)
55 {
56         return sysctl_perf_counter_paranoid > 0;
57 }
58
59 static inline bool perf_paranoid_kernel(void)
60 {
61         return sysctl_perf_counter_paranoid > 1;
62 }
63
64 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
65
66 /*
67  * max perf counter sample rate
68  */
69 int sysctl_perf_counter_sample_rate __read_mostly = 100000;
70
71 static atomic64_t perf_counter_id;
72
73 /*
74  * Lock for (sysadmin-configurable) counter reservations:
75  */
76 static DEFINE_SPINLOCK(perf_resource_lock);
77
78 /*
79  * Architecture provided APIs - weak aliases:
80  */
81 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
82 {
83         return NULL;
84 }
85
86 void __weak hw_perf_disable(void)               { barrier(); }
87 void __weak hw_perf_enable(void)                { barrier(); }
88
89 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
90
91 int __weak
92 hw_perf_group_sched_in(struct perf_counter *group_leader,
93                struct perf_cpu_context *cpuctx,
94                struct perf_counter_context *ctx, int cpu)
95 {
96         return 0;
97 }
98
99 void __weak perf_counter_print_debug(void)      { }
100
101 static DEFINE_PER_CPU(int, disable_count);
102
103 void __perf_disable(void)
104 {
105         __get_cpu_var(disable_count)++;
106 }
107
108 bool __perf_enable(void)
109 {
110         return !--__get_cpu_var(disable_count);
111 }
112
113 void perf_disable(void)
114 {
115         __perf_disable();
116         hw_perf_disable();
117 }
118
119 void perf_enable(void)
120 {
121         if (__perf_enable())
122                 hw_perf_enable();
123 }
124
125 static void get_ctx(struct perf_counter_context *ctx)
126 {
127         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
128 }
129
130 static void free_ctx(struct rcu_head *head)
131 {
132         struct perf_counter_context *ctx;
133
134         ctx = container_of(head, struct perf_counter_context, rcu_head);
135         kfree(ctx);
136 }
137
138 static void put_ctx(struct perf_counter_context *ctx)
139 {
140         if (atomic_dec_and_test(&ctx->refcount)) {
141                 if (ctx->parent_ctx)
142                         put_ctx(ctx->parent_ctx);
143                 if (ctx->task)
144                         put_task_struct(ctx->task);
145                 call_rcu(&ctx->rcu_head, free_ctx);
146         }
147 }
148
149 /*
150  * Get the perf_counter_context for a task and lock it.
151  * This has to cope with with the fact that until it is locked,
152  * the context could get moved to another task.
153  */
154 static struct perf_counter_context *
155 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
156 {
157         struct perf_counter_context *ctx;
158
159         rcu_read_lock();
160  retry:
161         ctx = rcu_dereference(task->perf_counter_ctxp);
162         if (ctx) {
163                 /*
164                  * If this context is a clone of another, it might
165                  * get swapped for another underneath us by
166                  * perf_counter_task_sched_out, though the
167                  * rcu_read_lock() protects us from any context
168                  * getting freed.  Lock the context and check if it
169                  * got swapped before we could get the lock, and retry
170                  * if so.  If we locked the right context, then it
171                  * can't get swapped on us any more.
172                  */
173                 spin_lock_irqsave(&ctx->lock, *flags);
174                 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
175                         spin_unlock_irqrestore(&ctx->lock, *flags);
176                         goto retry;
177                 }
178
179                 if (!atomic_inc_not_zero(&ctx->refcount)) {
180                         spin_unlock_irqrestore(&ctx->lock, *flags);
181                         ctx = NULL;
182                 }
183         }
184         rcu_read_unlock();
185         return ctx;
186 }
187
188 /*
189  * Get the context for a task and increment its pin_count so it
190  * can't get swapped to another task.  This also increments its
191  * reference count so that the context can't get freed.
192  */
193 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
194 {
195         struct perf_counter_context *ctx;
196         unsigned long flags;
197
198         ctx = perf_lock_task_context(task, &flags);
199         if (ctx) {
200                 ++ctx->pin_count;
201                 spin_unlock_irqrestore(&ctx->lock, flags);
202         }
203         return ctx;
204 }
205
206 static void perf_unpin_context(struct perf_counter_context *ctx)
207 {
208         unsigned long flags;
209
210         spin_lock_irqsave(&ctx->lock, flags);
211         --ctx->pin_count;
212         spin_unlock_irqrestore(&ctx->lock, flags);
213         put_ctx(ctx);
214 }
215
216 /*
217  * Add a counter from the lists for its context.
218  * Must be called with ctx->mutex and ctx->lock held.
219  */
220 static void
221 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
222 {
223         struct perf_counter *group_leader = counter->group_leader;
224
225         /*
226          * Depending on whether it is a standalone or sibling counter,
227          * add it straight to the context's counter list, or to the group
228          * leader's sibling list:
229          */
230         if (group_leader == counter)
231                 list_add_tail(&counter->list_entry, &ctx->counter_list);
232         else {
233                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
234                 group_leader->nr_siblings++;
235         }
236
237         list_add_rcu(&counter->event_entry, &ctx->event_list);
238         ctx->nr_counters++;
239         if (counter->attr.inherit_stat)
240                 ctx->nr_stat++;
241 }
242
243 /*
244  * Remove a counter from the lists for its context.
245  * Must be called with ctx->mutex and ctx->lock held.
246  */
247 static void
248 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
249 {
250         struct perf_counter *sibling, *tmp;
251
252         if (list_empty(&counter->list_entry))
253                 return;
254         ctx->nr_counters--;
255         if (counter->attr.inherit_stat)
256                 ctx->nr_stat--;
257
258         list_del_init(&counter->list_entry);
259         list_del_rcu(&counter->event_entry);
260
261         if (counter->group_leader != counter)
262                 counter->group_leader->nr_siblings--;
263
264         /*
265          * If this was a group counter with sibling counters then
266          * upgrade the siblings to singleton counters by adding them
267          * to the context list directly:
268          */
269         list_for_each_entry_safe(sibling, tmp,
270                                  &counter->sibling_list, list_entry) {
271
272                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
273                 sibling->group_leader = sibling;
274         }
275 }
276
277 static void
278 counter_sched_out(struct perf_counter *counter,
279                   struct perf_cpu_context *cpuctx,
280                   struct perf_counter_context *ctx)
281 {
282         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
283                 return;
284
285         counter->state = PERF_COUNTER_STATE_INACTIVE;
286         counter->tstamp_stopped = ctx->time;
287         counter->pmu->disable(counter);
288         counter->oncpu = -1;
289
290         if (!is_software_counter(counter))
291                 cpuctx->active_oncpu--;
292         ctx->nr_active--;
293         if (counter->attr.exclusive || !cpuctx->active_oncpu)
294                 cpuctx->exclusive = 0;
295 }
296
297 static void
298 group_sched_out(struct perf_counter *group_counter,
299                 struct perf_cpu_context *cpuctx,
300                 struct perf_counter_context *ctx)
301 {
302         struct perf_counter *counter;
303
304         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
305                 return;
306
307         counter_sched_out(group_counter, cpuctx, ctx);
308
309         /*
310          * Schedule out siblings (if any):
311          */
312         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
313                 counter_sched_out(counter, cpuctx, ctx);
314
315         if (group_counter->attr.exclusive)
316                 cpuctx->exclusive = 0;
317 }
318
319 /*
320  * Cross CPU call to remove a performance counter
321  *
322  * We disable the counter on the hardware level first. After that we
323  * remove it from the context list.
324  */
325 static void __perf_counter_remove_from_context(void *info)
326 {
327         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
328         struct perf_counter *counter = info;
329         struct perf_counter_context *ctx = counter->ctx;
330
331         /*
332          * If this is a task context, we need to check whether it is
333          * the current task context of this cpu. If not it has been
334          * scheduled out before the smp call arrived.
335          */
336         if (ctx->task && cpuctx->task_ctx != ctx)
337                 return;
338
339         spin_lock(&ctx->lock);
340         /*
341          * Protect the list operation against NMI by disabling the
342          * counters on a global level.
343          */
344         perf_disable();
345
346         counter_sched_out(counter, cpuctx, ctx);
347
348         list_del_counter(counter, ctx);
349
350         if (!ctx->task) {
351                 /*
352                  * Allow more per task counters with respect to the
353                  * reservation:
354                  */
355                 cpuctx->max_pertask =
356                         min(perf_max_counters - ctx->nr_counters,
357                             perf_max_counters - perf_reserved_percpu);
358         }
359
360         perf_enable();
361         spin_unlock(&ctx->lock);
362 }
363
364
365 /*
366  * Remove the counter from a task's (or a CPU's) list of counters.
367  *
368  * Must be called with ctx->mutex held.
369  *
370  * CPU counters are removed with a smp call. For task counters we only
371  * call when the task is on a CPU.
372  *
373  * If counter->ctx is a cloned context, callers must make sure that
374  * every task struct that counter->ctx->task could possibly point to
375  * remains valid.  This is OK when called from perf_release since
376  * that only calls us on the top-level context, which can't be a clone.
377  * When called from perf_counter_exit_task, it's OK because the
378  * context has been detached from its task.
379  */
380 static void perf_counter_remove_from_context(struct perf_counter *counter)
381 {
382         struct perf_counter_context *ctx = counter->ctx;
383         struct task_struct *task = ctx->task;
384
385         if (!task) {
386                 /*
387                  * Per cpu counters are removed via an smp call and
388                  * the removal is always sucessful.
389                  */
390                 smp_call_function_single(counter->cpu,
391                                          __perf_counter_remove_from_context,
392                                          counter, 1);
393                 return;
394         }
395
396 retry:
397         task_oncpu_function_call(task, __perf_counter_remove_from_context,
398                                  counter);
399
400         spin_lock_irq(&ctx->lock);
401         /*
402          * If the context is active we need to retry the smp call.
403          */
404         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
405                 spin_unlock_irq(&ctx->lock);
406                 goto retry;
407         }
408
409         /*
410          * The lock prevents that this context is scheduled in so we
411          * can remove the counter safely, if the call above did not
412          * succeed.
413          */
414         if (!list_empty(&counter->list_entry)) {
415                 list_del_counter(counter, ctx);
416         }
417         spin_unlock_irq(&ctx->lock);
418 }
419
420 static inline u64 perf_clock(void)
421 {
422         return cpu_clock(smp_processor_id());
423 }
424
425 /*
426  * Update the record of the current time in a context.
427  */
428 static void update_context_time(struct perf_counter_context *ctx)
429 {
430         u64 now = perf_clock();
431
432         ctx->time += now - ctx->timestamp;
433         ctx->timestamp = now;
434 }
435
436 /*
437  * Update the total_time_enabled and total_time_running fields for a counter.
438  */
439 static void update_counter_times(struct perf_counter *counter)
440 {
441         struct perf_counter_context *ctx = counter->ctx;
442         u64 run_end;
443
444         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
445                 return;
446
447         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
448
449         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
450                 run_end = counter->tstamp_stopped;
451         else
452                 run_end = ctx->time;
453
454         counter->total_time_running = run_end - counter->tstamp_running;
455 }
456
457 /*
458  * Update total_time_enabled and total_time_running for all counters in a group.
459  */
460 static void update_group_times(struct perf_counter *leader)
461 {
462         struct perf_counter *counter;
463
464         update_counter_times(leader);
465         list_for_each_entry(counter, &leader->sibling_list, list_entry)
466                 update_counter_times(counter);
467 }
468
469 /*
470  * Cross CPU call to disable a performance counter
471  */
472 static void __perf_counter_disable(void *info)
473 {
474         struct perf_counter *counter = info;
475         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
476         struct perf_counter_context *ctx = counter->ctx;
477
478         /*
479          * If this is a per-task counter, need to check whether this
480          * counter's task is the current task on this cpu.
481          */
482         if (ctx->task && cpuctx->task_ctx != ctx)
483                 return;
484
485         spin_lock(&ctx->lock);
486
487         /*
488          * If the counter is on, turn it off.
489          * If it is in error state, leave it in error state.
490          */
491         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
492                 update_context_time(ctx);
493                 update_counter_times(counter);
494                 if (counter == counter->group_leader)
495                         group_sched_out(counter, cpuctx, ctx);
496                 else
497                         counter_sched_out(counter, cpuctx, ctx);
498                 counter->state = PERF_COUNTER_STATE_OFF;
499         }
500
501         spin_unlock(&ctx->lock);
502 }
503
504 /*
505  * Disable a counter.
506  *
507  * If counter->ctx is a cloned context, callers must make sure that
508  * every task struct that counter->ctx->task could possibly point to
509  * remains valid.  This condition is satisifed when called through
510  * perf_counter_for_each_child or perf_counter_for_each because they
511  * hold the top-level counter's child_mutex, so any descendant that
512  * goes to exit will block in sync_child_counter.
513  * When called from perf_pending_counter it's OK because counter->ctx
514  * is the current context on this CPU and preemption is disabled,
515  * hence we can't get into perf_counter_task_sched_out for this context.
516  */
517 static void perf_counter_disable(struct perf_counter *counter)
518 {
519         struct perf_counter_context *ctx = counter->ctx;
520         struct task_struct *task = ctx->task;
521
522         if (!task) {
523                 /*
524                  * Disable the counter on the cpu that it's on
525                  */
526                 smp_call_function_single(counter->cpu, __perf_counter_disable,
527                                          counter, 1);
528                 return;
529         }
530
531  retry:
532         task_oncpu_function_call(task, __perf_counter_disable, counter);
533
534         spin_lock_irq(&ctx->lock);
535         /*
536          * If the counter is still active, we need to retry the cross-call.
537          */
538         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
539                 spin_unlock_irq(&ctx->lock);
540                 goto retry;
541         }
542
543         /*
544          * Since we have the lock this context can't be scheduled
545          * in, so we can change the state safely.
546          */
547         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
548                 update_counter_times(counter);
549                 counter->state = PERF_COUNTER_STATE_OFF;
550         }
551
552         spin_unlock_irq(&ctx->lock);
553 }
554
555 static int
556 counter_sched_in(struct perf_counter *counter,
557                  struct perf_cpu_context *cpuctx,
558                  struct perf_counter_context *ctx,
559                  int cpu)
560 {
561         if (counter->state <= PERF_COUNTER_STATE_OFF)
562                 return 0;
563
564         counter->state = PERF_COUNTER_STATE_ACTIVE;
565         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
566         /*
567          * The new state must be visible before we turn it on in the hardware:
568          */
569         smp_wmb();
570
571         if (counter->pmu->enable(counter)) {
572                 counter->state = PERF_COUNTER_STATE_INACTIVE;
573                 counter->oncpu = -1;
574                 return -EAGAIN;
575         }
576
577         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
578
579         if (!is_software_counter(counter))
580                 cpuctx->active_oncpu++;
581         ctx->nr_active++;
582
583         if (counter->attr.exclusive)
584                 cpuctx->exclusive = 1;
585
586         return 0;
587 }
588
589 static int
590 group_sched_in(struct perf_counter *group_counter,
591                struct perf_cpu_context *cpuctx,
592                struct perf_counter_context *ctx,
593                int cpu)
594 {
595         struct perf_counter *counter, *partial_group;
596         int ret;
597
598         if (group_counter->state == PERF_COUNTER_STATE_OFF)
599                 return 0;
600
601         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
602         if (ret)
603                 return ret < 0 ? ret : 0;
604
605         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
606                 return -EAGAIN;
607
608         /*
609          * Schedule in siblings as one group (if any):
610          */
611         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
612                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
613                         partial_group = counter;
614                         goto group_error;
615                 }
616         }
617
618         return 0;
619
620 group_error:
621         /*
622          * Groups can be scheduled in as one unit only, so undo any
623          * partial group before returning:
624          */
625         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
626                 if (counter == partial_group)
627                         break;
628                 counter_sched_out(counter, cpuctx, ctx);
629         }
630         counter_sched_out(group_counter, cpuctx, ctx);
631
632         return -EAGAIN;
633 }
634
635 /*
636  * Return 1 for a group consisting entirely of software counters,
637  * 0 if the group contains any hardware counters.
638  */
639 static int is_software_only_group(struct perf_counter *leader)
640 {
641         struct perf_counter *counter;
642
643         if (!is_software_counter(leader))
644                 return 0;
645
646         list_for_each_entry(counter, &leader->sibling_list, list_entry)
647                 if (!is_software_counter(counter))
648                         return 0;
649
650         return 1;
651 }
652
653 /*
654  * Work out whether we can put this counter group on the CPU now.
655  */
656 static int group_can_go_on(struct perf_counter *counter,
657                            struct perf_cpu_context *cpuctx,
658                            int can_add_hw)
659 {
660         /*
661          * Groups consisting entirely of software counters can always go on.
662          */
663         if (is_software_only_group(counter))
664                 return 1;
665         /*
666          * If an exclusive group is already on, no other hardware
667          * counters can go on.
668          */
669         if (cpuctx->exclusive)
670                 return 0;
671         /*
672          * If this group is exclusive and there are already
673          * counters on the CPU, it can't go on.
674          */
675         if (counter->attr.exclusive && cpuctx->active_oncpu)
676                 return 0;
677         /*
678          * Otherwise, try to add it if all previous groups were able
679          * to go on.
680          */
681         return can_add_hw;
682 }
683
684 static void add_counter_to_ctx(struct perf_counter *counter,
685                                struct perf_counter_context *ctx)
686 {
687         list_add_counter(counter, ctx);
688         counter->tstamp_enabled = ctx->time;
689         counter->tstamp_running = ctx->time;
690         counter->tstamp_stopped = ctx->time;
691 }
692
693 /*
694  * Cross CPU call to install and enable a performance counter
695  *
696  * Must be called with ctx->mutex held
697  */
698 static void __perf_install_in_context(void *info)
699 {
700         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
701         struct perf_counter *counter = info;
702         struct perf_counter_context *ctx = counter->ctx;
703         struct perf_counter *leader = counter->group_leader;
704         int cpu = smp_processor_id();
705         int err;
706
707         /*
708          * If this is a task context, we need to check whether it is
709          * the current task context of this cpu. If not it has been
710          * scheduled out before the smp call arrived.
711          * Or possibly this is the right context but it isn't
712          * on this cpu because it had no counters.
713          */
714         if (ctx->task && cpuctx->task_ctx != ctx) {
715                 if (cpuctx->task_ctx || ctx->task != current)
716                         return;
717                 cpuctx->task_ctx = ctx;
718         }
719
720         spin_lock(&ctx->lock);
721         ctx->is_active = 1;
722         update_context_time(ctx);
723
724         /*
725          * Protect the list operation against NMI by disabling the
726          * counters on a global level. NOP for non NMI based counters.
727          */
728         perf_disable();
729
730         add_counter_to_ctx(counter, ctx);
731
732         /*
733          * Don't put the counter on if it is disabled or if
734          * it is in a group and the group isn't on.
735          */
736         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
737             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
738                 goto unlock;
739
740         /*
741          * An exclusive counter can't go on if there are already active
742          * hardware counters, and no hardware counter can go on if there
743          * is already an exclusive counter on.
744          */
745         if (!group_can_go_on(counter, cpuctx, 1))
746                 err = -EEXIST;
747         else
748                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
749
750         if (err) {
751                 /*
752                  * This counter couldn't go on.  If it is in a group
753                  * then we have to pull the whole group off.
754                  * If the counter group is pinned then put it in error state.
755                  */
756                 if (leader != counter)
757                         group_sched_out(leader, cpuctx, ctx);
758                 if (leader->attr.pinned) {
759                         update_group_times(leader);
760                         leader->state = PERF_COUNTER_STATE_ERROR;
761                 }
762         }
763
764         if (!err && !ctx->task && cpuctx->max_pertask)
765                 cpuctx->max_pertask--;
766
767  unlock:
768         perf_enable();
769
770         spin_unlock(&ctx->lock);
771 }
772
773 /*
774  * Attach a performance counter to a context
775  *
776  * First we add the counter to the list with the hardware enable bit
777  * in counter->hw_config cleared.
778  *
779  * If the counter is attached to a task which is on a CPU we use a smp
780  * call to enable it in the task context. The task might have been
781  * scheduled away, but we check this in the smp call again.
782  *
783  * Must be called with ctx->mutex held.
784  */
785 static void
786 perf_install_in_context(struct perf_counter_context *ctx,
787                         struct perf_counter *counter,
788                         int cpu)
789 {
790         struct task_struct *task = ctx->task;
791
792         if (!task) {
793                 /*
794                  * Per cpu counters are installed via an smp call and
795                  * the install is always sucessful.
796                  */
797                 smp_call_function_single(cpu, __perf_install_in_context,
798                                          counter, 1);
799                 return;
800         }
801
802 retry:
803         task_oncpu_function_call(task, __perf_install_in_context,
804                                  counter);
805
806         spin_lock_irq(&ctx->lock);
807         /*
808          * we need to retry the smp call.
809          */
810         if (ctx->is_active && list_empty(&counter->list_entry)) {
811                 spin_unlock_irq(&ctx->lock);
812                 goto retry;
813         }
814
815         /*
816          * The lock prevents that this context is scheduled in so we
817          * can add the counter safely, if it the call above did not
818          * succeed.
819          */
820         if (list_empty(&counter->list_entry))
821                 add_counter_to_ctx(counter, ctx);
822         spin_unlock_irq(&ctx->lock);
823 }
824
825 /*
826  * Cross CPU call to enable a performance counter
827  */
828 static void __perf_counter_enable(void *info)
829 {
830         struct perf_counter *counter = info;
831         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
832         struct perf_counter_context *ctx = counter->ctx;
833         struct perf_counter *leader = counter->group_leader;
834         int err;
835
836         /*
837          * If this is a per-task counter, need to check whether this
838          * counter's task is the current task on this cpu.
839          */
840         if (ctx->task && cpuctx->task_ctx != ctx) {
841                 if (cpuctx->task_ctx || ctx->task != current)
842                         return;
843                 cpuctx->task_ctx = ctx;
844         }
845
846         spin_lock(&ctx->lock);
847         ctx->is_active = 1;
848         update_context_time(ctx);
849
850         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
851                 goto unlock;
852         counter->state = PERF_COUNTER_STATE_INACTIVE;
853         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
854
855         /*
856          * If the counter is in a group and isn't the group leader,
857          * then don't put it on unless the group is on.
858          */
859         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
860                 goto unlock;
861
862         if (!group_can_go_on(counter, cpuctx, 1)) {
863                 err = -EEXIST;
864         } else {
865                 perf_disable();
866                 if (counter == leader)
867                         err = group_sched_in(counter, cpuctx, ctx,
868                                              smp_processor_id());
869                 else
870                         err = counter_sched_in(counter, cpuctx, ctx,
871                                                smp_processor_id());
872                 perf_enable();
873         }
874
875         if (err) {
876                 /*
877                  * If this counter can't go on and it's part of a
878                  * group, then the whole group has to come off.
879                  */
880                 if (leader != counter)
881                         group_sched_out(leader, cpuctx, ctx);
882                 if (leader->attr.pinned) {
883                         update_group_times(leader);
884                         leader->state = PERF_COUNTER_STATE_ERROR;
885                 }
886         }
887
888  unlock:
889         spin_unlock(&ctx->lock);
890 }
891
892 /*
893  * Enable a counter.
894  *
895  * If counter->ctx is a cloned context, callers must make sure that
896  * every task struct that counter->ctx->task could possibly point to
897  * remains valid.  This condition is satisfied when called through
898  * perf_counter_for_each_child or perf_counter_for_each as described
899  * for perf_counter_disable.
900  */
901 static void perf_counter_enable(struct perf_counter *counter)
902 {
903         struct perf_counter_context *ctx = counter->ctx;
904         struct task_struct *task = ctx->task;
905
906         if (!task) {
907                 /*
908                  * Enable the counter on the cpu that it's on
909                  */
910                 smp_call_function_single(counter->cpu, __perf_counter_enable,
911                                          counter, 1);
912                 return;
913         }
914
915         spin_lock_irq(&ctx->lock);
916         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
917                 goto out;
918
919         /*
920          * If the counter is in error state, clear that first.
921          * That way, if we see the counter in error state below, we
922          * know that it has gone back into error state, as distinct
923          * from the task having been scheduled away before the
924          * cross-call arrived.
925          */
926         if (counter->state == PERF_COUNTER_STATE_ERROR)
927                 counter->state = PERF_COUNTER_STATE_OFF;
928
929  retry:
930         spin_unlock_irq(&ctx->lock);
931         task_oncpu_function_call(task, __perf_counter_enable, counter);
932
933         spin_lock_irq(&ctx->lock);
934
935         /*
936          * If the context is active and the counter is still off,
937          * we need to retry the cross-call.
938          */
939         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
940                 goto retry;
941
942         /*
943          * Since we have the lock this context can't be scheduled
944          * in, so we can change the state safely.
945          */
946         if (counter->state == PERF_COUNTER_STATE_OFF) {
947                 counter->state = PERF_COUNTER_STATE_INACTIVE;
948                 counter->tstamp_enabled =
949                         ctx->time - counter->total_time_enabled;
950         }
951  out:
952         spin_unlock_irq(&ctx->lock);
953 }
954
955 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
956 {
957         /*
958          * not supported on inherited counters
959          */
960         if (counter->attr.inherit)
961                 return -EINVAL;
962
963         atomic_add(refresh, &counter->event_limit);
964         perf_counter_enable(counter);
965
966         return 0;
967 }
968
969 void __perf_counter_sched_out(struct perf_counter_context *ctx,
970                               struct perf_cpu_context *cpuctx)
971 {
972         struct perf_counter *counter;
973
974         spin_lock(&ctx->lock);
975         ctx->is_active = 0;
976         if (likely(!ctx->nr_counters))
977                 goto out;
978         update_context_time(ctx);
979
980         perf_disable();
981         if (ctx->nr_active) {
982                 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
983                         if (counter != counter->group_leader)
984                                 counter_sched_out(counter, cpuctx, ctx);
985                         else
986                                 group_sched_out(counter, cpuctx, ctx);
987                 }
988         }
989         perf_enable();
990  out:
991         spin_unlock(&ctx->lock);
992 }
993
994 /*
995  * Test whether two contexts are equivalent, i.e. whether they
996  * have both been cloned from the same version of the same context
997  * and they both have the same number of enabled counters.
998  * If the number of enabled counters is the same, then the set
999  * of enabled counters should be the same, because these are both
1000  * inherited contexts, therefore we can't access individual counters
1001  * in them directly with an fd; we can only enable/disable all
1002  * counters via prctl, or enable/disable all counters in a family
1003  * via ioctl, which will have the same effect on both contexts.
1004  */
1005 static int context_equiv(struct perf_counter_context *ctx1,
1006                          struct perf_counter_context *ctx2)
1007 {
1008         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1009                 && ctx1->parent_gen == ctx2->parent_gen
1010                 && !ctx1->pin_count && !ctx2->pin_count;
1011 }
1012
1013 static void __perf_counter_read(void *counter);
1014
1015 static void __perf_counter_sync_stat(struct perf_counter *counter,
1016                                      struct perf_counter *next_counter)
1017 {
1018         u64 value;
1019
1020         if (!counter->attr.inherit_stat)
1021                 return;
1022
1023         /*
1024          * Update the counter value, we cannot use perf_counter_read()
1025          * because we're in the middle of a context switch and have IRQs
1026          * disabled, which upsets smp_call_function_single(), however
1027          * we know the counter must be on the current CPU, therefore we
1028          * don't need to use it.
1029          */
1030         switch (counter->state) {
1031         case PERF_COUNTER_STATE_ACTIVE:
1032                 __perf_counter_read(counter);
1033                 break;
1034
1035         case PERF_COUNTER_STATE_INACTIVE:
1036                 update_counter_times(counter);
1037                 break;
1038
1039         default:
1040                 break;
1041         }
1042
1043         /*
1044          * In order to keep per-task stats reliable we need to flip the counter
1045          * values when we flip the contexts.
1046          */
1047         value = atomic64_read(&next_counter->count);
1048         value = atomic64_xchg(&counter->count, value);
1049         atomic64_set(&next_counter->count, value);
1050
1051         /*
1052          * XXX also sync time_enabled and time_running ?
1053          */
1054 }
1055
1056 #define list_next_entry(pos, member) \
1057         list_entry(pos->member.next, typeof(*pos), member)
1058
1059 static void perf_counter_sync_stat(struct perf_counter_context *ctx,
1060                                    struct perf_counter_context *next_ctx)
1061 {
1062         struct perf_counter *counter, *next_counter;
1063
1064         if (!ctx->nr_stat)
1065                 return;
1066
1067         counter = list_first_entry(&ctx->event_list,
1068                                    struct perf_counter, event_entry);
1069
1070         next_counter = list_first_entry(&next_ctx->event_list,
1071                                         struct perf_counter, event_entry);
1072
1073         while (&counter->event_entry != &ctx->event_list &&
1074                &next_counter->event_entry != &next_ctx->event_list) {
1075
1076                 __perf_counter_sync_stat(counter, next_counter);
1077
1078                 counter = list_next_entry(counter, event_entry);
1079                 next_counter = list_next_entry(counter, event_entry);
1080         }
1081 }
1082
1083 /*
1084  * Called from scheduler to remove the counters of the current task,
1085  * with interrupts disabled.
1086  *
1087  * We stop each counter and update the counter value in counter->count.
1088  *
1089  * This does not protect us against NMI, but disable()
1090  * sets the disabled bit in the control field of counter _before_
1091  * accessing the counter control register. If a NMI hits, then it will
1092  * not restart the counter.
1093  */
1094 void perf_counter_task_sched_out(struct task_struct *task,
1095                                  struct task_struct *next, int cpu)
1096 {
1097         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1098         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1099         struct perf_counter_context *next_ctx;
1100         struct perf_counter_context *parent;
1101         struct pt_regs *regs;
1102         int do_switch = 1;
1103
1104         regs = task_pt_regs(task);
1105         perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1106
1107         if (likely(!ctx || !cpuctx->task_ctx))
1108                 return;
1109
1110         update_context_time(ctx);
1111
1112         rcu_read_lock();
1113         parent = rcu_dereference(ctx->parent_ctx);
1114         next_ctx = next->perf_counter_ctxp;
1115         if (parent && next_ctx &&
1116             rcu_dereference(next_ctx->parent_ctx) == parent) {
1117                 /*
1118                  * Looks like the two contexts are clones, so we might be
1119                  * able to optimize the context switch.  We lock both
1120                  * contexts and check that they are clones under the
1121                  * lock (including re-checking that neither has been
1122                  * uncloned in the meantime).  It doesn't matter which
1123                  * order we take the locks because no other cpu could
1124                  * be trying to lock both of these tasks.
1125                  */
1126                 spin_lock(&ctx->lock);
1127                 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1128                 if (context_equiv(ctx, next_ctx)) {
1129                         /*
1130                          * XXX do we need a memory barrier of sorts
1131                          * wrt to rcu_dereference() of perf_counter_ctxp
1132                          */
1133                         task->perf_counter_ctxp = next_ctx;
1134                         next->perf_counter_ctxp = ctx;
1135                         ctx->task = next;
1136                         next_ctx->task = task;
1137                         do_switch = 0;
1138
1139                         perf_counter_sync_stat(ctx, next_ctx);
1140                 }
1141                 spin_unlock(&next_ctx->lock);
1142                 spin_unlock(&ctx->lock);
1143         }
1144         rcu_read_unlock();
1145
1146         if (do_switch) {
1147                 __perf_counter_sched_out(ctx, cpuctx);
1148                 cpuctx->task_ctx = NULL;
1149         }
1150 }
1151
1152 /*
1153  * Called with IRQs disabled
1154  */
1155 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1156 {
1157         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1158
1159         if (!cpuctx->task_ctx)
1160                 return;
1161
1162         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1163                 return;
1164
1165         __perf_counter_sched_out(ctx, cpuctx);
1166         cpuctx->task_ctx = NULL;
1167 }
1168
1169 /*
1170  * Called with IRQs disabled
1171  */
1172 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1173 {
1174         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1175 }
1176
1177 static void
1178 __perf_counter_sched_in(struct perf_counter_context *ctx,
1179                         struct perf_cpu_context *cpuctx, int cpu)
1180 {
1181         struct perf_counter *counter;
1182         int can_add_hw = 1;
1183
1184         spin_lock(&ctx->lock);
1185         ctx->is_active = 1;
1186         if (likely(!ctx->nr_counters))
1187                 goto out;
1188
1189         ctx->timestamp = perf_clock();
1190
1191         perf_disable();
1192
1193         /*
1194          * First go through the list and put on any pinned groups
1195          * in order to give them the best chance of going on.
1196          */
1197         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1198                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1199                     !counter->attr.pinned)
1200                         continue;
1201                 if (counter->cpu != -1 && counter->cpu != cpu)
1202                         continue;
1203
1204                 if (counter != counter->group_leader)
1205                         counter_sched_in(counter, cpuctx, ctx, cpu);
1206                 else {
1207                         if (group_can_go_on(counter, cpuctx, 1))
1208                                 group_sched_in(counter, cpuctx, ctx, cpu);
1209                 }
1210
1211                 /*
1212                  * If this pinned group hasn't been scheduled,
1213                  * put it in error state.
1214                  */
1215                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1216                         update_group_times(counter);
1217                         counter->state = PERF_COUNTER_STATE_ERROR;
1218                 }
1219         }
1220
1221         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1222                 /*
1223                  * Ignore counters in OFF or ERROR state, and
1224                  * ignore pinned counters since we did them already.
1225                  */
1226                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1227                     counter->attr.pinned)
1228                         continue;
1229
1230                 /*
1231                  * Listen to the 'cpu' scheduling filter constraint
1232                  * of counters:
1233                  */
1234                 if (counter->cpu != -1 && counter->cpu != cpu)
1235                         continue;
1236
1237                 if (counter != counter->group_leader) {
1238                         if (counter_sched_in(counter, cpuctx, ctx, cpu))
1239                                 can_add_hw = 0;
1240                 } else {
1241                         if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1242                                 if (group_sched_in(counter, cpuctx, ctx, cpu))
1243                                         can_add_hw = 0;
1244                         }
1245                 }
1246         }
1247         perf_enable();
1248  out:
1249         spin_unlock(&ctx->lock);
1250 }
1251
1252 /*
1253  * Called from scheduler to add the counters of the current task
1254  * with interrupts disabled.
1255  *
1256  * We restore the counter value and then enable it.
1257  *
1258  * This does not protect us against NMI, but enable()
1259  * sets the enabled bit in the control field of counter _before_
1260  * accessing the counter control register. If a NMI hits, then it will
1261  * keep the counter running.
1262  */
1263 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1264 {
1265         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1266         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1267
1268         if (likely(!ctx))
1269                 return;
1270         if (cpuctx->task_ctx == ctx)
1271                 return;
1272         __perf_counter_sched_in(ctx, cpuctx, cpu);
1273         cpuctx->task_ctx = ctx;
1274 }
1275
1276 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1277 {
1278         struct perf_counter_context *ctx = &cpuctx->ctx;
1279
1280         __perf_counter_sched_in(ctx, cpuctx, cpu);
1281 }
1282
1283 #define MAX_INTERRUPTS (~0ULL)
1284
1285 static void perf_log_throttle(struct perf_counter *counter, int enable);
1286 static void perf_log_period(struct perf_counter *counter, u64 period);
1287
1288 static void perf_adjust_period(struct perf_counter *counter, u64 events)
1289 {
1290         struct hw_perf_counter *hwc = &counter->hw;
1291         u64 period, sample_period;
1292         s64 delta;
1293
1294         events *= hwc->sample_period;
1295         period = div64_u64(events, counter->attr.sample_freq);
1296
1297         delta = (s64)(period - hwc->sample_period);
1298         delta = (delta + 7) / 8; /* low pass filter */
1299
1300         sample_period = hwc->sample_period + delta;
1301
1302         if (!sample_period)
1303                 sample_period = 1;
1304
1305         perf_log_period(counter, sample_period);
1306
1307         hwc->sample_period = sample_period;
1308 }
1309
1310 static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1311 {
1312         struct perf_counter *counter;
1313         struct hw_perf_counter *hwc;
1314         u64 interrupts, freq;
1315
1316         spin_lock(&ctx->lock);
1317         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1318                 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1319                         continue;
1320
1321                 hwc = &counter->hw;
1322
1323                 interrupts = hwc->interrupts;
1324                 hwc->interrupts = 0;
1325
1326                 /*
1327                  * unthrottle counters on the tick
1328                  */
1329                 if (interrupts == MAX_INTERRUPTS) {
1330                         perf_log_throttle(counter, 1);
1331                         counter->pmu->unthrottle(counter);
1332                         interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
1333                 }
1334
1335                 if (!counter->attr.freq || !counter->attr.sample_freq)
1336                         continue;
1337
1338                 /*
1339                  * if the specified freq < HZ then we need to skip ticks
1340                  */
1341                 if (counter->attr.sample_freq < HZ) {
1342                         freq = counter->attr.sample_freq;
1343
1344                         hwc->freq_count += freq;
1345                         hwc->freq_interrupts += interrupts;
1346
1347                         if (hwc->freq_count < HZ)
1348                                 continue;
1349
1350                         interrupts = hwc->freq_interrupts;
1351                         hwc->freq_interrupts = 0;
1352                         hwc->freq_count -= HZ;
1353                 } else
1354                         freq = HZ;
1355
1356                 perf_adjust_period(counter, freq * interrupts);
1357
1358                 /*
1359                  * In order to avoid being stalled by an (accidental) huge
1360                  * sample period, force reset the sample period if we didn't
1361                  * get any events in this freq period.
1362                  */
1363                 if (!interrupts) {
1364                         perf_disable();
1365                         counter->pmu->disable(counter);
1366                         atomic64_set(&hwc->period_left, 0);
1367                         counter->pmu->enable(counter);
1368                         perf_enable();
1369                 }
1370         }
1371         spin_unlock(&ctx->lock);
1372 }
1373
1374 /*
1375  * Round-robin a context's counters:
1376  */
1377 static void rotate_ctx(struct perf_counter_context *ctx)
1378 {
1379         struct perf_counter *counter;
1380
1381         if (!ctx->nr_counters)
1382                 return;
1383
1384         spin_lock(&ctx->lock);
1385         /*
1386          * Rotate the first entry last (works just fine for group counters too):
1387          */
1388         perf_disable();
1389         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1390                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1391                 break;
1392         }
1393         perf_enable();
1394
1395         spin_unlock(&ctx->lock);
1396 }
1397
1398 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1399 {
1400         struct perf_cpu_context *cpuctx;
1401         struct perf_counter_context *ctx;
1402
1403         if (!atomic_read(&nr_counters))
1404                 return;
1405
1406         cpuctx = &per_cpu(perf_cpu_context, cpu);
1407         ctx = curr->perf_counter_ctxp;
1408
1409         perf_ctx_adjust_freq(&cpuctx->ctx);
1410         if (ctx)
1411                 perf_ctx_adjust_freq(ctx);
1412
1413         perf_counter_cpu_sched_out(cpuctx);
1414         if (ctx)
1415                 __perf_counter_task_sched_out(ctx);
1416
1417         rotate_ctx(&cpuctx->ctx);
1418         if (ctx)
1419                 rotate_ctx(ctx);
1420
1421         perf_counter_cpu_sched_in(cpuctx, cpu);
1422         if (ctx)
1423                 perf_counter_task_sched_in(curr, cpu);
1424 }
1425
1426 /*
1427  * Cross CPU call to read the hardware counter
1428  */
1429 static void __perf_counter_read(void *info)
1430 {
1431         struct perf_counter *counter = info;
1432         struct perf_counter_context *ctx = counter->ctx;
1433         unsigned long flags;
1434
1435         local_irq_save(flags);
1436         if (ctx->is_active)
1437                 update_context_time(ctx);
1438         counter->pmu->read(counter);
1439         update_counter_times(counter);
1440         local_irq_restore(flags);
1441 }
1442
1443 static u64 perf_counter_read(struct perf_counter *counter)
1444 {
1445         /*
1446          * If counter is enabled and currently active on a CPU, update the
1447          * value in the counter structure:
1448          */
1449         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1450                 smp_call_function_single(counter->oncpu,
1451                                          __perf_counter_read, counter, 1);
1452         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1453                 update_counter_times(counter);
1454         }
1455
1456         return atomic64_read(&counter->count);
1457 }
1458
1459 /*
1460  * Initialize the perf_counter context in a task_struct:
1461  */
1462 static void
1463 __perf_counter_init_context(struct perf_counter_context *ctx,
1464                             struct task_struct *task)
1465 {
1466         memset(ctx, 0, sizeof(*ctx));
1467         spin_lock_init(&ctx->lock);
1468         mutex_init(&ctx->mutex);
1469         INIT_LIST_HEAD(&ctx->counter_list);
1470         INIT_LIST_HEAD(&ctx->event_list);
1471         atomic_set(&ctx->refcount, 1);
1472         ctx->task = task;
1473 }
1474
1475 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1476 {
1477         struct perf_counter_context *parent_ctx;
1478         struct perf_counter_context *ctx;
1479         struct perf_cpu_context *cpuctx;
1480         struct task_struct *task;
1481         unsigned long flags;
1482         int err;
1483
1484         /*
1485          * If cpu is not a wildcard then this is a percpu counter:
1486          */
1487         if (cpu != -1) {
1488                 /* Must be root to operate on a CPU counter: */
1489                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1490                         return ERR_PTR(-EACCES);
1491
1492                 if (cpu < 0 || cpu > num_possible_cpus())
1493                         return ERR_PTR(-EINVAL);
1494
1495                 /*
1496                  * We could be clever and allow to attach a counter to an
1497                  * offline CPU and activate it when the CPU comes up, but
1498                  * that's for later.
1499                  */
1500                 if (!cpu_isset(cpu, cpu_online_map))
1501                         return ERR_PTR(-ENODEV);
1502
1503                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1504                 ctx = &cpuctx->ctx;
1505                 get_ctx(ctx);
1506
1507                 return ctx;
1508         }
1509
1510         rcu_read_lock();
1511         if (!pid)
1512                 task = current;
1513         else
1514                 task = find_task_by_vpid(pid);
1515         if (task)
1516                 get_task_struct(task);
1517         rcu_read_unlock();
1518
1519         if (!task)
1520                 return ERR_PTR(-ESRCH);
1521
1522         /*
1523          * Can't attach counters to a dying task.
1524          */
1525         err = -ESRCH;
1526         if (task->flags & PF_EXITING)
1527                 goto errout;
1528
1529         /* Reuse ptrace permission checks for now. */
1530         err = -EACCES;
1531         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1532                 goto errout;
1533
1534  retry:
1535         ctx = perf_lock_task_context(task, &flags);
1536         if (ctx) {
1537                 parent_ctx = ctx->parent_ctx;
1538                 if (parent_ctx) {
1539                         put_ctx(parent_ctx);
1540                         ctx->parent_ctx = NULL;         /* no longer a clone */
1541                 }
1542                 spin_unlock_irqrestore(&ctx->lock, flags);
1543         }
1544
1545         if (!ctx) {
1546                 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1547                 err = -ENOMEM;
1548                 if (!ctx)
1549                         goto errout;
1550                 __perf_counter_init_context(ctx, task);
1551                 get_ctx(ctx);
1552                 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1553                         /*
1554                          * We raced with some other task; use
1555                          * the context they set.
1556                          */
1557                         kfree(ctx);
1558                         goto retry;
1559                 }
1560                 get_task_struct(task);
1561         }
1562
1563         put_task_struct(task);
1564         return ctx;
1565
1566  errout:
1567         put_task_struct(task);
1568         return ERR_PTR(err);
1569 }
1570
1571 static void free_counter_rcu(struct rcu_head *head)
1572 {
1573         struct perf_counter *counter;
1574
1575         counter = container_of(head, struct perf_counter, rcu_head);
1576         if (counter->ns)
1577                 put_pid_ns(counter->ns);
1578         kfree(counter);
1579 }
1580
1581 static void perf_pending_sync(struct perf_counter *counter);
1582
1583 static void free_counter(struct perf_counter *counter)
1584 {
1585         perf_pending_sync(counter);
1586
1587         if (!counter->parent) {
1588                 atomic_dec(&nr_counters);
1589                 if (counter->attr.mmap)
1590                         atomic_dec(&nr_mmap_counters);
1591                 if (counter->attr.comm)
1592                         atomic_dec(&nr_comm_counters);
1593         }
1594
1595         if (counter->destroy)
1596                 counter->destroy(counter);
1597
1598         put_ctx(counter->ctx);
1599         call_rcu(&counter->rcu_head, free_counter_rcu);
1600 }
1601
1602 /*
1603  * Called when the last reference to the file is gone.
1604  */
1605 static int perf_release(struct inode *inode, struct file *file)
1606 {
1607         struct perf_counter *counter = file->private_data;
1608         struct perf_counter_context *ctx = counter->ctx;
1609
1610         file->private_data = NULL;
1611
1612         WARN_ON_ONCE(ctx->parent_ctx);
1613         mutex_lock(&ctx->mutex);
1614         perf_counter_remove_from_context(counter);
1615         mutex_unlock(&ctx->mutex);
1616
1617         mutex_lock(&counter->owner->perf_counter_mutex);
1618         list_del_init(&counter->owner_entry);
1619         mutex_unlock(&counter->owner->perf_counter_mutex);
1620         put_task_struct(counter->owner);
1621
1622         free_counter(counter);
1623
1624         return 0;
1625 }
1626
1627 /*
1628  * Read the performance counter - simple non blocking version for now
1629  */
1630 static ssize_t
1631 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1632 {
1633         u64 values[4];
1634         int n;
1635
1636         /*
1637          * Return end-of-file for a read on a counter that is in
1638          * error state (i.e. because it was pinned but it couldn't be
1639          * scheduled on to the CPU at some point).
1640          */
1641         if (counter->state == PERF_COUNTER_STATE_ERROR)
1642                 return 0;
1643
1644         WARN_ON_ONCE(counter->ctx->parent_ctx);
1645         mutex_lock(&counter->child_mutex);
1646         values[0] = perf_counter_read(counter);
1647         n = 1;
1648         if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1649                 values[n++] = counter->total_time_enabled +
1650                         atomic64_read(&counter->child_total_time_enabled);
1651         if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1652                 values[n++] = counter->total_time_running +
1653                         atomic64_read(&counter->child_total_time_running);
1654         if (counter->attr.read_format & PERF_FORMAT_ID)
1655                 values[n++] = counter->id;
1656         mutex_unlock(&counter->child_mutex);
1657
1658         if (count < n * sizeof(u64))
1659                 return -EINVAL;
1660         count = n * sizeof(u64);
1661
1662         if (copy_to_user(buf, values, count))
1663                 return -EFAULT;
1664
1665         return count;
1666 }
1667
1668 static ssize_t
1669 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1670 {
1671         struct perf_counter *counter = file->private_data;
1672
1673         return perf_read_hw(counter, buf, count);
1674 }
1675
1676 static unsigned int perf_poll(struct file *file, poll_table *wait)
1677 {
1678         struct perf_counter *counter = file->private_data;
1679         struct perf_mmap_data *data;
1680         unsigned int events = POLL_HUP;
1681
1682         rcu_read_lock();
1683         data = rcu_dereference(counter->data);
1684         if (data)
1685                 events = atomic_xchg(&data->poll, 0);
1686         rcu_read_unlock();
1687
1688         poll_wait(file, &counter->waitq, wait);
1689
1690         return events;
1691 }
1692
1693 static void perf_counter_reset(struct perf_counter *counter)
1694 {
1695         (void)perf_counter_read(counter);
1696         atomic64_set(&counter->count, 0);
1697         perf_counter_update_userpage(counter);
1698 }
1699
1700 /*
1701  * Holding the top-level counter's child_mutex means that any
1702  * descendant process that has inherited this counter will block
1703  * in sync_child_counter if it goes to exit, thus satisfying the
1704  * task existence requirements of perf_counter_enable/disable.
1705  */
1706 static void perf_counter_for_each_child(struct perf_counter *counter,
1707                                         void (*func)(struct perf_counter *))
1708 {
1709         struct perf_counter *child;
1710
1711         WARN_ON_ONCE(counter->ctx->parent_ctx);
1712         mutex_lock(&counter->child_mutex);
1713         func(counter);
1714         list_for_each_entry(child, &counter->child_list, child_list)
1715                 func(child);
1716         mutex_unlock(&counter->child_mutex);
1717 }
1718
1719 static void perf_counter_for_each(struct perf_counter *counter,
1720                                   void (*func)(struct perf_counter *))
1721 {
1722         struct perf_counter_context *ctx = counter->ctx;
1723         struct perf_counter *sibling;
1724
1725         WARN_ON_ONCE(ctx->parent_ctx);
1726         mutex_lock(&ctx->mutex);
1727         counter = counter->group_leader;
1728
1729         perf_counter_for_each_child(counter, func);
1730         func(counter);
1731         list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1732                 perf_counter_for_each_child(counter, func);
1733         mutex_unlock(&ctx->mutex);
1734 }
1735
1736 static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
1737 {
1738         struct perf_counter_context *ctx = counter->ctx;
1739         unsigned long size;
1740         int ret = 0;
1741         u64 value;
1742
1743         if (!counter->attr.sample_period)
1744                 return -EINVAL;
1745
1746         size = copy_from_user(&value, arg, sizeof(value));
1747         if (size != sizeof(value))
1748                 return -EFAULT;
1749
1750         if (!value)
1751                 return -EINVAL;
1752
1753         spin_lock_irq(&ctx->lock);
1754         if (counter->attr.freq) {
1755                 if (value > sysctl_perf_counter_sample_rate) {
1756                         ret = -EINVAL;
1757                         goto unlock;
1758                 }
1759
1760                 counter->attr.sample_freq = value;
1761         } else {
1762                 perf_log_period(counter, value);
1763
1764                 counter->attr.sample_period = value;
1765                 counter->hw.sample_period = value;
1766         }
1767 unlock:
1768         spin_unlock_irq(&ctx->lock);
1769
1770         return ret;
1771 }
1772
1773 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1774 {
1775         struct perf_counter *counter = file->private_data;
1776         void (*func)(struct perf_counter *);
1777         u32 flags = arg;
1778
1779         switch (cmd) {
1780         case PERF_COUNTER_IOC_ENABLE:
1781                 func = perf_counter_enable;
1782                 break;
1783         case PERF_COUNTER_IOC_DISABLE:
1784                 func = perf_counter_disable;
1785                 break;
1786         case PERF_COUNTER_IOC_RESET:
1787                 func = perf_counter_reset;
1788                 break;
1789
1790         case PERF_COUNTER_IOC_REFRESH:
1791                 return perf_counter_refresh(counter, arg);
1792
1793         case PERF_COUNTER_IOC_PERIOD:
1794                 return perf_counter_period(counter, (u64 __user *)arg);
1795
1796         default:
1797                 return -ENOTTY;
1798         }
1799
1800         if (flags & PERF_IOC_FLAG_GROUP)
1801                 perf_counter_for_each(counter, func);
1802         else
1803                 perf_counter_for_each_child(counter, func);
1804
1805         return 0;
1806 }
1807
1808 int perf_counter_task_enable(void)
1809 {
1810         struct perf_counter *counter;
1811
1812         mutex_lock(&current->perf_counter_mutex);
1813         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1814                 perf_counter_for_each_child(counter, perf_counter_enable);
1815         mutex_unlock(&current->perf_counter_mutex);
1816
1817         return 0;
1818 }
1819
1820 int perf_counter_task_disable(void)
1821 {
1822         struct perf_counter *counter;
1823
1824         mutex_lock(&current->perf_counter_mutex);
1825         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1826                 perf_counter_for_each_child(counter, perf_counter_disable);
1827         mutex_unlock(&current->perf_counter_mutex);
1828
1829         return 0;
1830 }
1831
1832 static int perf_counter_index(struct perf_counter *counter)
1833 {
1834         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1835                 return 0;
1836
1837         return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET;
1838 }
1839
1840 /*
1841  * Callers need to ensure there can be no nesting of this function, otherwise
1842  * the seqlock logic goes bad. We can not serialize this because the arch
1843  * code calls this from NMI context.
1844  */
1845 void perf_counter_update_userpage(struct perf_counter *counter)
1846 {
1847         struct perf_counter_mmap_page *userpg;
1848         struct perf_mmap_data *data;
1849
1850         rcu_read_lock();
1851         data = rcu_dereference(counter->data);
1852         if (!data)
1853                 goto unlock;
1854
1855         userpg = data->user_page;
1856
1857         /*
1858          * Disable preemption so as to not let the corresponding user-space
1859          * spin too long if we get preempted.
1860          */
1861         preempt_disable();
1862         ++userpg->lock;
1863         barrier();
1864         userpg->index = perf_counter_index(counter);
1865         userpg->offset = atomic64_read(&counter->count);
1866         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1867                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1868
1869         userpg->time_enabled = counter->total_time_enabled +
1870                         atomic64_read(&counter->child_total_time_enabled);
1871
1872         userpg->time_running = counter->total_time_running +
1873                         atomic64_read(&counter->child_total_time_running);
1874
1875         barrier();
1876         ++userpg->lock;
1877         preempt_enable();
1878 unlock:
1879         rcu_read_unlock();
1880 }
1881
1882 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1883 {
1884         struct perf_counter *counter = vma->vm_file->private_data;
1885         struct perf_mmap_data *data;
1886         int ret = VM_FAULT_SIGBUS;
1887
1888         if (vmf->flags & FAULT_FLAG_MKWRITE) {
1889                 if (vmf->pgoff == 0)
1890                         ret = 0;
1891                 return ret;
1892         }
1893
1894         rcu_read_lock();
1895         data = rcu_dereference(counter->data);
1896         if (!data)
1897                 goto unlock;
1898
1899         if (vmf->pgoff == 0) {
1900                 vmf->page = virt_to_page(data->user_page);
1901         } else {
1902                 int nr = vmf->pgoff - 1;
1903
1904                 if ((unsigned)nr > data->nr_pages)
1905                         goto unlock;
1906
1907                 if (vmf->flags & FAULT_FLAG_WRITE)
1908                         goto unlock;
1909
1910                 vmf->page = virt_to_page(data->data_pages[nr]);
1911         }
1912
1913         get_page(vmf->page);
1914         vmf->page->mapping = vma->vm_file->f_mapping;
1915         vmf->page->index   = vmf->pgoff;
1916
1917         ret = 0;
1918 unlock:
1919         rcu_read_unlock();
1920
1921         return ret;
1922 }
1923
1924 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1925 {
1926         struct perf_mmap_data *data;
1927         unsigned long size;
1928         int i;
1929
1930         WARN_ON(atomic_read(&counter->mmap_count));
1931
1932         size = sizeof(struct perf_mmap_data);
1933         size += nr_pages * sizeof(void *);
1934
1935         data = kzalloc(size, GFP_KERNEL);
1936         if (!data)
1937                 goto fail;
1938
1939         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1940         if (!data->user_page)
1941                 goto fail_user_page;
1942
1943         for (i = 0; i < nr_pages; i++) {
1944                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1945                 if (!data->data_pages[i])
1946                         goto fail_data_pages;
1947         }
1948
1949         data->nr_pages = nr_pages;
1950         atomic_set(&data->lock, -1);
1951
1952         rcu_assign_pointer(counter->data, data);
1953
1954         return 0;
1955
1956 fail_data_pages:
1957         for (i--; i >= 0; i--)
1958                 free_page((unsigned long)data->data_pages[i]);
1959
1960         free_page((unsigned long)data->user_page);
1961
1962 fail_user_page:
1963         kfree(data);
1964
1965 fail:
1966         return -ENOMEM;
1967 }
1968
1969 static void perf_mmap_free_page(unsigned long addr)
1970 {
1971         struct page *page = virt_to_page(addr);
1972
1973         page->mapping = NULL;
1974         __free_page(page);
1975 }
1976
1977 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1978 {
1979         struct perf_mmap_data *data;
1980         int i;
1981
1982         data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
1983
1984         perf_mmap_free_page((unsigned long)data->user_page);
1985         for (i = 0; i < data->nr_pages; i++)
1986                 perf_mmap_free_page((unsigned long)data->data_pages[i]);
1987
1988         kfree(data);
1989 }
1990
1991 static void perf_mmap_data_free(struct perf_counter *counter)
1992 {
1993         struct perf_mmap_data *data = counter->data;
1994
1995         WARN_ON(atomic_read(&counter->mmap_count));
1996
1997         rcu_assign_pointer(counter->data, NULL);
1998         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1999 }
2000
2001 static void perf_mmap_open(struct vm_area_struct *vma)
2002 {
2003         struct perf_counter *counter = vma->vm_file->private_data;
2004
2005         atomic_inc(&counter->mmap_count);
2006 }
2007
2008 static void perf_mmap_close(struct vm_area_struct *vma)
2009 {
2010         struct perf_counter *counter = vma->vm_file->private_data;
2011
2012         WARN_ON_ONCE(counter->ctx->parent_ctx);
2013         if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
2014                 struct user_struct *user = current_user();
2015
2016                 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
2017                 vma->vm_mm->locked_vm -= counter->data->nr_locked;
2018                 perf_mmap_data_free(counter);
2019                 mutex_unlock(&counter->mmap_mutex);
2020         }
2021 }
2022
2023 static struct vm_operations_struct perf_mmap_vmops = {
2024         .open           = perf_mmap_open,
2025         .close          = perf_mmap_close,
2026         .fault          = perf_mmap_fault,
2027         .page_mkwrite   = perf_mmap_fault,
2028 };
2029
2030 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2031 {
2032         struct perf_counter *counter = file->private_data;
2033         unsigned long user_locked, user_lock_limit;
2034         struct user_struct *user = current_user();
2035         unsigned long locked, lock_limit;
2036         unsigned long vma_size;
2037         unsigned long nr_pages;
2038         long user_extra, extra;
2039         int ret = 0;
2040
2041         if (!(vma->vm_flags & VM_SHARED))
2042                 return -EINVAL;
2043
2044         vma_size = vma->vm_end - vma->vm_start;
2045         nr_pages = (vma_size / PAGE_SIZE) - 1;
2046
2047         /*
2048          * If we have data pages ensure they're a power-of-two number, so we
2049          * can do bitmasks instead of modulo.
2050          */
2051         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2052                 return -EINVAL;
2053
2054         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2055                 return -EINVAL;
2056
2057         if (vma->vm_pgoff != 0)
2058                 return -EINVAL;
2059
2060         WARN_ON_ONCE(counter->ctx->parent_ctx);
2061         mutex_lock(&counter->mmap_mutex);
2062         if (atomic_inc_not_zero(&counter->mmap_count)) {
2063                 if (nr_pages != counter->data->nr_pages)
2064                         ret = -EINVAL;
2065                 goto unlock;
2066         }
2067
2068         user_extra = nr_pages + 1;
2069         user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
2070
2071         /*
2072          * Increase the limit linearly with more CPUs:
2073          */
2074         user_lock_limit *= num_online_cpus();
2075
2076         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2077
2078         extra = 0;
2079         if (user_locked > user_lock_limit)
2080                 extra = user_locked - user_lock_limit;
2081
2082         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2083         lock_limit >>= PAGE_SHIFT;
2084         locked = vma->vm_mm->locked_vm + extra;
2085
2086         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
2087                 ret = -EPERM;
2088                 goto unlock;
2089         }
2090
2091         WARN_ON(counter->data);
2092         ret = perf_mmap_data_alloc(counter, nr_pages);
2093         if (ret)
2094                 goto unlock;
2095
2096         atomic_set(&counter->mmap_count, 1);
2097         atomic_long_add(user_extra, &user->locked_vm);
2098         vma->vm_mm->locked_vm += extra;
2099         counter->data->nr_locked = extra;
2100         if (vma->vm_flags & VM_WRITE)
2101                 counter->data->writable = 1;
2102
2103 unlock:
2104         mutex_unlock(&counter->mmap_mutex);
2105
2106         vma->vm_flags |= VM_RESERVED;
2107         vma->vm_ops = &perf_mmap_vmops;
2108
2109         return ret;
2110 }
2111
2112 static int perf_fasync(int fd, struct file *filp, int on)
2113 {
2114         struct inode *inode = filp->f_path.dentry->d_inode;
2115         struct perf_counter *counter = filp->private_data;
2116         int retval;
2117
2118         mutex_lock(&inode->i_mutex);
2119         retval = fasync_helper(fd, filp, on, &counter->fasync);
2120         mutex_unlock(&inode->i_mutex);
2121
2122         if (retval < 0)
2123                 return retval;
2124
2125         return 0;
2126 }
2127
2128 static const struct file_operations perf_fops = {
2129         .release                = perf_release,
2130         .read                   = perf_read,
2131         .poll                   = perf_poll,
2132         .unlocked_ioctl         = perf_ioctl,
2133         .compat_ioctl           = perf_ioctl,
2134         .mmap                   = perf_mmap,
2135         .fasync                 = perf_fasync,
2136 };
2137
2138 /*
2139  * Perf counter wakeup
2140  *
2141  * If there's data, ensure we set the poll() state and publish everything
2142  * to user-space before waking everybody up.
2143  */
2144
2145 void perf_counter_wakeup(struct perf_counter *counter)
2146 {
2147         wake_up_all(&counter->waitq);
2148
2149         if (counter->pending_kill) {
2150                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
2151                 counter->pending_kill = 0;
2152         }
2153 }
2154
2155 /*
2156  * Pending wakeups
2157  *
2158  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2159  *
2160  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2161  * single linked list and use cmpxchg() to add entries lockless.
2162  */
2163
2164 static void perf_pending_counter(struct perf_pending_entry *entry)
2165 {
2166         struct perf_counter *counter = container_of(entry,
2167                         struct perf_counter, pending);
2168
2169         if (counter->pending_disable) {
2170                 counter->pending_disable = 0;
2171                 perf_counter_disable(counter);
2172         }
2173
2174         if (counter->pending_wakeup) {
2175                 counter->pending_wakeup = 0;
2176                 perf_counter_wakeup(counter);
2177         }
2178 }
2179
2180 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2181
2182 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2183         PENDING_TAIL,
2184 };
2185
2186 static void perf_pending_queue(struct perf_pending_entry *entry,
2187                                void (*func)(struct perf_pending_entry *))
2188 {
2189         struct perf_pending_entry **head;
2190
2191         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2192                 return;
2193
2194         entry->func = func;
2195
2196         head = &get_cpu_var(perf_pending_head);
2197
2198         do {
2199                 entry->next = *head;
2200         } while (cmpxchg(head, entry->next, entry) != entry->next);
2201
2202         set_perf_counter_pending();
2203
2204         put_cpu_var(perf_pending_head);
2205 }
2206
2207 static int __perf_pending_run(void)
2208 {
2209         struct perf_pending_entry *list;
2210         int nr = 0;
2211
2212         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2213         while (list != PENDING_TAIL) {
2214                 void (*func)(struct perf_pending_entry *);
2215                 struct perf_pending_entry *entry = list;
2216
2217                 list = list->next;
2218
2219                 func = entry->func;
2220                 entry->next = NULL;
2221                 /*
2222                  * Ensure we observe the unqueue before we issue the wakeup,
2223                  * so that we won't be waiting forever.
2224                  * -- see perf_not_pending().
2225                  */
2226                 smp_wmb();
2227
2228                 func(entry);
2229                 nr++;
2230         }
2231
2232         return nr;
2233 }
2234
2235 static inline int perf_not_pending(struct perf_counter *counter)
2236 {
2237         /*
2238          * If we flush on whatever cpu we run, there is a chance we don't
2239          * need to wait.
2240          */
2241         get_cpu();
2242         __perf_pending_run();
2243         put_cpu();
2244
2245         /*
2246          * Ensure we see the proper queue state before going to sleep
2247          * so that we do not miss the wakeup. -- see perf_pending_handle()
2248          */
2249         smp_rmb();
2250         return counter->pending.next == NULL;
2251 }
2252
2253 static void perf_pending_sync(struct perf_counter *counter)
2254 {
2255         wait_event(counter->waitq, perf_not_pending(counter));
2256 }
2257
2258 void perf_counter_do_pending(void)
2259 {
2260         __perf_pending_run();
2261 }
2262
2263 /*
2264  * Callchain support -- arch specific
2265  */
2266
2267 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2268 {
2269         return NULL;
2270 }
2271
2272 /*
2273  * Output
2274  */
2275
2276 struct perf_output_handle {
2277         struct perf_counter     *counter;
2278         struct perf_mmap_data   *data;
2279         unsigned long           head;
2280         unsigned long           offset;
2281         int                     nmi;
2282         int                     sample;
2283         int                     locked;
2284         unsigned long           flags;
2285 };
2286
2287 static bool perf_output_space(struct perf_mmap_data *data,
2288                               unsigned int offset, unsigned int head)
2289 {
2290         unsigned long tail;
2291         unsigned long mask;
2292
2293         if (!data->writable)
2294                 return true;
2295
2296         mask = (data->nr_pages << PAGE_SHIFT) - 1;
2297         /*
2298          * Userspace could choose to issue a mb() before updating the tail
2299          * pointer. So that all reads will be completed before the write is
2300          * issued.
2301          */
2302         tail = ACCESS_ONCE(data->user_page->data_tail);
2303         smp_rmb();
2304
2305         offset = (offset - tail) & mask;
2306         head   = (head   - tail) & mask;
2307
2308         if ((int)(head - offset) < 0)
2309                 return false;
2310
2311         return true;
2312 }
2313
2314 static void perf_output_wakeup(struct perf_output_handle *handle)
2315 {
2316         atomic_set(&handle->data->poll, POLL_IN);
2317
2318         if (handle->nmi) {
2319                 handle->counter->pending_wakeup = 1;
2320                 perf_pending_queue(&handle->counter->pending,
2321                                    perf_pending_counter);
2322         } else
2323                 perf_counter_wakeup(handle->counter);
2324 }
2325
2326 /*
2327  * Curious locking construct.
2328  *
2329  * We need to ensure a later event doesn't publish a head when a former
2330  * event isn't done writing. However since we need to deal with NMIs we
2331  * cannot fully serialize things.
2332  *
2333  * What we do is serialize between CPUs so we only have to deal with NMI
2334  * nesting on a single CPU.
2335  *
2336  * We only publish the head (and generate a wakeup) when the outer-most
2337  * event completes.
2338  */
2339 static void perf_output_lock(struct perf_output_handle *handle)
2340 {
2341         struct perf_mmap_data *data = handle->data;
2342         int cpu;
2343
2344         handle->locked = 0;
2345
2346         local_irq_save(handle->flags);
2347         cpu = smp_processor_id();
2348
2349         if (in_nmi() && atomic_read(&data->lock) == cpu)
2350                 return;
2351
2352         while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2353                 cpu_relax();
2354
2355         handle->locked = 1;
2356 }
2357
2358 static void perf_output_unlock(struct perf_output_handle *handle)
2359 {
2360         struct perf_mmap_data *data = handle->data;
2361         unsigned long head;
2362         int cpu;
2363
2364         data->done_head = data->head;
2365
2366         if (!handle->locked)
2367                 goto out;
2368
2369 again:
2370         /*
2371          * The xchg implies a full barrier that ensures all writes are done
2372          * before we publish the new head, matched by a rmb() in userspace when
2373          * reading this position.
2374          */
2375         while ((head = atomic_long_xchg(&data->done_head, 0)))
2376                 data->user_page->data_head = head;
2377
2378         /*
2379          * NMI can happen here, which means we can miss a done_head update.
2380          */
2381
2382         cpu = atomic_xchg(&data->lock, -1);
2383         WARN_ON_ONCE(cpu != smp_processor_id());
2384
2385         /*
2386          * Therefore we have to validate we did not indeed do so.
2387          */
2388         if (unlikely(atomic_long_read(&data->done_head))) {
2389                 /*
2390                  * Since we had it locked, we can lock it again.
2391                  */
2392                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2393                         cpu_relax();
2394
2395                 goto again;
2396         }
2397
2398         if (atomic_xchg(&data->wakeup, 0))
2399                 perf_output_wakeup(handle);
2400 out:
2401         local_irq_restore(handle->flags);
2402 }
2403
2404 static void perf_output_copy(struct perf_output_handle *handle,
2405                              const void *buf, unsigned int len)
2406 {
2407         unsigned int pages_mask;
2408         unsigned int offset;
2409         unsigned int size;
2410         void **pages;
2411
2412         offset          = handle->offset;
2413         pages_mask      = handle->data->nr_pages - 1;
2414         pages           = handle->data->data_pages;
2415
2416         do {
2417                 unsigned int page_offset;
2418                 int nr;
2419
2420                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2421                 page_offset = offset & (PAGE_SIZE - 1);
2422                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2423
2424                 memcpy(pages[nr] + page_offset, buf, size);
2425
2426                 len         -= size;
2427                 buf         += size;
2428                 offset      += size;
2429         } while (len);
2430
2431         handle->offset = offset;
2432
2433         /*
2434          * Check we didn't copy past our reservation window, taking the
2435          * possible unsigned int wrap into account.
2436          */
2437         WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2438 }
2439
2440 #define perf_output_put(handle, x) \
2441         perf_output_copy((handle), &(x), sizeof(x))
2442
2443 static int perf_output_begin(struct perf_output_handle *handle,
2444                              struct perf_counter *counter, unsigned int size,
2445                              int nmi, int sample)
2446 {
2447         struct perf_mmap_data *data;
2448         unsigned int offset, head;
2449         int have_lost;
2450         struct {
2451                 struct perf_event_header header;
2452                 u64                      id;
2453                 u64                      lost;
2454         } lost_event;
2455
2456         /*
2457          * For inherited counters we send all the output towards the parent.
2458          */
2459         if (counter->parent)
2460                 counter = counter->parent;
2461
2462         rcu_read_lock();
2463         data = rcu_dereference(counter->data);
2464         if (!data)
2465                 goto out;
2466
2467         handle->data    = data;
2468         handle->counter = counter;
2469         handle->nmi     = nmi;
2470         handle->sample  = sample;
2471
2472         if (!data->nr_pages)
2473                 goto fail;
2474
2475         have_lost = atomic_read(&data->lost);
2476         if (have_lost)
2477                 size += sizeof(lost_event);
2478
2479         perf_output_lock(handle);
2480
2481         do {
2482                 offset = head = atomic_long_read(&data->head);
2483                 head += size;
2484                 if (unlikely(!perf_output_space(data, offset, head)))
2485                         goto fail;
2486         } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2487
2488         handle->offset  = offset;
2489         handle->head    = head;
2490
2491         if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2492                 atomic_set(&data->wakeup, 1);
2493
2494         if (have_lost) {
2495                 lost_event.header.type = PERF_EVENT_LOST;
2496                 lost_event.header.misc = 0;
2497                 lost_event.header.size = sizeof(lost_event);
2498                 lost_event.id          = counter->id;
2499                 lost_event.lost        = atomic_xchg(&data->lost, 0);
2500
2501                 perf_output_put(handle, lost_event);
2502         }
2503
2504         return 0;
2505
2506 fail:
2507         atomic_inc(&data->lost);
2508         perf_output_unlock(handle);
2509 out:
2510         rcu_read_unlock();
2511
2512         return -ENOSPC;
2513 }
2514
2515 static void perf_output_end(struct perf_output_handle *handle)
2516 {
2517         struct perf_counter *counter = handle->counter;
2518         struct perf_mmap_data *data = handle->data;
2519
2520         int wakeup_events = counter->attr.wakeup_events;
2521
2522         if (handle->sample && wakeup_events) {
2523                 int events = atomic_inc_return(&data->events);
2524                 if (events >= wakeup_events) {
2525                         atomic_sub(wakeup_events, &data->events);
2526                         atomic_set(&data->wakeup, 1);
2527                 }
2528         }
2529
2530         perf_output_unlock(handle);
2531         rcu_read_unlock();
2532 }
2533
2534 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2535 {
2536         /*
2537          * only top level counters have the pid namespace they were created in
2538          */
2539         if (counter->parent)
2540                 counter = counter->parent;
2541
2542         return task_tgid_nr_ns(p, counter->ns);
2543 }
2544
2545 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2546 {
2547         /*
2548          * only top level counters have the pid namespace they were created in
2549          */
2550         if (counter->parent)
2551                 counter = counter->parent;
2552
2553         return task_pid_nr_ns(p, counter->ns);
2554 }
2555
2556 static void perf_counter_output(struct perf_counter *counter, int nmi,
2557                                 struct perf_sample_data *data)
2558 {
2559         int ret;
2560         u64 sample_type = counter->attr.sample_type;
2561         struct perf_output_handle handle;
2562         struct perf_event_header header;
2563         u64 ip;
2564         struct {
2565                 u32 pid, tid;
2566         } tid_entry;
2567         struct {
2568                 u64 id;
2569                 u64 counter;
2570         } group_entry;
2571         struct perf_callchain_entry *callchain = NULL;
2572         int callchain_size = 0;
2573         u64 time;
2574         struct {
2575                 u32 cpu, reserved;
2576         } cpu_entry;
2577
2578         header.type = 0;
2579         header.size = sizeof(header);
2580
2581         header.misc = PERF_EVENT_MISC_OVERFLOW;
2582         header.misc |= perf_misc_flags(data->regs);
2583
2584         if (sample_type & PERF_SAMPLE_IP) {
2585                 ip = perf_instruction_pointer(data->regs);
2586                 header.type |= PERF_SAMPLE_IP;
2587                 header.size += sizeof(ip);
2588         }
2589
2590         if (sample_type & PERF_SAMPLE_TID) {
2591                 /* namespace issues */
2592                 tid_entry.pid = perf_counter_pid(counter, current);
2593                 tid_entry.tid = perf_counter_tid(counter, current);
2594
2595                 header.type |= PERF_SAMPLE_TID;
2596                 header.size += sizeof(tid_entry);
2597         }
2598
2599         if (sample_type & PERF_SAMPLE_TIME) {
2600                 /*
2601                  * Maybe do better on x86 and provide cpu_clock_nmi()
2602                  */
2603                 time = sched_clock();
2604
2605                 header.type |= PERF_SAMPLE_TIME;
2606                 header.size += sizeof(u64);
2607         }
2608
2609         if (sample_type & PERF_SAMPLE_ADDR) {
2610                 header.type |= PERF_SAMPLE_ADDR;
2611                 header.size += sizeof(u64);
2612         }
2613
2614         if (sample_type & PERF_SAMPLE_ID) {
2615                 header.type |= PERF_SAMPLE_ID;
2616                 header.size += sizeof(u64);
2617         }
2618
2619         if (sample_type & PERF_SAMPLE_CPU) {
2620                 header.type |= PERF_SAMPLE_CPU;
2621                 header.size += sizeof(cpu_entry);
2622
2623                 cpu_entry.cpu = raw_smp_processor_id();
2624         }
2625
2626         if (sample_type & PERF_SAMPLE_PERIOD) {
2627                 header.type |= PERF_SAMPLE_PERIOD;
2628                 header.size += sizeof(u64);
2629         }
2630
2631         if (sample_type & PERF_SAMPLE_GROUP) {
2632                 header.type |= PERF_SAMPLE_GROUP;
2633                 header.size += sizeof(u64) +
2634                         counter->nr_siblings * sizeof(group_entry);
2635         }
2636
2637         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2638                 callchain = perf_callchain(data->regs);
2639
2640                 if (callchain) {
2641                         callchain_size = (1 + callchain->nr) * sizeof(u64);
2642
2643                         header.type |= PERF_SAMPLE_CALLCHAIN;
2644                         header.size += callchain_size;
2645                 }
2646         }
2647
2648         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2649         if (ret)
2650                 return;
2651
2652         perf_output_put(&handle, header);
2653
2654         if (sample_type & PERF_SAMPLE_IP)
2655                 perf_output_put(&handle, ip);
2656
2657         if (sample_type & PERF_SAMPLE_TID)
2658                 perf_output_put(&handle, tid_entry);
2659
2660         if (sample_type & PERF_SAMPLE_TIME)
2661                 perf_output_put(&handle, time);
2662
2663         if (sample_type & PERF_SAMPLE_ADDR)
2664                 perf_output_put(&handle, data->addr);
2665
2666         if (sample_type & PERF_SAMPLE_ID)
2667                 perf_output_put(&handle, counter->id);
2668
2669         if (sample_type & PERF_SAMPLE_CPU)
2670                 perf_output_put(&handle, cpu_entry);
2671
2672         if (sample_type & PERF_SAMPLE_PERIOD)
2673                 perf_output_put(&handle, data->period);
2674
2675         /*
2676          * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2677          */
2678         if (sample_type & PERF_SAMPLE_GROUP) {
2679                 struct perf_counter *leader, *sub;
2680                 u64 nr = counter->nr_siblings;
2681
2682                 perf_output_put(&handle, nr);
2683
2684                 leader = counter->group_leader;
2685                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2686                         if (sub != counter)
2687                                 sub->pmu->read(sub);
2688
2689                         group_entry.id = sub->id;
2690                         group_entry.counter = atomic64_read(&sub->count);
2691
2692                         perf_output_put(&handle, group_entry);
2693                 }
2694         }
2695
2696         if (callchain)
2697                 perf_output_copy(&handle, callchain, callchain_size);
2698
2699         perf_output_end(&handle);
2700 }
2701
2702 /*
2703  * read event
2704  */
2705
2706 struct perf_read_event {
2707         struct perf_event_header        header;
2708
2709         u32                             pid;
2710         u32                             tid;
2711         u64                             value;
2712         u64                             format[3];
2713 };
2714
2715 static void
2716 perf_counter_read_event(struct perf_counter *counter,
2717                         struct task_struct *task)
2718 {
2719         struct perf_output_handle handle;
2720         struct perf_read_event event = {
2721                 .header = {
2722                         .type = PERF_EVENT_READ,
2723                         .misc = 0,
2724                         .size = sizeof(event) - sizeof(event.format),
2725                 },
2726                 .pid = perf_counter_pid(counter, task),
2727                 .tid = perf_counter_tid(counter, task),
2728                 .value = atomic64_read(&counter->count),
2729         };
2730         int ret, i = 0;
2731
2732         if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2733                 event.header.size += sizeof(u64);
2734                 event.format[i++] = counter->total_time_enabled;
2735         }
2736
2737         if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2738                 event.header.size += sizeof(u64);
2739                 event.format[i++] = counter->total_time_running;
2740         }
2741
2742         if (counter->attr.read_format & PERF_FORMAT_ID) {
2743                 u64 id;
2744
2745                 event.header.size += sizeof(u64);
2746                 if (counter->parent)
2747                         id = counter->parent->id;
2748                 else
2749                         id = counter->id;
2750
2751                 event.format[i++] = id;
2752         }
2753
2754         ret = perf_output_begin(&handle, counter, event.header.size, 0, 0);
2755         if (ret)
2756                 return;
2757
2758         perf_output_copy(&handle, &event, event.header.size);
2759         perf_output_end(&handle);
2760 }
2761
2762 /*
2763  * fork tracking
2764  */
2765
2766 struct perf_fork_event {
2767         struct task_struct      *task;
2768
2769         struct {
2770                 struct perf_event_header        header;
2771
2772                 u32                             pid;
2773                 u32                             ppid;
2774         } event;
2775 };
2776
2777 static void perf_counter_fork_output(struct perf_counter *counter,
2778                                      struct perf_fork_event *fork_event)
2779 {
2780         struct perf_output_handle handle;
2781         int size = fork_event->event.header.size;
2782         struct task_struct *task = fork_event->task;
2783         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2784
2785         if (ret)
2786                 return;
2787
2788         fork_event->event.pid = perf_counter_pid(counter, task);
2789         fork_event->event.ppid = perf_counter_pid(counter, task->real_parent);
2790
2791         perf_output_put(&handle, fork_event->event);
2792         perf_output_end(&handle);
2793 }
2794
2795 static int perf_counter_fork_match(struct perf_counter *counter)
2796 {
2797         if (counter->attr.comm || counter->attr.mmap)
2798                 return 1;
2799
2800         return 0;
2801 }
2802
2803 static void perf_counter_fork_ctx(struct perf_counter_context *ctx,
2804                                   struct perf_fork_event *fork_event)
2805 {
2806         struct perf_counter *counter;
2807
2808         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2809                 return;
2810
2811         rcu_read_lock();
2812         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2813                 if (perf_counter_fork_match(counter))
2814                         perf_counter_fork_output(counter, fork_event);
2815         }
2816         rcu_read_unlock();
2817 }
2818
2819 static void perf_counter_fork_event(struct perf_fork_event *fork_event)
2820 {
2821         struct perf_cpu_context *cpuctx;
2822         struct perf_counter_context *ctx;
2823
2824         cpuctx = &get_cpu_var(perf_cpu_context);
2825         perf_counter_fork_ctx(&cpuctx->ctx, fork_event);
2826         put_cpu_var(perf_cpu_context);
2827
2828         rcu_read_lock();
2829         /*
2830          * doesn't really matter which of the child contexts the
2831          * events ends up in.
2832          */
2833         ctx = rcu_dereference(current->perf_counter_ctxp);
2834         if (ctx)
2835                 perf_counter_fork_ctx(ctx, fork_event);
2836         rcu_read_unlock();
2837 }
2838
2839 void perf_counter_fork(struct task_struct *task)
2840 {
2841         struct perf_fork_event fork_event;
2842
2843         if (!atomic_read(&nr_comm_counters) &&
2844             !atomic_read(&nr_mmap_counters))
2845                 return;
2846
2847         fork_event = (struct perf_fork_event){
2848                 .task   = task,
2849                 .event  = {
2850                         .header = {
2851                                 .type = PERF_EVENT_FORK,
2852                                 .size = sizeof(fork_event.event),
2853                         },
2854                 },
2855         };
2856
2857         perf_counter_fork_event(&fork_event);
2858 }
2859
2860 /*
2861  * comm tracking
2862  */
2863
2864 struct perf_comm_event {
2865         struct task_struct      *task;
2866         char                    *comm;
2867         int                     comm_size;
2868
2869         struct {
2870                 struct perf_event_header        header;
2871
2872                 u32                             pid;
2873                 u32                             tid;
2874         } event;
2875 };
2876
2877 static void perf_counter_comm_output(struct perf_counter *counter,
2878                                      struct perf_comm_event *comm_event)
2879 {
2880         struct perf_output_handle handle;
2881         int size = comm_event->event.header.size;
2882         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2883
2884         if (ret)
2885                 return;
2886
2887         comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
2888         comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
2889
2890         perf_output_put(&handle, comm_event->event);
2891         perf_output_copy(&handle, comm_event->comm,
2892                                    comm_event->comm_size);
2893         perf_output_end(&handle);
2894 }
2895
2896 static int perf_counter_comm_match(struct perf_counter *counter)
2897 {
2898         if (counter->attr.comm)
2899                 return 1;
2900
2901         return 0;
2902 }
2903
2904 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2905                                   struct perf_comm_event *comm_event)
2906 {
2907         struct perf_counter *counter;
2908
2909         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2910                 return;
2911
2912         rcu_read_lock();
2913         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2914                 if (perf_counter_comm_match(counter))
2915                         perf_counter_comm_output(counter, comm_event);
2916         }
2917         rcu_read_unlock();
2918 }
2919
2920 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2921 {
2922         struct perf_cpu_context *cpuctx;
2923         struct perf_counter_context *ctx;
2924         unsigned int size;
2925         char *comm = comm_event->task->comm;
2926
2927         size = ALIGN(strlen(comm)+1, sizeof(u64));
2928
2929         comm_event->comm = comm;
2930         comm_event->comm_size = size;
2931
2932         comm_event->event.header.size = sizeof(comm_event->event) + size;
2933
2934         cpuctx = &get_cpu_var(perf_cpu_context);
2935         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2936         put_cpu_var(perf_cpu_context);
2937
2938         rcu_read_lock();
2939         /*
2940          * doesn't really matter which of the child contexts the
2941          * events ends up in.
2942          */
2943         ctx = rcu_dereference(current->perf_counter_ctxp);
2944         if (ctx)
2945                 perf_counter_comm_ctx(ctx, comm_event);
2946         rcu_read_unlock();
2947 }
2948
2949 void perf_counter_comm(struct task_struct *task)
2950 {
2951         struct perf_comm_event comm_event;
2952
2953         if (!atomic_read(&nr_comm_counters))
2954                 return;
2955
2956         comm_event = (struct perf_comm_event){
2957                 .task   = task,
2958                 .event  = {
2959                         .header = { .type = PERF_EVENT_COMM, },
2960                 },
2961         };
2962
2963         perf_counter_comm_event(&comm_event);
2964 }
2965
2966 /*
2967  * mmap tracking
2968  */
2969
2970 struct perf_mmap_event {
2971         struct vm_area_struct   *vma;
2972
2973         const char              *file_name;
2974         int                     file_size;
2975
2976         struct {
2977                 struct perf_event_header        header;
2978
2979                 u32                             pid;
2980                 u32                             tid;
2981                 u64                             start;
2982                 u64                             len;
2983                 u64                             pgoff;
2984         } event;
2985 };
2986
2987 static void perf_counter_mmap_output(struct perf_counter *counter,
2988                                      struct perf_mmap_event *mmap_event)
2989 {
2990         struct perf_output_handle handle;
2991         int size = mmap_event->event.header.size;
2992         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2993
2994         if (ret)
2995                 return;
2996
2997         mmap_event->event.pid = perf_counter_pid(counter, current);
2998         mmap_event->event.tid = perf_counter_tid(counter, current);
2999
3000         perf_output_put(&handle, mmap_event->event);
3001         perf_output_copy(&handle, mmap_event->file_name,
3002                                    mmap_event->file_size);
3003         perf_output_end(&handle);
3004 }
3005
3006 static int perf_counter_mmap_match(struct perf_counter *counter,
3007                                    struct perf_mmap_event *mmap_event)
3008 {
3009         if (counter->attr.mmap)
3010                 return 1;
3011
3012         return 0;
3013 }
3014
3015 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
3016                                   struct perf_mmap_event *mmap_event)
3017 {
3018         struct perf_counter *counter;
3019
3020         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3021                 return;
3022
3023         rcu_read_lock();
3024         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3025                 if (perf_counter_mmap_match(counter, mmap_event))
3026                         perf_counter_mmap_output(counter, mmap_event);
3027         }
3028         rcu_read_unlock();
3029 }
3030
3031 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
3032 {
3033         struct perf_cpu_context *cpuctx;
3034         struct perf_counter_context *ctx;
3035         struct vm_area_struct *vma = mmap_event->vma;
3036         struct file *file = vma->vm_file;
3037         unsigned int size;
3038         char tmp[16];
3039         char *buf = NULL;
3040         const char *name;
3041
3042         if (file) {
3043                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
3044                 if (!buf) {
3045                         name = strncpy(tmp, "//enomem", sizeof(tmp));
3046                         goto got_name;
3047                 }
3048                 name = d_path(&file->f_path, buf, PATH_MAX);
3049                 if (IS_ERR(name)) {
3050                         name = strncpy(tmp, "//toolong", sizeof(tmp));
3051                         goto got_name;
3052                 }
3053         } else {
3054                 name = arch_vma_name(mmap_event->vma);
3055                 if (name)
3056                         goto got_name;
3057
3058                 if (!vma->vm_mm) {
3059                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
3060                         goto got_name;
3061                 }
3062
3063                 name = strncpy(tmp, "//anon", sizeof(tmp));
3064                 goto got_name;
3065         }
3066
3067 got_name:
3068         size = ALIGN(strlen(name)+1, sizeof(u64));
3069
3070         mmap_event->file_name = name;
3071         mmap_event->file_size = size;
3072
3073         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
3074
3075         cpuctx = &get_cpu_var(perf_cpu_context);
3076         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
3077         put_cpu_var(perf_cpu_context);
3078
3079         rcu_read_lock();
3080         /*
3081          * doesn't really matter which of the child contexts the
3082          * events ends up in.
3083          */
3084         ctx = rcu_dereference(current->perf_counter_ctxp);
3085         if (ctx)
3086                 perf_counter_mmap_ctx(ctx, mmap_event);
3087         rcu_read_unlock();
3088
3089         kfree(buf);
3090 }
3091
3092 void __perf_counter_mmap(struct vm_area_struct *vma)
3093 {
3094         struct perf_mmap_event mmap_event;
3095
3096         if (!atomic_read(&nr_mmap_counters))
3097                 return;
3098
3099         mmap_event = (struct perf_mmap_event){
3100                 .vma    = vma,
3101                 .event  = {
3102                         .header = { .type = PERF_EVENT_MMAP, },
3103                         .start  = vma->vm_start,
3104                         .len    = vma->vm_end - vma->vm_start,
3105                         .pgoff  = vma->vm_pgoff,
3106                 },
3107         };
3108
3109         perf_counter_mmap_event(&mmap_event);
3110 }
3111
3112 /*
3113  * Log sample_period changes so that analyzing tools can re-normalize the
3114  * event flow.
3115  */
3116
3117 struct freq_event {
3118         struct perf_event_header        header;
3119         u64                             time;
3120         u64                             id;
3121         u64                             period;
3122 };
3123
3124 static void perf_log_period(struct perf_counter *counter, u64 period)
3125 {
3126         struct perf_output_handle handle;
3127         struct freq_event event;
3128         int ret;
3129
3130         if (counter->hw.sample_period == period)
3131                 return;
3132
3133         if (counter->attr.sample_type & PERF_SAMPLE_PERIOD)
3134                 return;
3135
3136         event = (struct freq_event) {
3137                 .header = {
3138                         .type = PERF_EVENT_PERIOD,
3139                         .misc = 0,
3140                         .size = sizeof(event),
3141                 },
3142                 .time = sched_clock(),
3143                 .id = counter->id,
3144                 .period = period,
3145         };
3146
3147         ret = perf_output_begin(&handle, counter, sizeof(event), 1, 0);
3148         if (ret)
3149                 return;
3150
3151         perf_output_put(&handle, event);
3152         perf_output_end(&handle);
3153 }
3154
3155 /*
3156  * IRQ throttle logging
3157  */
3158
3159 static void perf_log_throttle(struct perf_counter *counter, int enable)
3160 {
3161         struct perf_output_handle handle;
3162         int ret;
3163
3164         struct {
3165                 struct perf_event_header        header;
3166                 u64                             time;
3167                 u64                             id;
3168         } throttle_event = {
3169                 .header = {
3170                         .type = PERF_EVENT_THROTTLE + 1,
3171                         .misc = 0,
3172                         .size = sizeof(throttle_event),
3173                 },
3174                 .time   = sched_clock(),
3175                 .id     = counter->id,
3176         };
3177
3178         ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
3179         if (ret)
3180                 return;
3181
3182         perf_output_put(&handle, throttle_event);
3183         perf_output_end(&handle);
3184 }
3185
3186 /*
3187  * Generic counter overflow handling, sampling.
3188  */
3189
3190 int perf_counter_overflow(struct perf_counter *counter, int nmi,
3191                           struct perf_sample_data *data)
3192 {
3193         int events = atomic_read(&counter->event_limit);
3194         int throttle = counter->pmu->unthrottle != NULL;
3195         struct hw_perf_counter *hwc = &counter->hw;
3196         int ret = 0;
3197
3198         if (!throttle) {
3199                 hwc->interrupts++;
3200         } else {
3201                 if (hwc->interrupts != MAX_INTERRUPTS) {
3202                         hwc->interrupts++;
3203                         if (HZ * hwc->interrupts >
3204                                         (u64)sysctl_perf_counter_sample_rate) {
3205                                 hwc->interrupts = MAX_INTERRUPTS;
3206                                 perf_log_throttle(counter, 0);
3207                                 ret = 1;
3208                         }
3209                 } else {
3210                         /*
3211                          * Keep re-disabling counters even though on the previous
3212                          * pass we disabled it - just in case we raced with a
3213                          * sched-in and the counter got enabled again:
3214                          */
3215                         ret = 1;
3216                 }
3217         }
3218
3219         if (counter->attr.freq) {
3220                 u64 now = sched_clock();
3221                 s64 delta = now - hwc->freq_stamp;
3222
3223                 hwc->freq_stamp = now;
3224
3225                 if (delta > 0 && delta < TICK_NSEC)
3226                         perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
3227         }
3228
3229         /*
3230          * XXX event_limit might not quite work as expected on inherited
3231          * counters
3232          */
3233
3234         counter->pending_kill = POLL_IN;
3235         if (events && atomic_dec_and_test(&counter->event_limit)) {
3236                 ret = 1;
3237                 counter->pending_kill = POLL_HUP;
3238                 if (nmi) {
3239                         counter->pending_disable = 1;
3240                         perf_pending_queue(&counter->pending,
3241                                            perf_pending_counter);
3242                 } else
3243                         perf_counter_disable(counter);
3244         }
3245
3246         perf_counter_output(counter, nmi, data);
3247         return ret;
3248 }
3249
3250 /*
3251  * Generic software counter infrastructure
3252  */
3253
3254 static void perf_swcounter_update(struct perf_counter *counter)
3255 {
3256         struct hw_perf_counter *hwc = &counter->hw;
3257         u64 prev, now;
3258         s64 delta;
3259
3260 again:
3261         prev = atomic64_read(&hwc->prev_count);
3262         now = atomic64_read(&hwc->count);
3263         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
3264                 goto again;
3265
3266         delta = now - prev;
3267
3268         atomic64_add(delta, &counter->count);
3269         atomic64_sub(delta, &hwc->period_left);
3270 }
3271
3272 static void perf_swcounter_set_period(struct perf_counter *counter)
3273 {
3274         struct hw_perf_counter *hwc = &counter->hw;
3275         s64 left = atomic64_read(&hwc->period_left);
3276         s64 period = hwc->sample_period;
3277
3278         if (unlikely(left <= -period)) {
3279                 left = period;
3280                 atomic64_set(&hwc->period_left, left);
3281                 hwc->last_period = period;
3282         }
3283
3284         if (unlikely(left <= 0)) {
3285                 left += period;
3286                 atomic64_add(period, &hwc->period_left);
3287                 hwc->last_period = period;
3288         }
3289
3290         atomic64_set(&hwc->prev_count, -left);
3291         atomic64_set(&hwc->count, -left);
3292 }
3293
3294 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
3295 {
3296         enum hrtimer_restart ret = HRTIMER_RESTART;
3297         struct perf_sample_data data;
3298         struct perf_counter *counter;
3299         u64 period;
3300
3301         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
3302         counter->pmu->read(counter);
3303
3304         data.addr = 0;
3305         data.regs = get_irq_regs();
3306         /*
3307          * In case we exclude kernel IPs or are somehow not in interrupt
3308          * context, provide the next best thing, the user IP.
3309          */
3310         if ((counter->attr.exclude_kernel || !data.regs) &&
3311                         !counter->attr.exclude_user)
3312                 data.regs = task_pt_regs(current);
3313
3314         if (data.regs) {
3315                 if (perf_counter_overflow(counter, 0, &data))
3316                         ret = HRTIMER_NORESTART;
3317         }
3318
3319         period = max_t(u64, 10000, counter->hw.sample_period);
3320         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3321
3322         return ret;
3323 }
3324
3325 static void perf_swcounter_overflow(struct perf_counter *counter,
3326                                     int nmi, struct perf_sample_data *data)
3327 {
3328         data->period = counter->hw.last_period;
3329
3330         perf_swcounter_update(counter);
3331         perf_swcounter_set_period(counter);
3332         if (perf_counter_overflow(counter, nmi, data))
3333                 /* soft-disable the counter */
3334                 ;
3335 }
3336
3337 static int perf_swcounter_is_counting(struct perf_counter *counter)
3338 {
3339         struct perf_counter_context *ctx;
3340         unsigned long flags;
3341         int count;
3342
3343         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
3344                 return 1;
3345
3346         if (counter->state != PERF_COUNTER_STATE_INACTIVE)
3347                 return 0;
3348
3349         /*
3350          * If the counter is inactive, it could be just because
3351          * its task is scheduled out, or because it's in a group
3352          * which could not go on the PMU.  We want to count in
3353          * the first case but not the second.  If the context is
3354          * currently active then an inactive software counter must
3355          * be the second case.  If it's not currently active then
3356          * we need to know whether the counter was active when the
3357          * context was last active, which we can determine by
3358          * comparing counter->tstamp_stopped with ctx->time.
3359          *
3360          * We are within an RCU read-side critical section,
3361          * which protects the existence of *ctx.
3362          */
3363         ctx = counter->ctx;
3364         spin_lock_irqsave(&ctx->lock, flags);
3365         count = 1;
3366         /* Re-check state now we have the lock */
3367         if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
3368             counter->ctx->is_active ||
3369             counter->tstamp_stopped < ctx->time)
3370                 count = 0;
3371         spin_unlock_irqrestore(&ctx->lock, flags);
3372         return count;
3373 }
3374
3375 static int perf_swcounter_match(struct perf_counter *counter,
3376                                 enum perf_type_id type,
3377                                 u32 event, struct pt_regs *regs)
3378 {
3379         if (!perf_swcounter_is_counting(counter))
3380                 return 0;
3381
3382         if (counter->attr.type != type)
3383                 return 0;
3384         if (counter->attr.config != event)
3385                 return 0;
3386
3387         if (regs) {
3388                 if (counter->attr.exclude_user && user_mode(regs))
3389                         return 0;
3390
3391                 if (counter->attr.exclude_kernel && !user_mode(regs))
3392                         return 0;
3393         }
3394
3395         return 1;
3396 }
3397
3398 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3399                                int nmi, struct perf_sample_data *data)
3400 {
3401         int neg = atomic64_add_negative(nr, &counter->hw.count);
3402
3403         if (counter->hw.sample_period && !neg && data->regs)
3404                 perf_swcounter_overflow(counter, nmi, data);
3405 }
3406
3407 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3408                                      enum perf_type_id type,
3409                                      u32 event, u64 nr, int nmi,
3410                                      struct perf_sample_data *data)
3411 {
3412         struct perf_counter *counter;
3413
3414         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3415                 return;
3416
3417         rcu_read_lock();
3418         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3419                 if (perf_swcounter_match(counter, type, event, data->regs))
3420                         perf_swcounter_add(counter, nr, nmi, data);
3421         }
3422         rcu_read_unlock();
3423 }
3424
3425 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
3426 {
3427         if (in_nmi())
3428                 return &cpuctx->recursion[3];
3429
3430         if (in_irq())
3431                 return &cpuctx->recursion[2];
3432
3433         if (in_softirq())
3434                 return &cpuctx->recursion[1];
3435
3436         return &cpuctx->recursion[0];
3437 }
3438
3439 static void do_perf_swcounter_event(enum perf_type_id type, u32 event,
3440                                     u64 nr, int nmi,
3441                                     struct perf_sample_data *data)
3442 {
3443         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3444         int *recursion = perf_swcounter_recursion_context(cpuctx);
3445         struct perf_counter_context *ctx;
3446
3447         if (*recursion)
3448                 goto out;
3449
3450         (*recursion)++;
3451         barrier();
3452
3453         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3454                                  nr, nmi, data);
3455         rcu_read_lock();
3456         /*
3457          * doesn't really matter which of the child contexts the
3458          * events ends up in.
3459          */
3460         ctx = rcu_dereference(current->perf_counter_ctxp);
3461         if (ctx)
3462                 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data);
3463         rcu_read_unlock();
3464
3465         barrier();
3466         (*recursion)--;
3467
3468 out:
3469         put_cpu_var(perf_cpu_context);
3470 }
3471
3472 void __perf_swcounter_event(u32 event, u64 nr, int nmi,
3473                             struct pt_regs *regs, u64 addr)
3474 {
3475         struct perf_sample_data data = {
3476                 .regs = regs,
3477                 .addr = addr,
3478         };
3479
3480         do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data);
3481 }
3482
3483 static void perf_swcounter_read(struct perf_counter *counter)
3484 {
3485         perf_swcounter_update(counter);
3486 }
3487
3488 static int perf_swcounter_enable(struct perf_counter *counter)
3489 {
3490         perf_swcounter_set_period(counter);
3491         return 0;
3492 }
3493
3494 static void perf_swcounter_disable(struct perf_counter *counter)
3495 {
3496         perf_swcounter_update(counter);
3497 }
3498
3499 static const struct pmu perf_ops_generic = {
3500         .enable         = perf_swcounter_enable,
3501         .disable        = perf_swcounter_disable,
3502         .read           = perf_swcounter_read,
3503 };
3504
3505 /*
3506  * Software counter: cpu wall time clock
3507  */
3508
3509 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3510 {
3511         int cpu = raw_smp_processor_id();
3512         s64 prev;
3513         u64 now;
3514
3515         now = cpu_clock(cpu);
3516         prev = atomic64_read(&counter->hw.prev_count);
3517         atomic64_set(&counter->hw.prev_count, now);
3518         atomic64_add(now - prev, &counter->count);
3519 }
3520
3521 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3522 {
3523         struct hw_perf_counter *hwc = &counter->hw;
3524         int cpu = raw_smp_processor_id();
3525
3526         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3527         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3528         hwc->hrtimer.function = perf_swcounter_hrtimer;
3529         if (hwc->sample_period) {
3530                 u64 period = max_t(u64, 10000, hwc->sample_period);
3531                 __hrtimer_start_range_ns(&hwc->hrtimer,
3532                                 ns_to_ktime(period), 0,
3533                                 HRTIMER_MODE_REL, 0);
3534         }
3535
3536         return 0;
3537 }
3538
3539 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3540 {
3541         if (counter->hw.sample_period)
3542                 hrtimer_cancel(&counter->hw.hrtimer);
3543         cpu_clock_perf_counter_update(counter);
3544 }
3545
3546 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3547 {
3548         cpu_clock_perf_counter_update(counter);
3549 }
3550
3551 static const struct pmu perf_ops_cpu_clock = {
3552         .enable         = cpu_clock_perf_counter_enable,
3553         .disable        = cpu_clock_perf_counter_disable,
3554         .read           = cpu_clock_perf_counter_read,
3555 };
3556
3557 /*
3558  * Software counter: task time clock
3559  */
3560
3561 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3562 {
3563         u64 prev;
3564         s64 delta;
3565
3566         prev = atomic64_xchg(&counter->hw.prev_count, now);
3567         delta = now - prev;
3568         atomic64_add(delta, &counter->count);
3569 }
3570
3571 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3572 {
3573         struct hw_perf_counter *hwc = &counter->hw;
3574         u64 now;
3575
3576         now = counter->ctx->time;
3577
3578         atomic64_set(&hwc->prev_count, now);
3579         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3580         hwc->hrtimer.function = perf_swcounter_hrtimer;
3581         if (hwc->sample_period) {
3582                 u64 period = max_t(u64, 10000, hwc->sample_period);
3583                 __hrtimer_start_range_ns(&hwc->hrtimer,
3584                                 ns_to_ktime(period), 0,
3585                                 HRTIMER_MODE_REL, 0);
3586         }
3587
3588         return 0;
3589 }
3590
3591 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3592 {
3593         if (counter->hw.sample_period)
3594                 hrtimer_cancel(&counter->hw.hrtimer);
3595         task_clock_perf_counter_update(counter, counter->ctx->time);
3596
3597 }
3598
3599 static void task_clock_perf_counter_read(struct perf_counter *counter)
3600 {
3601         u64 time;
3602
3603         if (!in_nmi()) {
3604                 update_context_time(counter->ctx);
3605                 time = counter->ctx->time;
3606         } else {
3607                 u64 now = perf_clock();
3608                 u64 delta = now - counter->ctx->timestamp;
3609                 time = counter->ctx->time + delta;
3610         }
3611
3612         task_clock_perf_counter_update(counter, time);
3613 }
3614
3615 static const struct pmu perf_ops_task_clock = {
3616         .enable         = task_clock_perf_counter_enable,
3617         .disable        = task_clock_perf_counter_disable,
3618         .read           = task_clock_perf_counter_read,
3619 };
3620
3621 #ifdef CONFIG_EVENT_PROFILE
3622 void perf_tpcounter_event(int event_id)
3623 {
3624         struct perf_sample_data data = {
3625                 .regs = get_irq_regs();
3626                 .addr = 0,
3627         };
3628
3629         if (!data.regs)
3630                 data.regs = task_pt_regs(current);
3631
3632         do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, &data);
3633 }
3634 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3635
3636 extern int ftrace_profile_enable(int);
3637 extern void ftrace_profile_disable(int);
3638
3639 static void tp_perf_counter_destroy(struct perf_counter *counter)
3640 {
3641         ftrace_profile_disable(perf_event_id(&counter->attr));
3642 }
3643
3644 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3645 {
3646         int event_id = perf_event_id(&counter->attr);
3647         int ret;
3648
3649         ret = ftrace_profile_enable(event_id);
3650         if (ret)
3651                 return NULL;
3652
3653         counter->destroy = tp_perf_counter_destroy;
3654
3655         return &perf_ops_generic;
3656 }
3657 #else
3658 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3659 {
3660         return NULL;
3661 }
3662 #endif
3663
3664 atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX];
3665
3666 static void sw_perf_counter_destroy(struct perf_counter *counter)
3667 {
3668         u64 event = counter->attr.config;
3669
3670         WARN_ON(counter->parent);
3671
3672         atomic_dec(&perf_swcounter_enabled[event]);
3673 }
3674
3675 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3676 {
3677         const struct pmu *pmu = NULL;
3678         u64 event = counter->attr.config;
3679
3680         /*
3681          * Software counters (currently) can't in general distinguish
3682          * between user, kernel and hypervisor events.
3683          * However, context switches and cpu migrations are considered
3684          * to be kernel events, and page faults are never hypervisor
3685          * events.
3686          */
3687         switch (event) {
3688         case PERF_COUNT_SW_CPU_CLOCK:
3689                 pmu = &perf_ops_cpu_clock;
3690
3691                 break;
3692         case PERF_COUNT_SW_TASK_CLOCK:
3693                 /*
3694                  * If the user instantiates this as a per-cpu counter,
3695                  * use the cpu_clock counter instead.
3696                  */
3697                 if (counter->ctx->task)
3698                         pmu = &perf_ops_task_clock;
3699                 else
3700                         pmu = &perf_ops_cpu_clock;
3701
3702                 break;
3703         case PERF_COUNT_SW_PAGE_FAULTS:
3704         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
3705         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
3706         case PERF_COUNT_SW_CONTEXT_SWITCHES:
3707         case PERF_COUNT_SW_CPU_MIGRATIONS:
3708                 if (!counter->parent) {
3709                         atomic_inc(&perf_swcounter_enabled[event]);
3710                         counter->destroy = sw_perf_counter_destroy;
3711                 }
3712                 pmu = &perf_ops_generic;
3713                 break;
3714         }
3715
3716         return pmu;
3717 }
3718
3719 /*
3720  * Allocate and initialize a counter structure
3721  */
3722 static struct perf_counter *
3723 perf_counter_alloc(struct perf_counter_attr *attr,
3724                    int cpu,
3725                    struct perf_counter_context *ctx,
3726                    struct perf_counter *group_leader,
3727                    struct perf_counter *parent_counter,
3728                    gfp_t gfpflags)
3729 {
3730         const struct pmu *pmu;
3731         struct perf_counter *counter;
3732         struct hw_perf_counter *hwc;
3733         long err;
3734
3735         counter = kzalloc(sizeof(*counter), gfpflags);
3736         if (!counter)
3737                 return ERR_PTR(-ENOMEM);
3738
3739         /*
3740          * Single counters are their own group leaders, with an
3741          * empty sibling list:
3742          */
3743         if (!group_leader)
3744                 group_leader = counter;
3745
3746         mutex_init(&counter->child_mutex);
3747         INIT_LIST_HEAD(&counter->child_list);
3748
3749         INIT_LIST_HEAD(&counter->list_entry);
3750         INIT_LIST_HEAD(&counter->event_entry);
3751         INIT_LIST_HEAD(&counter->sibling_list);
3752         init_waitqueue_head(&counter->waitq);
3753
3754         mutex_init(&counter->mmap_mutex);
3755
3756         counter->cpu            = cpu;
3757         counter->attr           = *attr;
3758         counter->group_leader   = group_leader;
3759         counter->pmu            = NULL;
3760         counter->ctx            = ctx;
3761         counter->oncpu          = -1;
3762
3763         counter->parent         = parent_counter;
3764
3765         counter->ns             = get_pid_ns(current->nsproxy->pid_ns);
3766         counter->id             = atomic64_inc_return(&perf_counter_id);
3767
3768         counter->state          = PERF_COUNTER_STATE_INACTIVE;
3769
3770         if (attr->disabled)
3771                 counter->state = PERF_COUNTER_STATE_OFF;
3772
3773         pmu = NULL;
3774
3775         hwc = &counter->hw;
3776         hwc->sample_period = attr->sample_period;
3777         if (attr->freq && attr->sample_freq)
3778                 hwc->sample_period = 1;
3779
3780         atomic64_set(&hwc->period_left, hwc->sample_period);
3781
3782         /*
3783          * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3784          */
3785         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP))
3786                 goto done;
3787
3788         switch (attr->type) {
3789         case PERF_TYPE_RAW:
3790         case PERF_TYPE_HARDWARE:
3791         case PERF_TYPE_HW_CACHE:
3792                 pmu = hw_perf_counter_init(counter);
3793                 break;
3794
3795         case PERF_TYPE_SOFTWARE:
3796                 pmu = sw_perf_counter_init(counter);
3797                 break;
3798
3799         case PERF_TYPE_TRACEPOINT:
3800                 pmu = tp_perf_counter_init(counter);
3801                 break;
3802
3803         default:
3804                 break;
3805         }
3806 done:
3807         err = 0;
3808         if (!pmu)
3809                 err = -EINVAL;
3810         else if (IS_ERR(pmu))
3811                 err = PTR_ERR(pmu);
3812
3813         if (err) {
3814                 if (counter->ns)
3815                         put_pid_ns(counter->ns);
3816                 kfree(counter);
3817                 return ERR_PTR(err);
3818         }
3819
3820         counter->pmu = pmu;
3821
3822         if (!counter->parent) {
3823                 atomic_inc(&nr_counters);
3824                 if (counter->attr.mmap)
3825                         atomic_inc(&nr_mmap_counters);
3826                 if (counter->attr.comm)
3827                         atomic_inc(&nr_comm_counters);
3828         }
3829
3830         return counter;
3831 }
3832
3833 static int perf_copy_attr(struct perf_counter_attr __user *uattr,
3834                           struct perf_counter_attr *attr)
3835 {
3836         int ret;
3837         u32 size;
3838
3839         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
3840                 return -EFAULT;
3841
3842         /*
3843          * zero the full structure, so that a short copy will be nice.
3844          */
3845         memset(attr, 0, sizeof(*attr));
3846
3847         ret = get_user(size, &uattr->size);
3848         if (ret)
3849                 return ret;
3850
3851         if (size > PAGE_SIZE)   /* silly large */
3852                 goto err_size;
3853
3854         if (!size)              /* abi compat */
3855                 size = PERF_ATTR_SIZE_VER0;
3856
3857         if (size < PERF_ATTR_SIZE_VER0)
3858                 goto err_size;
3859
3860         /*
3861          * If we're handed a bigger struct than we know of,
3862          * ensure all the unknown bits are 0.
3863          */
3864         if (size > sizeof(*attr)) {
3865                 unsigned long val;
3866                 unsigned long __user *addr;
3867                 unsigned long __user *end;
3868
3869                 addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
3870                                 sizeof(unsigned long));
3871                 end  = PTR_ALIGN((void __user *)uattr + size,
3872                                 sizeof(unsigned long));
3873
3874                 for (; addr < end; addr += sizeof(unsigned long)) {
3875                         ret = get_user(val, addr);
3876                         if (ret)
3877                                 return ret;
3878                         if (val)
3879                                 goto err_size;
3880                 }
3881         }
3882
3883         ret = copy_from_user(attr, uattr, size);
3884         if (ret)
3885                 return -EFAULT;
3886
3887         /*
3888          * If the type exists, the corresponding creation will verify
3889          * the attr->config.
3890          */
3891         if (attr->type >= PERF_TYPE_MAX)
3892                 return -EINVAL;
3893
3894         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
3895                 return -EINVAL;
3896
3897         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
3898                 return -EINVAL;
3899
3900         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
3901                 return -EINVAL;
3902
3903 out:
3904         return ret;
3905
3906 err_size:
3907         put_user(sizeof(*attr), &uattr->size);
3908         ret = -E2BIG;
3909         goto out;
3910 }
3911
3912 /**
3913  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3914  *
3915  * @attr_uptr:  event type attributes for monitoring/sampling
3916  * @pid:                target pid
3917  * @cpu:                target cpu
3918  * @group_fd:           group leader counter fd
3919  */
3920 SYSCALL_DEFINE5(perf_counter_open,
3921                 struct perf_counter_attr __user *, attr_uptr,
3922                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3923 {
3924         struct perf_counter *counter, *group_leader;
3925         struct perf_counter_attr attr;
3926         struct perf_counter_context *ctx;
3927         struct file *counter_file = NULL;
3928         struct file *group_file = NULL;
3929         int fput_needed = 0;
3930         int fput_needed2 = 0;
3931         int ret;
3932
3933         /* for future expandability... */
3934         if (flags)
3935                 return -EINVAL;
3936
3937         ret = perf_copy_attr(attr_uptr, &attr);
3938         if (ret)
3939                 return ret;
3940
3941         if (!attr.exclude_kernel) {
3942                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
3943                         return -EACCES;
3944         }
3945
3946         if (attr.freq) {
3947                 if (attr.sample_freq > sysctl_perf_counter_sample_rate)
3948                         return -EINVAL;
3949         }
3950
3951         /*
3952          * Get the target context (task or percpu):
3953          */
3954         ctx = find_get_context(pid, cpu);
3955         if (IS_ERR(ctx))
3956                 return PTR_ERR(ctx);
3957
3958         /*
3959          * Look up the group leader (we will attach this counter to it):
3960          */
3961         group_leader = NULL;
3962         if (group_fd != -1) {
3963                 ret = -EINVAL;
3964                 group_file = fget_light(group_fd, &fput_needed);
3965                 if (!group_file)
3966                         goto err_put_context;
3967                 if (group_file->f_op != &perf_fops)
3968                         goto err_put_context;
3969
3970                 group_leader = group_file->private_data;
3971                 /*
3972                  * Do not allow a recursive hierarchy (this new sibling
3973                  * becoming part of another group-sibling):
3974                  */
3975                 if (group_leader->group_leader != group_leader)
3976                         goto err_put_context;
3977                 /*
3978                  * Do not allow to attach to a group in a different
3979                  * task or CPU context:
3980                  */
3981                 if (group_leader->ctx != ctx)
3982                         goto err_put_context;
3983                 /*
3984                  * Only a group leader can be exclusive or pinned
3985                  */
3986                 if (attr.exclusive || attr.pinned)
3987                         goto err_put_context;
3988         }
3989
3990         counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
3991                                      NULL, GFP_KERNEL);
3992         ret = PTR_ERR(counter);
3993         if (IS_ERR(counter))
3994                 goto err_put_context;
3995
3996         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3997         if (ret < 0)
3998                 goto err_free_put_context;
3999
4000         counter_file = fget_light(ret, &fput_needed2);
4001         if (!counter_file)
4002                 goto err_free_put_context;
4003
4004         counter->filp = counter_file;
4005         WARN_ON_ONCE(ctx->parent_ctx);
4006         mutex_lock(&ctx->mutex);
4007         perf_install_in_context(ctx, counter, cpu);
4008         ++ctx->generation;
4009         mutex_unlock(&ctx->mutex);
4010
4011         counter->owner = current;
4012         get_task_struct(current);
4013         mutex_lock(&current->perf_counter_mutex);
4014         list_add_tail(&counter->owner_entry, &current->perf_counter_list);
4015         mutex_unlock(&current->perf_counter_mutex);
4016
4017         fput_light(counter_file, fput_needed2);
4018
4019 out_fput:
4020         fput_light(group_file, fput_needed);
4021
4022         return ret;
4023
4024 err_free_put_context:
4025         kfree(counter);
4026
4027 err_put_context:
4028         put_ctx(ctx);
4029
4030         goto out_fput;
4031 }
4032
4033 /*
4034  * inherit a counter from parent task to child task:
4035  */
4036 static struct perf_counter *
4037 inherit_counter(struct perf_counter *parent_counter,
4038               struct task_struct *parent,
4039               struct perf_counter_context *parent_ctx,
4040               struct task_struct *child,
4041               struct perf_counter *group_leader,
4042               struct perf_counter_context *child_ctx)
4043 {
4044         struct perf_counter *child_counter;
4045
4046         /*
4047          * Instead of creating recursive hierarchies of counters,
4048          * we link inherited counters back to the original parent,
4049          * which has a filp for sure, which we use as the reference
4050          * count:
4051          */
4052         if (parent_counter->parent)
4053                 parent_counter = parent_counter->parent;
4054
4055         child_counter = perf_counter_alloc(&parent_counter->attr,
4056                                            parent_counter->cpu, child_ctx,
4057                                            group_leader, parent_counter,
4058                                            GFP_KERNEL);
4059         if (IS_ERR(child_counter))
4060                 return child_counter;
4061         get_ctx(child_ctx);
4062
4063         /*
4064          * Make the child state follow the state of the parent counter,
4065          * not its attr.disabled bit.  We hold the parent's mutex,
4066          * so we won't race with perf_counter_{en, dis}able_family.
4067          */
4068         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
4069                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
4070         else
4071                 child_counter->state = PERF_COUNTER_STATE_OFF;
4072
4073         if (parent_counter->attr.freq)
4074                 child_counter->hw.sample_period = parent_counter->hw.sample_period;
4075
4076         /*
4077          * Link it up in the child's context:
4078          */
4079         add_counter_to_ctx(child_counter, child_ctx);
4080
4081         /*
4082          * Get a reference to the parent filp - we will fput it
4083          * when the child counter exits. This is safe to do because
4084          * we are in the parent and we know that the filp still
4085          * exists and has a nonzero count:
4086          */
4087         atomic_long_inc(&parent_counter->filp->f_count);
4088
4089         /*
4090          * Link this into the parent counter's child list
4091          */
4092         WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4093         mutex_lock(&parent_counter->child_mutex);
4094         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
4095         mutex_unlock(&parent_counter->child_mutex);
4096
4097         return child_counter;
4098 }
4099
4100 static int inherit_group(struct perf_counter *parent_counter,
4101               struct task_struct *parent,
4102               struct perf_counter_context *parent_ctx,
4103               struct task_struct *child,
4104               struct perf_counter_context *child_ctx)
4105 {
4106         struct perf_counter *leader;
4107         struct perf_counter *sub;
4108         struct perf_counter *child_ctr;
4109
4110         leader = inherit_counter(parent_counter, parent, parent_ctx,
4111                                  child, NULL, child_ctx);
4112         if (IS_ERR(leader))
4113                 return PTR_ERR(leader);
4114         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
4115                 child_ctr = inherit_counter(sub, parent, parent_ctx,
4116                                             child, leader, child_ctx);
4117                 if (IS_ERR(child_ctr))
4118                         return PTR_ERR(child_ctr);
4119         }
4120         return 0;
4121 }
4122
4123 static void sync_child_counter(struct perf_counter *child_counter,
4124                                struct task_struct *child)
4125 {
4126         struct perf_counter *parent_counter = child_counter->parent;
4127         u64 child_val;
4128
4129         if (child_counter->attr.inherit_stat)
4130                 perf_counter_read_event(child_counter, child);
4131
4132         child_val = atomic64_read(&child_counter->count);
4133
4134         /*
4135          * Add back the child's count to the parent's count:
4136          */
4137         atomic64_add(child_val, &parent_counter->count);
4138         atomic64_add(child_counter->total_time_enabled,
4139                      &parent_counter->child_total_time_enabled);
4140         atomic64_add(child_counter->total_time_running,
4141                      &parent_counter->child_total_time_running);
4142
4143         /*
4144          * Remove this counter from the parent's list
4145          */
4146         WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4147         mutex_lock(&parent_counter->child_mutex);
4148         list_del_init(&child_counter->child_list);
4149         mutex_unlock(&parent_counter->child_mutex);
4150
4151         /*
4152          * Release the parent counter, if this was the last
4153          * reference to it.
4154          */
4155         fput(parent_counter->filp);
4156 }
4157
4158 static void
4159 __perf_counter_exit_task(struct perf_counter *child_counter,
4160                          struct perf_counter_context *child_ctx,
4161                          struct task_struct *child)
4162 {
4163         struct perf_counter *parent_counter;
4164
4165         update_counter_times(child_counter);
4166         perf_counter_remove_from_context(child_counter);
4167
4168         parent_counter = child_counter->parent;
4169         /*
4170          * It can happen that parent exits first, and has counters
4171          * that are still around due to the child reference. These
4172          * counters need to be zapped - but otherwise linger.
4173          */
4174         if (parent_counter) {
4175                 sync_child_counter(child_counter, child);
4176                 free_counter(child_counter);
4177         }
4178 }
4179
4180 /*
4181  * When a child task exits, feed back counter values to parent counters.
4182  */
4183 void perf_counter_exit_task(struct task_struct *child)
4184 {
4185         struct perf_counter *child_counter, *tmp;
4186         struct perf_counter_context *child_ctx;
4187         unsigned long flags;
4188
4189         if (likely(!child->perf_counter_ctxp))
4190                 return;
4191
4192         local_irq_save(flags);
4193         /*
4194          * We can't reschedule here because interrupts are disabled,
4195          * and either child is current or it is a task that can't be
4196          * scheduled, so we are now safe from rescheduling changing
4197          * our context.
4198          */
4199         child_ctx = child->perf_counter_ctxp;
4200         __perf_counter_task_sched_out(child_ctx);
4201
4202         /*
4203          * Take the context lock here so that if find_get_context is
4204          * reading child->perf_counter_ctxp, we wait until it has
4205          * incremented the context's refcount before we do put_ctx below.
4206          */
4207         spin_lock(&child_ctx->lock);
4208         child->perf_counter_ctxp = NULL;
4209         if (child_ctx->parent_ctx) {
4210                 /*
4211                  * This context is a clone; unclone it so it can't get
4212                  * swapped to another process while we're removing all
4213                  * the counters from it.
4214                  */
4215                 put_ctx(child_ctx->parent_ctx);
4216                 child_ctx->parent_ctx = NULL;
4217         }
4218         spin_unlock(&child_ctx->lock);
4219         local_irq_restore(flags);
4220
4221         /*
4222          * We can recurse on the same lock type through:
4223          *
4224          *   __perf_counter_exit_task()
4225          *     sync_child_counter()
4226          *       fput(parent_counter->filp)
4227          *         perf_release()
4228          *           mutex_lock(&ctx->mutex)
4229          *
4230          * But since its the parent context it won't be the same instance.
4231          */
4232         mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4233
4234 again:
4235         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
4236                                  list_entry)
4237                 __perf_counter_exit_task(child_counter, child_ctx, child);
4238
4239         /*
4240          * If the last counter was a group counter, it will have appended all
4241          * its siblings to the list, but we obtained 'tmp' before that which
4242          * will still point to the list head terminating the iteration.
4243          */
4244         if (!list_empty(&child_ctx->counter_list))
4245                 goto again;
4246
4247         mutex_unlock(&child_ctx->mutex);
4248
4249         put_ctx(child_ctx);
4250 }
4251
4252 /*
4253  * free an unexposed, unused context as created by inheritance by
4254  * init_task below, used by fork() in case of fail.
4255  */
4256 void perf_counter_free_task(struct task_struct *task)
4257 {
4258         struct perf_counter_context *ctx = task->perf_counter_ctxp;
4259         struct perf_counter *counter, *tmp;
4260
4261         if (!ctx)
4262                 return;
4263
4264         mutex_lock(&ctx->mutex);
4265 again:
4266         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
4267                 struct perf_counter *parent = counter->parent;
4268
4269                 if (WARN_ON_ONCE(!parent))
4270                         continue;
4271
4272                 mutex_lock(&parent->child_mutex);
4273                 list_del_init(&counter->child_list);
4274                 mutex_unlock(&parent->child_mutex);
4275
4276                 fput(parent->filp);
4277
4278                 list_del_counter(counter, ctx);
4279                 free_counter(counter);
4280         }
4281
4282         if (!list_empty(&ctx->counter_list))
4283                 goto again;
4284
4285         mutex_unlock(&ctx->mutex);
4286
4287         put_ctx(ctx);
4288 }
4289
4290 /*
4291  * Initialize the perf_counter context in task_struct
4292  */
4293 int perf_counter_init_task(struct task_struct *child)
4294 {
4295         struct perf_counter_context *child_ctx, *parent_ctx;
4296         struct perf_counter_context *cloned_ctx;
4297         struct perf_counter *counter;
4298         struct task_struct *parent = current;
4299         int inherited_all = 1;
4300         int ret = 0;
4301
4302         child->perf_counter_ctxp = NULL;
4303
4304         mutex_init(&child->perf_counter_mutex);
4305         INIT_LIST_HEAD(&child->perf_counter_list);
4306
4307         if (likely(!parent->perf_counter_ctxp))
4308                 return 0;
4309
4310         /*
4311          * This is executed from the parent task context, so inherit
4312          * counters that have been marked for cloning.
4313          * First allocate and initialize a context for the child.
4314          */
4315
4316         child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
4317         if (!child_ctx)
4318                 return -ENOMEM;
4319
4320         __perf_counter_init_context(child_ctx, child);
4321         child->perf_counter_ctxp = child_ctx;
4322         get_task_struct(child);
4323
4324         /*
4325          * If the parent's context is a clone, pin it so it won't get
4326          * swapped under us.
4327          */
4328         parent_ctx = perf_pin_task_context(parent);
4329
4330         /*
4331          * No need to check if parent_ctx != NULL here; since we saw
4332          * it non-NULL earlier, the only reason for it to become NULL
4333          * is if we exit, and since we're currently in the middle of
4334          * a fork we can't be exiting at the same time.
4335          */
4336
4337         /*
4338          * Lock the parent list. No need to lock the child - not PID
4339          * hashed yet and not running, so nobody can access it.
4340          */
4341         mutex_lock(&parent_ctx->mutex);
4342
4343         /*
4344          * We dont have to disable NMIs - we are only looking at
4345          * the list, not manipulating it:
4346          */
4347         list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
4348                 if (counter != counter->group_leader)
4349                         continue;
4350
4351                 if (!counter->attr.inherit) {
4352                         inherited_all = 0;
4353                         continue;
4354                 }
4355
4356                 ret = inherit_group(counter, parent, parent_ctx,
4357                                              child, child_ctx);
4358                 if (ret) {
4359                         inherited_all = 0;
4360                         break;
4361                 }
4362         }
4363
4364         if (inherited_all) {
4365                 /*
4366                  * Mark the child context as a clone of the parent
4367                  * context, or of whatever the parent is a clone of.
4368                  * Note that if the parent is a clone, it could get
4369                  * uncloned at any point, but that doesn't matter
4370                  * because the list of counters and the generation
4371                  * count can't have changed since we took the mutex.
4372                  */
4373                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4374                 if (cloned_ctx) {
4375                         child_ctx->parent_ctx = cloned_ctx;
4376                         child_ctx->parent_gen = parent_ctx->parent_gen;
4377                 } else {
4378                         child_ctx->parent_ctx = parent_ctx;
4379                         child_ctx->parent_gen = parent_ctx->generation;
4380                 }
4381                 get_ctx(child_ctx->parent_ctx);
4382         }
4383
4384         mutex_unlock(&parent_ctx->mutex);
4385
4386         perf_unpin_context(parent_ctx);
4387
4388         return ret;
4389 }
4390
4391 static void __cpuinit perf_counter_init_cpu(int cpu)
4392 {
4393         struct perf_cpu_context *cpuctx;
4394
4395         cpuctx = &per_cpu(perf_cpu_context, cpu);
4396         __perf_counter_init_context(&cpuctx->ctx, NULL);
4397
4398         spin_lock(&perf_resource_lock);
4399         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4400         spin_unlock(&perf_resource_lock);
4401
4402         hw_perf_counter_setup(cpu);
4403 }
4404
4405 #ifdef CONFIG_HOTPLUG_CPU
4406 static void __perf_counter_exit_cpu(void *info)
4407 {
4408         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4409         struct perf_counter_context *ctx = &cpuctx->ctx;
4410         struct perf_counter *counter, *tmp;
4411
4412         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
4413                 __perf_counter_remove_from_context(counter);
4414 }
4415 static void perf_counter_exit_cpu(int cpu)
4416 {
4417         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4418         struct perf_counter_context *ctx = &cpuctx->ctx;
4419
4420         mutex_lock(&ctx->mutex);
4421         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4422         mutex_unlock(&ctx->mutex);
4423 }
4424 #else
4425 static inline void perf_counter_exit_cpu(int cpu) { }
4426 #endif
4427
4428 static int __cpuinit
4429 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4430 {
4431         unsigned int cpu = (long)hcpu;
4432
4433         switch (action) {
4434
4435         case CPU_UP_PREPARE:
4436         case CPU_UP_PREPARE_FROZEN:
4437                 perf_counter_init_cpu(cpu);
4438                 break;
4439
4440         case CPU_DOWN_PREPARE:
4441         case CPU_DOWN_PREPARE_FROZEN:
4442                 perf_counter_exit_cpu(cpu);
4443                 break;
4444
4445         default:
4446                 break;
4447         }
4448
4449         return NOTIFY_OK;
4450 }
4451
4452 /*
4453  * This has to have a higher priority than migration_notifier in sched.c.
4454  */
4455 static struct notifier_block __cpuinitdata perf_cpu_nb = {
4456         .notifier_call          = perf_cpu_notify,
4457         .priority               = 20,
4458 };
4459
4460 void __init perf_counter_init(void)
4461 {
4462         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4463                         (void *)(long)smp_processor_id());
4464         register_cpu_notifier(&perf_cpu_nb);
4465 }
4466
4467 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4468 {
4469         return sprintf(buf, "%d\n", perf_reserved_percpu);
4470 }
4471
4472 static ssize_t
4473 perf_set_reserve_percpu(struct sysdev_class *class,
4474                         const char *buf,
4475                         size_t count)
4476 {
4477         struct perf_cpu_context *cpuctx;
4478         unsigned long val;
4479         int err, cpu, mpt;
4480
4481         err = strict_strtoul(buf, 10, &val);
4482         if (err)
4483                 return err;
4484         if (val > perf_max_counters)
4485                 return -EINVAL;
4486
4487         spin_lock(&perf_resource_lock);
4488         perf_reserved_percpu = val;
4489         for_each_online_cpu(cpu) {
4490                 cpuctx = &per_cpu(perf_cpu_context, cpu);
4491                 spin_lock_irq(&cpuctx->ctx.lock);
4492                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
4493                           perf_max_counters - perf_reserved_percpu);
4494                 cpuctx->max_pertask = mpt;
4495                 spin_unlock_irq(&cpuctx->ctx.lock);
4496         }
4497         spin_unlock(&perf_resource_lock);
4498
4499         return count;
4500 }
4501
4502 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4503 {
4504         return sprintf(buf, "%d\n", perf_overcommit);
4505 }
4506
4507 static ssize_t
4508 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4509 {
4510         unsigned long val;
4511         int err;
4512
4513         err = strict_strtoul(buf, 10, &val);
4514         if (err)
4515                 return err;
4516         if (val > 1)
4517                 return -EINVAL;
4518
4519         spin_lock(&perf_resource_lock);
4520         perf_overcommit = val;
4521         spin_unlock(&perf_resource_lock);
4522
4523         return count;
4524 }
4525
4526 static SYSDEV_CLASS_ATTR(
4527                                 reserve_percpu,
4528                                 0644,
4529                                 perf_show_reserve_percpu,
4530                                 perf_set_reserve_percpu
4531                         );
4532
4533 static SYSDEV_CLASS_ATTR(
4534                                 overcommit,
4535                                 0644,
4536                                 perf_show_overcommit,
4537                                 perf_set_overcommit
4538                         );
4539
4540 static struct attribute *perfclass_attrs[] = {
4541         &attr_reserve_percpu.attr,
4542         &attr_overcommit.attr,
4543         NULL
4544 };
4545
4546 static struct attribute_group perfclass_attr_group = {
4547         .attrs                  = perfclass_attrs,
4548         .name                   = "perf_counters",
4549 };
4550
4551 static int __init perf_counter_sysfs_init(void)
4552 {
4553         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4554                                   &perfclass_attr_group);
4555 }
4556 device_initcall(perf_counter_sysfs_init);