perf_counter: Optimize disable of time based sw counters
[pandora-kernel.git] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49
50 /*
51  * Lock for (sysadmin-configurable) counter reservations:
52  */
53 static DEFINE_SPINLOCK(perf_resource_lock);
54
55 /*
56  * Architecture provided APIs - weak aliases:
57  */
58 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
59 {
60         return NULL;
61 }
62
63 void __weak hw_perf_disable(void)               { barrier(); }
64 void __weak hw_perf_enable(void)                { barrier(); }
65
66 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
67 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
68                struct perf_cpu_context *cpuctx,
69                struct perf_counter_context *ctx, int cpu)
70 {
71         return 0;
72 }
73
74 void __weak perf_counter_print_debug(void)      { }
75
76 static DEFINE_PER_CPU(int, disable_count);
77
78 void __perf_disable(void)
79 {
80         __get_cpu_var(disable_count)++;
81 }
82
83 bool __perf_enable(void)
84 {
85         return !--__get_cpu_var(disable_count);
86 }
87
88 void perf_disable(void)
89 {
90         __perf_disable();
91         hw_perf_disable();
92 }
93
94 void perf_enable(void)
95 {
96         if (__perf_enable())
97                 hw_perf_enable();
98 }
99
100 static void
101 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
102 {
103         struct perf_counter *group_leader = counter->group_leader;
104
105         /*
106          * Depending on whether it is a standalone or sibling counter,
107          * add it straight to the context's counter list, or to the group
108          * leader's sibling list:
109          */
110         if (group_leader == counter)
111                 list_add_tail(&counter->list_entry, &ctx->counter_list);
112         else {
113                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
114                 group_leader->nr_siblings++;
115         }
116
117         list_add_rcu(&counter->event_entry, &ctx->event_list);
118         ctx->nr_counters++;
119 }
120
121 static void
122 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
123 {
124         struct perf_counter *sibling, *tmp;
125
126         ctx->nr_counters--;
127
128         list_del_init(&counter->list_entry);
129         list_del_rcu(&counter->event_entry);
130
131         if (counter->group_leader != counter)
132                 counter->group_leader->nr_siblings--;
133
134         /*
135          * If this was a group counter with sibling counters then
136          * upgrade the siblings to singleton counters by adding them
137          * to the context list directly:
138          */
139         list_for_each_entry_safe(sibling, tmp,
140                                  &counter->sibling_list, list_entry) {
141
142                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
143                 sibling->group_leader = sibling;
144         }
145 }
146
147 static void
148 counter_sched_out(struct perf_counter *counter,
149                   struct perf_cpu_context *cpuctx,
150                   struct perf_counter_context *ctx)
151 {
152         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
153                 return;
154
155         counter->state = PERF_COUNTER_STATE_INACTIVE;
156         counter->tstamp_stopped = ctx->time;
157         counter->pmu->disable(counter);
158         counter->oncpu = -1;
159
160         if (!is_software_counter(counter))
161                 cpuctx->active_oncpu--;
162         ctx->nr_active--;
163         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
164                 cpuctx->exclusive = 0;
165 }
166
167 static void
168 group_sched_out(struct perf_counter *group_counter,
169                 struct perf_cpu_context *cpuctx,
170                 struct perf_counter_context *ctx)
171 {
172         struct perf_counter *counter;
173
174         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
175                 return;
176
177         counter_sched_out(group_counter, cpuctx, ctx);
178
179         /*
180          * Schedule out siblings (if any):
181          */
182         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
183                 counter_sched_out(counter, cpuctx, ctx);
184
185         if (group_counter->hw_event.exclusive)
186                 cpuctx->exclusive = 0;
187 }
188
189 /*
190  * Cross CPU call to remove a performance counter
191  *
192  * We disable the counter on the hardware level first. After that we
193  * remove it from the context list.
194  */
195 static void __perf_counter_remove_from_context(void *info)
196 {
197         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
198         struct perf_counter *counter = info;
199         struct perf_counter_context *ctx = counter->ctx;
200         unsigned long flags;
201
202         /*
203          * If this is a task context, we need to check whether it is
204          * the current task context of this cpu. If not it has been
205          * scheduled out before the smp call arrived.
206          */
207         if (ctx->task && cpuctx->task_ctx != ctx)
208                 return;
209
210         spin_lock_irqsave(&ctx->lock, flags);
211
212         counter_sched_out(counter, cpuctx, ctx);
213
214         counter->task = NULL;
215
216         /*
217          * Protect the list operation against NMI by disabling the
218          * counters on a global level. NOP for non NMI based counters.
219          */
220         perf_disable();
221         list_del_counter(counter, ctx);
222         perf_enable();
223
224         if (!ctx->task) {
225                 /*
226                  * Allow more per task counters with respect to the
227                  * reservation:
228                  */
229                 cpuctx->max_pertask =
230                         min(perf_max_counters - ctx->nr_counters,
231                             perf_max_counters - perf_reserved_percpu);
232         }
233
234         spin_unlock_irqrestore(&ctx->lock, flags);
235 }
236
237
238 /*
239  * Remove the counter from a task's (or a CPU's) list of counters.
240  *
241  * Must be called with counter->mutex and ctx->mutex held.
242  *
243  * CPU counters are removed with a smp call. For task counters we only
244  * call when the task is on a CPU.
245  */
246 static void perf_counter_remove_from_context(struct perf_counter *counter)
247 {
248         struct perf_counter_context *ctx = counter->ctx;
249         struct task_struct *task = ctx->task;
250
251         if (!task) {
252                 /*
253                  * Per cpu counters are removed via an smp call and
254                  * the removal is always sucessful.
255                  */
256                 smp_call_function_single(counter->cpu,
257                                          __perf_counter_remove_from_context,
258                                          counter, 1);
259                 return;
260         }
261
262 retry:
263         task_oncpu_function_call(task, __perf_counter_remove_from_context,
264                                  counter);
265
266         spin_lock_irq(&ctx->lock);
267         /*
268          * If the context is active we need to retry the smp call.
269          */
270         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
271                 spin_unlock_irq(&ctx->lock);
272                 goto retry;
273         }
274
275         /*
276          * The lock prevents that this context is scheduled in so we
277          * can remove the counter safely, if the call above did not
278          * succeed.
279          */
280         if (!list_empty(&counter->list_entry)) {
281                 list_del_counter(counter, ctx);
282                 counter->task = NULL;
283         }
284         spin_unlock_irq(&ctx->lock);
285 }
286
287 static inline u64 perf_clock(void)
288 {
289         return cpu_clock(smp_processor_id());
290 }
291
292 /*
293  * Update the record of the current time in a context.
294  */
295 static void update_context_time(struct perf_counter_context *ctx)
296 {
297         u64 now = perf_clock();
298
299         ctx->time += now - ctx->timestamp;
300         ctx->timestamp = now;
301 }
302
303 /*
304  * Update the total_time_enabled and total_time_running fields for a counter.
305  */
306 static void update_counter_times(struct perf_counter *counter)
307 {
308         struct perf_counter_context *ctx = counter->ctx;
309         u64 run_end;
310
311         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
312                 return;
313
314         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
315
316         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
317                 run_end = counter->tstamp_stopped;
318         else
319                 run_end = ctx->time;
320
321         counter->total_time_running = run_end - counter->tstamp_running;
322 }
323
324 /*
325  * Update total_time_enabled and total_time_running for all counters in a group.
326  */
327 static void update_group_times(struct perf_counter *leader)
328 {
329         struct perf_counter *counter;
330
331         update_counter_times(leader);
332         list_for_each_entry(counter, &leader->sibling_list, list_entry)
333                 update_counter_times(counter);
334 }
335
336 /*
337  * Cross CPU call to disable a performance counter
338  */
339 static void __perf_counter_disable(void *info)
340 {
341         struct perf_counter *counter = info;
342         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
343         struct perf_counter_context *ctx = counter->ctx;
344         unsigned long flags;
345
346         /*
347          * If this is a per-task counter, need to check whether this
348          * counter's task is the current task on this cpu.
349          */
350         if (ctx->task && cpuctx->task_ctx != ctx)
351                 return;
352
353         spin_lock_irqsave(&ctx->lock, flags);
354
355         /*
356          * If the counter is on, turn it off.
357          * If it is in error state, leave it in error state.
358          */
359         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
360                 update_context_time(ctx);
361                 update_counter_times(counter);
362                 if (counter == counter->group_leader)
363                         group_sched_out(counter, cpuctx, ctx);
364                 else
365                         counter_sched_out(counter, cpuctx, ctx);
366                 counter->state = PERF_COUNTER_STATE_OFF;
367         }
368
369         spin_unlock_irqrestore(&ctx->lock, flags);
370 }
371
372 /*
373  * Disable a counter.
374  */
375 static void perf_counter_disable(struct perf_counter *counter)
376 {
377         struct perf_counter_context *ctx = counter->ctx;
378         struct task_struct *task = ctx->task;
379
380         if (!task) {
381                 /*
382                  * Disable the counter on the cpu that it's on
383                  */
384                 smp_call_function_single(counter->cpu, __perf_counter_disable,
385                                          counter, 1);
386                 return;
387         }
388
389  retry:
390         task_oncpu_function_call(task, __perf_counter_disable, counter);
391
392         spin_lock_irq(&ctx->lock);
393         /*
394          * If the counter is still active, we need to retry the cross-call.
395          */
396         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
397                 spin_unlock_irq(&ctx->lock);
398                 goto retry;
399         }
400
401         /*
402          * Since we have the lock this context can't be scheduled
403          * in, so we can change the state safely.
404          */
405         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
406                 update_counter_times(counter);
407                 counter->state = PERF_COUNTER_STATE_OFF;
408         }
409
410         spin_unlock_irq(&ctx->lock);
411 }
412
413 static int
414 counter_sched_in(struct perf_counter *counter,
415                  struct perf_cpu_context *cpuctx,
416                  struct perf_counter_context *ctx,
417                  int cpu)
418 {
419         if (counter->state <= PERF_COUNTER_STATE_OFF)
420                 return 0;
421
422         counter->state = PERF_COUNTER_STATE_ACTIVE;
423         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
424         /*
425          * The new state must be visible before we turn it on in the hardware:
426          */
427         smp_wmb();
428
429         if (counter->pmu->enable(counter)) {
430                 counter->state = PERF_COUNTER_STATE_INACTIVE;
431                 counter->oncpu = -1;
432                 return -EAGAIN;
433         }
434
435         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
436
437         if (!is_software_counter(counter))
438                 cpuctx->active_oncpu++;
439         ctx->nr_active++;
440
441         if (counter->hw_event.exclusive)
442                 cpuctx->exclusive = 1;
443
444         return 0;
445 }
446
447 static int
448 group_sched_in(struct perf_counter *group_counter,
449                struct perf_cpu_context *cpuctx,
450                struct perf_counter_context *ctx,
451                int cpu)
452 {
453         struct perf_counter *counter, *partial_group;
454         int ret;
455
456         if (group_counter->state == PERF_COUNTER_STATE_OFF)
457                 return 0;
458
459         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
460         if (ret)
461                 return ret < 0 ? ret : 0;
462
463         group_counter->prev_state = group_counter->state;
464         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
465                 return -EAGAIN;
466
467         /*
468          * Schedule in siblings as one group (if any):
469          */
470         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
471                 counter->prev_state = counter->state;
472                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
473                         partial_group = counter;
474                         goto group_error;
475                 }
476         }
477
478         return 0;
479
480 group_error:
481         /*
482          * Groups can be scheduled in as one unit only, so undo any
483          * partial group before returning:
484          */
485         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
486                 if (counter == partial_group)
487                         break;
488                 counter_sched_out(counter, cpuctx, ctx);
489         }
490         counter_sched_out(group_counter, cpuctx, ctx);
491
492         return -EAGAIN;
493 }
494
495 /*
496  * Return 1 for a group consisting entirely of software counters,
497  * 0 if the group contains any hardware counters.
498  */
499 static int is_software_only_group(struct perf_counter *leader)
500 {
501         struct perf_counter *counter;
502
503         if (!is_software_counter(leader))
504                 return 0;
505
506         list_for_each_entry(counter, &leader->sibling_list, list_entry)
507                 if (!is_software_counter(counter))
508                         return 0;
509
510         return 1;
511 }
512
513 /*
514  * Work out whether we can put this counter group on the CPU now.
515  */
516 static int group_can_go_on(struct perf_counter *counter,
517                            struct perf_cpu_context *cpuctx,
518                            int can_add_hw)
519 {
520         /*
521          * Groups consisting entirely of software counters can always go on.
522          */
523         if (is_software_only_group(counter))
524                 return 1;
525         /*
526          * If an exclusive group is already on, no other hardware
527          * counters can go on.
528          */
529         if (cpuctx->exclusive)
530                 return 0;
531         /*
532          * If this group is exclusive and there are already
533          * counters on the CPU, it can't go on.
534          */
535         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
536                 return 0;
537         /*
538          * Otherwise, try to add it if all previous groups were able
539          * to go on.
540          */
541         return can_add_hw;
542 }
543
544 static void add_counter_to_ctx(struct perf_counter *counter,
545                                struct perf_counter_context *ctx)
546 {
547         list_add_counter(counter, ctx);
548         counter->prev_state = PERF_COUNTER_STATE_OFF;
549         counter->tstamp_enabled = ctx->time;
550         counter->tstamp_running = ctx->time;
551         counter->tstamp_stopped = ctx->time;
552 }
553
554 /*
555  * Cross CPU call to install and enable a performance counter
556  */
557 static void __perf_install_in_context(void *info)
558 {
559         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
560         struct perf_counter *counter = info;
561         struct perf_counter_context *ctx = counter->ctx;
562         struct perf_counter *leader = counter->group_leader;
563         int cpu = smp_processor_id();
564         unsigned long flags;
565         int err;
566
567         /*
568          * If this is a task context, we need to check whether it is
569          * the current task context of this cpu. If not it has been
570          * scheduled out before the smp call arrived.
571          */
572         if (ctx->task && cpuctx->task_ctx != ctx)
573                 return;
574
575         spin_lock_irqsave(&ctx->lock, flags);
576         update_context_time(ctx);
577
578         /*
579          * Protect the list operation against NMI by disabling the
580          * counters on a global level. NOP for non NMI based counters.
581          */
582         perf_disable();
583
584         add_counter_to_ctx(counter, ctx);
585
586         /*
587          * Don't put the counter on if it is disabled or if
588          * it is in a group and the group isn't on.
589          */
590         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
591             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
592                 goto unlock;
593
594         /*
595          * An exclusive counter can't go on if there are already active
596          * hardware counters, and no hardware counter can go on if there
597          * is already an exclusive counter on.
598          */
599         if (!group_can_go_on(counter, cpuctx, 1))
600                 err = -EEXIST;
601         else
602                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
603
604         if (err) {
605                 /*
606                  * This counter couldn't go on.  If it is in a group
607                  * then we have to pull the whole group off.
608                  * If the counter group is pinned then put it in error state.
609                  */
610                 if (leader != counter)
611                         group_sched_out(leader, cpuctx, ctx);
612                 if (leader->hw_event.pinned) {
613                         update_group_times(leader);
614                         leader->state = PERF_COUNTER_STATE_ERROR;
615                 }
616         }
617
618         if (!err && !ctx->task && cpuctx->max_pertask)
619                 cpuctx->max_pertask--;
620
621  unlock:
622         perf_enable();
623
624         spin_unlock_irqrestore(&ctx->lock, flags);
625 }
626
627 /*
628  * Attach a performance counter to a context
629  *
630  * First we add the counter to the list with the hardware enable bit
631  * in counter->hw_config cleared.
632  *
633  * If the counter is attached to a task which is on a CPU we use a smp
634  * call to enable it in the task context. The task might have been
635  * scheduled away, but we check this in the smp call again.
636  *
637  * Must be called with ctx->mutex held.
638  */
639 static void
640 perf_install_in_context(struct perf_counter_context *ctx,
641                         struct perf_counter *counter,
642                         int cpu)
643 {
644         struct task_struct *task = ctx->task;
645
646         if (!task) {
647                 /*
648                  * Per cpu counters are installed via an smp call and
649                  * the install is always sucessful.
650                  */
651                 smp_call_function_single(cpu, __perf_install_in_context,
652                                          counter, 1);
653                 return;
654         }
655
656         counter->task = task;
657 retry:
658         task_oncpu_function_call(task, __perf_install_in_context,
659                                  counter);
660
661         spin_lock_irq(&ctx->lock);
662         /*
663          * we need to retry the smp call.
664          */
665         if (ctx->is_active && list_empty(&counter->list_entry)) {
666                 spin_unlock_irq(&ctx->lock);
667                 goto retry;
668         }
669
670         /*
671          * The lock prevents that this context is scheduled in so we
672          * can add the counter safely, if it the call above did not
673          * succeed.
674          */
675         if (list_empty(&counter->list_entry))
676                 add_counter_to_ctx(counter, ctx);
677         spin_unlock_irq(&ctx->lock);
678 }
679
680 /*
681  * Cross CPU call to enable a performance counter
682  */
683 static void __perf_counter_enable(void *info)
684 {
685         struct perf_counter *counter = info;
686         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
687         struct perf_counter_context *ctx = counter->ctx;
688         struct perf_counter *leader = counter->group_leader;
689         unsigned long flags;
690         int err;
691
692         /*
693          * If this is a per-task counter, need to check whether this
694          * counter's task is the current task on this cpu.
695          */
696         if (ctx->task && cpuctx->task_ctx != ctx)
697                 return;
698
699         spin_lock_irqsave(&ctx->lock, flags);
700         update_context_time(ctx);
701
702         counter->prev_state = counter->state;
703         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
704                 goto unlock;
705         counter->state = PERF_COUNTER_STATE_INACTIVE;
706         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
707
708         /*
709          * If the counter is in a group and isn't the group leader,
710          * then don't put it on unless the group is on.
711          */
712         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
713                 goto unlock;
714
715         if (!group_can_go_on(counter, cpuctx, 1)) {
716                 err = -EEXIST;
717         } else {
718                 perf_disable();
719                 if (counter == leader)
720                         err = group_sched_in(counter, cpuctx, ctx,
721                                              smp_processor_id());
722                 else
723                         err = counter_sched_in(counter, cpuctx, ctx,
724                                                smp_processor_id());
725                 perf_enable();
726         }
727
728         if (err) {
729                 /*
730                  * If this counter can't go on and it's part of a
731                  * group, then the whole group has to come off.
732                  */
733                 if (leader != counter)
734                         group_sched_out(leader, cpuctx, ctx);
735                 if (leader->hw_event.pinned) {
736                         update_group_times(leader);
737                         leader->state = PERF_COUNTER_STATE_ERROR;
738                 }
739         }
740
741  unlock:
742         spin_unlock_irqrestore(&ctx->lock, flags);
743 }
744
745 /*
746  * Enable a counter.
747  */
748 static void perf_counter_enable(struct perf_counter *counter)
749 {
750         struct perf_counter_context *ctx = counter->ctx;
751         struct task_struct *task = ctx->task;
752
753         if (!task) {
754                 /*
755                  * Enable the counter on the cpu that it's on
756                  */
757                 smp_call_function_single(counter->cpu, __perf_counter_enable,
758                                          counter, 1);
759                 return;
760         }
761
762         spin_lock_irq(&ctx->lock);
763         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
764                 goto out;
765
766         /*
767          * If the counter is in error state, clear that first.
768          * That way, if we see the counter in error state below, we
769          * know that it has gone back into error state, as distinct
770          * from the task having been scheduled away before the
771          * cross-call arrived.
772          */
773         if (counter->state == PERF_COUNTER_STATE_ERROR)
774                 counter->state = PERF_COUNTER_STATE_OFF;
775
776  retry:
777         spin_unlock_irq(&ctx->lock);
778         task_oncpu_function_call(task, __perf_counter_enable, counter);
779
780         spin_lock_irq(&ctx->lock);
781
782         /*
783          * If the context is active and the counter is still off,
784          * we need to retry the cross-call.
785          */
786         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
787                 goto retry;
788
789         /*
790          * Since we have the lock this context can't be scheduled
791          * in, so we can change the state safely.
792          */
793         if (counter->state == PERF_COUNTER_STATE_OFF) {
794                 counter->state = PERF_COUNTER_STATE_INACTIVE;
795                 counter->tstamp_enabled =
796                         ctx->time - counter->total_time_enabled;
797         }
798  out:
799         spin_unlock_irq(&ctx->lock);
800 }
801
802 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
803 {
804         /*
805          * not supported on inherited counters
806          */
807         if (counter->hw_event.inherit)
808                 return -EINVAL;
809
810         atomic_add(refresh, &counter->event_limit);
811         perf_counter_enable(counter);
812
813         return 0;
814 }
815
816 void __perf_counter_sched_out(struct perf_counter_context *ctx,
817                               struct perf_cpu_context *cpuctx)
818 {
819         struct perf_counter *counter;
820
821         spin_lock(&ctx->lock);
822         ctx->is_active = 0;
823         if (likely(!ctx->nr_counters))
824                 goto out;
825         update_context_time(ctx);
826
827         perf_disable();
828         if (ctx->nr_active) {
829                 list_for_each_entry(counter, &ctx->counter_list, list_entry)
830                         group_sched_out(counter, cpuctx, ctx);
831         }
832         perf_enable();
833  out:
834         spin_unlock(&ctx->lock);
835 }
836
837 /*
838  * Called from scheduler to remove the counters of the current task,
839  * with interrupts disabled.
840  *
841  * We stop each counter and update the counter value in counter->count.
842  *
843  * This does not protect us against NMI, but disable()
844  * sets the disabled bit in the control field of counter _before_
845  * accessing the counter control register. If a NMI hits, then it will
846  * not restart the counter.
847  */
848 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
849 {
850         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
851         struct perf_counter_context *ctx = &task->perf_counter_ctx;
852         struct pt_regs *regs;
853
854         if (likely(!cpuctx->task_ctx))
855                 return;
856
857         update_context_time(ctx);
858
859         regs = task_pt_regs(task);
860         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
861         __perf_counter_sched_out(ctx, cpuctx);
862
863         cpuctx->task_ctx = NULL;
864 }
865
866 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
867 {
868         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
869
870         __perf_counter_sched_out(ctx, cpuctx);
871         cpuctx->task_ctx = NULL;
872 }
873
874 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
875 {
876         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
877 }
878
879 static void
880 __perf_counter_sched_in(struct perf_counter_context *ctx,
881                         struct perf_cpu_context *cpuctx, int cpu)
882 {
883         struct perf_counter *counter;
884         int can_add_hw = 1;
885
886         spin_lock(&ctx->lock);
887         ctx->is_active = 1;
888         if (likely(!ctx->nr_counters))
889                 goto out;
890
891         ctx->timestamp = perf_clock();
892
893         perf_disable();
894
895         /*
896          * First go through the list and put on any pinned groups
897          * in order to give them the best chance of going on.
898          */
899         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
900                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
901                     !counter->hw_event.pinned)
902                         continue;
903                 if (counter->cpu != -1 && counter->cpu != cpu)
904                         continue;
905
906                 if (group_can_go_on(counter, cpuctx, 1))
907                         group_sched_in(counter, cpuctx, ctx, cpu);
908
909                 /*
910                  * If this pinned group hasn't been scheduled,
911                  * put it in error state.
912                  */
913                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
914                         update_group_times(counter);
915                         counter->state = PERF_COUNTER_STATE_ERROR;
916                 }
917         }
918
919         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
920                 /*
921                  * Ignore counters in OFF or ERROR state, and
922                  * ignore pinned counters since we did them already.
923                  */
924                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
925                     counter->hw_event.pinned)
926                         continue;
927
928                 /*
929                  * Listen to the 'cpu' scheduling filter constraint
930                  * of counters:
931                  */
932                 if (counter->cpu != -1 && counter->cpu != cpu)
933                         continue;
934
935                 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
936                         if (group_sched_in(counter, cpuctx, ctx, cpu))
937                                 can_add_hw = 0;
938                 }
939         }
940         perf_enable();
941  out:
942         spin_unlock(&ctx->lock);
943 }
944
945 /*
946  * Called from scheduler to add the counters of the current task
947  * with interrupts disabled.
948  *
949  * We restore the counter value and then enable it.
950  *
951  * This does not protect us against NMI, but enable()
952  * sets the enabled bit in the control field of counter _before_
953  * accessing the counter control register. If a NMI hits, then it will
954  * keep the counter running.
955  */
956 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
957 {
958         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
959         struct perf_counter_context *ctx = &task->perf_counter_ctx;
960
961         __perf_counter_sched_in(ctx, cpuctx, cpu);
962         cpuctx->task_ctx = ctx;
963 }
964
965 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
966 {
967         struct perf_counter_context *ctx = &cpuctx->ctx;
968
969         __perf_counter_sched_in(ctx, cpuctx, cpu);
970 }
971
972 int perf_counter_task_disable(void)
973 {
974         struct task_struct *curr = current;
975         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
976         struct perf_counter *counter;
977         unsigned long flags;
978
979         if (likely(!ctx->nr_counters))
980                 return 0;
981
982         local_irq_save(flags);
983
984         __perf_counter_task_sched_out(ctx);
985
986         spin_lock(&ctx->lock);
987
988         /*
989          * Disable all the counters:
990          */
991         perf_disable();
992
993         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
994                 if (counter->state != PERF_COUNTER_STATE_ERROR) {
995                         update_group_times(counter);
996                         counter->state = PERF_COUNTER_STATE_OFF;
997                 }
998         }
999
1000         perf_enable();
1001
1002         spin_unlock_irqrestore(&ctx->lock, flags);
1003
1004         return 0;
1005 }
1006
1007 int perf_counter_task_enable(void)
1008 {
1009         struct task_struct *curr = current;
1010         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1011         struct perf_counter *counter;
1012         unsigned long flags;
1013         int cpu;
1014
1015         if (likely(!ctx->nr_counters))
1016                 return 0;
1017
1018         local_irq_save(flags);
1019         cpu = smp_processor_id();
1020
1021         __perf_counter_task_sched_out(ctx);
1022
1023         spin_lock(&ctx->lock);
1024
1025         /*
1026          * Disable all the counters:
1027          */
1028         perf_disable();
1029
1030         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1031                 if (counter->state > PERF_COUNTER_STATE_OFF)
1032                         continue;
1033                 counter->state = PERF_COUNTER_STATE_INACTIVE;
1034                 counter->tstamp_enabled =
1035                         ctx->time - counter->total_time_enabled;
1036                 counter->hw_event.disabled = 0;
1037         }
1038         perf_enable();
1039
1040         spin_unlock(&ctx->lock);
1041
1042         perf_counter_task_sched_in(curr, cpu);
1043
1044         local_irq_restore(flags);
1045
1046         return 0;
1047 }
1048
1049 static void perf_log_period(struct perf_counter *counter, u64 period);
1050
1051 static void perf_adjust_freq(struct perf_counter_context *ctx)
1052 {
1053         struct perf_counter *counter;
1054         u64 irq_period;
1055         u64 events, period;
1056         s64 delta;
1057
1058         spin_lock(&ctx->lock);
1059         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1060                 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1061                         continue;
1062
1063                 if (!counter->hw_event.freq || !counter->hw_event.irq_freq)
1064                         continue;
1065
1066                 events = HZ * counter->hw.interrupts * counter->hw.irq_period;
1067                 period = div64_u64(events, counter->hw_event.irq_freq);
1068
1069                 delta = (s64)(1 + period - counter->hw.irq_period);
1070                 delta >>= 1;
1071
1072                 irq_period = counter->hw.irq_period + delta;
1073
1074                 if (!irq_period)
1075                         irq_period = 1;
1076
1077                 perf_log_period(counter, irq_period);
1078
1079                 counter->hw.irq_period = irq_period;
1080                 counter->hw.interrupts = 0;
1081         }
1082         spin_unlock(&ctx->lock);
1083 }
1084
1085 /*
1086  * Round-robin a context's counters:
1087  */
1088 static void rotate_ctx(struct perf_counter_context *ctx)
1089 {
1090         struct perf_counter *counter;
1091
1092         if (!ctx->nr_counters)
1093                 return;
1094
1095         spin_lock(&ctx->lock);
1096         /*
1097          * Rotate the first entry last (works just fine for group counters too):
1098          */
1099         perf_disable();
1100         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1101                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1102                 break;
1103         }
1104         perf_enable();
1105
1106         spin_unlock(&ctx->lock);
1107 }
1108
1109 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1110 {
1111         struct perf_cpu_context *cpuctx;
1112         struct perf_counter_context *ctx;
1113
1114         if (!atomic_read(&nr_counters))
1115                 return;
1116
1117         cpuctx = &per_cpu(perf_cpu_context, cpu);
1118         ctx = &curr->perf_counter_ctx;
1119
1120         perf_adjust_freq(&cpuctx->ctx);
1121         perf_adjust_freq(ctx);
1122
1123         perf_counter_cpu_sched_out(cpuctx);
1124         __perf_counter_task_sched_out(ctx);
1125
1126         rotate_ctx(&cpuctx->ctx);
1127         rotate_ctx(ctx);
1128
1129         perf_counter_cpu_sched_in(cpuctx, cpu);
1130         perf_counter_task_sched_in(curr, cpu);
1131 }
1132
1133 /*
1134  * Cross CPU call to read the hardware counter
1135  */
1136 static void __read(void *info)
1137 {
1138         struct perf_counter *counter = info;
1139         struct perf_counter_context *ctx = counter->ctx;
1140         unsigned long flags;
1141
1142         local_irq_save(flags);
1143         if (ctx->is_active)
1144                 update_context_time(ctx);
1145         counter->pmu->read(counter);
1146         update_counter_times(counter);
1147         local_irq_restore(flags);
1148 }
1149
1150 static u64 perf_counter_read(struct perf_counter *counter)
1151 {
1152         /*
1153          * If counter is enabled and currently active on a CPU, update the
1154          * value in the counter structure:
1155          */
1156         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1157                 smp_call_function_single(counter->oncpu,
1158                                          __read, counter, 1);
1159         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1160                 update_counter_times(counter);
1161         }
1162
1163         return atomic64_read(&counter->count);
1164 }
1165
1166 static void put_context(struct perf_counter_context *ctx)
1167 {
1168         if (ctx->task)
1169                 put_task_struct(ctx->task);
1170 }
1171
1172 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1173 {
1174         struct perf_cpu_context *cpuctx;
1175         struct perf_counter_context *ctx;
1176         struct task_struct *task;
1177
1178         /*
1179          * If cpu is not a wildcard then this is a percpu counter:
1180          */
1181         if (cpu != -1) {
1182                 /* Must be root to operate on a CPU counter: */
1183                 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1184                         return ERR_PTR(-EACCES);
1185
1186                 if (cpu < 0 || cpu > num_possible_cpus())
1187                         return ERR_PTR(-EINVAL);
1188
1189                 /*
1190                  * We could be clever and allow to attach a counter to an
1191                  * offline CPU and activate it when the CPU comes up, but
1192                  * that's for later.
1193                  */
1194                 if (!cpu_isset(cpu, cpu_online_map))
1195                         return ERR_PTR(-ENODEV);
1196
1197                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1198                 ctx = &cpuctx->ctx;
1199
1200                 return ctx;
1201         }
1202
1203         rcu_read_lock();
1204         if (!pid)
1205                 task = current;
1206         else
1207                 task = find_task_by_vpid(pid);
1208         if (task)
1209                 get_task_struct(task);
1210         rcu_read_unlock();
1211
1212         if (!task)
1213                 return ERR_PTR(-ESRCH);
1214
1215         ctx = &task->perf_counter_ctx;
1216         ctx->task = task;
1217
1218         /* Reuse ptrace permission checks for now. */
1219         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1220                 put_context(ctx);
1221                 return ERR_PTR(-EACCES);
1222         }
1223
1224         return ctx;
1225 }
1226
1227 static void free_counter_rcu(struct rcu_head *head)
1228 {
1229         struct perf_counter *counter;
1230
1231         counter = container_of(head, struct perf_counter, rcu_head);
1232         kfree(counter);
1233 }
1234
1235 static void perf_pending_sync(struct perf_counter *counter);
1236
1237 static void free_counter(struct perf_counter *counter)
1238 {
1239         perf_pending_sync(counter);
1240
1241         atomic_dec(&nr_counters);
1242         if (counter->hw_event.mmap)
1243                 atomic_dec(&nr_mmap_tracking);
1244         if (counter->hw_event.munmap)
1245                 atomic_dec(&nr_munmap_tracking);
1246         if (counter->hw_event.comm)
1247                 atomic_dec(&nr_comm_tracking);
1248
1249         if (counter->destroy)
1250                 counter->destroy(counter);
1251
1252         call_rcu(&counter->rcu_head, free_counter_rcu);
1253 }
1254
1255 /*
1256  * Called when the last reference to the file is gone.
1257  */
1258 static int perf_release(struct inode *inode, struct file *file)
1259 {
1260         struct perf_counter *counter = file->private_data;
1261         struct perf_counter_context *ctx = counter->ctx;
1262
1263         file->private_data = NULL;
1264
1265         mutex_lock(&ctx->mutex);
1266         mutex_lock(&counter->mutex);
1267
1268         perf_counter_remove_from_context(counter);
1269
1270         mutex_unlock(&counter->mutex);
1271         mutex_unlock(&ctx->mutex);
1272
1273         free_counter(counter);
1274         put_context(ctx);
1275
1276         return 0;
1277 }
1278
1279 /*
1280  * Read the performance counter - simple non blocking version for now
1281  */
1282 static ssize_t
1283 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1284 {
1285         u64 values[3];
1286         int n;
1287
1288         /*
1289          * Return end-of-file for a read on a counter that is in
1290          * error state (i.e. because it was pinned but it couldn't be
1291          * scheduled on to the CPU at some point).
1292          */
1293         if (counter->state == PERF_COUNTER_STATE_ERROR)
1294                 return 0;
1295
1296         mutex_lock(&counter->mutex);
1297         values[0] = perf_counter_read(counter);
1298         n = 1;
1299         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1300                 values[n++] = counter->total_time_enabled +
1301                         atomic64_read(&counter->child_total_time_enabled);
1302         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1303                 values[n++] = counter->total_time_running +
1304                         atomic64_read(&counter->child_total_time_running);
1305         mutex_unlock(&counter->mutex);
1306
1307         if (count < n * sizeof(u64))
1308                 return -EINVAL;
1309         count = n * sizeof(u64);
1310
1311         if (copy_to_user(buf, values, count))
1312                 return -EFAULT;
1313
1314         return count;
1315 }
1316
1317 static ssize_t
1318 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1319 {
1320         struct perf_counter *counter = file->private_data;
1321
1322         return perf_read_hw(counter, buf, count);
1323 }
1324
1325 static unsigned int perf_poll(struct file *file, poll_table *wait)
1326 {
1327         struct perf_counter *counter = file->private_data;
1328         struct perf_mmap_data *data;
1329         unsigned int events = POLL_HUP;
1330
1331         rcu_read_lock();
1332         data = rcu_dereference(counter->data);
1333         if (data)
1334                 events = atomic_xchg(&data->poll, 0);
1335         rcu_read_unlock();
1336
1337         poll_wait(file, &counter->waitq, wait);
1338
1339         return events;
1340 }
1341
1342 static void perf_counter_reset(struct perf_counter *counter)
1343 {
1344         (void)perf_counter_read(counter);
1345         atomic64_set(&counter->count, 0);
1346         perf_counter_update_userpage(counter);
1347 }
1348
1349 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1350                                           void (*func)(struct perf_counter *))
1351 {
1352         struct perf_counter_context *ctx = counter->ctx;
1353         struct perf_counter *sibling;
1354
1355         spin_lock_irq(&ctx->lock);
1356         counter = counter->group_leader;
1357
1358         func(counter);
1359         list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1360                 func(sibling);
1361         spin_unlock_irq(&ctx->lock);
1362 }
1363
1364 static void perf_counter_for_each_child(struct perf_counter *counter,
1365                                         void (*func)(struct perf_counter *))
1366 {
1367         struct perf_counter *child;
1368
1369         mutex_lock(&counter->mutex);
1370         func(counter);
1371         list_for_each_entry(child, &counter->child_list, child_list)
1372                 func(child);
1373         mutex_unlock(&counter->mutex);
1374 }
1375
1376 static void perf_counter_for_each(struct perf_counter *counter,
1377                                   void (*func)(struct perf_counter *))
1378 {
1379         struct perf_counter *child;
1380
1381         mutex_lock(&counter->mutex);
1382         perf_counter_for_each_sibling(counter, func);
1383         list_for_each_entry(child, &counter->child_list, child_list)
1384                 perf_counter_for_each_sibling(child, func);
1385         mutex_unlock(&counter->mutex);
1386 }
1387
1388 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1389 {
1390         struct perf_counter *counter = file->private_data;
1391         void (*func)(struct perf_counter *);
1392         u32 flags = arg;
1393
1394         switch (cmd) {
1395         case PERF_COUNTER_IOC_ENABLE:
1396                 func = perf_counter_enable;
1397                 break;
1398         case PERF_COUNTER_IOC_DISABLE:
1399                 func = perf_counter_disable;
1400                 break;
1401         case PERF_COUNTER_IOC_RESET:
1402                 func = perf_counter_reset;
1403                 break;
1404
1405         case PERF_COUNTER_IOC_REFRESH:
1406                 return perf_counter_refresh(counter, arg);
1407         default:
1408                 return -ENOTTY;
1409         }
1410
1411         if (flags & PERF_IOC_FLAG_GROUP)
1412                 perf_counter_for_each(counter, func);
1413         else
1414                 perf_counter_for_each_child(counter, func);
1415
1416         return 0;
1417 }
1418
1419 /*
1420  * Callers need to ensure there can be no nesting of this function, otherwise
1421  * the seqlock logic goes bad. We can not serialize this because the arch
1422  * code calls this from NMI context.
1423  */
1424 void perf_counter_update_userpage(struct perf_counter *counter)
1425 {
1426         struct perf_mmap_data *data;
1427         struct perf_counter_mmap_page *userpg;
1428
1429         rcu_read_lock();
1430         data = rcu_dereference(counter->data);
1431         if (!data)
1432                 goto unlock;
1433
1434         userpg = data->user_page;
1435
1436         /*
1437          * Disable preemption so as to not let the corresponding user-space
1438          * spin too long if we get preempted.
1439          */
1440         preempt_disable();
1441         ++userpg->lock;
1442         barrier();
1443         userpg->index = counter->hw.idx;
1444         userpg->offset = atomic64_read(&counter->count);
1445         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1446                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1447
1448         barrier();
1449         ++userpg->lock;
1450         preempt_enable();
1451 unlock:
1452         rcu_read_unlock();
1453 }
1454
1455 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1456 {
1457         struct perf_counter *counter = vma->vm_file->private_data;
1458         struct perf_mmap_data *data;
1459         int ret = VM_FAULT_SIGBUS;
1460
1461         rcu_read_lock();
1462         data = rcu_dereference(counter->data);
1463         if (!data)
1464                 goto unlock;
1465
1466         if (vmf->pgoff == 0) {
1467                 vmf->page = virt_to_page(data->user_page);
1468         } else {
1469                 int nr = vmf->pgoff - 1;
1470
1471                 if ((unsigned)nr > data->nr_pages)
1472                         goto unlock;
1473
1474                 vmf->page = virt_to_page(data->data_pages[nr]);
1475         }
1476         get_page(vmf->page);
1477         ret = 0;
1478 unlock:
1479         rcu_read_unlock();
1480
1481         return ret;
1482 }
1483
1484 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1485 {
1486         struct perf_mmap_data *data;
1487         unsigned long size;
1488         int i;
1489
1490         WARN_ON(atomic_read(&counter->mmap_count));
1491
1492         size = sizeof(struct perf_mmap_data);
1493         size += nr_pages * sizeof(void *);
1494
1495         data = kzalloc(size, GFP_KERNEL);
1496         if (!data)
1497                 goto fail;
1498
1499         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1500         if (!data->user_page)
1501                 goto fail_user_page;
1502
1503         for (i = 0; i < nr_pages; i++) {
1504                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1505                 if (!data->data_pages[i])
1506                         goto fail_data_pages;
1507         }
1508
1509         data->nr_pages = nr_pages;
1510         atomic_set(&data->lock, -1);
1511
1512         rcu_assign_pointer(counter->data, data);
1513
1514         return 0;
1515
1516 fail_data_pages:
1517         for (i--; i >= 0; i--)
1518                 free_page((unsigned long)data->data_pages[i]);
1519
1520         free_page((unsigned long)data->user_page);
1521
1522 fail_user_page:
1523         kfree(data);
1524
1525 fail:
1526         return -ENOMEM;
1527 }
1528
1529 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1530 {
1531         struct perf_mmap_data *data = container_of(rcu_head,
1532                         struct perf_mmap_data, rcu_head);
1533         int i;
1534
1535         free_page((unsigned long)data->user_page);
1536         for (i = 0; i < data->nr_pages; i++)
1537                 free_page((unsigned long)data->data_pages[i]);
1538         kfree(data);
1539 }
1540
1541 static void perf_mmap_data_free(struct perf_counter *counter)
1542 {
1543         struct perf_mmap_data *data = counter->data;
1544
1545         WARN_ON(atomic_read(&counter->mmap_count));
1546
1547         rcu_assign_pointer(counter->data, NULL);
1548         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1549 }
1550
1551 static void perf_mmap_open(struct vm_area_struct *vma)
1552 {
1553         struct perf_counter *counter = vma->vm_file->private_data;
1554
1555         atomic_inc(&counter->mmap_count);
1556 }
1557
1558 static void perf_mmap_close(struct vm_area_struct *vma)
1559 {
1560         struct perf_counter *counter = vma->vm_file->private_data;
1561
1562         if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1563                                       &counter->mmap_mutex)) {
1564                 struct user_struct *user = current_user();
1565
1566                 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1567                 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1568                 perf_mmap_data_free(counter);
1569                 mutex_unlock(&counter->mmap_mutex);
1570         }
1571 }
1572
1573 static struct vm_operations_struct perf_mmap_vmops = {
1574         .open  = perf_mmap_open,
1575         .close = perf_mmap_close,
1576         .fault = perf_mmap_fault,
1577 };
1578
1579 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1580 {
1581         struct perf_counter *counter = file->private_data;
1582         struct user_struct *user = current_user();
1583         unsigned long vma_size;
1584         unsigned long nr_pages;
1585         unsigned long user_locked, user_lock_limit;
1586         unsigned long locked, lock_limit;
1587         long user_extra, extra;
1588         int ret = 0;
1589
1590         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1591                 return -EINVAL;
1592
1593         vma_size = vma->vm_end - vma->vm_start;
1594         nr_pages = (vma_size / PAGE_SIZE) - 1;
1595
1596         /*
1597          * If we have data pages ensure they're a power-of-two number, so we
1598          * can do bitmasks instead of modulo.
1599          */
1600         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1601                 return -EINVAL;
1602
1603         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1604                 return -EINVAL;
1605
1606         if (vma->vm_pgoff != 0)
1607                 return -EINVAL;
1608
1609         mutex_lock(&counter->mmap_mutex);
1610         if (atomic_inc_not_zero(&counter->mmap_count)) {
1611                 if (nr_pages != counter->data->nr_pages)
1612                         ret = -EINVAL;
1613                 goto unlock;
1614         }
1615
1616         user_extra = nr_pages + 1;
1617         user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1618         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1619
1620         extra = 0;
1621         if (user_locked > user_lock_limit)
1622                 extra = user_locked - user_lock_limit;
1623
1624         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1625         lock_limit >>= PAGE_SHIFT;
1626         locked = vma->vm_mm->locked_vm + extra;
1627
1628         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1629                 ret = -EPERM;
1630                 goto unlock;
1631         }
1632
1633         WARN_ON(counter->data);
1634         ret = perf_mmap_data_alloc(counter, nr_pages);
1635         if (ret)
1636                 goto unlock;
1637
1638         atomic_set(&counter->mmap_count, 1);
1639         atomic_long_add(user_extra, &user->locked_vm);
1640         vma->vm_mm->locked_vm += extra;
1641         counter->data->nr_locked = extra;
1642 unlock:
1643         mutex_unlock(&counter->mmap_mutex);
1644
1645         vma->vm_flags &= ~VM_MAYWRITE;
1646         vma->vm_flags |= VM_RESERVED;
1647         vma->vm_ops = &perf_mmap_vmops;
1648
1649         return ret;
1650 }
1651
1652 static int perf_fasync(int fd, struct file *filp, int on)
1653 {
1654         struct perf_counter *counter = filp->private_data;
1655         struct inode *inode = filp->f_path.dentry->d_inode;
1656         int retval;
1657
1658         mutex_lock(&inode->i_mutex);
1659         retval = fasync_helper(fd, filp, on, &counter->fasync);
1660         mutex_unlock(&inode->i_mutex);
1661
1662         if (retval < 0)
1663                 return retval;
1664
1665         return 0;
1666 }
1667
1668 static const struct file_operations perf_fops = {
1669         .release                = perf_release,
1670         .read                   = perf_read,
1671         .poll                   = perf_poll,
1672         .unlocked_ioctl         = perf_ioctl,
1673         .compat_ioctl           = perf_ioctl,
1674         .mmap                   = perf_mmap,
1675         .fasync                 = perf_fasync,
1676 };
1677
1678 /*
1679  * Perf counter wakeup
1680  *
1681  * If there's data, ensure we set the poll() state and publish everything
1682  * to user-space before waking everybody up.
1683  */
1684
1685 void perf_counter_wakeup(struct perf_counter *counter)
1686 {
1687         wake_up_all(&counter->waitq);
1688
1689         if (counter->pending_kill) {
1690                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1691                 counter->pending_kill = 0;
1692         }
1693 }
1694
1695 /*
1696  * Pending wakeups
1697  *
1698  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1699  *
1700  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1701  * single linked list and use cmpxchg() to add entries lockless.
1702  */
1703
1704 static void perf_pending_counter(struct perf_pending_entry *entry)
1705 {
1706         struct perf_counter *counter = container_of(entry,
1707                         struct perf_counter, pending);
1708
1709         if (counter->pending_disable) {
1710                 counter->pending_disable = 0;
1711                 perf_counter_disable(counter);
1712         }
1713
1714         if (counter->pending_wakeup) {
1715                 counter->pending_wakeup = 0;
1716                 perf_counter_wakeup(counter);
1717         }
1718 }
1719
1720 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1721
1722 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1723         PENDING_TAIL,
1724 };
1725
1726 static void perf_pending_queue(struct perf_pending_entry *entry,
1727                                void (*func)(struct perf_pending_entry *))
1728 {
1729         struct perf_pending_entry **head;
1730
1731         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1732                 return;
1733
1734         entry->func = func;
1735
1736         head = &get_cpu_var(perf_pending_head);
1737
1738         do {
1739                 entry->next = *head;
1740         } while (cmpxchg(head, entry->next, entry) != entry->next);
1741
1742         set_perf_counter_pending();
1743
1744         put_cpu_var(perf_pending_head);
1745 }
1746
1747 static int __perf_pending_run(void)
1748 {
1749         struct perf_pending_entry *list;
1750         int nr = 0;
1751
1752         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1753         while (list != PENDING_TAIL) {
1754                 void (*func)(struct perf_pending_entry *);
1755                 struct perf_pending_entry *entry = list;
1756
1757                 list = list->next;
1758
1759                 func = entry->func;
1760                 entry->next = NULL;
1761                 /*
1762                  * Ensure we observe the unqueue before we issue the wakeup,
1763                  * so that we won't be waiting forever.
1764                  * -- see perf_not_pending().
1765                  */
1766                 smp_wmb();
1767
1768                 func(entry);
1769                 nr++;
1770         }
1771
1772         return nr;
1773 }
1774
1775 static inline int perf_not_pending(struct perf_counter *counter)
1776 {
1777         /*
1778          * If we flush on whatever cpu we run, there is a chance we don't
1779          * need to wait.
1780          */
1781         get_cpu();
1782         __perf_pending_run();
1783         put_cpu();
1784
1785         /*
1786          * Ensure we see the proper queue state before going to sleep
1787          * so that we do not miss the wakeup. -- see perf_pending_handle()
1788          */
1789         smp_rmb();
1790         return counter->pending.next == NULL;
1791 }
1792
1793 static void perf_pending_sync(struct perf_counter *counter)
1794 {
1795         wait_event(counter->waitq, perf_not_pending(counter));
1796 }
1797
1798 void perf_counter_do_pending(void)
1799 {
1800         __perf_pending_run();
1801 }
1802
1803 /*
1804  * Callchain support -- arch specific
1805  */
1806
1807 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1808 {
1809         return NULL;
1810 }
1811
1812 /*
1813  * Output
1814  */
1815
1816 struct perf_output_handle {
1817         struct perf_counter     *counter;
1818         struct perf_mmap_data   *data;
1819         unsigned int            offset;
1820         unsigned int            head;
1821         int                     nmi;
1822         int                     overflow;
1823         int                     locked;
1824         unsigned long           flags;
1825 };
1826
1827 static void perf_output_wakeup(struct perf_output_handle *handle)
1828 {
1829         atomic_set(&handle->data->poll, POLL_IN);
1830
1831         if (handle->nmi) {
1832                 handle->counter->pending_wakeup = 1;
1833                 perf_pending_queue(&handle->counter->pending,
1834                                    perf_pending_counter);
1835         } else
1836                 perf_counter_wakeup(handle->counter);
1837 }
1838
1839 /*
1840  * Curious locking construct.
1841  *
1842  * We need to ensure a later event doesn't publish a head when a former
1843  * event isn't done writing. However since we need to deal with NMIs we
1844  * cannot fully serialize things.
1845  *
1846  * What we do is serialize between CPUs so we only have to deal with NMI
1847  * nesting on a single CPU.
1848  *
1849  * We only publish the head (and generate a wakeup) when the outer-most
1850  * event completes.
1851  */
1852 static void perf_output_lock(struct perf_output_handle *handle)
1853 {
1854         struct perf_mmap_data *data = handle->data;
1855         int cpu;
1856
1857         handle->locked = 0;
1858
1859         local_irq_save(handle->flags);
1860         cpu = smp_processor_id();
1861
1862         if (in_nmi() && atomic_read(&data->lock) == cpu)
1863                 return;
1864
1865         while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1866                 cpu_relax();
1867
1868         handle->locked = 1;
1869 }
1870
1871 static void perf_output_unlock(struct perf_output_handle *handle)
1872 {
1873         struct perf_mmap_data *data = handle->data;
1874         int head, cpu;
1875
1876         data->done_head = data->head;
1877
1878         if (!handle->locked)
1879                 goto out;
1880
1881 again:
1882         /*
1883          * The xchg implies a full barrier that ensures all writes are done
1884          * before we publish the new head, matched by a rmb() in userspace when
1885          * reading this position.
1886          */
1887         while ((head = atomic_xchg(&data->done_head, 0)))
1888                 data->user_page->data_head = head;
1889
1890         /*
1891          * NMI can happen here, which means we can miss a done_head update.
1892          */
1893
1894         cpu = atomic_xchg(&data->lock, -1);
1895         WARN_ON_ONCE(cpu != smp_processor_id());
1896
1897         /*
1898          * Therefore we have to validate we did not indeed do so.
1899          */
1900         if (unlikely(atomic_read(&data->done_head))) {
1901                 /*
1902                  * Since we had it locked, we can lock it again.
1903                  */
1904                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1905                         cpu_relax();
1906
1907                 goto again;
1908         }
1909
1910         if (atomic_xchg(&data->wakeup, 0))
1911                 perf_output_wakeup(handle);
1912 out:
1913         local_irq_restore(handle->flags);
1914 }
1915
1916 static int perf_output_begin(struct perf_output_handle *handle,
1917                              struct perf_counter *counter, unsigned int size,
1918                              int nmi, int overflow)
1919 {
1920         struct perf_mmap_data *data;
1921         unsigned int offset, head;
1922
1923         /*
1924          * For inherited counters we send all the output towards the parent.
1925          */
1926         if (counter->parent)
1927                 counter = counter->parent;
1928
1929         rcu_read_lock();
1930         data = rcu_dereference(counter->data);
1931         if (!data)
1932                 goto out;
1933
1934         handle->data     = data;
1935         handle->counter  = counter;
1936         handle->nmi      = nmi;
1937         handle->overflow = overflow;
1938
1939         if (!data->nr_pages)
1940                 goto fail;
1941
1942         perf_output_lock(handle);
1943
1944         do {
1945                 offset = head = atomic_read(&data->head);
1946                 head += size;
1947         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1948
1949         handle->offset  = offset;
1950         handle->head    = head;
1951
1952         if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
1953                 atomic_set(&data->wakeup, 1);
1954
1955         return 0;
1956
1957 fail:
1958         perf_output_wakeup(handle);
1959 out:
1960         rcu_read_unlock();
1961
1962         return -ENOSPC;
1963 }
1964
1965 static void perf_output_copy(struct perf_output_handle *handle,
1966                              void *buf, unsigned int len)
1967 {
1968         unsigned int pages_mask;
1969         unsigned int offset;
1970         unsigned int size;
1971         void **pages;
1972
1973         offset          = handle->offset;
1974         pages_mask      = handle->data->nr_pages - 1;
1975         pages           = handle->data->data_pages;
1976
1977         do {
1978                 unsigned int page_offset;
1979                 int nr;
1980
1981                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
1982                 page_offset = offset & (PAGE_SIZE - 1);
1983                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1984
1985                 memcpy(pages[nr] + page_offset, buf, size);
1986
1987                 len         -= size;
1988                 buf         += size;
1989                 offset      += size;
1990         } while (len);
1991
1992         handle->offset = offset;
1993
1994         /*
1995          * Check we didn't copy past our reservation window, taking the
1996          * possible unsigned int wrap into account.
1997          */
1998         WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
1999 }
2000
2001 #define perf_output_put(handle, x) \
2002         perf_output_copy((handle), &(x), sizeof(x))
2003
2004 static void perf_output_end(struct perf_output_handle *handle)
2005 {
2006         struct perf_counter *counter = handle->counter;
2007         struct perf_mmap_data *data = handle->data;
2008
2009         int wakeup_events = counter->hw_event.wakeup_events;
2010
2011         if (handle->overflow && wakeup_events) {
2012                 int events = atomic_inc_return(&data->events);
2013                 if (events >= wakeup_events) {
2014                         atomic_sub(wakeup_events, &data->events);
2015                         atomic_set(&data->wakeup, 1);
2016                 }
2017         }
2018
2019         perf_output_unlock(handle);
2020         rcu_read_unlock();
2021 }
2022
2023 static void perf_counter_output(struct perf_counter *counter,
2024                                 int nmi, struct pt_regs *regs, u64 addr)
2025 {
2026         int ret;
2027         u64 record_type = counter->hw_event.record_type;
2028         struct perf_output_handle handle;
2029         struct perf_event_header header;
2030         u64 ip;
2031         struct {
2032                 u32 pid, tid;
2033         } tid_entry;
2034         struct {
2035                 u64 event;
2036                 u64 counter;
2037         } group_entry;
2038         struct perf_callchain_entry *callchain = NULL;
2039         int callchain_size = 0;
2040         u64 time;
2041         struct {
2042                 u32 cpu, reserved;
2043         } cpu_entry;
2044
2045         header.type = 0;
2046         header.size = sizeof(header);
2047
2048         header.misc = PERF_EVENT_MISC_OVERFLOW;
2049         header.misc |= perf_misc_flags(regs);
2050
2051         if (record_type & PERF_RECORD_IP) {
2052                 ip = perf_instruction_pointer(regs);
2053                 header.type |= PERF_RECORD_IP;
2054                 header.size += sizeof(ip);
2055         }
2056
2057         if (record_type & PERF_RECORD_TID) {
2058                 /* namespace issues */
2059                 tid_entry.pid = current->group_leader->pid;
2060                 tid_entry.tid = current->pid;
2061
2062                 header.type |= PERF_RECORD_TID;
2063                 header.size += sizeof(tid_entry);
2064         }
2065
2066         if (record_type & PERF_RECORD_TIME) {
2067                 /*
2068                  * Maybe do better on x86 and provide cpu_clock_nmi()
2069                  */
2070                 time = sched_clock();
2071
2072                 header.type |= PERF_RECORD_TIME;
2073                 header.size += sizeof(u64);
2074         }
2075
2076         if (record_type & PERF_RECORD_ADDR) {
2077                 header.type |= PERF_RECORD_ADDR;
2078                 header.size += sizeof(u64);
2079         }
2080
2081         if (record_type & PERF_RECORD_CONFIG) {
2082                 header.type |= PERF_RECORD_CONFIG;
2083                 header.size += sizeof(u64);
2084         }
2085
2086         if (record_type & PERF_RECORD_CPU) {
2087                 header.type |= PERF_RECORD_CPU;
2088                 header.size += sizeof(cpu_entry);
2089
2090                 cpu_entry.cpu = raw_smp_processor_id();
2091         }
2092
2093         if (record_type & PERF_RECORD_GROUP) {
2094                 header.type |= PERF_RECORD_GROUP;
2095                 header.size += sizeof(u64) +
2096                         counter->nr_siblings * sizeof(group_entry);
2097         }
2098
2099         if (record_type & PERF_RECORD_CALLCHAIN) {
2100                 callchain = perf_callchain(regs);
2101
2102                 if (callchain) {
2103                         callchain_size = (1 + callchain->nr) * sizeof(u64);
2104
2105                         header.type |= PERF_RECORD_CALLCHAIN;
2106                         header.size += callchain_size;
2107                 }
2108         }
2109
2110         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2111         if (ret)
2112                 return;
2113
2114         perf_output_put(&handle, header);
2115
2116         if (record_type & PERF_RECORD_IP)
2117                 perf_output_put(&handle, ip);
2118
2119         if (record_type & PERF_RECORD_TID)
2120                 perf_output_put(&handle, tid_entry);
2121
2122         if (record_type & PERF_RECORD_TIME)
2123                 perf_output_put(&handle, time);
2124
2125         if (record_type & PERF_RECORD_ADDR)
2126                 perf_output_put(&handle, addr);
2127
2128         if (record_type & PERF_RECORD_CONFIG)
2129                 perf_output_put(&handle, counter->hw_event.config);
2130
2131         if (record_type & PERF_RECORD_CPU)
2132                 perf_output_put(&handle, cpu_entry);
2133
2134         /*
2135          * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2136          */
2137         if (record_type & PERF_RECORD_GROUP) {
2138                 struct perf_counter *leader, *sub;
2139                 u64 nr = counter->nr_siblings;
2140
2141                 perf_output_put(&handle, nr);
2142
2143                 leader = counter->group_leader;
2144                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2145                         if (sub != counter)
2146                                 sub->pmu->read(sub);
2147
2148                         group_entry.event = sub->hw_event.config;
2149                         group_entry.counter = atomic64_read(&sub->count);
2150
2151                         perf_output_put(&handle, group_entry);
2152                 }
2153         }
2154
2155         if (callchain)
2156                 perf_output_copy(&handle, callchain, callchain_size);
2157
2158         perf_output_end(&handle);
2159 }
2160
2161 /*
2162  * comm tracking
2163  */
2164
2165 struct perf_comm_event {
2166         struct task_struct      *task;
2167         char                    *comm;
2168         int                     comm_size;
2169
2170         struct {
2171                 struct perf_event_header        header;
2172
2173                 u32                             pid;
2174                 u32                             tid;
2175         } event;
2176 };
2177
2178 static void perf_counter_comm_output(struct perf_counter *counter,
2179                                      struct perf_comm_event *comm_event)
2180 {
2181         struct perf_output_handle handle;
2182         int size = comm_event->event.header.size;
2183         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2184
2185         if (ret)
2186                 return;
2187
2188         perf_output_put(&handle, comm_event->event);
2189         perf_output_copy(&handle, comm_event->comm,
2190                                    comm_event->comm_size);
2191         perf_output_end(&handle);
2192 }
2193
2194 static int perf_counter_comm_match(struct perf_counter *counter,
2195                                    struct perf_comm_event *comm_event)
2196 {
2197         if (counter->hw_event.comm &&
2198             comm_event->event.header.type == PERF_EVENT_COMM)
2199                 return 1;
2200
2201         return 0;
2202 }
2203
2204 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2205                                   struct perf_comm_event *comm_event)
2206 {
2207         struct perf_counter *counter;
2208
2209         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2210                 return;
2211
2212         rcu_read_lock();
2213         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2214                 if (perf_counter_comm_match(counter, comm_event))
2215                         perf_counter_comm_output(counter, comm_event);
2216         }
2217         rcu_read_unlock();
2218 }
2219
2220 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2221 {
2222         struct perf_cpu_context *cpuctx;
2223         unsigned int size;
2224         char *comm = comm_event->task->comm;
2225
2226         size = ALIGN(strlen(comm)+1, sizeof(u64));
2227
2228         comm_event->comm = comm;
2229         comm_event->comm_size = size;
2230
2231         comm_event->event.header.size = sizeof(comm_event->event) + size;
2232
2233         cpuctx = &get_cpu_var(perf_cpu_context);
2234         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2235         put_cpu_var(perf_cpu_context);
2236
2237         perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
2238 }
2239
2240 void perf_counter_comm(struct task_struct *task)
2241 {
2242         struct perf_comm_event comm_event;
2243
2244         if (!atomic_read(&nr_comm_tracking))
2245                 return;
2246        
2247         comm_event = (struct perf_comm_event){
2248                 .task   = task,
2249                 .event  = {
2250                         .header = { .type = PERF_EVENT_COMM, },
2251                         .pid    = task->group_leader->pid,
2252                         .tid    = task->pid,
2253                 },
2254         };
2255
2256         perf_counter_comm_event(&comm_event);
2257 }
2258
2259 /*
2260  * mmap tracking
2261  */
2262
2263 struct perf_mmap_event {
2264         struct file     *file;
2265         char            *file_name;
2266         int             file_size;
2267
2268         struct {
2269                 struct perf_event_header        header;
2270
2271                 u32                             pid;
2272                 u32                             tid;
2273                 u64                             start;
2274                 u64                             len;
2275                 u64                             pgoff;
2276         } event;
2277 };
2278
2279 static void perf_counter_mmap_output(struct perf_counter *counter,
2280                                      struct perf_mmap_event *mmap_event)
2281 {
2282         struct perf_output_handle handle;
2283         int size = mmap_event->event.header.size;
2284         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2285
2286         if (ret)
2287                 return;
2288
2289         perf_output_put(&handle, mmap_event->event);
2290         perf_output_copy(&handle, mmap_event->file_name,
2291                                    mmap_event->file_size);
2292         perf_output_end(&handle);
2293 }
2294
2295 static int perf_counter_mmap_match(struct perf_counter *counter,
2296                                    struct perf_mmap_event *mmap_event)
2297 {
2298         if (counter->hw_event.mmap &&
2299             mmap_event->event.header.type == PERF_EVENT_MMAP)
2300                 return 1;
2301
2302         if (counter->hw_event.munmap &&
2303             mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2304                 return 1;
2305
2306         return 0;
2307 }
2308
2309 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2310                                   struct perf_mmap_event *mmap_event)
2311 {
2312         struct perf_counter *counter;
2313
2314         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2315                 return;
2316
2317         rcu_read_lock();
2318         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2319                 if (perf_counter_mmap_match(counter, mmap_event))
2320                         perf_counter_mmap_output(counter, mmap_event);
2321         }
2322         rcu_read_unlock();
2323 }
2324
2325 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2326 {
2327         struct perf_cpu_context *cpuctx;
2328         struct file *file = mmap_event->file;
2329         unsigned int size;
2330         char tmp[16];
2331         char *buf = NULL;
2332         char *name;
2333
2334         if (file) {
2335                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2336                 if (!buf) {
2337                         name = strncpy(tmp, "//enomem", sizeof(tmp));
2338                         goto got_name;
2339                 }
2340                 name = d_path(&file->f_path, buf, PATH_MAX);
2341                 if (IS_ERR(name)) {
2342                         name = strncpy(tmp, "//toolong", sizeof(tmp));
2343                         goto got_name;
2344                 }
2345         } else {
2346                 name = strncpy(tmp, "//anon", sizeof(tmp));
2347                 goto got_name;
2348         }
2349
2350 got_name:
2351         size = ALIGN(strlen(name)+1, sizeof(u64));
2352
2353         mmap_event->file_name = name;
2354         mmap_event->file_size = size;
2355
2356         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2357
2358         cpuctx = &get_cpu_var(perf_cpu_context);
2359         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2360         put_cpu_var(perf_cpu_context);
2361
2362         perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2363
2364         kfree(buf);
2365 }
2366
2367 void perf_counter_mmap(unsigned long addr, unsigned long len,
2368                        unsigned long pgoff, struct file *file)
2369 {
2370         struct perf_mmap_event mmap_event;
2371
2372         if (!atomic_read(&nr_mmap_tracking))
2373                 return;
2374
2375         mmap_event = (struct perf_mmap_event){
2376                 .file   = file,
2377                 .event  = {
2378                         .header = { .type = PERF_EVENT_MMAP, },
2379                         .pid    = current->group_leader->pid,
2380                         .tid    = current->pid,
2381                         .start  = addr,
2382                         .len    = len,
2383                         .pgoff  = pgoff,
2384                 },
2385         };
2386
2387         perf_counter_mmap_event(&mmap_event);
2388 }
2389
2390 void perf_counter_munmap(unsigned long addr, unsigned long len,
2391                          unsigned long pgoff, struct file *file)
2392 {
2393         struct perf_mmap_event mmap_event;
2394
2395         if (!atomic_read(&nr_munmap_tracking))
2396                 return;
2397
2398         mmap_event = (struct perf_mmap_event){
2399                 .file   = file,
2400                 .event  = {
2401                         .header = { .type = PERF_EVENT_MUNMAP, },
2402                         .pid    = current->group_leader->pid,
2403                         .tid    = current->pid,
2404                         .start  = addr,
2405                         .len    = len,
2406                         .pgoff  = pgoff,
2407                 },
2408         };
2409
2410         perf_counter_mmap_event(&mmap_event);
2411 }
2412
2413 /*
2414  *
2415  */
2416
2417 static void perf_log_period(struct perf_counter *counter, u64 period)
2418 {
2419         struct perf_output_handle handle;
2420         int ret;
2421
2422         struct {
2423                 struct perf_event_header        header;
2424                 u64                             time;
2425                 u64                             period;
2426         } freq_event = {
2427                 .header = {
2428                         .type = PERF_EVENT_PERIOD,
2429                         .misc = 0,
2430                         .size = sizeof(freq_event),
2431                 },
2432                 .time = sched_clock(),
2433                 .period = period,
2434         };
2435
2436         if (counter->hw.irq_period == period)
2437                 return;
2438
2439         ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
2440         if (ret)
2441                 return;
2442
2443         perf_output_put(&handle, freq_event);
2444         perf_output_end(&handle);
2445 }
2446
2447 /*
2448  * Generic counter overflow handling.
2449  */
2450
2451 int perf_counter_overflow(struct perf_counter *counter,
2452                           int nmi, struct pt_regs *regs, u64 addr)
2453 {
2454         int events = atomic_read(&counter->event_limit);
2455         int ret = 0;
2456
2457         counter->hw.interrupts++;
2458
2459         /*
2460          * XXX event_limit might not quite work as expected on inherited
2461          * counters
2462          */
2463
2464         counter->pending_kill = POLL_IN;
2465         if (events && atomic_dec_and_test(&counter->event_limit)) {
2466                 ret = 1;
2467                 counter->pending_kill = POLL_HUP;
2468                 if (nmi) {
2469                         counter->pending_disable = 1;
2470                         perf_pending_queue(&counter->pending,
2471                                            perf_pending_counter);
2472                 } else
2473                         perf_counter_disable(counter);
2474         }
2475
2476         perf_counter_output(counter, nmi, regs, addr);
2477         return ret;
2478 }
2479
2480 /*
2481  * Generic software counter infrastructure
2482  */
2483
2484 static void perf_swcounter_update(struct perf_counter *counter)
2485 {
2486         struct hw_perf_counter *hwc = &counter->hw;
2487         u64 prev, now;
2488         s64 delta;
2489
2490 again:
2491         prev = atomic64_read(&hwc->prev_count);
2492         now = atomic64_read(&hwc->count);
2493         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2494                 goto again;
2495
2496         delta = now - prev;
2497
2498         atomic64_add(delta, &counter->count);
2499         atomic64_sub(delta, &hwc->period_left);
2500 }
2501
2502 static void perf_swcounter_set_period(struct perf_counter *counter)
2503 {
2504         struct hw_perf_counter *hwc = &counter->hw;
2505         s64 left = atomic64_read(&hwc->period_left);
2506         s64 period = hwc->irq_period;
2507
2508         if (unlikely(left <= -period)) {
2509                 left = period;
2510                 atomic64_set(&hwc->period_left, left);
2511         }
2512
2513         if (unlikely(left <= 0)) {
2514                 left += period;
2515                 atomic64_add(period, &hwc->period_left);
2516         }
2517
2518         atomic64_set(&hwc->prev_count, -left);
2519         atomic64_set(&hwc->count, -left);
2520 }
2521
2522 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2523 {
2524         enum hrtimer_restart ret = HRTIMER_RESTART;
2525         struct perf_counter *counter;
2526         struct pt_regs *regs;
2527         u64 period;
2528
2529         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2530         counter->pmu->read(counter);
2531
2532         regs = get_irq_regs();
2533         /*
2534          * In case we exclude kernel IPs or are somehow not in interrupt
2535          * context, provide the next best thing, the user IP.
2536          */
2537         if ((counter->hw_event.exclude_kernel || !regs) &&
2538                         !counter->hw_event.exclude_user)
2539                 regs = task_pt_regs(current);
2540
2541         if (regs) {
2542                 if (perf_counter_overflow(counter, 0, regs, 0))
2543                         ret = HRTIMER_NORESTART;
2544         }
2545
2546         period = max_t(u64, 10000, counter->hw.irq_period);
2547         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2548
2549         return ret;
2550 }
2551
2552 static void perf_swcounter_overflow(struct perf_counter *counter,
2553                                     int nmi, struct pt_regs *regs, u64 addr)
2554 {
2555         perf_swcounter_update(counter);
2556         perf_swcounter_set_period(counter);
2557         if (perf_counter_overflow(counter, nmi, regs, addr))
2558                 /* soft-disable the counter */
2559                 ;
2560
2561 }
2562
2563 static int perf_swcounter_match(struct perf_counter *counter,
2564                                 enum perf_event_types type,
2565                                 u32 event, struct pt_regs *regs)
2566 {
2567         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2568                 return 0;
2569
2570         if (perf_event_raw(&counter->hw_event))
2571                 return 0;
2572
2573         if (perf_event_type(&counter->hw_event) != type)
2574                 return 0;
2575
2576         if (perf_event_id(&counter->hw_event) != event)
2577                 return 0;
2578
2579         if (counter->hw_event.exclude_user && user_mode(regs))
2580                 return 0;
2581
2582         if (counter->hw_event.exclude_kernel && !user_mode(regs))
2583                 return 0;
2584
2585         return 1;
2586 }
2587
2588 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2589                                int nmi, struct pt_regs *regs, u64 addr)
2590 {
2591         int neg = atomic64_add_negative(nr, &counter->hw.count);
2592         if (counter->hw.irq_period && !neg)
2593                 perf_swcounter_overflow(counter, nmi, regs, addr);
2594 }
2595
2596 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2597                                      enum perf_event_types type, u32 event,
2598                                      u64 nr, int nmi, struct pt_regs *regs,
2599                                      u64 addr)
2600 {
2601         struct perf_counter *counter;
2602
2603         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2604                 return;
2605
2606         rcu_read_lock();
2607         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2608                 if (perf_swcounter_match(counter, type, event, regs))
2609                         perf_swcounter_add(counter, nr, nmi, regs, addr);
2610         }
2611         rcu_read_unlock();
2612 }
2613
2614 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2615 {
2616         if (in_nmi())
2617                 return &cpuctx->recursion[3];
2618
2619         if (in_irq())
2620                 return &cpuctx->recursion[2];
2621
2622         if (in_softirq())
2623                 return &cpuctx->recursion[1];
2624
2625         return &cpuctx->recursion[0];
2626 }
2627
2628 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2629                                    u64 nr, int nmi, struct pt_regs *regs,
2630                                    u64 addr)
2631 {
2632         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2633         int *recursion = perf_swcounter_recursion_context(cpuctx);
2634
2635         if (*recursion)
2636                 goto out;
2637
2638         (*recursion)++;
2639         barrier();
2640
2641         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2642                                  nr, nmi, regs, addr);
2643         if (cpuctx->task_ctx) {
2644                 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2645                                          nr, nmi, regs, addr);
2646         }
2647
2648         barrier();
2649         (*recursion)--;
2650
2651 out:
2652         put_cpu_var(perf_cpu_context);
2653 }
2654
2655 void
2656 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2657 {
2658         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2659 }
2660
2661 static void perf_swcounter_read(struct perf_counter *counter)
2662 {
2663         perf_swcounter_update(counter);
2664 }
2665
2666 static int perf_swcounter_enable(struct perf_counter *counter)
2667 {
2668         perf_swcounter_set_period(counter);
2669         return 0;
2670 }
2671
2672 static void perf_swcounter_disable(struct perf_counter *counter)
2673 {
2674         perf_swcounter_update(counter);
2675 }
2676
2677 static const struct pmu perf_ops_generic = {
2678         .enable         = perf_swcounter_enable,
2679         .disable        = perf_swcounter_disable,
2680         .read           = perf_swcounter_read,
2681 };
2682
2683 /*
2684  * Software counter: cpu wall time clock
2685  */
2686
2687 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2688 {
2689         int cpu = raw_smp_processor_id();
2690         s64 prev;
2691         u64 now;
2692
2693         now = cpu_clock(cpu);
2694         prev = atomic64_read(&counter->hw.prev_count);
2695         atomic64_set(&counter->hw.prev_count, now);
2696         atomic64_add(now - prev, &counter->count);
2697 }
2698
2699 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2700 {
2701         struct hw_perf_counter *hwc = &counter->hw;
2702         int cpu = raw_smp_processor_id();
2703
2704         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2705         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2706         hwc->hrtimer.function = perf_swcounter_hrtimer;
2707         if (hwc->irq_period) {
2708                 u64 period = max_t(u64, 10000, hwc->irq_period);
2709                 __hrtimer_start_range_ns(&hwc->hrtimer,
2710                                 ns_to_ktime(period), 0,
2711                                 HRTIMER_MODE_REL, 0);
2712         }
2713
2714         return 0;
2715 }
2716
2717 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2718 {
2719         if (counter->hw.irq_period)
2720                 hrtimer_cancel(&counter->hw.hrtimer);
2721         cpu_clock_perf_counter_update(counter);
2722 }
2723
2724 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2725 {
2726         cpu_clock_perf_counter_update(counter);
2727 }
2728
2729 static const struct pmu perf_ops_cpu_clock = {
2730         .enable         = cpu_clock_perf_counter_enable,
2731         .disable        = cpu_clock_perf_counter_disable,
2732         .read           = cpu_clock_perf_counter_read,
2733 };
2734
2735 /*
2736  * Software counter: task time clock
2737  */
2738
2739 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2740 {
2741         u64 prev;
2742         s64 delta;
2743
2744         prev = atomic64_xchg(&counter->hw.prev_count, now);
2745         delta = now - prev;
2746         atomic64_add(delta, &counter->count);
2747 }
2748
2749 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2750 {
2751         struct hw_perf_counter *hwc = &counter->hw;
2752         u64 now;
2753
2754         now = counter->ctx->time;
2755
2756         atomic64_set(&hwc->prev_count, now);
2757         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2758         hwc->hrtimer.function = perf_swcounter_hrtimer;
2759         if (hwc->irq_period) {
2760                 u64 period = max_t(u64, 10000, hwc->irq_period);
2761                 __hrtimer_start_range_ns(&hwc->hrtimer,
2762                                 ns_to_ktime(period), 0,
2763                                 HRTIMER_MODE_REL, 0);
2764         }
2765
2766         return 0;
2767 }
2768
2769 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2770 {
2771         if (counter->hw.irq_period)
2772                 hrtimer_cancel(&counter->hw.hrtimer);
2773         task_clock_perf_counter_update(counter, counter->ctx->time);
2774
2775 }
2776
2777 static void task_clock_perf_counter_read(struct perf_counter *counter)
2778 {
2779         u64 time;
2780
2781         if (!in_nmi()) {
2782                 update_context_time(counter->ctx);
2783                 time = counter->ctx->time;
2784         } else {
2785                 u64 now = perf_clock();
2786                 u64 delta = now - counter->ctx->timestamp;
2787                 time = counter->ctx->time + delta;
2788         }
2789
2790         task_clock_perf_counter_update(counter, time);
2791 }
2792
2793 static const struct pmu perf_ops_task_clock = {
2794         .enable         = task_clock_perf_counter_enable,
2795         .disable        = task_clock_perf_counter_disable,
2796         .read           = task_clock_perf_counter_read,
2797 };
2798
2799 /*
2800  * Software counter: cpu migrations
2801  */
2802
2803 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2804 {
2805         struct task_struct *curr = counter->ctx->task;
2806
2807         if (curr)
2808                 return curr->se.nr_migrations;
2809         return cpu_nr_migrations(smp_processor_id());
2810 }
2811
2812 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2813 {
2814         u64 prev, now;
2815         s64 delta;
2816
2817         prev = atomic64_read(&counter->hw.prev_count);
2818         now = get_cpu_migrations(counter);
2819
2820         atomic64_set(&counter->hw.prev_count, now);
2821
2822         delta = now - prev;
2823
2824         atomic64_add(delta, &counter->count);
2825 }
2826
2827 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2828 {
2829         cpu_migrations_perf_counter_update(counter);
2830 }
2831
2832 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2833 {
2834         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2835                 atomic64_set(&counter->hw.prev_count,
2836                              get_cpu_migrations(counter));
2837         return 0;
2838 }
2839
2840 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2841 {
2842         cpu_migrations_perf_counter_update(counter);
2843 }
2844
2845 static const struct pmu perf_ops_cpu_migrations = {
2846         .enable         = cpu_migrations_perf_counter_enable,
2847         .disable        = cpu_migrations_perf_counter_disable,
2848         .read           = cpu_migrations_perf_counter_read,
2849 };
2850
2851 #ifdef CONFIG_EVENT_PROFILE
2852 void perf_tpcounter_event(int event_id)
2853 {
2854         struct pt_regs *regs = get_irq_regs();
2855
2856         if (!regs)
2857                 regs = task_pt_regs(current);
2858
2859         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2860 }
2861 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2862
2863 extern int ftrace_profile_enable(int);
2864 extern void ftrace_profile_disable(int);
2865
2866 static void tp_perf_counter_destroy(struct perf_counter *counter)
2867 {
2868         ftrace_profile_disable(perf_event_id(&counter->hw_event));
2869 }
2870
2871 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2872 {
2873         int event_id = perf_event_id(&counter->hw_event);
2874         int ret;
2875
2876         ret = ftrace_profile_enable(event_id);
2877         if (ret)
2878                 return NULL;
2879
2880         counter->destroy = tp_perf_counter_destroy;
2881         counter->hw.irq_period = counter->hw_event.irq_period;
2882
2883         return &perf_ops_generic;
2884 }
2885 #else
2886 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2887 {
2888         return NULL;
2889 }
2890 #endif
2891
2892 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2893 {
2894         const struct pmu *pmu = NULL;
2895
2896         /*
2897          * Software counters (currently) can't in general distinguish
2898          * between user, kernel and hypervisor events.
2899          * However, context switches and cpu migrations are considered
2900          * to be kernel events, and page faults are never hypervisor
2901          * events.
2902          */
2903         switch (perf_event_id(&counter->hw_event)) {
2904         case PERF_COUNT_CPU_CLOCK:
2905                 pmu = &perf_ops_cpu_clock;
2906
2907                 break;
2908         case PERF_COUNT_TASK_CLOCK:
2909                 /*
2910                  * If the user instantiates this as a per-cpu counter,
2911                  * use the cpu_clock counter instead.
2912                  */
2913                 if (counter->ctx->task)
2914                         pmu = &perf_ops_task_clock;
2915                 else
2916                         pmu = &perf_ops_cpu_clock;
2917
2918                 break;
2919         case PERF_COUNT_PAGE_FAULTS:
2920         case PERF_COUNT_PAGE_FAULTS_MIN:
2921         case PERF_COUNT_PAGE_FAULTS_MAJ:
2922         case PERF_COUNT_CONTEXT_SWITCHES:
2923                 pmu = &perf_ops_generic;
2924                 break;
2925         case PERF_COUNT_CPU_MIGRATIONS:
2926                 if (!counter->hw_event.exclude_kernel)
2927                         pmu = &perf_ops_cpu_migrations;
2928                 break;
2929         }
2930
2931         return pmu;
2932 }
2933
2934 /*
2935  * Allocate and initialize a counter structure
2936  */
2937 static struct perf_counter *
2938 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2939                    int cpu,
2940                    struct perf_counter_context *ctx,
2941                    struct perf_counter *group_leader,
2942                    gfp_t gfpflags)
2943 {
2944         const struct pmu *pmu;
2945         struct perf_counter *counter;
2946         struct hw_perf_counter *hwc;
2947         long err;
2948
2949         counter = kzalloc(sizeof(*counter), gfpflags);
2950         if (!counter)
2951                 return ERR_PTR(-ENOMEM);
2952
2953         /*
2954          * Single counters are their own group leaders, with an
2955          * empty sibling list:
2956          */
2957         if (!group_leader)
2958                 group_leader = counter;
2959
2960         mutex_init(&counter->mutex);
2961         INIT_LIST_HEAD(&counter->list_entry);
2962         INIT_LIST_HEAD(&counter->event_entry);
2963         INIT_LIST_HEAD(&counter->sibling_list);
2964         init_waitqueue_head(&counter->waitq);
2965
2966         mutex_init(&counter->mmap_mutex);
2967
2968         INIT_LIST_HEAD(&counter->child_list);
2969
2970         counter->cpu                    = cpu;
2971         counter->hw_event               = *hw_event;
2972         counter->group_leader           = group_leader;
2973         counter->pmu                    = NULL;
2974         counter->ctx                    = ctx;
2975
2976         counter->state = PERF_COUNTER_STATE_INACTIVE;
2977         if (hw_event->disabled)
2978                 counter->state = PERF_COUNTER_STATE_OFF;
2979
2980         pmu = NULL;
2981
2982         hwc = &counter->hw;
2983         if (hw_event->freq && hw_event->irq_freq)
2984                 hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq);
2985         else
2986                 hwc->irq_period = hw_event->irq_period;
2987
2988         /*
2989          * we currently do not support PERF_RECORD_GROUP on inherited counters
2990          */
2991         if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
2992                 goto done;
2993
2994         if (perf_event_raw(hw_event)) {
2995                 pmu = hw_perf_counter_init(counter);
2996                 goto done;
2997         }
2998
2999         switch (perf_event_type(hw_event)) {
3000         case PERF_TYPE_HARDWARE:
3001                 pmu = hw_perf_counter_init(counter);
3002                 break;
3003
3004         case PERF_TYPE_SOFTWARE:
3005                 pmu = sw_perf_counter_init(counter);
3006                 break;
3007
3008         case PERF_TYPE_TRACEPOINT:
3009                 pmu = tp_perf_counter_init(counter);
3010                 break;
3011         }
3012 done:
3013         err = 0;
3014         if (!pmu)
3015                 err = -EINVAL;
3016         else if (IS_ERR(pmu))
3017                 err = PTR_ERR(pmu);
3018
3019         if (err) {
3020                 kfree(counter);
3021                 return ERR_PTR(err);
3022         }
3023
3024         counter->pmu = pmu;
3025
3026         atomic_inc(&nr_counters);
3027         if (counter->hw_event.mmap)
3028                 atomic_inc(&nr_mmap_tracking);
3029         if (counter->hw_event.munmap)
3030                 atomic_inc(&nr_munmap_tracking);
3031         if (counter->hw_event.comm)
3032                 atomic_inc(&nr_comm_tracking);
3033
3034         return counter;
3035 }
3036
3037 /**
3038  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3039  *
3040  * @hw_event_uptr:      event type attributes for monitoring/sampling
3041  * @pid:                target pid
3042  * @cpu:                target cpu
3043  * @group_fd:           group leader counter fd
3044  */
3045 SYSCALL_DEFINE5(perf_counter_open,
3046                 const struct perf_counter_hw_event __user *, hw_event_uptr,
3047                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3048 {
3049         struct perf_counter *counter, *group_leader;
3050         struct perf_counter_hw_event hw_event;
3051         struct perf_counter_context *ctx;
3052         struct file *counter_file = NULL;
3053         struct file *group_file = NULL;
3054         int fput_needed = 0;
3055         int fput_needed2 = 0;
3056         int ret;
3057
3058         /* for future expandability... */
3059         if (flags)
3060                 return -EINVAL;
3061
3062         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3063                 return -EFAULT;
3064
3065         /*
3066          * Get the target context (task or percpu):
3067          */
3068         ctx = find_get_context(pid, cpu);
3069         if (IS_ERR(ctx))
3070                 return PTR_ERR(ctx);
3071
3072         /*
3073          * Look up the group leader (we will attach this counter to it):
3074          */
3075         group_leader = NULL;
3076         if (group_fd != -1) {
3077                 ret = -EINVAL;
3078                 group_file = fget_light(group_fd, &fput_needed);
3079                 if (!group_file)
3080                         goto err_put_context;
3081                 if (group_file->f_op != &perf_fops)
3082                         goto err_put_context;
3083
3084                 group_leader = group_file->private_data;
3085                 /*
3086                  * Do not allow a recursive hierarchy (this new sibling
3087                  * becoming part of another group-sibling):
3088                  */
3089                 if (group_leader->group_leader != group_leader)
3090                         goto err_put_context;
3091                 /*
3092                  * Do not allow to attach to a group in a different
3093                  * task or CPU context:
3094                  */
3095                 if (group_leader->ctx != ctx)
3096                         goto err_put_context;
3097                 /*
3098                  * Only a group leader can be exclusive or pinned
3099                  */
3100                 if (hw_event.exclusive || hw_event.pinned)
3101                         goto err_put_context;
3102         }
3103
3104         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3105                                      GFP_KERNEL);
3106         ret = PTR_ERR(counter);
3107         if (IS_ERR(counter))
3108                 goto err_put_context;
3109
3110         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3111         if (ret < 0)
3112                 goto err_free_put_context;
3113
3114         counter_file = fget_light(ret, &fput_needed2);
3115         if (!counter_file)
3116                 goto err_free_put_context;
3117
3118         counter->filp = counter_file;
3119         mutex_lock(&ctx->mutex);
3120         perf_install_in_context(ctx, counter, cpu);
3121         mutex_unlock(&ctx->mutex);
3122
3123         fput_light(counter_file, fput_needed2);
3124
3125 out_fput:
3126         fput_light(group_file, fput_needed);
3127
3128         return ret;
3129
3130 err_free_put_context:
3131         kfree(counter);
3132
3133 err_put_context:
3134         put_context(ctx);
3135
3136         goto out_fput;
3137 }
3138
3139 /*
3140  * Initialize the perf_counter context in a task_struct:
3141  */
3142 static void
3143 __perf_counter_init_context(struct perf_counter_context *ctx,
3144                             struct task_struct *task)
3145 {
3146         memset(ctx, 0, sizeof(*ctx));
3147         spin_lock_init(&ctx->lock);
3148         mutex_init(&ctx->mutex);
3149         INIT_LIST_HEAD(&ctx->counter_list);
3150         INIT_LIST_HEAD(&ctx->event_list);
3151         ctx->task = task;
3152 }
3153
3154 /*
3155  * inherit a counter from parent task to child task:
3156  */
3157 static struct perf_counter *
3158 inherit_counter(struct perf_counter *parent_counter,
3159               struct task_struct *parent,
3160               struct perf_counter_context *parent_ctx,
3161               struct task_struct *child,
3162               struct perf_counter *group_leader,
3163               struct perf_counter_context *child_ctx)
3164 {
3165         struct perf_counter *child_counter;
3166
3167         /*
3168          * Instead of creating recursive hierarchies of counters,
3169          * we link inherited counters back to the original parent,
3170          * which has a filp for sure, which we use as the reference
3171          * count:
3172          */
3173         if (parent_counter->parent)
3174                 parent_counter = parent_counter->parent;
3175
3176         child_counter = perf_counter_alloc(&parent_counter->hw_event,
3177                                            parent_counter->cpu, child_ctx,
3178                                            group_leader, GFP_KERNEL);
3179         if (IS_ERR(child_counter))
3180                 return child_counter;
3181
3182         /*
3183          * Link it up in the child's context:
3184          */
3185         child_counter->task = child;
3186         add_counter_to_ctx(child_counter, child_ctx);
3187
3188         child_counter->parent = parent_counter;
3189         /*
3190          * inherit into child's child as well:
3191          */
3192         child_counter->hw_event.inherit = 1;
3193
3194         /*
3195          * Get a reference to the parent filp - we will fput it
3196          * when the child counter exits. This is safe to do because
3197          * we are in the parent and we know that the filp still
3198          * exists and has a nonzero count:
3199          */
3200         atomic_long_inc(&parent_counter->filp->f_count);
3201
3202         /*
3203          * Link this into the parent counter's child list
3204          */
3205         mutex_lock(&parent_counter->mutex);
3206         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3207
3208         /*
3209          * Make the child state follow the state of the parent counter,
3210          * not its hw_event.disabled bit.  We hold the parent's mutex,
3211          * so we won't race with perf_counter_{en,dis}able_family.
3212          */
3213         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3214                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3215         else
3216                 child_counter->state = PERF_COUNTER_STATE_OFF;
3217
3218         mutex_unlock(&parent_counter->mutex);
3219
3220         return child_counter;
3221 }
3222
3223 static int inherit_group(struct perf_counter *parent_counter,
3224               struct task_struct *parent,
3225               struct perf_counter_context *parent_ctx,
3226               struct task_struct *child,
3227               struct perf_counter_context *child_ctx)
3228 {
3229         struct perf_counter *leader;
3230         struct perf_counter *sub;
3231         struct perf_counter *child_ctr;
3232
3233         leader = inherit_counter(parent_counter, parent, parent_ctx,
3234                                  child, NULL, child_ctx);
3235         if (IS_ERR(leader))
3236                 return PTR_ERR(leader);
3237         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3238                 child_ctr = inherit_counter(sub, parent, parent_ctx,
3239                                             child, leader, child_ctx);
3240                 if (IS_ERR(child_ctr))
3241                         return PTR_ERR(child_ctr);
3242         }
3243         return 0;
3244 }
3245
3246 static void sync_child_counter(struct perf_counter *child_counter,
3247                                struct perf_counter *parent_counter)
3248 {
3249         u64 child_val;
3250
3251         child_val = atomic64_read(&child_counter->count);
3252
3253         /*
3254          * Add back the child's count to the parent's count:
3255          */
3256         atomic64_add(child_val, &parent_counter->count);
3257         atomic64_add(child_counter->total_time_enabled,
3258                      &parent_counter->child_total_time_enabled);
3259         atomic64_add(child_counter->total_time_running,
3260                      &parent_counter->child_total_time_running);
3261
3262         /*
3263          * Remove this counter from the parent's list
3264          */
3265         mutex_lock(&parent_counter->mutex);
3266         list_del_init(&child_counter->child_list);
3267         mutex_unlock(&parent_counter->mutex);
3268
3269         /*
3270          * Release the parent counter, if this was the last
3271          * reference to it.
3272          */
3273         fput(parent_counter->filp);
3274 }
3275
3276 static void
3277 __perf_counter_exit_task(struct task_struct *child,
3278                          struct perf_counter *child_counter,
3279                          struct perf_counter_context *child_ctx)
3280 {
3281         struct perf_counter *parent_counter;
3282
3283         /*
3284          * If we do not self-reap then we have to wait for the
3285          * child task to unschedule (it will happen for sure),
3286          * so that its counter is at its final count. (This
3287          * condition triggers rarely - child tasks usually get
3288          * off their CPU before the parent has a chance to
3289          * get this far into the reaping action)
3290          */
3291         if (child != current) {
3292                 wait_task_inactive(child, 0);
3293                 update_counter_times(child_counter);
3294                 list_del_counter(child_counter, child_ctx);
3295         } else {
3296                 struct perf_cpu_context *cpuctx;
3297                 unsigned long flags;
3298
3299                 /*
3300                  * Disable and unlink this counter.
3301                  *
3302                  * Be careful about zapping the list - IRQ/NMI context
3303                  * could still be processing it:
3304                  */
3305                 local_irq_save(flags);
3306                 perf_disable();
3307
3308                 cpuctx = &__get_cpu_var(perf_cpu_context);
3309
3310                 group_sched_out(child_counter, cpuctx, child_ctx);
3311                 update_counter_times(child_counter);
3312
3313                 list_del_counter(child_counter, child_ctx);
3314
3315                 perf_enable();
3316                 local_irq_restore(flags);
3317         }
3318
3319         parent_counter = child_counter->parent;
3320         /*
3321          * It can happen that parent exits first, and has counters
3322          * that are still around due to the child reference. These
3323          * counters need to be zapped - but otherwise linger.
3324          */
3325         if (parent_counter) {
3326                 sync_child_counter(child_counter, parent_counter);
3327                 free_counter(child_counter);
3328         }
3329 }
3330
3331 /*
3332  * When a child task exits, feed back counter values to parent counters.
3333  *
3334  * Note: we may be running in child context, but the PID is not hashed
3335  * anymore so new counters will not be added.
3336  */
3337 void perf_counter_exit_task(struct task_struct *child)
3338 {
3339         struct perf_counter *child_counter, *tmp;
3340         struct perf_counter_context *child_ctx;
3341
3342         WARN_ON_ONCE(child != current);
3343
3344         child_ctx = &child->perf_counter_ctx;
3345
3346         if (likely(!child_ctx->nr_counters))
3347                 return;
3348
3349 again:
3350         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3351                                  list_entry)
3352                 __perf_counter_exit_task(child, child_counter, child_ctx);
3353
3354         /*
3355          * If the last counter was a group counter, it will have appended all
3356          * its siblings to the list, but we obtained 'tmp' before that which
3357          * will still point to the list head terminating the iteration.
3358          */
3359         if (!list_empty(&child_ctx->counter_list))
3360                 goto again;
3361 }
3362
3363 /*
3364  * Initialize the perf_counter context in task_struct
3365  */
3366 void perf_counter_init_task(struct task_struct *child)
3367 {
3368         struct perf_counter_context *child_ctx, *parent_ctx;
3369         struct perf_counter *counter;
3370         struct task_struct *parent = current;
3371
3372         child_ctx  =  &child->perf_counter_ctx;
3373         parent_ctx = &parent->perf_counter_ctx;
3374
3375         __perf_counter_init_context(child_ctx, child);
3376
3377         /*
3378          * This is executed from the parent task context, so inherit
3379          * counters that have been marked for cloning:
3380          */
3381
3382         if (likely(!parent_ctx->nr_counters))
3383                 return;
3384
3385         /*
3386          * Lock the parent list. No need to lock the child - not PID
3387          * hashed yet and not running, so nobody can access it.
3388          */
3389         mutex_lock(&parent_ctx->mutex);
3390
3391         /*
3392          * We dont have to disable NMIs - we are only looking at
3393          * the list, not manipulating it:
3394          */
3395         list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3396                 if (counter != counter->group_leader)
3397                         continue;
3398
3399                 if (!counter->hw_event.inherit)
3400                         continue;
3401
3402                 if (inherit_group(counter, parent,
3403                                   parent_ctx, child, child_ctx))
3404                         break;
3405         }
3406
3407         mutex_unlock(&parent_ctx->mutex);
3408 }
3409
3410 static void __cpuinit perf_counter_init_cpu(int cpu)
3411 {
3412         struct perf_cpu_context *cpuctx;
3413
3414         cpuctx = &per_cpu(perf_cpu_context, cpu);
3415         __perf_counter_init_context(&cpuctx->ctx, NULL);
3416
3417         spin_lock(&perf_resource_lock);
3418         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3419         spin_unlock(&perf_resource_lock);
3420
3421         hw_perf_counter_setup(cpu);
3422 }
3423
3424 #ifdef CONFIG_HOTPLUG_CPU
3425 static void __perf_counter_exit_cpu(void *info)
3426 {
3427         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3428         struct perf_counter_context *ctx = &cpuctx->ctx;
3429         struct perf_counter *counter, *tmp;
3430
3431         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3432                 __perf_counter_remove_from_context(counter);
3433 }
3434 static void perf_counter_exit_cpu(int cpu)
3435 {
3436         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3437         struct perf_counter_context *ctx = &cpuctx->ctx;
3438
3439         mutex_lock(&ctx->mutex);
3440         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3441         mutex_unlock(&ctx->mutex);
3442 }
3443 #else
3444 static inline void perf_counter_exit_cpu(int cpu) { }
3445 #endif
3446
3447 static int __cpuinit
3448 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3449 {
3450         unsigned int cpu = (long)hcpu;
3451
3452         switch (action) {
3453
3454         case CPU_UP_PREPARE:
3455         case CPU_UP_PREPARE_FROZEN:
3456                 perf_counter_init_cpu(cpu);
3457                 break;
3458
3459         case CPU_DOWN_PREPARE:
3460         case CPU_DOWN_PREPARE_FROZEN:
3461                 perf_counter_exit_cpu(cpu);
3462                 break;
3463
3464         default:
3465                 break;
3466         }
3467
3468         return NOTIFY_OK;
3469 }
3470
3471 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3472         .notifier_call          = perf_cpu_notify,
3473 };
3474
3475 void __init perf_counter_init(void)
3476 {
3477         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3478                         (void *)(long)smp_processor_id());
3479         register_cpu_notifier(&perf_cpu_nb);
3480 }
3481
3482 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3483 {
3484         return sprintf(buf, "%d\n", perf_reserved_percpu);
3485 }
3486
3487 static ssize_t
3488 perf_set_reserve_percpu(struct sysdev_class *class,
3489                         const char *buf,
3490                         size_t count)
3491 {
3492         struct perf_cpu_context *cpuctx;
3493         unsigned long val;
3494         int err, cpu, mpt;
3495
3496         err = strict_strtoul(buf, 10, &val);
3497         if (err)
3498                 return err;
3499         if (val > perf_max_counters)
3500                 return -EINVAL;
3501
3502         spin_lock(&perf_resource_lock);
3503         perf_reserved_percpu = val;
3504         for_each_online_cpu(cpu) {
3505                 cpuctx = &per_cpu(perf_cpu_context, cpu);
3506                 spin_lock_irq(&cpuctx->ctx.lock);
3507                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3508                           perf_max_counters - perf_reserved_percpu);
3509                 cpuctx->max_pertask = mpt;
3510                 spin_unlock_irq(&cpuctx->ctx.lock);
3511         }
3512         spin_unlock(&perf_resource_lock);
3513
3514         return count;
3515 }
3516
3517 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3518 {
3519         return sprintf(buf, "%d\n", perf_overcommit);
3520 }
3521
3522 static ssize_t
3523 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3524 {
3525         unsigned long val;
3526         int err;
3527
3528         err = strict_strtoul(buf, 10, &val);
3529         if (err)
3530                 return err;
3531         if (val > 1)
3532                 return -EINVAL;
3533
3534         spin_lock(&perf_resource_lock);
3535         perf_overcommit = val;
3536         spin_unlock(&perf_resource_lock);
3537
3538         return count;
3539 }
3540
3541 static SYSDEV_CLASS_ATTR(
3542                                 reserve_percpu,
3543                                 0644,
3544                                 perf_show_reserve_percpu,
3545                                 perf_set_reserve_percpu
3546                         );
3547
3548 static SYSDEV_CLASS_ATTR(
3549                                 overcommit,
3550                                 0644,
3551                                 perf_show_overcommit,
3552                                 perf_set_overcommit
3553                         );
3554
3555 static struct attribute *perfclass_attrs[] = {
3556         &attr_reserve_percpu.attr,
3557         &attr_overcommit.attr,
3558         NULL
3559 };
3560
3561 static struct attribute_group perfclass_attr_group = {
3562         .attrs                  = perfclass_attrs,
3563         .name                   = "perf_counters",
3564 };
3565
3566 static int __init perf_counter_sysfs_init(void)
3567 {
3568         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3569                                   &perfclass_attr_group);
3570 }
3571 device_initcall(perf_counter_sysfs_init);