Merge branch 'staging/for_v3.4' into v4l_for_linus
[pandora-kernel.git] / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation (includes suggestions from
23  *              Rusty Russell).
24  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *              hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *              interface to access function arguments.
28  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *              exceptions notifier to be first on the priority list.
30  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *              <prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 /*
62  * Some oddball architectures like 64bit powerpc have function descriptors
63  * so this must be overridable.
64  */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67         addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81         raw_spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 {
86         return &(kretprobe_table_locks[hash].lock);
87 }
88
89 /*
90  * Normally, functions that we'd want to prohibit kprobes in, are marked
91  * __kprobes. But, there are cases where such functions already belong to
92  * a different section (__sched for preempt_schedule)
93  *
94  * For such cases, we now have a blacklist
95  */
96 static struct kprobe_blackpoint kprobe_blacklist[] = {
97         {"preempt_schedule",},
98         {"native_get_debugreg",},
99         {"irq_entries_start",},
100         {"common_interrupt",},
101         {"mcount",},    /* mcount can be called from everywhere */
102         {NULL}    /* Terminator */
103 };
104
105 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
106 /*
107  * kprobe->ainsn.insn points to the copy of the instruction to be
108  * single-stepped. x86_64, POWER4 and above have no-exec support and
109  * stepping on the instruction on a vmalloced/kmalloced/data page
110  * is a recipe for disaster
111  */
112 struct kprobe_insn_page {
113         struct list_head list;
114         kprobe_opcode_t *insns;         /* Page of instruction slots */
115         int nused;
116         int ngarbage;
117         char slot_used[];
118 };
119
120 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
121         (offsetof(struct kprobe_insn_page, slot_used) + \
122          (sizeof(char) * (slots)))
123
124 struct kprobe_insn_cache {
125         struct list_head pages; /* list of kprobe_insn_page */
126         size_t insn_size;       /* size of instruction slot */
127         int nr_garbage;
128 };
129
130 static int slots_per_page(struct kprobe_insn_cache *c)
131 {
132         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
133 }
134
135 enum kprobe_slot_state {
136         SLOT_CLEAN = 0,
137         SLOT_DIRTY = 1,
138         SLOT_USED = 2,
139 };
140
141 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */
142 static struct kprobe_insn_cache kprobe_insn_slots = {
143         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
144         .insn_size = MAX_INSN_SIZE,
145         .nr_garbage = 0,
146 };
147 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
148
149 /**
150  * __get_insn_slot() - Find a slot on an executable page for an instruction.
151  * We allocate an executable page if there's no room on existing ones.
152  */
153 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
154 {
155         struct kprobe_insn_page *kip;
156
157  retry:
158         list_for_each_entry(kip, &c->pages, list) {
159                 if (kip->nused < slots_per_page(c)) {
160                         int i;
161                         for (i = 0; i < slots_per_page(c); i++) {
162                                 if (kip->slot_used[i] == SLOT_CLEAN) {
163                                         kip->slot_used[i] = SLOT_USED;
164                                         kip->nused++;
165                                         return kip->insns + (i * c->insn_size);
166                                 }
167                         }
168                         /* kip->nused is broken. Fix it. */
169                         kip->nused = slots_per_page(c);
170                         WARN_ON(1);
171                 }
172         }
173
174         /* If there are any garbage slots, collect it and try again. */
175         if (c->nr_garbage && collect_garbage_slots(c) == 0)
176                 goto retry;
177
178         /* All out of space.  Need to allocate a new page. */
179         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
180         if (!kip)
181                 return NULL;
182
183         /*
184          * Use module_alloc so this page is within +/- 2GB of where the
185          * kernel image and loaded module images reside. This is required
186          * so x86_64 can correctly handle the %rip-relative fixups.
187          */
188         kip->insns = module_alloc(PAGE_SIZE);
189         if (!kip->insns) {
190                 kfree(kip);
191                 return NULL;
192         }
193         INIT_LIST_HEAD(&kip->list);
194         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
195         kip->slot_used[0] = SLOT_USED;
196         kip->nused = 1;
197         kip->ngarbage = 0;
198         list_add(&kip->list, &c->pages);
199         return kip->insns;
200 }
201
202
203 kprobe_opcode_t __kprobes *get_insn_slot(void)
204 {
205         kprobe_opcode_t *ret = NULL;
206
207         mutex_lock(&kprobe_insn_mutex);
208         ret = __get_insn_slot(&kprobe_insn_slots);
209         mutex_unlock(&kprobe_insn_mutex);
210
211         return ret;
212 }
213
214 /* Return 1 if all garbages are collected, otherwise 0. */
215 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
216 {
217         kip->slot_used[idx] = SLOT_CLEAN;
218         kip->nused--;
219         if (kip->nused == 0) {
220                 /*
221                  * Page is no longer in use.  Free it unless
222                  * it's the last one.  We keep the last one
223                  * so as not to have to set it up again the
224                  * next time somebody inserts a probe.
225                  */
226                 if (!list_is_singular(&kip->list)) {
227                         list_del(&kip->list);
228                         module_free(NULL, kip->insns);
229                         kfree(kip);
230                 }
231                 return 1;
232         }
233         return 0;
234 }
235
236 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
237 {
238         struct kprobe_insn_page *kip, *next;
239
240         /* Ensure no-one is interrupted on the garbages */
241         synchronize_sched();
242
243         list_for_each_entry_safe(kip, next, &c->pages, list) {
244                 int i;
245                 if (kip->ngarbage == 0)
246                         continue;
247                 kip->ngarbage = 0;      /* we will collect all garbages */
248                 for (i = 0; i < slots_per_page(c); i++) {
249                         if (kip->slot_used[i] == SLOT_DIRTY &&
250                             collect_one_slot(kip, i))
251                                 break;
252                 }
253         }
254         c->nr_garbage = 0;
255         return 0;
256 }
257
258 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
259                                        kprobe_opcode_t *slot, int dirty)
260 {
261         struct kprobe_insn_page *kip;
262
263         list_for_each_entry(kip, &c->pages, list) {
264                 long idx = ((long)slot - (long)kip->insns) /
265                                 (c->insn_size * sizeof(kprobe_opcode_t));
266                 if (idx >= 0 && idx < slots_per_page(c)) {
267                         WARN_ON(kip->slot_used[idx] != SLOT_USED);
268                         if (dirty) {
269                                 kip->slot_used[idx] = SLOT_DIRTY;
270                                 kip->ngarbage++;
271                                 if (++c->nr_garbage > slots_per_page(c))
272                                         collect_garbage_slots(c);
273                         } else
274                                 collect_one_slot(kip, idx);
275                         return;
276                 }
277         }
278         /* Could not free this slot. */
279         WARN_ON(1);
280 }
281
282 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
283 {
284         mutex_lock(&kprobe_insn_mutex);
285         __free_insn_slot(&kprobe_insn_slots, slot, dirty);
286         mutex_unlock(&kprobe_insn_mutex);
287 }
288 #ifdef CONFIG_OPTPROBES
289 /* For optimized_kprobe buffer */
290 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
291 static struct kprobe_insn_cache kprobe_optinsn_slots = {
292         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
293         /* .insn_size is initialized later */
294         .nr_garbage = 0,
295 };
296 /* Get a slot for optimized_kprobe buffer */
297 kprobe_opcode_t __kprobes *get_optinsn_slot(void)
298 {
299         kprobe_opcode_t *ret = NULL;
300
301         mutex_lock(&kprobe_optinsn_mutex);
302         ret = __get_insn_slot(&kprobe_optinsn_slots);
303         mutex_unlock(&kprobe_optinsn_mutex);
304
305         return ret;
306 }
307
308 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
309 {
310         mutex_lock(&kprobe_optinsn_mutex);
311         __free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
312         mutex_unlock(&kprobe_optinsn_mutex);
313 }
314 #endif
315 #endif
316
317 /* We have preemption disabled.. so it is safe to use __ versions */
318 static inline void set_kprobe_instance(struct kprobe *kp)
319 {
320         __this_cpu_write(kprobe_instance, kp);
321 }
322
323 static inline void reset_kprobe_instance(void)
324 {
325         __this_cpu_write(kprobe_instance, NULL);
326 }
327
328 /*
329  * This routine is called either:
330  *      - under the kprobe_mutex - during kprobe_[un]register()
331  *                              OR
332  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
333  */
334 struct kprobe __kprobes *get_kprobe(void *addr)
335 {
336         struct hlist_head *head;
337         struct hlist_node *node;
338         struct kprobe *p;
339
340         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
341         hlist_for_each_entry_rcu(p, node, head, hlist) {
342                 if (p->addr == addr)
343                         return p;
344         }
345
346         return NULL;
347 }
348
349 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
350
351 /* Return true if the kprobe is an aggregator */
352 static inline int kprobe_aggrprobe(struct kprobe *p)
353 {
354         return p->pre_handler == aggr_pre_handler;
355 }
356
357 /* Return true(!0) if the kprobe is unused */
358 static inline int kprobe_unused(struct kprobe *p)
359 {
360         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
361                list_empty(&p->list);
362 }
363
364 /*
365  * Keep all fields in the kprobe consistent
366  */
367 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
368 {
369         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
370         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
371 }
372
373 #ifdef CONFIG_OPTPROBES
374 /* NOTE: change this value only with kprobe_mutex held */
375 static bool kprobes_allow_optimization;
376
377 /*
378  * Call all pre_handler on the list, but ignores its return value.
379  * This must be called from arch-dep optimized caller.
380  */
381 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
382 {
383         struct kprobe *kp;
384
385         list_for_each_entry_rcu(kp, &p->list, list) {
386                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
387                         set_kprobe_instance(kp);
388                         kp->pre_handler(kp, regs);
389                 }
390                 reset_kprobe_instance();
391         }
392 }
393
394 /* Free optimized instructions and optimized_kprobe */
395 static __kprobes void free_aggr_kprobe(struct kprobe *p)
396 {
397         struct optimized_kprobe *op;
398
399         op = container_of(p, struct optimized_kprobe, kp);
400         arch_remove_optimized_kprobe(op);
401         arch_remove_kprobe(p);
402         kfree(op);
403 }
404
405 /* Return true(!0) if the kprobe is ready for optimization. */
406 static inline int kprobe_optready(struct kprobe *p)
407 {
408         struct optimized_kprobe *op;
409
410         if (kprobe_aggrprobe(p)) {
411                 op = container_of(p, struct optimized_kprobe, kp);
412                 return arch_prepared_optinsn(&op->optinsn);
413         }
414
415         return 0;
416 }
417
418 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
419 static inline int kprobe_disarmed(struct kprobe *p)
420 {
421         struct optimized_kprobe *op;
422
423         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
424         if (!kprobe_aggrprobe(p))
425                 return kprobe_disabled(p);
426
427         op = container_of(p, struct optimized_kprobe, kp);
428
429         return kprobe_disabled(p) && list_empty(&op->list);
430 }
431
432 /* Return true(!0) if the probe is queued on (un)optimizing lists */
433 static int __kprobes kprobe_queued(struct kprobe *p)
434 {
435         struct optimized_kprobe *op;
436
437         if (kprobe_aggrprobe(p)) {
438                 op = container_of(p, struct optimized_kprobe, kp);
439                 if (!list_empty(&op->list))
440                         return 1;
441         }
442         return 0;
443 }
444
445 /*
446  * Return an optimized kprobe whose optimizing code replaces
447  * instructions including addr (exclude breakpoint).
448  */
449 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
450 {
451         int i;
452         struct kprobe *p = NULL;
453         struct optimized_kprobe *op;
454
455         /* Don't check i == 0, since that is a breakpoint case. */
456         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
457                 p = get_kprobe((void *)(addr - i));
458
459         if (p && kprobe_optready(p)) {
460                 op = container_of(p, struct optimized_kprobe, kp);
461                 if (arch_within_optimized_kprobe(op, addr))
462                         return p;
463         }
464
465         return NULL;
466 }
467
468 /* Optimization staging list, protected by kprobe_mutex */
469 static LIST_HEAD(optimizing_list);
470 static LIST_HEAD(unoptimizing_list);
471
472 static void kprobe_optimizer(struct work_struct *work);
473 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
474 static DECLARE_COMPLETION(optimizer_comp);
475 #define OPTIMIZE_DELAY 5
476
477 /*
478  * Optimize (replace a breakpoint with a jump) kprobes listed on
479  * optimizing_list.
480  */
481 static __kprobes void do_optimize_kprobes(void)
482 {
483         /* Optimization never be done when disarmed */
484         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
485             list_empty(&optimizing_list))
486                 return;
487
488         /*
489          * The optimization/unoptimization refers online_cpus via
490          * stop_machine() and cpu-hotplug modifies online_cpus.
491          * And same time, text_mutex will be held in cpu-hotplug and here.
492          * This combination can cause a deadlock (cpu-hotplug try to lock
493          * text_mutex but stop_machine can not be done because online_cpus
494          * has been changed)
495          * To avoid this deadlock, we need to call get_online_cpus()
496          * for preventing cpu-hotplug outside of text_mutex locking.
497          */
498         get_online_cpus();
499         mutex_lock(&text_mutex);
500         arch_optimize_kprobes(&optimizing_list);
501         mutex_unlock(&text_mutex);
502         put_online_cpus();
503 }
504
505 /*
506  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
507  * if need) kprobes listed on unoptimizing_list.
508  */
509 static __kprobes void do_unoptimize_kprobes(struct list_head *free_list)
510 {
511         struct optimized_kprobe *op, *tmp;
512
513         /* Unoptimization must be done anytime */
514         if (list_empty(&unoptimizing_list))
515                 return;
516
517         /* Ditto to do_optimize_kprobes */
518         get_online_cpus();
519         mutex_lock(&text_mutex);
520         arch_unoptimize_kprobes(&unoptimizing_list, free_list);
521         /* Loop free_list for disarming */
522         list_for_each_entry_safe(op, tmp, free_list, list) {
523                 /* Disarm probes if marked disabled */
524                 if (kprobe_disabled(&op->kp))
525                         arch_disarm_kprobe(&op->kp);
526                 if (kprobe_unused(&op->kp)) {
527                         /*
528                          * Remove unused probes from hash list. After waiting
529                          * for synchronization, these probes are reclaimed.
530                          * (reclaiming is done by do_free_cleaned_kprobes.)
531                          */
532                         hlist_del_rcu(&op->kp.hlist);
533                 } else
534                         list_del_init(&op->list);
535         }
536         mutex_unlock(&text_mutex);
537         put_online_cpus();
538 }
539
540 /* Reclaim all kprobes on the free_list */
541 static __kprobes void do_free_cleaned_kprobes(struct list_head *free_list)
542 {
543         struct optimized_kprobe *op, *tmp;
544
545         list_for_each_entry_safe(op, tmp, free_list, list) {
546                 BUG_ON(!kprobe_unused(&op->kp));
547                 list_del_init(&op->list);
548                 free_aggr_kprobe(&op->kp);
549         }
550 }
551
552 /* Start optimizer after OPTIMIZE_DELAY passed */
553 static __kprobes void kick_kprobe_optimizer(void)
554 {
555         if (!delayed_work_pending(&optimizing_work))
556                 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
557 }
558
559 /* Kprobe jump optimizer */
560 static __kprobes void kprobe_optimizer(struct work_struct *work)
561 {
562         LIST_HEAD(free_list);
563
564         /* Lock modules while optimizing kprobes */
565         mutex_lock(&module_mutex);
566         mutex_lock(&kprobe_mutex);
567
568         /*
569          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
570          * kprobes before waiting for quiesence period.
571          */
572         do_unoptimize_kprobes(&free_list);
573
574         /*
575          * Step 2: Wait for quiesence period to ensure all running interrupts
576          * are done. Because optprobe may modify multiple instructions
577          * there is a chance that Nth instruction is interrupted. In that
578          * case, running interrupt can return to 2nd-Nth byte of jump
579          * instruction. This wait is for avoiding it.
580          */
581         synchronize_sched();
582
583         /* Step 3: Optimize kprobes after quiesence period */
584         do_optimize_kprobes();
585
586         /* Step 4: Free cleaned kprobes after quiesence period */
587         do_free_cleaned_kprobes(&free_list);
588
589         mutex_unlock(&kprobe_mutex);
590         mutex_unlock(&module_mutex);
591
592         /* Step 5: Kick optimizer again if needed */
593         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
594                 kick_kprobe_optimizer();
595         else
596                 /* Wake up all waiters */
597                 complete_all(&optimizer_comp);
598 }
599
600 /* Wait for completing optimization and unoptimization */
601 static __kprobes void wait_for_kprobe_optimizer(void)
602 {
603         if (delayed_work_pending(&optimizing_work))
604                 wait_for_completion(&optimizer_comp);
605 }
606
607 /* Optimize kprobe if p is ready to be optimized */
608 static __kprobes void optimize_kprobe(struct kprobe *p)
609 {
610         struct optimized_kprobe *op;
611
612         /* Check if the kprobe is disabled or not ready for optimization. */
613         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
614             (kprobe_disabled(p) || kprobes_all_disarmed))
615                 return;
616
617         /* Both of break_handler and post_handler are not supported. */
618         if (p->break_handler || p->post_handler)
619                 return;
620
621         op = container_of(p, struct optimized_kprobe, kp);
622
623         /* Check there is no other kprobes at the optimized instructions */
624         if (arch_check_optimized_kprobe(op) < 0)
625                 return;
626
627         /* Check if it is already optimized. */
628         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
629                 return;
630         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
631
632         if (!list_empty(&op->list))
633                 /* This is under unoptimizing. Just dequeue the probe */
634                 list_del_init(&op->list);
635         else {
636                 list_add(&op->list, &optimizing_list);
637                 kick_kprobe_optimizer();
638         }
639 }
640
641 /* Short cut to direct unoptimizing */
642 static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
643 {
644         get_online_cpus();
645         arch_unoptimize_kprobe(op);
646         put_online_cpus();
647         if (kprobe_disabled(&op->kp))
648                 arch_disarm_kprobe(&op->kp);
649 }
650
651 /* Unoptimize a kprobe if p is optimized */
652 static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
653 {
654         struct optimized_kprobe *op;
655
656         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
657                 return; /* This is not an optprobe nor optimized */
658
659         op = container_of(p, struct optimized_kprobe, kp);
660         if (!kprobe_optimized(p)) {
661                 /* Unoptimized or unoptimizing case */
662                 if (force && !list_empty(&op->list)) {
663                         /*
664                          * Only if this is unoptimizing kprobe and forced,
665                          * forcibly unoptimize it. (No need to unoptimize
666                          * unoptimized kprobe again :)
667                          */
668                         list_del_init(&op->list);
669                         force_unoptimize_kprobe(op);
670                 }
671                 return;
672         }
673
674         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
675         if (!list_empty(&op->list)) {
676                 /* Dequeue from the optimization queue */
677                 list_del_init(&op->list);
678                 return;
679         }
680         /* Optimized kprobe case */
681         if (force)
682                 /* Forcibly update the code: this is a special case */
683                 force_unoptimize_kprobe(op);
684         else {
685                 list_add(&op->list, &unoptimizing_list);
686                 kick_kprobe_optimizer();
687         }
688 }
689
690 /* Cancel unoptimizing for reusing */
691 static void reuse_unused_kprobe(struct kprobe *ap)
692 {
693         struct optimized_kprobe *op;
694
695         BUG_ON(!kprobe_unused(ap));
696         /*
697          * Unused kprobe MUST be on the way of delayed unoptimizing (means
698          * there is still a relative jump) and disabled.
699          */
700         op = container_of(ap, struct optimized_kprobe, kp);
701         if (unlikely(list_empty(&op->list)))
702                 printk(KERN_WARNING "Warning: found a stray unused "
703                         "aggrprobe@%p\n", ap->addr);
704         /* Enable the probe again */
705         ap->flags &= ~KPROBE_FLAG_DISABLED;
706         /* Optimize it again (remove from op->list) */
707         BUG_ON(!kprobe_optready(ap));
708         optimize_kprobe(ap);
709 }
710
711 /* Remove optimized instructions */
712 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
713 {
714         struct optimized_kprobe *op;
715
716         op = container_of(p, struct optimized_kprobe, kp);
717         if (!list_empty(&op->list))
718                 /* Dequeue from the (un)optimization queue */
719                 list_del_init(&op->list);
720
721         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
722         /* Don't touch the code, because it is already freed. */
723         arch_remove_optimized_kprobe(op);
724 }
725
726 /* Try to prepare optimized instructions */
727 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
728 {
729         struct optimized_kprobe *op;
730
731         op = container_of(p, struct optimized_kprobe, kp);
732         arch_prepare_optimized_kprobe(op);
733 }
734
735 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
736 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
737 {
738         struct optimized_kprobe *op;
739
740         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
741         if (!op)
742                 return NULL;
743
744         INIT_LIST_HEAD(&op->list);
745         op->kp.addr = p->addr;
746         arch_prepare_optimized_kprobe(op);
747
748         return &op->kp;
749 }
750
751 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
752
753 /*
754  * Prepare an optimized_kprobe and optimize it
755  * NOTE: p must be a normal registered kprobe
756  */
757 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
758 {
759         struct kprobe *ap;
760         struct optimized_kprobe *op;
761
762         ap = alloc_aggr_kprobe(p);
763         if (!ap)
764                 return;
765
766         op = container_of(ap, struct optimized_kprobe, kp);
767         if (!arch_prepared_optinsn(&op->optinsn)) {
768                 /* If failed to setup optimizing, fallback to kprobe */
769                 arch_remove_optimized_kprobe(op);
770                 kfree(op);
771                 return;
772         }
773
774         init_aggr_kprobe(ap, p);
775         optimize_kprobe(ap);
776 }
777
778 #ifdef CONFIG_SYSCTL
779 /* This should be called with kprobe_mutex locked */
780 static void __kprobes optimize_all_kprobes(void)
781 {
782         struct hlist_head *head;
783         struct hlist_node *node;
784         struct kprobe *p;
785         unsigned int i;
786
787         /* If optimization is already allowed, just return */
788         if (kprobes_allow_optimization)
789                 return;
790
791         kprobes_allow_optimization = true;
792         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
793                 head = &kprobe_table[i];
794                 hlist_for_each_entry_rcu(p, node, head, hlist)
795                         if (!kprobe_disabled(p))
796                                 optimize_kprobe(p);
797         }
798         printk(KERN_INFO "Kprobes globally optimized\n");
799 }
800
801 /* This should be called with kprobe_mutex locked */
802 static void __kprobes unoptimize_all_kprobes(void)
803 {
804         struct hlist_head *head;
805         struct hlist_node *node;
806         struct kprobe *p;
807         unsigned int i;
808
809         /* If optimization is already prohibited, just return */
810         if (!kprobes_allow_optimization)
811                 return;
812
813         kprobes_allow_optimization = false;
814         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
815                 head = &kprobe_table[i];
816                 hlist_for_each_entry_rcu(p, node, head, hlist) {
817                         if (!kprobe_disabled(p))
818                                 unoptimize_kprobe(p, false);
819                 }
820         }
821         /* Wait for unoptimizing completion */
822         wait_for_kprobe_optimizer();
823         printk(KERN_INFO "Kprobes globally unoptimized\n");
824 }
825
826 int sysctl_kprobes_optimization;
827 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
828                                       void __user *buffer, size_t *length,
829                                       loff_t *ppos)
830 {
831         int ret;
832
833         mutex_lock(&kprobe_mutex);
834         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
835         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
836
837         if (sysctl_kprobes_optimization)
838                 optimize_all_kprobes();
839         else
840                 unoptimize_all_kprobes();
841         mutex_unlock(&kprobe_mutex);
842
843         return ret;
844 }
845 #endif /* CONFIG_SYSCTL */
846
847 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
848 static void __kprobes __arm_kprobe(struct kprobe *p)
849 {
850         struct kprobe *_p;
851
852         /* Check collision with other optimized kprobes */
853         _p = get_optimized_kprobe((unsigned long)p->addr);
854         if (unlikely(_p))
855                 /* Fallback to unoptimized kprobe */
856                 unoptimize_kprobe(_p, true);
857
858         arch_arm_kprobe(p);
859         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
860 }
861
862 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
863 static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
864 {
865         struct kprobe *_p;
866
867         unoptimize_kprobe(p, false);    /* Try to unoptimize */
868
869         if (!kprobe_queued(p)) {
870                 arch_disarm_kprobe(p);
871                 /* If another kprobe was blocked, optimize it. */
872                 _p = get_optimized_kprobe((unsigned long)p->addr);
873                 if (unlikely(_p) && reopt)
874                         optimize_kprobe(_p);
875         }
876         /* TODO: reoptimize others after unoptimized this probe */
877 }
878
879 #else /* !CONFIG_OPTPROBES */
880
881 #define optimize_kprobe(p)                      do {} while (0)
882 #define unoptimize_kprobe(p, f)                 do {} while (0)
883 #define kill_optimized_kprobe(p)                do {} while (0)
884 #define prepare_optimized_kprobe(p)             do {} while (0)
885 #define try_to_optimize_kprobe(p)               do {} while (0)
886 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
887 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
888 #define kprobe_disarmed(p)                      kprobe_disabled(p)
889 #define wait_for_kprobe_optimizer()             do {} while (0)
890
891 /* There should be no unused kprobes can be reused without optimization */
892 static void reuse_unused_kprobe(struct kprobe *ap)
893 {
894         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
895         BUG_ON(kprobe_unused(ap));
896 }
897
898 static __kprobes void free_aggr_kprobe(struct kprobe *p)
899 {
900         arch_remove_kprobe(p);
901         kfree(p);
902 }
903
904 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
905 {
906         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
907 }
908 #endif /* CONFIG_OPTPROBES */
909
910 /* Arm a kprobe with text_mutex */
911 static void __kprobes arm_kprobe(struct kprobe *kp)
912 {
913         /*
914          * Here, since __arm_kprobe() doesn't use stop_machine(),
915          * this doesn't cause deadlock on text_mutex. So, we don't
916          * need get_online_cpus().
917          */
918         mutex_lock(&text_mutex);
919         __arm_kprobe(kp);
920         mutex_unlock(&text_mutex);
921 }
922
923 /* Disarm a kprobe with text_mutex */
924 static void __kprobes disarm_kprobe(struct kprobe *kp)
925 {
926         /* Ditto */
927         mutex_lock(&text_mutex);
928         __disarm_kprobe(kp, true);
929         mutex_unlock(&text_mutex);
930 }
931
932 /*
933  * Aggregate handlers for multiple kprobes support - these handlers
934  * take care of invoking the individual kprobe handlers on p->list
935  */
936 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
937 {
938         struct kprobe *kp;
939
940         list_for_each_entry_rcu(kp, &p->list, list) {
941                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
942                         set_kprobe_instance(kp);
943                         if (kp->pre_handler(kp, regs))
944                                 return 1;
945                 }
946                 reset_kprobe_instance();
947         }
948         return 0;
949 }
950
951 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
952                                         unsigned long flags)
953 {
954         struct kprobe *kp;
955
956         list_for_each_entry_rcu(kp, &p->list, list) {
957                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
958                         set_kprobe_instance(kp);
959                         kp->post_handler(kp, regs, flags);
960                         reset_kprobe_instance();
961                 }
962         }
963 }
964
965 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
966                                         int trapnr)
967 {
968         struct kprobe *cur = __this_cpu_read(kprobe_instance);
969
970         /*
971          * if we faulted "during" the execution of a user specified
972          * probe handler, invoke just that probe's fault handler
973          */
974         if (cur && cur->fault_handler) {
975                 if (cur->fault_handler(cur, regs, trapnr))
976                         return 1;
977         }
978         return 0;
979 }
980
981 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
982 {
983         struct kprobe *cur = __this_cpu_read(kprobe_instance);
984         int ret = 0;
985
986         if (cur && cur->break_handler) {
987                 if (cur->break_handler(cur, regs))
988                         ret = 1;
989         }
990         reset_kprobe_instance();
991         return ret;
992 }
993
994 /* Walks the list and increments nmissed count for multiprobe case */
995 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
996 {
997         struct kprobe *kp;
998         if (!kprobe_aggrprobe(p)) {
999                 p->nmissed++;
1000         } else {
1001                 list_for_each_entry_rcu(kp, &p->list, list)
1002                         kp->nmissed++;
1003         }
1004         return;
1005 }
1006
1007 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1008                                 struct hlist_head *head)
1009 {
1010         struct kretprobe *rp = ri->rp;
1011
1012         /* remove rp inst off the rprobe_inst_table */
1013         hlist_del(&ri->hlist);
1014         INIT_HLIST_NODE(&ri->hlist);
1015         if (likely(rp)) {
1016                 raw_spin_lock(&rp->lock);
1017                 hlist_add_head(&ri->hlist, &rp->free_instances);
1018                 raw_spin_unlock(&rp->lock);
1019         } else
1020                 /* Unregistering */
1021                 hlist_add_head(&ri->hlist, head);
1022 }
1023
1024 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1025                          struct hlist_head **head, unsigned long *flags)
1026 __acquires(hlist_lock)
1027 {
1028         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1029         raw_spinlock_t *hlist_lock;
1030
1031         *head = &kretprobe_inst_table[hash];
1032         hlist_lock = kretprobe_table_lock_ptr(hash);
1033         raw_spin_lock_irqsave(hlist_lock, *flags);
1034 }
1035
1036 static void __kprobes kretprobe_table_lock(unsigned long hash,
1037         unsigned long *flags)
1038 __acquires(hlist_lock)
1039 {
1040         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1041         raw_spin_lock_irqsave(hlist_lock, *flags);
1042 }
1043
1044 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1045         unsigned long *flags)
1046 __releases(hlist_lock)
1047 {
1048         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1049         raw_spinlock_t *hlist_lock;
1050
1051         hlist_lock = kretprobe_table_lock_ptr(hash);
1052         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1053 }
1054
1055 static void __kprobes kretprobe_table_unlock(unsigned long hash,
1056        unsigned long *flags)
1057 __releases(hlist_lock)
1058 {
1059         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1060         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1061 }
1062
1063 /*
1064  * This function is called from finish_task_switch when task tk becomes dead,
1065  * so that we can recycle any function-return probe instances associated
1066  * with this task. These left over instances represent probed functions
1067  * that have been called but will never return.
1068  */
1069 void __kprobes kprobe_flush_task(struct task_struct *tk)
1070 {
1071         struct kretprobe_instance *ri;
1072         struct hlist_head *head, empty_rp;
1073         struct hlist_node *node, *tmp;
1074         unsigned long hash, flags = 0;
1075
1076         if (unlikely(!kprobes_initialized))
1077                 /* Early boot.  kretprobe_table_locks not yet initialized. */
1078                 return;
1079
1080         INIT_HLIST_HEAD(&empty_rp);
1081         hash = hash_ptr(tk, KPROBE_HASH_BITS);
1082         head = &kretprobe_inst_table[hash];
1083         kretprobe_table_lock(hash, &flags);
1084         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
1085                 if (ri->task == tk)
1086                         recycle_rp_inst(ri, &empty_rp);
1087         }
1088         kretprobe_table_unlock(hash, &flags);
1089         hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
1090                 hlist_del(&ri->hlist);
1091                 kfree(ri);
1092         }
1093 }
1094
1095 static inline void free_rp_inst(struct kretprobe *rp)
1096 {
1097         struct kretprobe_instance *ri;
1098         struct hlist_node *pos, *next;
1099
1100         hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
1101                 hlist_del(&ri->hlist);
1102                 kfree(ri);
1103         }
1104 }
1105
1106 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1107 {
1108         unsigned long flags, hash;
1109         struct kretprobe_instance *ri;
1110         struct hlist_node *pos, *next;
1111         struct hlist_head *head;
1112
1113         /* No race here */
1114         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1115                 kretprobe_table_lock(hash, &flags);
1116                 head = &kretprobe_inst_table[hash];
1117                 hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
1118                         if (ri->rp == rp)
1119                                 ri->rp = NULL;
1120                 }
1121                 kretprobe_table_unlock(hash, &flags);
1122         }
1123         free_rp_inst(rp);
1124 }
1125
1126 /*
1127 * Add the new probe to ap->list. Fail if this is the
1128 * second jprobe at the address - two jprobes can't coexist
1129 */
1130 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1131 {
1132         BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1133
1134         if (p->break_handler || p->post_handler)
1135                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1136
1137         if (p->break_handler) {
1138                 if (ap->break_handler)
1139                         return -EEXIST;
1140                 list_add_tail_rcu(&p->list, &ap->list);
1141                 ap->break_handler = aggr_break_handler;
1142         } else
1143                 list_add_rcu(&p->list, &ap->list);
1144         if (p->post_handler && !ap->post_handler)
1145                 ap->post_handler = aggr_post_handler;
1146
1147         if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
1148                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1149                 if (!kprobes_all_disarmed)
1150                         /* Arm the breakpoint again. */
1151                         __arm_kprobe(ap);
1152         }
1153         return 0;
1154 }
1155
1156 /*
1157  * Fill in the required fields of the "manager kprobe". Replace the
1158  * earlier kprobe in the hlist with the manager kprobe
1159  */
1160 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1161 {
1162         /* Copy p's insn slot to ap */
1163         copy_kprobe(p, ap);
1164         flush_insn_slot(ap);
1165         ap->addr = p->addr;
1166         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1167         ap->pre_handler = aggr_pre_handler;
1168         ap->fault_handler = aggr_fault_handler;
1169         /* We don't care the kprobe which has gone. */
1170         if (p->post_handler && !kprobe_gone(p))
1171                 ap->post_handler = aggr_post_handler;
1172         if (p->break_handler && !kprobe_gone(p))
1173                 ap->break_handler = aggr_break_handler;
1174
1175         INIT_LIST_HEAD(&ap->list);
1176         INIT_HLIST_NODE(&ap->hlist);
1177
1178         list_add_rcu(&p->list, &ap->list);
1179         hlist_replace_rcu(&p->hlist, &ap->hlist);
1180 }
1181
1182 /*
1183  * This is the second or subsequent kprobe at the address - handle
1184  * the intricacies
1185  */
1186 static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1187                                           struct kprobe *p)
1188 {
1189         int ret = 0;
1190         struct kprobe *ap = orig_p;
1191
1192         if (!kprobe_aggrprobe(orig_p)) {
1193                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1194                 ap = alloc_aggr_kprobe(orig_p);
1195                 if (!ap)
1196                         return -ENOMEM;
1197                 init_aggr_kprobe(ap, orig_p);
1198         } else if (kprobe_unused(ap))
1199                 /* This probe is going to die. Rescue it */
1200                 reuse_unused_kprobe(ap);
1201
1202         if (kprobe_gone(ap)) {
1203                 /*
1204                  * Attempting to insert new probe at the same location that
1205                  * had a probe in the module vaddr area which already
1206                  * freed. So, the instruction slot has already been
1207                  * released. We need a new slot for the new probe.
1208                  */
1209                 ret = arch_prepare_kprobe(ap);
1210                 if (ret)
1211                         /*
1212                          * Even if fail to allocate new slot, don't need to
1213                          * free aggr_probe. It will be used next time, or
1214                          * freed by unregister_kprobe.
1215                          */
1216                         return ret;
1217
1218                 /* Prepare optimized instructions if possible. */
1219                 prepare_optimized_kprobe(ap);
1220
1221                 /*
1222                  * Clear gone flag to prevent allocating new slot again, and
1223                  * set disabled flag because it is not armed yet.
1224                  */
1225                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1226                             | KPROBE_FLAG_DISABLED;
1227         }
1228
1229         /* Copy ap's insn slot to p */
1230         copy_kprobe(ap, p);
1231         return add_new_kprobe(ap, p);
1232 }
1233
1234 static int __kprobes in_kprobes_functions(unsigned long addr)
1235 {
1236         struct kprobe_blackpoint *kb;
1237
1238         if (addr >= (unsigned long)__kprobes_text_start &&
1239             addr < (unsigned long)__kprobes_text_end)
1240                 return -EINVAL;
1241         /*
1242          * If there exists a kprobe_blacklist, verify and
1243          * fail any probe registration in the prohibited area
1244          */
1245         for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1246                 if (kb->start_addr) {
1247                         if (addr >= kb->start_addr &&
1248                             addr < (kb->start_addr + kb->range))
1249                                 return -EINVAL;
1250                 }
1251         }
1252         return 0;
1253 }
1254
1255 /*
1256  * If we have a symbol_name argument, look it up and add the offset field
1257  * to it. This way, we can specify a relative address to a symbol.
1258  * This returns encoded errors if it fails to look up symbol or invalid
1259  * combination of parameters.
1260  */
1261 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1262 {
1263         kprobe_opcode_t *addr = p->addr;
1264
1265         if ((p->symbol_name && p->addr) ||
1266             (!p->symbol_name && !p->addr))
1267                 goto invalid;
1268
1269         if (p->symbol_name) {
1270                 kprobe_lookup_name(p->symbol_name, addr);
1271                 if (!addr)
1272                         return ERR_PTR(-ENOENT);
1273         }
1274
1275         addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1276         if (addr)
1277                 return addr;
1278
1279 invalid:
1280         return ERR_PTR(-EINVAL);
1281 }
1282
1283 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1284 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1285 {
1286         struct kprobe *ap, *list_p;
1287
1288         ap = get_kprobe(p->addr);
1289         if (unlikely(!ap))
1290                 return NULL;
1291
1292         if (p != ap) {
1293                 list_for_each_entry_rcu(list_p, &ap->list, list)
1294                         if (list_p == p)
1295                         /* kprobe p is a valid probe */
1296                                 goto valid;
1297                 return NULL;
1298         }
1299 valid:
1300         return ap;
1301 }
1302
1303 /* Return error if the kprobe is being re-registered */
1304 static inline int check_kprobe_rereg(struct kprobe *p)
1305 {
1306         int ret = 0;
1307
1308         mutex_lock(&kprobe_mutex);
1309         if (__get_valid_kprobe(p))
1310                 ret = -EINVAL;
1311         mutex_unlock(&kprobe_mutex);
1312
1313         return ret;
1314 }
1315
1316 int __kprobes register_kprobe(struct kprobe *p)
1317 {
1318         int ret = 0;
1319         struct kprobe *old_p;
1320         struct module *probed_mod;
1321         kprobe_opcode_t *addr;
1322
1323         addr = kprobe_addr(p);
1324         if (IS_ERR(addr))
1325                 return PTR_ERR(addr);
1326         p->addr = addr;
1327
1328         ret = check_kprobe_rereg(p);
1329         if (ret)
1330                 return ret;
1331
1332         jump_label_lock();
1333         preempt_disable();
1334         if (!kernel_text_address((unsigned long) p->addr) ||
1335             in_kprobes_functions((unsigned long) p->addr) ||
1336             ftrace_text_reserved(p->addr, p->addr) ||
1337             jump_label_text_reserved(p->addr, p->addr)) {
1338                 ret = -EINVAL;
1339                 goto cannot_probe;
1340         }
1341
1342         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1343         p->flags &= KPROBE_FLAG_DISABLED;
1344
1345         /*
1346          * Check if are we probing a module.
1347          */
1348         probed_mod = __module_text_address((unsigned long) p->addr);
1349         if (probed_mod) {
1350                 /* Return -ENOENT if fail. */
1351                 ret = -ENOENT;
1352                 /*
1353                  * We must hold a refcount of the probed module while updating
1354                  * its code to prohibit unexpected unloading.
1355                  */
1356                 if (unlikely(!try_module_get(probed_mod)))
1357                         goto cannot_probe;
1358
1359                 /*
1360                  * If the module freed .init.text, we couldn't insert
1361                  * kprobes in there.
1362                  */
1363                 if (within_module_init((unsigned long)p->addr, probed_mod) &&
1364                     probed_mod->state != MODULE_STATE_COMING) {
1365                         module_put(probed_mod);
1366                         goto cannot_probe;
1367                 }
1368                 /* ret will be updated by following code */
1369         }
1370         preempt_enable();
1371         jump_label_unlock();
1372
1373         p->nmissed = 0;
1374         INIT_LIST_HEAD(&p->list);
1375         mutex_lock(&kprobe_mutex);
1376
1377         jump_label_lock(); /* needed to call jump_label_text_reserved() */
1378
1379         get_online_cpus();      /* For avoiding text_mutex deadlock. */
1380         mutex_lock(&text_mutex);
1381
1382         old_p = get_kprobe(p->addr);
1383         if (old_p) {
1384                 /* Since this may unoptimize old_p, locking text_mutex. */
1385                 ret = register_aggr_kprobe(old_p, p);
1386                 goto out;
1387         }
1388
1389         ret = arch_prepare_kprobe(p);
1390         if (ret)
1391                 goto out;
1392
1393         INIT_HLIST_NODE(&p->hlist);
1394         hlist_add_head_rcu(&p->hlist,
1395                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1396
1397         if (!kprobes_all_disarmed && !kprobe_disabled(p))
1398                 __arm_kprobe(p);
1399
1400         /* Try to optimize kprobe */
1401         try_to_optimize_kprobe(p);
1402
1403 out:
1404         mutex_unlock(&text_mutex);
1405         put_online_cpus();
1406         jump_label_unlock();
1407         mutex_unlock(&kprobe_mutex);
1408
1409         if (probed_mod)
1410                 module_put(probed_mod);
1411
1412         return ret;
1413
1414 cannot_probe:
1415         preempt_enable();
1416         jump_label_unlock();
1417         return ret;
1418 }
1419 EXPORT_SYMBOL_GPL(register_kprobe);
1420
1421 /* Check if all probes on the aggrprobe are disabled */
1422 static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1423 {
1424         struct kprobe *kp;
1425
1426         list_for_each_entry_rcu(kp, &ap->list, list)
1427                 if (!kprobe_disabled(kp))
1428                         /*
1429                          * There is an active probe on the list.
1430                          * We can't disable this ap.
1431                          */
1432                         return 0;
1433
1434         return 1;
1435 }
1436
1437 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1438 static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1439 {
1440         struct kprobe *orig_p;
1441
1442         /* Get an original kprobe for return */
1443         orig_p = __get_valid_kprobe(p);
1444         if (unlikely(orig_p == NULL))
1445                 return NULL;
1446
1447         if (!kprobe_disabled(p)) {
1448                 /* Disable probe if it is a child probe */
1449                 if (p != orig_p)
1450                         p->flags |= KPROBE_FLAG_DISABLED;
1451
1452                 /* Try to disarm and disable this/parent probe */
1453                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1454                         disarm_kprobe(orig_p);
1455                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1456                 }
1457         }
1458
1459         return orig_p;
1460 }
1461
1462 /*
1463  * Unregister a kprobe without a scheduler synchronization.
1464  */
1465 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1466 {
1467         struct kprobe *ap, *list_p;
1468
1469         /* Disable kprobe. This will disarm it if needed. */
1470         ap = __disable_kprobe(p);
1471         if (ap == NULL)
1472                 return -EINVAL;
1473
1474         if (ap == p)
1475                 /*
1476                  * This probe is an independent(and non-optimized) kprobe
1477                  * (not an aggrprobe). Remove from the hash list.
1478                  */
1479                 goto disarmed;
1480
1481         /* Following process expects this probe is an aggrprobe */
1482         WARN_ON(!kprobe_aggrprobe(ap));
1483
1484         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1485                 /*
1486                  * !disarmed could be happen if the probe is under delayed
1487                  * unoptimizing.
1488                  */
1489                 goto disarmed;
1490         else {
1491                 /* If disabling probe has special handlers, update aggrprobe */
1492                 if (p->break_handler && !kprobe_gone(p))
1493                         ap->break_handler = NULL;
1494                 if (p->post_handler && !kprobe_gone(p)) {
1495                         list_for_each_entry_rcu(list_p, &ap->list, list) {
1496                                 if ((list_p != p) && (list_p->post_handler))
1497                                         goto noclean;
1498                         }
1499                         ap->post_handler = NULL;
1500                 }
1501 noclean:
1502                 /*
1503                  * Remove from the aggrprobe: this path will do nothing in
1504                  * __unregister_kprobe_bottom().
1505                  */
1506                 list_del_rcu(&p->list);
1507                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1508                         /*
1509                          * Try to optimize this probe again, because post
1510                          * handler may have been changed.
1511                          */
1512                         optimize_kprobe(ap);
1513         }
1514         return 0;
1515
1516 disarmed:
1517         BUG_ON(!kprobe_disarmed(ap));
1518         hlist_del_rcu(&ap->hlist);
1519         return 0;
1520 }
1521
1522 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1523 {
1524         struct kprobe *ap;
1525
1526         if (list_empty(&p->list))
1527                 /* This is an independent kprobe */
1528                 arch_remove_kprobe(p);
1529         else if (list_is_singular(&p->list)) {
1530                 /* This is the last child of an aggrprobe */
1531                 ap = list_entry(p->list.next, struct kprobe, list);
1532                 list_del(&p->list);
1533                 free_aggr_kprobe(ap);
1534         }
1535         /* Otherwise, do nothing. */
1536 }
1537
1538 int __kprobes register_kprobes(struct kprobe **kps, int num)
1539 {
1540         int i, ret = 0;
1541
1542         if (num <= 0)
1543                 return -EINVAL;
1544         for (i = 0; i < num; i++) {
1545                 ret = register_kprobe(kps[i]);
1546                 if (ret < 0) {
1547                         if (i > 0)
1548                                 unregister_kprobes(kps, i);
1549                         break;
1550                 }
1551         }
1552         return ret;
1553 }
1554 EXPORT_SYMBOL_GPL(register_kprobes);
1555
1556 void __kprobes unregister_kprobe(struct kprobe *p)
1557 {
1558         unregister_kprobes(&p, 1);
1559 }
1560 EXPORT_SYMBOL_GPL(unregister_kprobe);
1561
1562 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1563 {
1564         int i;
1565
1566         if (num <= 0)
1567                 return;
1568         mutex_lock(&kprobe_mutex);
1569         for (i = 0; i < num; i++)
1570                 if (__unregister_kprobe_top(kps[i]) < 0)
1571                         kps[i]->addr = NULL;
1572         mutex_unlock(&kprobe_mutex);
1573
1574         synchronize_sched();
1575         for (i = 0; i < num; i++)
1576                 if (kps[i]->addr)
1577                         __unregister_kprobe_bottom(kps[i]);
1578 }
1579 EXPORT_SYMBOL_GPL(unregister_kprobes);
1580
1581 static struct notifier_block kprobe_exceptions_nb = {
1582         .notifier_call = kprobe_exceptions_notify,
1583         .priority = 0x7fffffff /* we need to be notified first */
1584 };
1585
1586 unsigned long __weak arch_deref_entry_point(void *entry)
1587 {
1588         return (unsigned long)entry;
1589 }
1590
1591 int __kprobes register_jprobes(struct jprobe **jps, int num)
1592 {
1593         struct jprobe *jp;
1594         int ret = 0, i;
1595
1596         if (num <= 0)
1597                 return -EINVAL;
1598         for (i = 0; i < num; i++) {
1599                 unsigned long addr, offset;
1600                 jp = jps[i];
1601                 addr = arch_deref_entry_point(jp->entry);
1602
1603                 /* Verify probepoint is a function entry point */
1604                 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1605                     offset == 0) {
1606                         jp->kp.pre_handler = setjmp_pre_handler;
1607                         jp->kp.break_handler = longjmp_break_handler;
1608                         ret = register_kprobe(&jp->kp);
1609                 } else
1610                         ret = -EINVAL;
1611
1612                 if (ret < 0) {
1613                         if (i > 0)
1614                                 unregister_jprobes(jps, i);
1615                         break;
1616                 }
1617         }
1618         return ret;
1619 }
1620 EXPORT_SYMBOL_GPL(register_jprobes);
1621
1622 int __kprobes register_jprobe(struct jprobe *jp)
1623 {
1624         return register_jprobes(&jp, 1);
1625 }
1626 EXPORT_SYMBOL_GPL(register_jprobe);
1627
1628 void __kprobes unregister_jprobe(struct jprobe *jp)
1629 {
1630         unregister_jprobes(&jp, 1);
1631 }
1632 EXPORT_SYMBOL_GPL(unregister_jprobe);
1633
1634 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1635 {
1636         int i;
1637
1638         if (num <= 0)
1639                 return;
1640         mutex_lock(&kprobe_mutex);
1641         for (i = 0; i < num; i++)
1642                 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1643                         jps[i]->kp.addr = NULL;
1644         mutex_unlock(&kprobe_mutex);
1645
1646         synchronize_sched();
1647         for (i = 0; i < num; i++) {
1648                 if (jps[i]->kp.addr)
1649                         __unregister_kprobe_bottom(&jps[i]->kp);
1650         }
1651 }
1652 EXPORT_SYMBOL_GPL(unregister_jprobes);
1653
1654 #ifdef CONFIG_KRETPROBES
1655 /*
1656  * This kprobe pre_handler is registered with every kretprobe. When probe
1657  * hits it will set up the return probe.
1658  */
1659 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1660                                            struct pt_regs *regs)
1661 {
1662         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1663         unsigned long hash, flags = 0;
1664         struct kretprobe_instance *ri;
1665
1666         /*TODO: consider to only swap the RA after the last pre_handler fired */
1667         hash = hash_ptr(current, KPROBE_HASH_BITS);
1668         raw_spin_lock_irqsave(&rp->lock, flags);
1669         if (!hlist_empty(&rp->free_instances)) {
1670                 ri = hlist_entry(rp->free_instances.first,
1671                                 struct kretprobe_instance, hlist);
1672                 hlist_del(&ri->hlist);
1673                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1674
1675                 ri->rp = rp;
1676                 ri->task = current;
1677
1678                 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1679                         raw_spin_lock_irqsave(&rp->lock, flags);
1680                         hlist_add_head(&ri->hlist, &rp->free_instances);
1681                         raw_spin_unlock_irqrestore(&rp->lock, flags);
1682                         return 0;
1683                 }
1684
1685                 arch_prepare_kretprobe(ri, regs);
1686
1687                 /* XXX(hch): why is there no hlist_move_head? */
1688                 INIT_HLIST_NODE(&ri->hlist);
1689                 kretprobe_table_lock(hash, &flags);
1690                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1691                 kretprobe_table_unlock(hash, &flags);
1692         } else {
1693                 rp->nmissed++;
1694                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1695         }
1696         return 0;
1697 }
1698
1699 int __kprobes register_kretprobe(struct kretprobe *rp)
1700 {
1701         int ret = 0;
1702         struct kretprobe_instance *inst;
1703         int i;
1704         void *addr;
1705
1706         if (kretprobe_blacklist_size) {
1707                 addr = kprobe_addr(&rp->kp);
1708                 if (IS_ERR(addr))
1709                         return PTR_ERR(addr);
1710
1711                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1712                         if (kretprobe_blacklist[i].addr == addr)
1713                                 return -EINVAL;
1714                 }
1715         }
1716
1717         rp->kp.pre_handler = pre_handler_kretprobe;
1718         rp->kp.post_handler = NULL;
1719         rp->kp.fault_handler = NULL;
1720         rp->kp.break_handler = NULL;
1721
1722         /* Pre-allocate memory for max kretprobe instances */
1723         if (rp->maxactive <= 0) {
1724 #ifdef CONFIG_PREEMPT
1725                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1726 #else
1727                 rp->maxactive = num_possible_cpus();
1728 #endif
1729         }
1730         raw_spin_lock_init(&rp->lock);
1731         INIT_HLIST_HEAD(&rp->free_instances);
1732         for (i = 0; i < rp->maxactive; i++) {
1733                 inst = kmalloc(sizeof(struct kretprobe_instance) +
1734                                rp->data_size, GFP_KERNEL);
1735                 if (inst == NULL) {
1736                         free_rp_inst(rp);
1737                         return -ENOMEM;
1738                 }
1739                 INIT_HLIST_NODE(&inst->hlist);
1740                 hlist_add_head(&inst->hlist, &rp->free_instances);
1741         }
1742
1743         rp->nmissed = 0;
1744         /* Establish function entry probe point */
1745         ret = register_kprobe(&rp->kp);
1746         if (ret != 0)
1747                 free_rp_inst(rp);
1748         return ret;
1749 }
1750 EXPORT_SYMBOL_GPL(register_kretprobe);
1751
1752 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1753 {
1754         int ret = 0, i;
1755
1756         if (num <= 0)
1757                 return -EINVAL;
1758         for (i = 0; i < num; i++) {
1759                 ret = register_kretprobe(rps[i]);
1760                 if (ret < 0) {
1761                         if (i > 0)
1762                                 unregister_kretprobes(rps, i);
1763                         break;
1764                 }
1765         }
1766         return ret;
1767 }
1768 EXPORT_SYMBOL_GPL(register_kretprobes);
1769
1770 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1771 {
1772         unregister_kretprobes(&rp, 1);
1773 }
1774 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1775
1776 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1777 {
1778         int i;
1779
1780         if (num <= 0)
1781                 return;
1782         mutex_lock(&kprobe_mutex);
1783         for (i = 0; i < num; i++)
1784                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1785                         rps[i]->kp.addr = NULL;
1786         mutex_unlock(&kprobe_mutex);
1787
1788         synchronize_sched();
1789         for (i = 0; i < num; i++) {
1790                 if (rps[i]->kp.addr) {
1791                         __unregister_kprobe_bottom(&rps[i]->kp);
1792                         cleanup_rp_inst(rps[i]);
1793                 }
1794         }
1795 }
1796 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1797
1798 #else /* CONFIG_KRETPROBES */
1799 int __kprobes register_kretprobe(struct kretprobe *rp)
1800 {
1801         return -ENOSYS;
1802 }
1803 EXPORT_SYMBOL_GPL(register_kretprobe);
1804
1805 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1806 {
1807         return -ENOSYS;
1808 }
1809 EXPORT_SYMBOL_GPL(register_kretprobes);
1810
1811 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1812 {
1813 }
1814 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1815
1816 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1817 {
1818 }
1819 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1820
1821 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1822                                            struct pt_regs *regs)
1823 {
1824         return 0;
1825 }
1826
1827 #endif /* CONFIG_KRETPROBES */
1828
1829 /* Set the kprobe gone and remove its instruction buffer. */
1830 static void __kprobes kill_kprobe(struct kprobe *p)
1831 {
1832         struct kprobe *kp;
1833
1834         p->flags |= KPROBE_FLAG_GONE;
1835         if (kprobe_aggrprobe(p)) {
1836                 /*
1837                  * If this is an aggr_kprobe, we have to list all the
1838                  * chained probes and mark them GONE.
1839                  */
1840                 list_for_each_entry_rcu(kp, &p->list, list)
1841                         kp->flags |= KPROBE_FLAG_GONE;
1842                 p->post_handler = NULL;
1843                 p->break_handler = NULL;
1844                 kill_optimized_kprobe(p);
1845         }
1846         /*
1847          * Here, we can remove insn_slot safely, because no thread calls
1848          * the original probed function (which will be freed soon) any more.
1849          */
1850         arch_remove_kprobe(p);
1851 }
1852
1853 /* Disable one kprobe */
1854 int __kprobes disable_kprobe(struct kprobe *kp)
1855 {
1856         int ret = 0;
1857
1858         mutex_lock(&kprobe_mutex);
1859
1860         /* Disable this kprobe */
1861         if (__disable_kprobe(kp) == NULL)
1862                 ret = -EINVAL;
1863
1864         mutex_unlock(&kprobe_mutex);
1865         return ret;
1866 }
1867 EXPORT_SYMBOL_GPL(disable_kprobe);
1868
1869 /* Enable one kprobe */
1870 int __kprobes enable_kprobe(struct kprobe *kp)
1871 {
1872         int ret = 0;
1873         struct kprobe *p;
1874
1875         mutex_lock(&kprobe_mutex);
1876
1877         /* Check whether specified probe is valid. */
1878         p = __get_valid_kprobe(kp);
1879         if (unlikely(p == NULL)) {
1880                 ret = -EINVAL;
1881                 goto out;
1882         }
1883
1884         if (kprobe_gone(kp)) {
1885                 /* This kprobe has gone, we couldn't enable it. */
1886                 ret = -EINVAL;
1887                 goto out;
1888         }
1889
1890         if (p != kp)
1891                 kp->flags &= ~KPROBE_FLAG_DISABLED;
1892
1893         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
1894                 p->flags &= ~KPROBE_FLAG_DISABLED;
1895                 arm_kprobe(p);
1896         }
1897 out:
1898         mutex_unlock(&kprobe_mutex);
1899         return ret;
1900 }
1901 EXPORT_SYMBOL_GPL(enable_kprobe);
1902
1903 void __kprobes dump_kprobe(struct kprobe *kp)
1904 {
1905         printk(KERN_WARNING "Dumping kprobe:\n");
1906         printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1907                kp->symbol_name, kp->addr, kp->offset);
1908 }
1909
1910 /* Module notifier call back, checking kprobes on the module */
1911 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1912                                              unsigned long val, void *data)
1913 {
1914         struct module *mod = data;
1915         struct hlist_head *head;
1916         struct hlist_node *node;
1917         struct kprobe *p;
1918         unsigned int i;
1919         int checkcore = (val == MODULE_STATE_GOING);
1920
1921         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1922                 return NOTIFY_DONE;
1923
1924         /*
1925          * When MODULE_STATE_GOING was notified, both of module .text and
1926          * .init.text sections would be freed. When MODULE_STATE_LIVE was
1927          * notified, only .init.text section would be freed. We need to
1928          * disable kprobes which have been inserted in the sections.
1929          */
1930         mutex_lock(&kprobe_mutex);
1931         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1932                 head = &kprobe_table[i];
1933                 hlist_for_each_entry_rcu(p, node, head, hlist)
1934                         if (within_module_init((unsigned long)p->addr, mod) ||
1935                             (checkcore &&
1936                              within_module_core((unsigned long)p->addr, mod))) {
1937                                 /*
1938                                  * The vaddr this probe is installed will soon
1939                                  * be vfreed buy not synced to disk. Hence,
1940                                  * disarming the breakpoint isn't needed.
1941                                  */
1942                                 kill_kprobe(p);
1943                         }
1944         }
1945         mutex_unlock(&kprobe_mutex);
1946         return NOTIFY_DONE;
1947 }
1948
1949 static struct notifier_block kprobe_module_nb = {
1950         .notifier_call = kprobes_module_callback,
1951         .priority = 0
1952 };
1953
1954 static int __init init_kprobes(void)
1955 {
1956         int i, err = 0;
1957         unsigned long offset = 0, size = 0;
1958         char *modname, namebuf[128];
1959         const char *symbol_name;
1960         void *addr;
1961         struct kprobe_blackpoint *kb;
1962
1963         /* FIXME allocate the probe table, currently defined statically */
1964         /* initialize all list heads */
1965         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1966                 INIT_HLIST_HEAD(&kprobe_table[i]);
1967                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1968                 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
1969         }
1970
1971         /*
1972          * Lookup and populate the kprobe_blacklist.
1973          *
1974          * Unlike the kretprobe blacklist, we'll need to determine
1975          * the range of addresses that belong to the said functions,
1976          * since a kprobe need not necessarily be at the beginning
1977          * of a function.
1978          */
1979         for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1980                 kprobe_lookup_name(kb->name, addr);
1981                 if (!addr)
1982                         continue;
1983
1984                 kb->start_addr = (unsigned long)addr;
1985                 symbol_name = kallsyms_lookup(kb->start_addr,
1986                                 &size, &offset, &modname, namebuf);
1987                 if (!symbol_name)
1988                         kb->range = 0;
1989                 else
1990                         kb->range = size;
1991         }
1992
1993         if (kretprobe_blacklist_size) {
1994                 /* lookup the function address from its name */
1995                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1996                         kprobe_lookup_name(kretprobe_blacklist[i].name,
1997                                            kretprobe_blacklist[i].addr);
1998                         if (!kretprobe_blacklist[i].addr)
1999                                 printk("kretprobe: lookup failed: %s\n",
2000                                        kretprobe_blacklist[i].name);
2001                 }
2002         }
2003
2004 #if defined(CONFIG_OPTPROBES)
2005 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2006         /* Init kprobe_optinsn_slots */
2007         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2008 #endif
2009         /* By default, kprobes can be optimized */
2010         kprobes_allow_optimization = true;
2011 #endif
2012
2013         /* By default, kprobes are armed */
2014         kprobes_all_disarmed = false;
2015
2016         err = arch_init_kprobes();
2017         if (!err)
2018                 err = register_die_notifier(&kprobe_exceptions_nb);
2019         if (!err)
2020                 err = register_module_notifier(&kprobe_module_nb);
2021
2022         kprobes_initialized = (err == 0);
2023
2024         if (!err)
2025                 init_test_probes();
2026         return err;
2027 }
2028
2029 #ifdef CONFIG_DEBUG_FS
2030 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2031                 const char *sym, int offset, char *modname, struct kprobe *pp)
2032 {
2033         char *kprobe_type;
2034
2035         if (p->pre_handler == pre_handler_kretprobe)
2036                 kprobe_type = "r";
2037         else if (p->pre_handler == setjmp_pre_handler)
2038                 kprobe_type = "j";
2039         else
2040                 kprobe_type = "k";
2041
2042         if (sym)
2043                 seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2044                         p->addr, kprobe_type, sym, offset,
2045                         (modname ? modname : " "));
2046         else
2047                 seq_printf(pi, "%p  %s  %p ",
2048                         p->addr, kprobe_type, p->addr);
2049
2050         if (!pp)
2051                 pp = p;
2052         seq_printf(pi, "%s%s%s\n",
2053                 (kprobe_gone(p) ? "[GONE]" : ""),
2054                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2055                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""));
2056 }
2057
2058 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2059 {
2060         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2061 }
2062
2063 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2064 {
2065         (*pos)++;
2066         if (*pos >= KPROBE_TABLE_SIZE)
2067                 return NULL;
2068         return pos;
2069 }
2070
2071 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2072 {
2073         /* Nothing to do */
2074 }
2075
2076 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2077 {
2078         struct hlist_head *head;
2079         struct hlist_node *node;
2080         struct kprobe *p, *kp;
2081         const char *sym = NULL;
2082         unsigned int i = *(loff_t *) v;
2083         unsigned long offset = 0;
2084         char *modname, namebuf[128];
2085
2086         head = &kprobe_table[i];
2087         preempt_disable();
2088         hlist_for_each_entry_rcu(p, node, head, hlist) {
2089                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2090                                         &offset, &modname, namebuf);
2091                 if (kprobe_aggrprobe(p)) {
2092                         list_for_each_entry_rcu(kp, &p->list, list)
2093                                 report_probe(pi, kp, sym, offset, modname, p);
2094                 } else
2095                         report_probe(pi, p, sym, offset, modname, NULL);
2096         }
2097         preempt_enable();
2098         return 0;
2099 }
2100
2101 static const struct seq_operations kprobes_seq_ops = {
2102         .start = kprobe_seq_start,
2103         .next  = kprobe_seq_next,
2104         .stop  = kprobe_seq_stop,
2105         .show  = show_kprobe_addr
2106 };
2107
2108 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
2109 {
2110         return seq_open(filp, &kprobes_seq_ops);
2111 }
2112
2113 static const struct file_operations debugfs_kprobes_operations = {
2114         .open           = kprobes_open,
2115         .read           = seq_read,
2116         .llseek         = seq_lseek,
2117         .release        = seq_release,
2118 };
2119
2120 static void __kprobes arm_all_kprobes(void)
2121 {
2122         struct hlist_head *head;
2123         struct hlist_node *node;
2124         struct kprobe *p;
2125         unsigned int i;
2126
2127         mutex_lock(&kprobe_mutex);
2128
2129         /* If kprobes are armed, just return */
2130         if (!kprobes_all_disarmed)
2131                 goto already_enabled;
2132
2133         /* Arming kprobes doesn't optimize kprobe itself */
2134         mutex_lock(&text_mutex);
2135         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2136                 head = &kprobe_table[i];
2137                 hlist_for_each_entry_rcu(p, node, head, hlist)
2138                         if (!kprobe_disabled(p))
2139                                 __arm_kprobe(p);
2140         }
2141         mutex_unlock(&text_mutex);
2142
2143         kprobes_all_disarmed = false;
2144         printk(KERN_INFO "Kprobes globally enabled\n");
2145
2146 already_enabled:
2147         mutex_unlock(&kprobe_mutex);
2148         return;
2149 }
2150
2151 static void __kprobes disarm_all_kprobes(void)
2152 {
2153         struct hlist_head *head;
2154         struct hlist_node *node;
2155         struct kprobe *p;
2156         unsigned int i;
2157
2158         mutex_lock(&kprobe_mutex);
2159
2160         /* If kprobes are already disarmed, just return */
2161         if (kprobes_all_disarmed) {
2162                 mutex_unlock(&kprobe_mutex);
2163                 return;
2164         }
2165
2166         kprobes_all_disarmed = true;
2167         printk(KERN_INFO "Kprobes globally disabled\n");
2168
2169         mutex_lock(&text_mutex);
2170         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2171                 head = &kprobe_table[i];
2172                 hlist_for_each_entry_rcu(p, node, head, hlist) {
2173                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2174                                 __disarm_kprobe(p, false);
2175                 }
2176         }
2177         mutex_unlock(&text_mutex);
2178         mutex_unlock(&kprobe_mutex);
2179
2180         /* Wait for disarming all kprobes by optimizer */
2181         wait_for_kprobe_optimizer();
2182 }
2183
2184 /*
2185  * XXX: The debugfs bool file interface doesn't allow for callbacks
2186  * when the bool state is switched. We can reuse that facility when
2187  * available
2188  */
2189 static ssize_t read_enabled_file_bool(struct file *file,
2190                char __user *user_buf, size_t count, loff_t *ppos)
2191 {
2192         char buf[3];
2193
2194         if (!kprobes_all_disarmed)
2195                 buf[0] = '1';
2196         else
2197                 buf[0] = '0';
2198         buf[1] = '\n';
2199         buf[2] = 0x00;
2200         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2201 }
2202
2203 static ssize_t write_enabled_file_bool(struct file *file,
2204                const char __user *user_buf, size_t count, loff_t *ppos)
2205 {
2206         char buf[32];
2207         size_t buf_size;
2208
2209         buf_size = min(count, (sizeof(buf)-1));
2210         if (copy_from_user(buf, user_buf, buf_size))
2211                 return -EFAULT;
2212
2213         switch (buf[0]) {
2214         case 'y':
2215         case 'Y':
2216         case '1':
2217                 arm_all_kprobes();
2218                 break;
2219         case 'n':
2220         case 'N':
2221         case '0':
2222                 disarm_all_kprobes();
2223                 break;
2224         }
2225
2226         return count;
2227 }
2228
2229 static const struct file_operations fops_kp = {
2230         .read =         read_enabled_file_bool,
2231         .write =        write_enabled_file_bool,
2232         .llseek =       default_llseek,
2233 };
2234
2235 static int __kprobes debugfs_kprobe_init(void)
2236 {
2237         struct dentry *dir, *file;
2238         unsigned int value = 1;
2239
2240         dir = debugfs_create_dir("kprobes", NULL);
2241         if (!dir)
2242                 return -ENOMEM;
2243
2244         file = debugfs_create_file("list", 0444, dir, NULL,
2245                                 &debugfs_kprobes_operations);
2246         if (!file) {
2247                 debugfs_remove(dir);
2248                 return -ENOMEM;
2249         }
2250
2251         file = debugfs_create_file("enabled", 0600, dir,
2252                                         &value, &fops_kp);
2253         if (!file) {
2254                 debugfs_remove(dir);
2255                 return -ENOMEM;
2256         }
2257
2258         return 0;
2259 }
2260
2261 late_initcall(debugfs_kprobe_init);
2262 #endif /* CONFIG_DEBUG_FS */
2263
2264 module_init(init_kprobes);
2265
2266 /* defined in arch/.../kernel/kprobes.c */
2267 EXPORT_SYMBOL_GPL(jprobe_return);