1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
51 #include <linux/namei.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/tty.h>
67 #include <linux/binfmts.h>
68 #include <linux/highmem.h>
69 #include <linux/syscalls.h>
70 #include <asm/syscall.h>
71 #include <linux/capability.h>
72 #include <linux/fs_struct.h>
73 #include <linux/compat.h>
74 #include <linux/ctype.h>
78 /* flags stating the success for a syscall */
79 #define AUDITSC_INVALID 0
80 #define AUDITSC_SUCCESS 1
81 #define AUDITSC_FAILURE 2
83 /* no execve audit message should be longer than this (userspace limits) */
84 #define MAX_EXECVE_AUDIT_LEN 7500
86 /* max length to print of cmdline/proctitle value during audit */
87 #define MAX_PROCTITLE_AUDIT_LEN 128
89 /* number of audit rules */
92 /* determines whether we collect data for signals sent */
95 struct audit_aux_data {
96 struct audit_aux_data *next;
100 #define AUDIT_AUX_IPCPERM 0
102 /* Number of target pids per aux struct. */
103 #define AUDIT_AUX_PIDS 16
105 struct audit_aux_data_pids {
106 struct audit_aux_data d;
107 pid_t target_pid[AUDIT_AUX_PIDS];
108 kuid_t target_auid[AUDIT_AUX_PIDS];
109 kuid_t target_uid[AUDIT_AUX_PIDS];
110 unsigned int target_sessionid[AUDIT_AUX_PIDS];
111 u32 target_sid[AUDIT_AUX_PIDS];
112 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
116 struct audit_aux_data_bprm_fcaps {
117 struct audit_aux_data d;
118 struct audit_cap_data fcap;
119 unsigned int fcap_ver;
120 struct audit_cap_data old_pcap;
121 struct audit_cap_data new_pcap;
124 struct audit_tree_refs {
125 struct audit_tree_refs *next;
126 struct audit_chunk *c[31];
129 static int audit_match_perm(struct audit_context *ctx, int mask)
136 switch (audit_classify_syscall(ctx->arch, n)) {
138 if ((mask & AUDIT_PERM_WRITE) &&
139 audit_match_class(AUDIT_CLASS_WRITE, n))
141 if ((mask & AUDIT_PERM_READ) &&
142 audit_match_class(AUDIT_CLASS_READ, n))
144 if ((mask & AUDIT_PERM_ATTR) &&
145 audit_match_class(AUDIT_CLASS_CHATTR, n))
148 case 1: /* 32bit on biarch */
149 if ((mask & AUDIT_PERM_WRITE) &&
150 audit_match_class(AUDIT_CLASS_WRITE_32, n))
152 if ((mask & AUDIT_PERM_READ) &&
153 audit_match_class(AUDIT_CLASS_READ_32, n))
155 if ((mask & AUDIT_PERM_ATTR) &&
156 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
160 return mask & ACC_MODE(ctx->argv[1]);
162 return mask & ACC_MODE(ctx->argv[2]);
163 case 4: /* socketcall */
164 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
166 return mask & AUDIT_PERM_EXEC;
172 static int audit_match_filetype(struct audit_context *ctx, int val)
174 struct audit_names *n;
175 umode_t mode = (umode_t)val;
180 list_for_each_entry(n, &ctx->names_list, list) {
181 if ((n->ino != -1) &&
182 ((n->mode & S_IFMT) == mode))
190 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
191 * ->first_trees points to its beginning, ->trees - to the current end of data.
192 * ->tree_count is the number of free entries in array pointed to by ->trees.
193 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
194 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
195 * it's going to remain 1-element for almost any setup) until we free context itself.
196 * References in it _are_ dropped - at the same time we free/drop aux stuff.
199 #ifdef CONFIG_AUDIT_TREE
200 static void audit_set_auditable(struct audit_context *ctx)
204 ctx->current_state = AUDIT_RECORD_CONTEXT;
208 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
210 struct audit_tree_refs *p = ctx->trees;
211 int left = ctx->tree_count;
213 p->c[--left] = chunk;
214 ctx->tree_count = left;
223 ctx->tree_count = 30;
229 static int grow_tree_refs(struct audit_context *ctx)
231 struct audit_tree_refs *p = ctx->trees;
232 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
238 p->next = ctx->trees;
240 ctx->first_trees = ctx->trees;
241 ctx->tree_count = 31;
246 static void unroll_tree_refs(struct audit_context *ctx,
247 struct audit_tree_refs *p, int count)
249 #ifdef CONFIG_AUDIT_TREE
250 struct audit_tree_refs *q;
253 /* we started with empty chain */
254 p = ctx->first_trees;
256 /* if the very first allocation has failed, nothing to do */
261 for (q = p; q != ctx->trees; q = q->next, n = 31) {
263 audit_put_chunk(q->c[n]);
267 while (n-- > ctx->tree_count) {
268 audit_put_chunk(q->c[n]);
272 ctx->tree_count = count;
276 static void free_tree_refs(struct audit_context *ctx)
278 struct audit_tree_refs *p, *q;
279 for (p = ctx->first_trees; p; p = q) {
285 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
287 #ifdef CONFIG_AUDIT_TREE
288 struct audit_tree_refs *p;
293 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
294 for (n = 0; n < 31; n++)
295 if (audit_tree_match(p->c[n], tree))
300 for (n = ctx->tree_count; n < 31; n++)
301 if (audit_tree_match(p->c[n], tree))
308 static int audit_compare_uid(kuid_t uid,
309 struct audit_names *name,
310 struct audit_field *f,
311 struct audit_context *ctx)
313 struct audit_names *n;
317 rc = audit_uid_comparator(uid, f->op, name->uid);
323 list_for_each_entry(n, &ctx->names_list, list) {
324 rc = audit_uid_comparator(uid, f->op, n->uid);
332 static int audit_compare_gid(kgid_t gid,
333 struct audit_names *name,
334 struct audit_field *f,
335 struct audit_context *ctx)
337 struct audit_names *n;
341 rc = audit_gid_comparator(gid, f->op, name->gid);
347 list_for_each_entry(n, &ctx->names_list, list) {
348 rc = audit_gid_comparator(gid, f->op, n->gid);
356 static int audit_field_compare(struct task_struct *tsk,
357 const struct cred *cred,
358 struct audit_field *f,
359 struct audit_context *ctx,
360 struct audit_names *name)
363 /* process to file object comparisons */
364 case AUDIT_COMPARE_UID_TO_OBJ_UID:
365 return audit_compare_uid(cred->uid, name, f, ctx);
366 case AUDIT_COMPARE_GID_TO_OBJ_GID:
367 return audit_compare_gid(cred->gid, name, f, ctx);
368 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
369 return audit_compare_uid(cred->euid, name, f, ctx);
370 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
371 return audit_compare_gid(cred->egid, name, f, ctx);
372 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
373 return audit_compare_uid(tsk->loginuid, name, f, ctx);
374 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
375 return audit_compare_uid(cred->suid, name, f, ctx);
376 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
377 return audit_compare_gid(cred->sgid, name, f, ctx);
378 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
379 return audit_compare_uid(cred->fsuid, name, f, ctx);
380 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
381 return audit_compare_gid(cred->fsgid, name, f, ctx);
382 /* uid comparisons */
383 case AUDIT_COMPARE_UID_TO_AUID:
384 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
385 case AUDIT_COMPARE_UID_TO_EUID:
386 return audit_uid_comparator(cred->uid, f->op, cred->euid);
387 case AUDIT_COMPARE_UID_TO_SUID:
388 return audit_uid_comparator(cred->uid, f->op, cred->suid);
389 case AUDIT_COMPARE_UID_TO_FSUID:
390 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
391 /* auid comparisons */
392 case AUDIT_COMPARE_AUID_TO_EUID:
393 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
394 case AUDIT_COMPARE_AUID_TO_SUID:
395 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
396 case AUDIT_COMPARE_AUID_TO_FSUID:
397 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
398 /* euid comparisons */
399 case AUDIT_COMPARE_EUID_TO_SUID:
400 return audit_uid_comparator(cred->euid, f->op, cred->suid);
401 case AUDIT_COMPARE_EUID_TO_FSUID:
402 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
403 /* suid comparisons */
404 case AUDIT_COMPARE_SUID_TO_FSUID:
405 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
406 /* gid comparisons */
407 case AUDIT_COMPARE_GID_TO_EGID:
408 return audit_gid_comparator(cred->gid, f->op, cred->egid);
409 case AUDIT_COMPARE_GID_TO_SGID:
410 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
411 case AUDIT_COMPARE_GID_TO_FSGID:
412 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
413 /* egid comparisons */
414 case AUDIT_COMPARE_EGID_TO_SGID:
415 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
416 case AUDIT_COMPARE_EGID_TO_FSGID:
417 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
418 /* sgid comparison */
419 case AUDIT_COMPARE_SGID_TO_FSGID:
420 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
422 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
428 /* Determine if any context name data matches a rule's watch data */
429 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
432 * If task_creation is true, this is an explicit indication that we are
433 * filtering a task rule at task creation time. This and tsk == current are
434 * the only situations where tsk->cred may be accessed without an rcu read lock.
436 static int audit_filter_rules(struct task_struct *tsk,
437 struct audit_krule *rule,
438 struct audit_context *ctx,
439 struct audit_names *name,
440 enum audit_state *state,
443 const struct cred *cred;
447 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
449 for (i = 0; i < rule->field_count; i++) {
450 struct audit_field *f = &rule->fields[i];
451 struct audit_names *n;
457 pid = task_pid_nr(tsk);
458 result = audit_comparator(pid, f->op, f->val);
463 ctx->ppid = task_ppid_nr(tsk);
464 result = audit_comparator(ctx->ppid, f->op, f->val);
468 result = audit_uid_comparator(cred->uid, f->op, f->uid);
471 result = audit_uid_comparator(cred->euid, f->op, f->uid);
474 result = audit_uid_comparator(cred->suid, f->op, f->uid);
477 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
480 result = audit_gid_comparator(cred->gid, f->op, f->gid);
481 if (f->op == Audit_equal) {
483 result = in_group_p(f->gid);
484 } else if (f->op == Audit_not_equal) {
486 result = !in_group_p(f->gid);
490 result = audit_gid_comparator(cred->egid, f->op, f->gid);
491 if (f->op == Audit_equal) {
493 result = in_egroup_p(f->gid);
494 } else if (f->op == Audit_not_equal) {
496 result = !in_egroup_p(f->gid);
500 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
503 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
506 result = audit_comparator(tsk->personality, f->op, f->val);
510 result = audit_comparator(ctx->arch, f->op, f->val);
514 if (ctx && ctx->return_valid)
515 result = audit_comparator(ctx->return_code, f->op, f->val);
518 if (ctx && ctx->return_valid) {
520 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
522 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
527 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
528 audit_comparator(MAJOR(name->rdev), f->op, f->val))
531 list_for_each_entry(n, &ctx->names_list, list) {
532 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
533 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
542 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
543 audit_comparator(MINOR(name->rdev), f->op, f->val))
546 list_for_each_entry(n, &ctx->names_list, list) {
547 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
548 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
557 result = audit_comparator(name->ino, f->op, f->val);
559 list_for_each_entry(n, &ctx->names_list, list) {
560 if (audit_comparator(n->ino, f->op, f->val)) {
569 result = audit_uid_comparator(name->uid, f->op, f->uid);
571 list_for_each_entry(n, &ctx->names_list, list) {
572 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
581 result = audit_gid_comparator(name->gid, f->op, f->gid);
583 list_for_each_entry(n, &ctx->names_list, list) {
584 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
593 result = audit_watch_compare(rule->watch, name->ino, name->dev);
597 result = match_tree_refs(ctx, rule->tree);
602 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
604 case AUDIT_LOGINUID_SET:
605 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
607 case AUDIT_SUBJ_USER:
608 case AUDIT_SUBJ_ROLE:
609 case AUDIT_SUBJ_TYPE:
612 /* NOTE: this may return negative values indicating
613 a temporary error. We simply treat this as a
614 match for now to avoid losing information that
615 may be wanted. An error message will also be
619 security_task_getsecid(tsk, &sid);
622 result = security_audit_rule_match(sid, f->type,
631 case AUDIT_OBJ_LEV_LOW:
632 case AUDIT_OBJ_LEV_HIGH:
633 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
636 /* Find files that match */
638 result = security_audit_rule_match(
639 name->osid, f->type, f->op,
642 list_for_each_entry(n, &ctx->names_list, list) {
643 if (security_audit_rule_match(n->osid, f->type,
651 /* Find ipc objects that match */
652 if (!ctx || ctx->type != AUDIT_IPC)
654 if (security_audit_rule_match(ctx->ipc.osid,
665 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
667 case AUDIT_FILTERKEY:
668 /* ignore this field for filtering */
672 result = audit_match_perm(ctx, f->val);
675 result = audit_match_filetype(ctx, f->val);
677 case AUDIT_FIELD_COMPARE:
678 result = audit_field_compare(tsk, cred, f, ctx, name);
686 if (rule->prio <= ctx->prio)
688 if (rule->filterkey) {
689 kfree(ctx->filterkey);
690 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
692 ctx->prio = rule->prio;
694 switch (rule->action) {
695 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
696 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
701 /* At process creation time, we can determine if system-call auditing is
702 * completely disabled for this task. Since we only have the task
703 * structure at this point, we can only check uid and gid.
705 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
707 struct audit_entry *e;
708 enum audit_state state;
711 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
712 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
714 if (state == AUDIT_RECORD_CONTEXT)
715 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
721 return AUDIT_BUILD_CONTEXT;
724 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
728 if (val > 0xffffffff)
731 word = AUDIT_WORD(val);
732 if (word >= AUDIT_BITMASK_SIZE)
735 bit = AUDIT_BIT(val);
737 return rule->mask[word] & bit;
740 /* At syscall entry and exit time, this filter is called if the
741 * audit_state is not low enough that auditing cannot take place, but is
742 * also not high enough that we already know we have to write an audit
743 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
745 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
746 struct audit_context *ctx,
747 struct list_head *list)
749 struct audit_entry *e;
750 enum audit_state state;
752 if (audit_pid && tsk->tgid == audit_pid)
753 return AUDIT_DISABLED;
756 if (!list_empty(list)) {
757 list_for_each_entry_rcu(e, list, list) {
758 if (audit_in_mask(&e->rule, ctx->major) &&
759 audit_filter_rules(tsk, &e->rule, ctx, NULL,
762 ctx->current_state = state;
768 return AUDIT_BUILD_CONTEXT;
772 * Given an audit_name check the inode hash table to see if they match.
773 * Called holding the rcu read lock to protect the use of audit_inode_hash
775 static int audit_filter_inode_name(struct task_struct *tsk,
776 struct audit_names *n,
777 struct audit_context *ctx) {
778 int h = audit_hash_ino((u32)n->ino);
779 struct list_head *list = &audit_inode_hash[h];
780 struct audit_entry *e;
781 enum audit_state state;
783 if (list_empty(list))
786 list_for_each_entry_rcu(e, list, list) {
787 if (audit_in_mask(&e->rule, ctx->major) &&
788 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
789 ctx->current_state = state;
797 /* At syscall exit time, this filter is called if any audit_names have been
798 * collected during syscall processing. We only check rules in sublists at hash
799 * buckets applicable to the inode numbers in audit_names.
800 * Regarding audit_state, same rules apply as for audit_filter_syscall().
802 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
804 struct audit_names *n;
806 if (audit_pid && tsk->tgid == audit_pid)
811 list_for_each_entry(n, &ctx->names_list, list) {
812 if (audit_filter_inode_name(tsk, n, ctx))
818 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
819 static inline struct audit_context *audit_take_context(struct task_struct *tsk,
823 struct audit_context *context = tsk->audit_context;
827 context->return_valid = return_valid;
830 * we need to fix up the return code in the audit logs if the actual
831 * return codes are later going to be fixed up by the arch specific
834 * This is actually a test for:
835 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
836 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
838 * but is faster than a bunch of ||
840 if (unlikely(return_code <= -ERESTARTSYS) &&
841 (return_code >= -ERESTART_RESTARTBLOCK) &&
842 (return_code != -ENOIOCTLCMD))
843 context->return_code = -EINTR;
845 context->return_code = return_code;
847 if (context->in_syscall && !context->dummy) {
848 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
849 audit_filter_inodes(tsk, context);
852 tsk->audit_context = NULL;
856 static inline void audit_proctitle_free(struct audit_context *context)
858 kfree(context->proctitle.value);
859 context->proctitle.value = NULL;
860 context->proctitle.len = 0;
863 static inline void audit_free_names(struct audit_context *context)
865 struct audit_names *n, *next;
868 if (context->put_count + context->ino_count != context->name_count) {
871 pr_err("%s:%d(:%d): major=%d in_syscall=%d"
872 " name_count=%d put_count=%d ino_count=%d"
873 " [NOT freeing]\n", __FILE__, __LINE__,
874 context->serial, context->major, context->in_syscall,
875 context->name_count, context->put_count,
877 list_for_each_entry(n, &context->names_list, list) {
878 pr_err("names[%d] = %p = %s\n", i++, n->name,
879 n->name->name ?: "(null)");
886 context->put_count = 0;
887 context->ino_count = 0;
890 list_for_each_entry_safe(n, next, &context->names_list, list) {
892 if (n->name && n->name_put)
893 final_putname(n->name);
897 context->name_count = 0;
898 path_put(&context->pwd);
899 context->pwd.dentry = NULL;
900 context->pwd.mnt = NULL;
903 static inline void audit_free_aux(struct audit_context *context)
905 struct audit_aux_data *aux;
907 while ((aux = context->aux)) {
908 context->aux = aux->next;
911 while ((aux = context->aux_pids)) {
912 context->aux_pids = aux->next;
917 static inline struct audit_context *audit_alloc_context(enum audit_state state)
919 struct audit_context *context;
921 context = kzalloc(sizeof(*context), GFP_KERNEL);
924 context->state = state;
925 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
926 INIT_LIST_HEAD(&context->killed_trees);
927 INIT_LIST_HEAD(&context->names_list);
932 * audit_alloc - allocate an audit context block for a task
935 * Filter on the task information and allocate a per-task audit context
936 * if necessary. Doing so turns on system call auditing for the
937 * specified task. This is called from copy_process, so no lock is
940 int audit_alloc(struct task_struct *tsk)
942 struct audit_context *context;
943 enum audit_state state;
946 if (likely(!audit_ever_enabled))
947 return 0; /* Return if not auditing. */
949 state = audit_filter_task(tsk, &key);
950 if (state == AUDIT_DISABLED) {
951 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
955 if (!(context = audit_alloc_context(state))) {
957 audit_log_lost("out of memory in audit_alloc");
960 context->filterkey = key;
962 tsk->audit_context = context;
963 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
967 static inline void audit_free_context(struct audit_context *context)
969 audit_free_names(context);
970 unroll_tree_refs(context, NULL, 0);
971 free_tree_refs(context);
972 audit_free_aux(context);
973 kfree(context->filterkey);
974 kfree(context->sockaddr);
975 audit_proctitle_free(context);
979 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
980 kuid_t auid, kuid_t uid, unsigned int sessionid,
983 struct audit_buffer *ab;
988 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
992 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
993 from_kuid(&init_user_ns, auid),
994 from_kuid(&init_user_ns, uid), sessionid);
996 if (security_secid_to_secctx(sid, &ctx, &len)) {
997 audit_log_format(ab, " obj=(none)");
1000 audit_log_format(ab, " obj=%s", ctx);
1001 security_release_secctx(ctx, len);
1004 audit_log_format(ab, " ocomm=");
1005 audit_log_untrustedstring(ab, comm);
1012 * to_send and len_sent accounting are very loose estimates. We aren't
1013 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1014 * within about 500 bytes (next page boundary)
1016 * why snprintf? an int is up to 12 digits long. if we just assumed when
1017 * logging that a[%d]= was going to be 16 characters long we would be wasting
1018 * space in every audit message. In one 7500 byte message we can log up to
1019 * about 1000 min size arguments. That comes down to about 50% waste of space
1020 * if we didn't do the snprintf to find out how long arg_num_len was.
1022 static int audit_log_single_execve_arg(struct audit_context *context,
1023 struct audit_buffer **ab,
1026 const char __user *p,
1029 char arg_num_len_buf[12];
1030 const char __user *tmp_p = p;
1031 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1032 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1033 size_t len, len_left, to_send;
1034 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1035 unsigned int i, has_cntl = 0, too_long = 0;
1038 /* strnlen_user includes the null we don't want to send */
1039 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1042 * We just created this mm, if we can't find the strings
1043 * we just copied into it something is _very_ wrong. Similar
1044 * for strings that are too long, we should not have created
1047 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1049 send_sig(SIGKILL, current, 0);
1053 /* walk the whole argument looking for non-ascii chars */
1055 if (len_left > MAX_EXECVE_AUDIT_LEN)
1056 to_send = MAX_EXECVE_AUDIT_LEN;
1059 ret = copy_from_user(buf, tmp_p, to_send);
1061 * There is no reason for this copy to be short. We just
1062 * copied them here, and the mm hasn't been exposed to user-
1067 send_sig(SIGKILL, current, 0);
1070 buf[to_send] = '\0';
1071 has_cntl = audit_string_contains_control(buf, to_send);
1074 * hex messages get logged as 2 bytes, so we can only
1075 * send half as much in each message
1077 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1080 len_left -= to_send;
1082 } while (len_left > 0);
1086 if (len > max_execve_audit_len)
1089 /* rewalk the argument actually logging the message */
1090 for (i = 0; len_left > 0; i++) {
1093 if (len_left > max_execve_audit_len)
1094 to_send = max_execve_audit_len;
1098 /* do we have space left to send this argument in this ab? */
1099 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1101 room_left -= (to_send * 2);
1103 room_left -= to_send;
1104 if (room_left < 0) {
1107 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1113 * first record needs to say how long the original string was
1114 * so we can be sure nothing was lost.
1116 if ((i == 0) && (too_long))
1117 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1118 has_cntl ? 2*len : len);
1121 * normally arguments are small enough to fit and we already
1122 * filled buf above when we checked for control characters
1123 * so don't bother with another copy_from_user
1125 if (len >= max_execve_audit_len)
1126 ret = copy_from_user(buf, p, to_send);
1131 send_sig(SIGKILL, current, 0);
1134 buf[to_send] = '\0';
1136 /* actually log it */
1137 audit_log_format(*ab, " a%d", arg_num);
1139 audit_log_format(*ab, "[%d]", i);
1140 audit_log_format(*ab, "=");
1142 audit_log_n_hex(*ab, buf, to_send);
1144 audit_log_string(*ab, buf);
1147 len_left -= to_send;
1148 *len_sent += arg_num_len;
1150 *len_sent += to_send * 2;
1152 *len_sent += to_send;
1154 /* include the null we didn't log */
1158 static void audit_log_execve_info(struct audit_context *context,
1159 struct audit_buffer **ab)
1162 size_t len_sent = 0;
1163 const char __user *p;
1166 p = (const char __user *)current->mm->arg_start;
1168 audit_log_format(*ab, "argc=%d", context->execve.argc);
1171 * we need some kernel buffer to hold the userspace args. Just
1172 * allocate one big one rather than allocating one of the right size
1173 * for every single argument inside audit_log_single_execve_arg()
1174 * should be <8k allocation so should be pretty safe.
1176 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1178 audit_panic("out of memory for argv string");
1182 for (i = 0; i < context->execve.argc; i++) {
1183 len = audit_log_single_execve_arg(context, ab, i,
1192 static void show_special(struct audit_context *context, int *call_panic)
1194 struct audit_buffer *ab;
1197 ab = audit_log_start(context, GFP_KERNEL, context->type);
1201 switch (context->type) {
1202 case AUDIT_SOCKETCALL: {
1203 int nargs = context->socketcall.nargs;
1204 audit_log_format(ab, "nargs=%d", nargs);
1205 for (i = 0; i < nargs; i++)
1206 audit_log_format(ab, " a%d=%lx", i,
1207 context->socketcall.args[i]);
1210 u32 osid = context->ipc.osid;
1212 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1213 from_kuid(&init_user_ns, context->ipc.uid),
1214 from_kgid(&init_user_ns, context->ipc.gid),
1219 if (security_secid_to_secctx(osid, &ctx, &len)) {
1220 audit_log_format(ab, " osid=%u", osid);
1223 audit_log_format(ab, " obj=%s", ctx);
1224 security_release_secctx(ctx, len);
1227 if (context->ipc.has_perm) {
1229 ab = audit_log_start(context, GFP_KERNEL,
1230 AUDIT_IPC_SET_PERM);
1233 audit_log_format(ab,
1234 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1235 context->ipc.qbytes,
1236 context->ipc.perm_uid,
1237 context->ipc.perm_gid,
1238 context->ipc.perm_mode);
1241 case AUDIT_MQ_OPEN: {
1242 audit_log_format(ab,
1243 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1244 "mq_msgsize=%ld mq_curmsgs=%ld",
1245 context->mq_open.oflag, context->mq_open.mode,
1246 context->mq_open.attr.mq_flags,
1247 context->mq_open.attr.mq_maxmsg,
1248 context->mq_open.attr.mq_msgsize,
1249 context->mq_open.attr.mq_curmsgs);
1251 case AUDIT_MQ_SENDRECV: {
1252 audit_log_format(ab,
1253 "mqdes=%d msg_len=%zd msg_prio=%u "
1254 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1255 context->mq_sendrecv.mqdes,
1256 context->mq_sendrecv.msg_len,
1257 context->mq_sendrecv.msg_prio,
1258 context->mq_sendrecv.abs_timeout.tv_sec,
1259 context->mq_sendrecv.abs_timeout.tv_nsec);
1261 case AUDIT_MQ_NOTIFY: {
1262 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1263 context->mq_notify.mqdes,
1264 context->mq_notify.sigev_signo);
1266 case AUDIT_MQ_GETSETATTR: {
1267 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1268 audit_log_format(ab,
1269 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1271 context->mq_getsetattr.mqdes,
1272 attr->mq_flags, attr->mq_maxmsg,
1273 attr->mq_msgsize, attr->mq_curmsgs);
1275 case AUDIT_CAPSET: {
1276 audit_log_format(ab, "pid=%d", context->capset.pid);
1277 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1278 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1279 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1282 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1283 context->mmap.flags);
1285 case AUDIT_EXECVE: {
1286 audit_log_execve_info(context, &ab);
1292 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1294 char *end = proctitle + len - 1;
1295 while (end > proctitle && !isprint(*end))
1298 /* catch the case where proctitle is only 1 non-print character */
1299 len = end - proctitle + 1;
1300 len -= isprint(proctitle[len-1]) == 0;
1304 static void audit_log_proctitle(struct task_struct *tsk,
1305 struct audit_context *context)
1309 char *msg = "(null)";
1310 int len = strlen(msg);
1311 struct audit_buffer *ab;
1313 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1315 return; /* audit_panic or being filtered */
1317 audit_log_format(ab, "proctitle=");
1320 if (!context->proctitle.value) {
1321 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1324 /* Historically called this from procfs naming */
1325 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1330 res = audit_proctitle_rtrim(buf, res);
1335 context->proctitle.value = buf;
1336 context->proctitle.len = res;
1338 msg = context->proctitle.value;
1339 len = context->proctitle.len;
1341 audit_log_n_untrustedstring(ab, msg, len);
1345 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1347 int i, call_panic = 0;
1348 struct audit_buffer *ab;
1349 struct audit_aux_data *aux;
1350 struct audit_names *n;
1352 /* tsk == current */
1353 context->personality = tsk->personality;
1355 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1357 return; /* audit_panic has been called */
1358 audit_log_format(ab, "arch=%x syscall=%d",
1359 context->arch, context->major);
1360 if (context->personality != PER_LINUX)
1361 audit_log_format(ab, " per=%lx", context->personality);
1362 if (context->return_valid)
1363 audit_log_format(ab, " success=%s exit=%ld",
1364 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1365 context->return_code);
1367 audit_log_format(ab,
1368 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1373 context->name_count);
1375 audit_log_task_info(ab, tsk);
1376 audit_log_key(ab, context->filterkey);
1379 for (aux = context->aux; aux; aux = aux->next) {
1381 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1383 continue; /* audit_panic has been called */
1385 switch (aux->type) {
1387 case AUDIT_BPRM_FCAPS: {
1388 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1389 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1390 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1391 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1392 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1393 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1394 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1395 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1396 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1397 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1398 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1406 show_special(context, &call_panic);
1408 if (context->fds[0] >= 0) {
1409 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1411 audit_log_format(ab, "fd0=%d fd1=%d",
1412 context->fds[0], context->fds[1]);
1417 if (context->sockaddr_len) {
1418 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1420 audit_log_format(ab, "saddr=");
1421 audit_log_n_hex(ab, (void *)context->sockaddr,
1422 context->sockaddr_len);
1427 for (aux = context->aux_pids; aux; aux = aux->next) {
1428 struct audit_aux_data_pids *axs = (void *)aux;
1430 for (i = 0; i < axs->pid_count; i++)
1431 if (audit_log_pid_context(context, axs->target_pid[i],
1432 axs->target_auid[i],
1434 axs->target_sessionid[i],
1436 axs->target_comm[i]))
1440 if (context->target_pid &&
1441 audit_log_pid_context(context, context->target_pid,
1442 context->target_auid, context->target_uid,
1443 context->target_sessionid,
1444 context->target_sid, context->target_comm))
1447 if (context->pwd.dentry && context->pwd.mnt) {
1448 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1450 audit_log_d_path(ab, " cwd=", &context->pwd);
1456 list_for_each_entry(n, &context->names_list, list) {
1459 audit_log_name(context, n, NULL, i++, &call_panic);
1462 audit_log_proctitle(tsk, context);
1464 /* Send end of event record to help user space know we are finished */
1465 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1469 audit_panic("error converting sid to string");
1473 * audit_free - free a per-task audit context
1474 * @tsk: task whose audit context block to free
1476 * Called from copy_process and do_exit
1478 void __audit_free(struct task_struct *tsk)
1480 struct audit_context *context;
1482 context = audit_take_context(tsk, 0, 0);
1486 /* Check for system calls that do not go through the exit
1487 * function (e.g., exit_group), then free context block.
1488 * We use GFP_ATOMIC here because we might be doing this
1489 * in the context of the idle thread */
1490 /* that can happen only if we are called from do_exit() */
1491 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1492 audit_log_exit(context, tsk);
1493 if (!list_empty(&context->killed_trees))
1494 audit_kill_trees(&context->killed_trees);
1496 audit_free_context(context);
1500 * audit_syscall_entry - fill in an audit record at syscall entry
1501 * @major: major syscall type (function)
1502 * @a1: additional syscall register 1
1503 * @a2: additional syscall register 2
1504 * @a3: additional syscall register 3
1505 * @a4: additional syscall register 4
1507 * Fill in audit context at syscall entry. This only happens if the
1508 * audit context was created when the task was created and the state or
1509 * filters demand the audit context be built. If the state from the
1510 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1511 * then the record will be written at syscall exit time (otherwise, it
1512 * will only be written if another part of the kernel requests that it
1515 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1516 unsigned long a3, unsigned long a4)
1518 struct task_struct *tsk = current;
1519 struct audit_context *context = tsk->audit_context;
1520 enum audit_state state;
1525 BUG_ON(context->in_syscall || context->name_count);
1530 context->arch = syscall_get_arch();
1531 context->major = major;
1532 context->argv[0] = a1;
1533 context->argv[1] = a2;
1534 context->argv[2] = a3;
1535 context->argv[3] = a4;
1537 state = context->state;
1538 context->dummy = !audit_n_rules;
1539 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1541 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1543 if (state == AUDIT_DISABLED)
1546 context->serial = 0;
1547 context->ctime = CURRENT_TIME;
1548 context->in_syscall = 1;
1549 context->current_state = state;
1554 * audit_syscall_exit - deallocate audit context after a system call
1555 * @success: success value of the syscall
1556 * @return_code: return value of the syscall
1558 * Tear down after system call. If the audit context has been marked as
1559 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1560 * filtering, or because some other part of the kernel wrote an audit
1561 * message), then write out the syscall information. In call cases,
1562 * free the names stored from getname().
1564 void __audit_syscall_exit(int success, long return_code)
1566 struct task_struct *tsk = current;
1567 struct audit_context *context;
1570 success = AUDITSC_SUCCESS;
1572 success = AUDITSC_FAILURE;
1574 context = audit_take_context(tsk, success, return_code);
1578 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1579 audit_log_exit(context, tsk);
1581 context->in_syscall = 0;
1582 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1584 if (!list_empty(&context->killed_trees))
1585 audit_kill_trees(&context->killed_trees);
1587 audit_free_names(context);
1588 unroll_tree_refs(context, NULL, 0);
1589 audit_free_aux(context);
1590 context->aux = NULL;
1591 context->aux_pids = NULL;
1592 context->target_pid = 0;
1593 context->target_sid = 0;
1594 context->sockaddr_len = 0;
1596 context->fds[0] = -1;
1597 if (context->state != AUDIT_RECORD_CONTEXT) {
1598 kfree(context->filterkey);
1599 context->filterkey = NULL;
1601 tsk->audit_context = context;
1604 static inline void handle_one(const struct inode *inode)
1606 #ifdef CONFIG_AUDIT_TREE
1607 struct audit_context *context;
1608 struct audit_tree_refs *p;
1609 struct audit_chunk *chunk;
1611 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1613 context = current->audit_context;
1615 count = context->tree_count;
1617 chunk = audit_tree_lookup(inode);
1621 if (likely(put_tree_ref(context, chunk)))
1623 if (unlikely(!grow_tree_refs(context))) {
1624 pr_warn("out of memory, audit has lost a tree reference\n");
1625 audit_set_auditable(context);
1626 audit_put_chunk(chunk);
1627 unroll_tree_refs(context, p, count);
1630 put_tree_ref(context, chunk);
1634 static void handle_path(const struct dentry *dentry)
1636 #ifdef CONFIG_AUDIT_TREE
1637 struct audit_context *context;
1638 struct audit_tree_refs *p;
1639 const struct dentry *d, *parent;
1640 struct audit_chunk *drop;
1644 context = current->audit_context;
1646 count = context->tree_count;
1651 seq = read_seqbegin(&rename_lock);
1653 struct inode *inode = d->d_inode;
1654 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1655 struct audit_chunk *chunk;
1656 chunk = audit_tree_lookup(inode);
1658 if (unlikely(!put_tree_ref(context, chunk))) {
1664 parent = d->d_parent;
1669 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1672 /* just a race with rename */
1673 unroll_tree_refs(context, p, count);
1676 audit_put_chunk(drop);
1677 if (grow_tree_refs(context)) {
1678 /* OK, got more space */
1679 unroll_tree_refs(context, p, count);
1683 pr_warn("out of memory, audit has lost a tree reference\n");
1684 unroll_tree_refs(context, p, count);
1685 audit_set_auditable(context);
1692 static struct audit_names *audit_alloc_name(struct audit_context *context,
1695 struct audit_names *aname;
1697 if (context->name_count < AUDIT_NAMES) {
1698 aname = &context->preallocated_names[context->name_count];
1699 memset(aname, 0, sizeof(*aname));
1701 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1704 aname->should_free = true;
1707 aname->ino = (unsigned long)-1;
1709 list_add_tail(&aname->list, &context->names_list);
1711 context->name_count++;
1713 context->ino_count++;
1719 * audit_reusename - fill out filename with info from existing entry
1720 * @uptr: userland ptr to pathname
1722 * Search the audit_names list for the current audit context. If there is an
1723 * existing entry with a matching "uptr" then return the filename
1724 * associated with that audit_name. If not, return NULL.
1727 __audit_reusename(const __user char *uptr)
1729 struct audit_context *context = current->audit_context;
1730 struct audit_names *n;
1732 list_for_each_entry(n, &context->names_list, list) {
1735 if (n->name->uptr == uptr)
1742 * audit_getname - add a name to the list
1743 * @name: name to add
1745 * Add a name to the list of audit names for this context.
1746 * Called from fs/namei.c:getname().
1748 void __audit_getname(struct filename *name)
1750 struct audit_context *context = current->audit_context;
1751 struct audit_names *n;
1753 if (!context->in_syscall) {
1754 #if AUDIT_DEBUG == 2
1755 pr_err("%s:%d(:%d): ignoring getname(%p)\n",
1756 __FILE__, __LINE__, context->serial, name);
1763 /* The filename _must_ have a populated ->name */
1764 BUG_ON(!name->name);
1767 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1772 n->name_len = AUDIT_NAME_FULL;
1776 if (!context->pwd.dentry)
1777 get_fs_pwd(current->fs, &context->pwd);
1780 /* audit_putname - intercept a putname request
1781 * @name: name to intercept and delay for putname
1783 * If we have stored the name from getname in the audit context,
1784 * then we delay the putname until syscall exit.
1785 * Called from include/linux/fs.h:putname().
1787 void audit_putname(struct filename *name)
1789 struct audit_context *context = current->audit_context;
1792 if (!name->aname || !context->in_syscall) {
1793 #if AUDIT_DEBUG == 2
1794 pr_err("%s:%d(:%d): final_putname(%p)\n",
1795 __FILE__, __LINE__, context->serial, name);
1796 if (context->name_count) {
1797 struct audit_names *n;
1800 list_for_each_entry(n, &context->names_list, list)
1801 pr_err("name[%d] = %p = %s\n", i++, n->name,
1802 n->name->name ?: "(null)");
1805 final_putname(name);
1809 ++context->put_count;
1810 if (context->put_count > context->name_count) {
1811 pr_err("%s:%d(:%d): major=%d in_syscall=%d putname(%p)"
1812 " name_count=%d put_count=%d\n",
1814 context->serial, context->major,
1815 context->in_syscall, name->name,
1816 context->name_count, context->put_count);
1824 * __audit_inode - store the inode and device from a lookup
1825 * @name: name being audited
1826 * @dentry: dentry being audited
1827 * @flags: attributes for this particular entry
1829 void __audit_inode(struct filename *name, const struct dentry *dentry,
1832 struct audit_context *context = current->audit_context;
1833 const struct inode *inode = dentry->d_inode;
1834 struct audit_names *n;
1835 bool parent = flags & AUDIT_INODE_PARENT;
1837 if (!context->in_syscall)
1844 /* The struct filename _must_ have a populated ->name */
1845 BUG_ON(!name->name);
1848 * If we have a pointer to an audit_names entry already, then we can
1849 * just use it directly if the type is correct.
1854 if (n->type == AUDIT_TYPE_PARENT ||
1855 n->type == AUDIT_TYPE_UNKNOWN)
1858 if (n->type != AUDIT_TYPE_PARENT)
1863 list_for_each_entry_reverse(n, &context->names_list, list) {
1864 /* does the name pointer match? */
1865 if (!n->name || n->name->name != name->name)
1868 /* match the correct record type */
1870 if (n->type == AUDIT_TYPE_PARENT ||
1871 n->type == AUDIT_TYPE_UNKNOWN)
1874 if (n->type != AUDIT_TYPE_PARENT)
1880 /* unable to find the name from a previous getname(). Allocate a new
1883 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
1888 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1889 n->type = AUDIT_TYPE_PARENT;
1890 if (flags & AUDIT_INODE_HIDDEN)
1893 n->name_len = AUDIT_NAME_FULL;
1894 n->type = AUDIT_TYPE_NORMAL;
1896 handle_path(dentry);
1897 audit_copy_inode(n, dentry, inode);
1900 void __audit_file(const struct file *file)
1902 __audit_inode(NULL, file->f_path.dentry, 0);
1906 * __audit_inode_child - collect inode info for created/removed objects
1907 * @parent: inode of dentry parent
1908 * @dentry: dentry being audited
1909 * @type: AUDIT_TYPE_* value that we're looking for
1911 * For syscalls that create or remove filesystem objects, audit_inode
1912 * can only collect information for the filesystem object's parent.
1913 * This call updates the audit context with the child's information.
1914 * Syscalls that create a new filesystem object must be hooked after
1915 * the object is created. Syscalls that remove a filesystem object
1916 * must be hooked prior, in order to capture the target inode during
1917 * unsuccessful attempts.
1919 void __audit_inode_child(const struct inode *parent,
1920 const struct dentry *dentry,
1921 const unsigned char type)
1923 struct audit_context *context = current->audit_context;
1924 const struct inode *inode = dentry->d_inode;
1925 const char *dname = dentry->d_name.name;
1926 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1928 if (!context->in_syscall)
1934 /* look for a parent entry first */
1935 list_for_each_entry(n, &context->names_list, list) {
1936 if (!n->name || n->type != AUDIT_TYPE_PARENT)
1939 if (n->ino == parent->i_ino &&
1940 !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
1946 /* is there a matching child entry? */
1947 list_for_each_entry(n, &context->names_list, list) {
1948 /* can only match entries that have a name */
1949 if (!n->name || n->type != type)
1952 /* if we found a parent, make sure this one is a child of it */
1953 if (found_parent && (n->name != found_parent->name))
1956 if (!strcmp(dname, n->name->name) ||
1957 !audit_compare_dname_path(dname, n->name->name,
1959 found_parent->name_len :
1966 if (!found_parent) {
1967 /* create a new, "anonymous" parent record */
1968 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1971 audit_copy_inode(n, NULL, parent);
1975 found_child = audit_alloc_name(context, type);
1979 /* Re-use the name belonging to the slot for a matching parent
1980 * directory. All names for this context are relinquished in
1981 * audit_free_names() */
1983 found_child->name = found_parent->name;
1984 found_child->name_len = AUDIT_NAME_FULL;
1985 /* don't call __putname() */
1986 found_child->name_put = false;
1990 audit_copy_inode(found_child, dentry, inode);
1992 found_child->ino = (unsigned long)-1;
1994 EXPORT_SYMBOL_GPL(__audit_inode_child);
1997 * auditsc_get_stamp - get local copies of audit_context values
1998 * @ctx: audit_context for the task
1999 * @t: timespec to store time recorded in the audit_context
2000 * @serial: serial value that is recorded in the audit_context
2002 * Also sets the context as auditable.
2004 int auditsc_get_stamp(struct audit_context *ctx,
2005 struct timespec *t, unsigned int *serial)
2007 if (!ctx->in_syscall)
2010 ctx->serial = audit_serial();
2011 t->tv_sec = ctx->ctime.tv_sec;
2012 t->tv_nsec = ctx->ctime.tv_nsec;
2013 *serial = ctx->serial;
2016 ctx->current_state = AUDIT_RECORD_CONTEXT;
2021 /* global counter which is incremented every time something logs in */
2022 static atomic_t session_id = ATOMIC_INIT(0);
2024 static int audit_set_loginuid_perm(kuid_t loginuid)
2026 /* if we are unset, we don't need privs */
2027 if (!audit_loginuid_set(current))
2029 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2030 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2032 /* it is set, you need permission */
2033 if (!capable(CAP_AUDIT_CONTROL))
2035 /* reject if this is not an unset and we don't allow that */
2036 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2041 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2042 unsigned int oldsessionid, unsigned int sessionid,
2045 struct audit_buffer *ab;
2046 uid_t uid, oldloginuid, loginuid;
2051 uid = from_kuid(&init_user_ns, task_uid(current));
2052 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2053 loginuid = from_kuid(&init_user_ns, kloginuid),
2055 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2058 audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
2059 audit_log_task_context(ab);
2060 audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
2061 oldloginuid, loginuid, oldsessionid, sessionid, !rc);
2066 * audit_set_loginuid - set current task's audit_context loginuid
2067 * @loginuid: loginuid value
2071 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2073 int audit_set_loginuid(kuid_t loginuid)
2075 struct task_struct *task = current;
2076 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2080 oldloginuid = audit_get_loginuid(current);
2081 oldsessionid = audit_get_sessionid(current);
2083 rc = audit_set_loginuid_perm(loginuid);
2087 /* are we setting or clearing? */
2088 if (uid_valid(loginuid))
2089 sessionid = (unsigned int)atomic_inc_return(&session_id);
2091 task->sessionid = sessionid;
2092 task->loginuid = loginuid;
2094 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2099 * __audit_mq_open - record audit data for a POSIX MQ open
2102 * @attr: queue attributes
2105 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2107 struct audit_context *context = current->audit_context;
2110 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2112 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2114 context->mq_open.oflag = oflag;
2115 context->mq_open.mode = mode;
2117 context->type = AUDIT_MQ_OPEN;
2121 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2122 * @mqdes: MQ descriptor
2123 * @msg_len: Message length
2124 * @msg_prio: Message priority
2125 * @abs_timeout: Message timeout in absolute time
2128 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2129 const struct timespec *abs_timeout)
2131 struct audit_context *context = current->audit_context;
2132 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2135 memcpy(p, abs_timeout, sizeof(struct timespec));
2137 memset(p, 0, sizeof(struct timespec));
2139 context->mq_sendrecv.mqdes = mqdes;
2140 context->mq_sendrecv.msg_len = msg_len;
2141 context->mq_sendrecv.msg_prio = msg_prio;
2143 context->type = AUDIT_MQ_SENDRECV;
2147 * __audit_mq_notify - record audit data for a POSIX MQ notify
2148 * @mqdes: MQ descriptor
2149 * @notification: Notification event
2153 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2155 struct audit_context *context = current->audit_context;
2158 context->mq_notify.sigev_signo = notification->sigev_signo;
2160 context->mq_notify.sigev_signo = 0;
2162 context->mq_notify.mqdes = mqdes;
2163 context->type = AUDIT_MQ_NOTIFY;
2167 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2168 * @mqdes: MQ descriptor
2172 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2174 struct audit_context *context = current->audit_context;
2175 context->mq_getsetattr.mqdes = mqdes;
2176 context->mq_getsetattr.mqstat = *mqstat;
2177 context->type = AUDIT_MQ_GETSETATTR;
2181 * audit_ipc_obj - record audit data for ipc object
2182 * @ipcp: ipc permissions
2185 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2187 struct audit_context *context = current->audit_context;
2188 context->ipc.uid = ipcp->uid;
2189 context->ipc.gid = ipcp->gid;
2190 context->ipc.mode = ipcp->mode;
2191 context->ipc.has_perm = 0;
2192 security_ipc_getsecid(ipcp, &context->ipc.osid);
2193 context->type = AUDIT_IPC;
2197 * audit_ipc_set_perm - record audit data for new ipc permissions
2198 * @qbytes: msgq bytes
2199 * @uid: msgq user id
2200 * @gid: msgq group id
2201 * @mode: msgq mode (permissions)
2203 * Called only after audit_ipc_obj().
2205 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2207 struct audit_context *context = current->audit_context;
2209 context->ipc.qbytes = qbytes;
2210 context->ipc.perm_uid = uid;
2211 context->ipc.perm_gid = gid;
2212 context->ipc.perm_mode = mode;
2213 context->ipc.has_perm = 1;
2216 void __audit_bprm(struct linux_binprm *bprm)
2218 struct audit_context *context = current->audit_context;
2220 context->type = AUDIT_EXECVE;
2221 context->execve.argc = bprm->argc;
2226 * audit_socketcall - record audit data for sys_socketcall
2227 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2231 int __audit_socketcall(int nargs, unsigned long *args)
2233 struct audit_context *context = current->audit_context;
2235 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2237 context->type = AUDIT_SOCKETCALL;
2238 context->socketcall.nargs = nargs;
2239 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2244 * __audit_fd_pair - record audit data for pipe and socketpair
2245 * @fd1: the first file descriptor
2246 * @fd2: the second file descriptor
2249 void __audit_fd_pair(int fd1, int fd2)
2251 struct audit_context *context = current->audit_context;
2252 context->fds[0] = fd1;
2253 context->fds[1] = fd2;
2257 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2258 * @len: data length in user space
2259 * @a: data address in kernel space
2261 * Returns 0 for success or NULL context or < 0 on error.
2263 int __audit_sockaddr(int len, void *a)
2265 struct audit_context *context = current->audit_context;
2267 if (!context->sockaddr) {
2268 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2271 context->sockaddr = p;
2274 context->sockaddr_len = len;
2275 memcpy(context->sockaddr, a, len);
2279 void __audit_ptrace(struct task_struct *t)
2281 struct audit_context *context = current->audit_context;
2283 context->target_pid = task_pid_nr(t);
2284 context->target_auid = audit_get_loginuid(t);
2285 context->target_uid = task_uid(t);
2286 context->target_sessionid = audit_get_sessionid(t);
2287 security_task_getsecid(t, &context->target_sid);
2288 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2292 * audit_signal_info - record signal info for shutting down audit subsystem
2293 * @sig: signal value
2294 * @t: task being signaled
2296 * If the audit subsystem is being terminated, record the task (pid)
2297 * and uid that is doing that.
2299 int __audit_signal_info(int sig, struct task_struct *t)
2301 struct audit_aux_data_pids *axp;
2302 struct task_struct *tsk = current;
2303 struct audit_context *ctx = tsk->audit_context;
2304 kuid_t uid = current_uid(), t_uid = task_uid(t);
2306 if (audit_pid && t->tgid == audit_pid) {
2307 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2308 audit_sig_pid = task_pid_nr(tsk);
2309 if (uid_valid(tsk->loginuid))
2310 audit_sig_uid = tsk->loginuid;
2312 audit_sig_uid = uid;
2313 security_task_getsecid(tsk, &audit_sig_sid);
2315 if (!audit_signals || audit_dummy_context())
2319 /* optimize the common case by putting first signal recipient directly
2320 * in audit_context */
2321 if (!ctx->target_pid) {
2322 ctx->target_pid = task_tgid_nr(t);
2323 ctx->target_auid = audit_get_loginuid(t);
2324 ctx->target_uid = t_uid;
2325 ctx->target_sessionid = audit_get_sessionid(t);
2326 security_task_getsecid(t, &ctx->target_sid);
2327 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2331 axp = (void *)ctx->aux_pids;
2332 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2333 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2337 axp->d.type = AUDIT_OBJ_PID;
2338 axp->d.next = ctx->aux_pids;
2339 ctx->aux_pids = (void *)axp;
2341 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2343 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2344 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2345 axp->target_uid[axp->pid_count] = t_uid;
2346 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2347 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2348 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2355 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2356 * @bprm: pointer to the bprm being processed
2357 * @new: the proposed new credentials
2358 * @old: the old credentials
2360 * Simply check if the proc already has the caps given by the file and if not
2361 * store the priv escalation info for later auditing at the end of the syscall
2365 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2366 const struct cred *new, const struct cred *old)
2368 struct audit_aux_data_bprm_fcaps *ax;
2369 struct audit_context *context = current->audit_context;
2370 struct cpu_vfs_cap_data vcaps;
2371 struct dentry *dentry;
2373 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2377 ax->d.type = AUDIT_BPRM_FCAPS;
2378 ax->d.next = context->aux;
2379 context->aux = (void *)ax;
2381 dentry = dget(bprm->file->f_path.dentry);
2382 get_vfs_caps_from_disk(dentry, &vcaps);
2385 ax->fcap.permitted = vcaps.permitted;
2386 ax->fcap.inheritable = vcaps.inheritable;
2387 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2388 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2390 ax->old_pcap.permitted = old->cap_permitted;
2391 ax->old_pcap.inheritable = old->cap_inheritable;
2392 ax->old_pcap.effective = old->cap_effective;
2394 ax->new_pcap.permitted = new->cap_permitted;
2395 ax->new_pcap.inheritable = new->cap_inheritable;
2396 ax->new_pcap.effective = new->cap_effective;
2401 * __audit_log_capset - store information about the arguments to the capset syscall
2402 * @new: the new credentials
2403 * @old: the old (current) credentials
2405 * Record the arguments userspace sent to sys_capset for later printing by the
2406 * audit system if applicable
2408 void __audit_log_capset(const struct cred *new, const struct cred *old)
2410 struct audit_context *context = current->audit_context;
2411 context->capset.pid = task_pid_nr(current);
2412 context->capset.cap.effective = new->cap_effective;
2413 context->capset.cap.inheritable = new->cap_effective;
2414 context->capset.cap.permitted = new->cap_permitted;
2415 context->type = AUDIT_CAPSET;
2418 void __audit_mmap_fd(int fd, int flags)
2420 struct audit_context *context = current->audit_context;
2421 context->mmap.fd = fd;
2422 context->mmap.flags = flags;
2423 context->type = AUDIT_MMAP;
2426 static void audit_log_task(struct audit_buffer *ab)
2430 unsigned int sessionid;
2431 struct mm_struct *mm = current->mm;
2432 char comm[sizeof(current->comm)];
2434 auid = audit_get_loginuid(current);
2435 sessionid = audit_get_sessionid(current);
2436 current_uid_gid(&uid, &gid);
2438 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2439 from_kuid(&init_user_ns, auid),
2440 from_kuid(&init_user_ns, uid),
2441 from_kgid(&init_user_ns, gid),
2443 audit_log_task_context(ab);
2444 audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
2445 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2447 down_read(&mm->mmap_sem);
2449 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
2450 up_read(&mm->mmap_sem);
2452 audit_log_format(ab, " exe=(null)");
2456 * audit_core_dumps - record information about processes that end abnormally
2457 * @signr: signal value
2459 * If a process ends with a core dump, something fishy is going on and we
2460 * should record the event for investigation.
2462 void audit_core_dumps(long signr)
2464 struct audit_buffer *ab;
2469 if (signr == SIGQUIT) /* don't care for those */
2472 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2476 audit_log_format(ab, " sig=%ld", signr);
2480 void __audit_seccomp(unsigned long syscall, long signr, int code)
2482 struct audit_buffer *ab;
2484 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2488 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2489 signr, syscall_get_arch(), syscall, is_compat_task(),
2490 KSTK_EIP(current), code);
2494 struct list_head *audit_killed_trees(void)
2496 struct audit_context *ctx = current->audit_context;
2497 if (likely(!ctx || !ctx->in_syscall))
2499 return &ctx->killed_trees;