calibrate: home in on correct lpj value more quickly
[pandora-kernel.git] / init / calibrate.c
1 /* calibrate.c: default delay calibration
2  *
3  * Excised from init/main.c
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/jiffies.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/timex.h>
11 #include <linux/smp.h>
12
13 unsigned long lpj_fine;
14 unsigned long preset_lpj;
15 static int __init lpj_setup(char *str)
16 {
17         preset_lpj = simple_strtoul(str,NULL,0);
18         return 1;
19 }
20
21 __setup("lpj=", lpj_setup);
22
23 #ifdef ARCH_HAS_READ_CURRENT_TIMER
24
25 /* This routine uses the read_current_timer() routine and gets the
26  * loops per jiffy directly, instead of guessing it using delay().
27  * Also, this code tries to handle non-maskable asynchronous events
28  * (like SMIs)
29  */
30 #define DELAY_CALIBRATION_TICKS                 ((HZ < 100) ? 1 : (HZ/100))
31 #define MAX_DIRECT_CALIBRATION_RETRIES          5
32
33 static unsigned long __cpuinit calibrate_delay_direct(void)
34 {
35         unsigned long pre_start, start, post_start;
36         unsigned long pre_end, end, post_end;
37         unsigned long start_jiffies;
38         unsigned long timer_rate_min, timer_rate_max;
39         unsigned long good_timer_sum = 0;
40         unsigned long good_timer_count = 0;
41         int i;
42
43         if (read_current_timer(&pre_start) < 0 )
44                 return 0;
45
46         /*
47          * A simple loop like
48          *      while ( jiffies < start_jiffies+1)
49          *              start = read_current_timer();
50          * will not do. As we don't really know whether jiffy switch
51          * happened first or timer_value was read first. And some asynchronous
52          * event can happen between these two events introducing errors in lpj.
53          *
54          * So, we do
55          * 1. pre_start <- When we are sure that jiffy switch hasn't happened
56          * 2. check jiffy switch
57          * 3. start <- timer value before or after jiffy switch
58          * 4. post_start <- When we are sure that jiffy switch has happened
59          *
60          * Note, we don't know anything about order of 2 and 3.
61          * Now, by looking at post_start and pre_start difference, we can
62          * check whether any asynchronous event happened or not
63          */
64
65         for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
66                 pre_start = 0;
67                 read_current_timer(&start);
68                 start_jiffies = jiffies;
69                 while (time_before_eq(jiffies, start_jiffies + 1)) {
70                         pre_start = start;
71                         read_current_timer(&start);
72                 }
73                 read_current_timer(&post_start);
74
75                 pre_end = 0;
76                 end = post_start;
77                 while (time_before_eq(jiffies, start_jiffies + 1 +
78                                                DELAY_CALIBRATION_TICKS)) {
79                         pre_end = end;
80                         read_current_timer(&end);
81                 }
82                 read_current_timer(&post_end);
83
84                 timer_rate_max = (post_end - pre_start) /
85                                         DELAY_CALIBRATION_TICKS;
86                 timer_rate_min = (pre_end - post_start) /
87                                         DELAY_CALIBRATION_TICKS;
88
89                 /*
90                  * If the upper limit and lower limit of the timer_rate is
91                  * >= 12.5% apart, redo calibration.
92                  */
93                 if (pre_start != 0 && pre_end != 0 &&
94                     (timer_rate_max - timer_rate_min) < (timer_rate_max >> 3)) {
95                         good_timer_count++;
96                         good_timer_sum += timer_rate_max;
97                 }
98         }
99
100         if (good_timer_count)
101                 return (good_timer_sum/good_timer_count);
102
103         printk(KERN_WARNING "calibrate_delay_direct() failed to get a good "
104                "estimate for loops_per_jiffy.\nProbably due to long platform interrupts. Consider using \"lpj=\" boot option.\n");
105         return 0;
106 }
107 #else
108 static unsigned long __cpuinit calibrate_delay_direct(void) {return 0;}
109 #endif
110
111 /*
112  * This is the number of bits of precision for the loops_per_jiffy.  Each
113  * time we refine our estimate after the first takes 1.5/HZ seconds, so try
114  * to start with a good estimate.
115  * For the boot cpu we can skip the delay calibration and assign it a value
116  * calculated based on the timer frequency.
117  * For the rest of the CPUs we cannot assume that the timer frequency is same as
118  * the cpu frequency, hence do the calibration for those.
119  */
120 #define LPS_PREC 8
121
122 static unsigned long __cpuinit calibrate_delay_converge(void)
123 {
124         /* First stage - slowly accelerate to find initial bounds */
125         unsigned long lpj, ticks, loopadd, chop_limit;
126         int trials = 0, band = 0, trial_in_band = 0;
127
128         lpj = (1<<12);
129
130         /* wait for "start of" clock tick */
131         ticks = jiffies;
132         while (ticks == jiffies)
133                 ; /* nothing */
134         /* Go .. */
135         ticks = jiffies;
136         do {
137                 if (++trial_in_band == (1<<band)) {
138                         ++band;
139                         trial_in_band = 0;
140                 }
141                 __delay(lpj * band);
142                 trials += band;
143         } while (ticks == jiffies);
144         /*
145          * We overshot, so retreat to a clear underestimate. Then estimate
146          * the largest likely undershoot. This defines our chop bounds.
147          */
148         trials -= band;
149         loopadd = lpj * band;
150         lpj *= trials;
151         chop_limit = lpj >> (LPS_PREC + 1);
152
153         /*
154          * Do a binary approximation to get lpj set to
155          * equal one clock (up to LPS_PREC bits)
156          */
157         while (loopadd > chop_limit) {
158                 lpj += loopadd;
159                 ticks = jiffies;
160                 while (ticks == jiffies)
161                         ; /* nothing */
162                 ticks = jiffies;
163                 __delay(lpj);
164                 if (jiffies != ticks)   /* longer than 1 tick */
165                         lpj -= loopadd;
166                 loopadd >>= 1;
167         }
168
169         return lpj;
170 }
171
172 void __cpuinit calibrate_delay(void)
173 {
174         static bool printed;
175
176         if (preset_lpj) {
177                 loops_per_jiffy = preset_lpj;
178                 if (!printed)
179                         pr_info("Calibrating delay loop (skipped) "
180                                 "preset value.. ");
181         } else if ((!printed) && lpj_fine) {
182                 loops_per_jiffy = lpj_fine;
183                 pr_info("Calibrating delay loop (skipped), "
184                         "value calculated using timer frequency.. ");
185         } else if ((loops_per_jiffy = calibrate_delay_direct()) != 0) {
186                 if (!printed)
187                         pr_info("Calibrating delay using timer "
188                                 "specific routine.. ");
189         } else {
190                 if (!printed)
191                         pr_info("Calibrating delay loop... ");
192                 loops_per_jiffy = calibrate_delay_converge();
193         }
194         if (!printed)
195                 pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
196                         loops_per_jiffy/(500000/HZ),
197                         (loops_per_jiffy/(5000/HZ)) % 100, loops_per_jiffy);
198
199         printed = true;
200 }