eventfd: change int to __u64 in eventfd_signal()
[pandora-kernel.git] / include / linux / ptrace.h
1 #ifndef _LINUX_PTRACE_H
2 #define _LINUX_PTRACE_H
3 /* ptrace.h */
4 /* structs and defines to help the user use the ptrace system call. */
5
6 /* has the defines to get at the registers. */
7
8 #define PTRACE_TRACEME             0
9 #define PTRACE_PEEKTEXT            1
10 #define PTRACE_PEEKDATA            2
11 #define PTRACE_PEEKUSR             3
12 #define PTRACE_POKETEXT            4
13 #define PTRACE_POKEDATA            5
14 #define PTRACE_POKEUSR             6
15 #define PTRACE_CONT                7
16 #define PTRACE_KILL                8
17 #define PTRACE_SINGLESTEP          9
18
19 #define PTRACE_ATTACH             16
20 #define PTRACE_DETACH             17
21
22 #define PTRACE_SYSCALL            24
23
24 /* 0x4200-0x4300 are reserved for architecture-independent additions.  */
25 #define PTRACE_SETOPTIONS       0x4200
26 #define PTRACE_GETEVENTMSG      0x4201
27 #define PTRACE_GETSIGINFO       0x4202
28 #define PTRACE_SETSIGINFO       0x4203
29
30 /*
31  * Generic ptrace interface that exports the architecture specific regsets
32  * using the corresponding NT_* types (which are also used in the core dump).
33  * Please note that the NT_PRSTATUS note type in a core dump contains a full
34  * 'struct elf_prstatus'. But the user_regset for NT_PRSTATUS contains just the
35  * elf_gregset_t that is the pr_reg field of 'struct elf_prstatus'. For all the
36  * other user_regset flavors, the user_regset layout and the ELF core dump note
37  * payload are exactly the same layout.
38  *
39  * This interface usage is as follows:
40  *      struct iovec iov = { buf, len};
41  *
42  *      ret = ptrace(PTRACE_GETREGSET/PTRACE_SETREGSET, pid, NT_XXX_TYPE, &iov);
43  *
44  * On the successful completion, iov.len will be updated by the kernel,
45  * specifying how much the kernel has written/read to/from the user's iov.buf.
46  */
47 #define PTRACE_GETREGSET        0x4204
48 #define PTRACE_SETREGSET        0x4205
49
50 #define PTRACE_SEIZE            0x4206
51 #define PTRACE_INTERRUPT        0x4207
52 #define PTRACE_LISTEN           0x4208
53
54 /* Wait extended result codes for the above trace options.  */
55 #define PTRACE_EVENT_FORK       1
56 #define PTRACE_EVENT_VFORK      2
57 #define PTRACE_EVENT_CLONE      3
58 #define PTRACE_EVENT_EXEC       4
59 #define PTRACE_EVENT_VFORK_DONE 5
60 #define PTRACE_EVENT_EXIT       6
61 #define PTRACE_EVENT_SECCOMP    7
62 /* Extended result codes which enabled by means other than options.  */
63 #define PTRACE_EVENT_STOP       128
64
65 /* Options set using PTRACE_SETOPTIONS or using PTRACE_SEIZE @data param */
66 #define PTRACE_O_TRACESYSGOOD   1
67 #define PTRACE_O_TRACEFORK      (1 << PTRACE_EVENT_FORK)
68 #define PTRACE_O_TRACEVFORK     (1 << PTRACE_EVENT_VFORK)
69 #define PTRACE_O_TRACECLONE     (1 << PTRACE_EVENT_CLONE)
70 #define PTRACE_O_TRACEEXEC      (1 << PTRACE_EVENT_EXEC)
71 #define PTRACE_O_TRACEVFORKDONE (1 << PTRACE_EVENT_VFORK_DONE)
72 #define PTRACE_O_TRACEEXIT      (1 << PTRACE_EVENT_EXIT)
73 #define PTRACE_O_TRACESECCOMP   (1 << PTRACE_EVENT_SECCOMP)
74
75 #define PTRACE_O_MASK           0x000000ff
76
77 #include <asm/ptrace.h>
78
79 #ifdef __KERNEL__
80 /*
81  * Ptrace flags
82  *
83  * The owner ship rules for task->ptrace which holds the ptrace
84  * flags is simple.  When a task is running it owns it's task->ptrace
85  * flags.  When the a task is stopped the ptracer owns task->ptrace.
86  */
87
88 #define PT_SEIZED       0x00010000      /* SEIZE used, enable new behavior */
89 #define PT_PTRACED      0x00000001
90 #define PT_DTRACE       0x00000002      /* delayed trace (used on m68k, i386) */
91 #define PT_PTRACE_CAP   0x00000004      /* ptracer can follow suid-exec */
92
93 #define PT_OPT_FLAG_SHIFT       3
94 /* PT_TRACE_* event enable flags */
95 #define PT_EVENT_FLAG(event)    (1 << (PT_OPT_FLAG_SHIFT + (event)))
96 #define PT_TRACESYSGOOD         PT_EVENT_FLAG(0)
97 #define PT_TRACE_FORK           PT_EVENT_FLAG(PTRACE_EVENT_FORK)
98 #define PT_TRACE_VFORK          PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
99 #define PT_TRACE_CLONE          PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
100 #define PT_TRACE_EXEC           PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
101 #define PT_TRACE_VFORK_DONE     PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
102 #define PT_TRACE_EXIT           PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
103 #define PT_TRACE_SECCOMP        PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP)
104
105 /* single stepping state bits (used on ARM and PA-RISC) */
106 #define PT_SINGLESTEP_BIT       31
107 #define PT_SINGLESTEP           (1<<PT_SINGLESTEP_BIT)
108 #define PT_BLOCKSTEP_BIT        30
109 #define PT_BLOCKSTEP            (1<<PT_BLOCKSTEP_BIT)
110
111 #include <linux/compiler.h>             /* For unlikely.  */
112 #include <linux/sched.h>                /* For struct task_struct.  */
113 #include <linux/err.h>                  /* for IS_ERR_VALUE */
114 #include <linux/bug.h>                  /* For BUG_ON.  */
115
116
117 extern long arch_ptrace(struct task_struct *child, long request,
118                         unsigned long addr, unsigned long data);
119 extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
120 extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
121 extern void ptrace_disable(struct task_struct *);
122 extern int ptrace_check_attach(struct task_struct *task, bool ignore_state);
123 extern int ptrace_request(struct task_struct *child, long request,
124                           unsigned long addr, unsigned long data);
125 extern void ptrace_notify(int exit_code);
126 extern void __ptrace_link(struct task_struct *child,
127                           struct task_struct *new_parent);
128 extern void __ptrace_unlink(struct task_struct *child);
129 extern void exit_ptrace(struct task_struct *tracer);
130 #define PTRACE_MODE_READ        0x01
131 #define PTRACE_MODE_ATTACH      0x02
132 #define PTRACE_MODE_NOAUDIT     0x04
133 /* Returns 0 on success, -errno on denial. */
134 extern int __ptrace_may_access(struct task_struct *task, unsigned int mode);
135 /* Returns true on success, false on denial. */
136 extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
137
138 static inline int ptrace_reparented(struct task_struct *child)
139 {
140         return !same_thread_group(child->real_parent, child->parent);
141 }
142
143 static inline void ptrace_unlink(struct task_struct *child)
144 {
145         if (unlikely(child->ptrace))
146                 __ptrace_unlink(child);
147 }
148
149 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
150                             unsigned long data);
151 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
152                             unsigned long data);
153
154 /**
155  * ptrace_parent - return the task that is tracing the given task
156  * @task: task to consider
157  *
158  * Returns %NULL if no one is tracing @task, or the &struct task_struct
159  * pointer to its tracer.
160  *
161  * Must called under rcu_read_lock().  The pointer returned might be kept
162  * live only by RCU.  During exec, this may be called with task_lock() held
163  * on @task, still held from when check_unsafe_exec() was called.
164  */
165 static inline struct task_struct *ptrace_parent(struct task_struct *task)
166 {
167         if (unlikely(task->ptrace))
168                 return rcu_dereference(task->parent);
169         return NULL;
170 }
171
172 /**
173  * ptrace_event_enabled - test whether a ptrace event is enabled
174  * @task: ptracee of interest
175  * @event: %PTRACE_EVENT_* to test
176  *
177  * Test whether @event is enabled for ptracee @task.
178  *
179  * Returns %true if @event is enabled, %false otherwise.
180  */
181 static inline bool ptrace_event_enabled(struct task_struct *task, int event)
182 {
183         return task->ptrace & PT_EVENT_FLAG(event);
184 }
185
186 /**
187  * ptrace_event - possibly stop for a ptrace event notification
188  * @event:      %PTRACE_EVENT_* value to report
189  * @message:    value for %PTRACE_GETEVENTMSG to return
190  *
191  * Check whether @event is enabled and, if so, report @event and @message
192  * to the ptrace parent.
193  *
194  * Called without locks.
195  */
196 static inline void ptrace_event(int event, unsigned long message)
197 {
198         if (unlikely(ptrace_event_enabled(current, event))) {
199                 current->ptrace_message = message;
200                 ptrace_notify((event << 8) | SIGTRAP);
201         } else if (event == PTRACE_EVENT_EXEC) {
202                 /* legacy EXEC report via SIGTRAP */
203                 if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED)
204                         send_sig(SIGTRAP, current, 0);
205         }
206 }
207
208 /**
209  * ptrace_init_task - initialize ptrace state for a new child
210  * @child:              new child task
211  * @ptrace:             true if child should be ptrace'd by parent's tracer
212  *
213  * This is called immediately after adding @child to its parent's children
214  * list.  @ptrace is false in the normal case, and true to ptrace @child.
215  *
216  * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
217  */
218 static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
219 {
220         INIT_LIST_HEAD(&child->ptrace_entry);
221         INIT_LIST_HEAD(&child->ptraced);
222 #ifdef CONFIG_HAVE_HW_BREAKPOINT
223         atomic_set(&child->ptrace_bp_refcnt, 1);
224 #endif
225         child->jobctl = 0;
226         child->ptrace = 0;
227         child->parent = child->real_parent;
228
229         if (unlikely(ptrace) && current->ptrace) {
230                 child->ptrace = current->ptrace;
231                 __ptrace_link(child, current->parent);
232
233                 if (child->ptrace & PT_SEIZED)
234                         task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
235                 else
236                         sigaddset(&child->pending.signal, SIGSTOP);
237
238                 set_tsk_thread_flag(child, TIF_SIGPENDING);
239         }
240 }
241
242 /**
243  * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
244  * @task:       task in %EXIT_DEAD state
245  *
246  * Called with write_lock(&tasklist_lock) held.
247  */
248 static inline void ptrace_release_task(struct task_struct *task)
249 {
250         BUG_ON(!list_empty(&task->ptraced));
251         ptrace_unlink(task);
252         BUG_ON(!list_empty(&task->ptrace_entry));
253 }
254
255 #ifndef force_successful_syscall_return
256 /*
257  * System call handlers that, upon successful completion, need to return a
258  * negative value should call force_successful_syscall_return() right before
259  * returning.  On architectures where the syscall convention provides for a
260  * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
261  * others), this macro can be used to ensure that the error flag will not get
262  * set.  On architectures which do not support a separate error flag, the macro
263  * is a no-op and the spurious error condition needs to be filtered out by some
264  * other means (e.g., in user-level, by passing an extra argument to the
265  * syscall handler, or something along those lines).
266  */
267 #define force_successful_syscall_return() do { } while (0)
268 #endif
269
270 #ifndef is_syscall_success
271 /*
272  * On most systems we can tell if a syscall is a success based on if the retval
273  * is an error value.  On some systems like ia64 and powerpc they have different
274  * indicators of success/failure and must define their own.
275  */
276 #define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
277 #endif
278
279 /*
280  * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
281  *
282  * These do-nothing inlines are used when the arch does not
283  * implement single-step.  The kerneldoc comments are here
284  * to document the interface for all arch definitions.
285  */
286
287 #ifndef arch_has_single_step
288 /**
289  * arch_has_single_step - does this CPU support user-mode single-step?
290  *
291  * If this is defined, then there must be function declarations or
292  * inlines for user_enable_single_step() and user_disable_single_step().
293  * arch_has_single_step() should evaluate to nonzero iff the machine
294  * supports instruction single-step for user mode.
295  * It can be a constant or it can test a CPU feature bit.
296  */
297 #define arch_has_single_step()          (0)
298
299 /**
300  * user_enable_single_step - single-step in user-mode task
301  * @task: either current or a task stopped in %TASK_TRACED
302  *
303  * This can only be called when arch_has_single_step() has returned nonzero.
304  * Set @task so that when it returns to user mode, it will trap after the
305  * next single instruction executes.  If arch_has_block_step() is defined,
306  * this must clear the effects of user_enable_block_step() too.
307  */
308 static inline void user_enable_single_step(struct task_struct *task)
309 {
310         BUG();                  /* This can never be called.  */
311 }
312
313 /**
314  * user_disable_single_step - cancel user-mode single-step
315  * @task: either current or a task stopped in %TASK_TRACED
316  *
317  * Clear @task of the effects of user_enable_single_step() and
318  * user_enable_block_step().  This can be called whether or not either
319  * of those was ever called on @task, and even if arch_has_single_step()
320  * returned zero.
321  */
322 static inline void user_disable_single_step(struct task_struct *task)
323 {
324 }
325 #else
326 extern void user_enable_single_step(struct task_struct *);
327 extern void user_disable_single_step(struct task_struct *);
328 #endif  /* arch_has_single_step */
329
330 #ifndef arch_has_block_step
331 /**
332  * arch_has_block_step - does this CPU support user-mode block-step?
333  *
334  * If this is defined, then there must be a function declaration or inline
335  * for user_enable_block_step(), and arch_has_single_step() must be defined
336  * too.  arch_has_block_step() should evaluate to nonzero iff the machine
337  * supports step-until-branch for user mode.  It can be a constant or it
338  * can test a CPU feature bit.
339  */
340 #define arch_has_block_step()           (0)
341
342 /**
343  * user_enable_block_step - step until branch in user-mode task
344  * @task: either current or a task stopped in %TASK_TRACED
345  *
346  * This can only be called when arch_has_block_step() has returned nonzero,
347  * and will never be called when single-instruction stepping is being used.
348  * Set @task so that when it returns to user mode, it will trap after the
349  * next branch or trap taken.
350  */
351 static inline void user_enable_block_step(struct task_struct *task)
352 {
353         BUG();                  /* This can never be called.  */
354 }
355 #else
356 extern void user_enable_block_step(struct task_struct *);
357 #endif  /* arch_has_block_step */
358
359 #ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
360 extern void user_single_step_siginfo(struct task_struct *tsk,
361                                 struct pt_regs *regs, siginfo_t *info);
362 #else
363 static inline void user_single_step_siginfo(struct task_struct *tsk,
364                                 struct pt_regs *regs, siginfo_t *info)
365 {
366         memset(info, 0, sizeof(*info));
367         info->si_signo = SIGTRAP;
368 }
369 #endif
370
371 #ifndef arch_ptrace_stop_needed
372 /**
373  * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
374  * @code:       current->exit_code value ptrace will stop with
375  * @info:       siginfo_t pointer (or %NULL) for signal ptrace will stop with
376  *
377  * This is called with the siglock held, to decide whether or not it's
378  * necessary to release the siglock and call arch_ptrace_stop() with the
379  * same @code and @info arguments.  It can be defined to a constant if
380  * arch_ptrace_stop() is never required, or always is.  On machines where
381  * this makes sense, it should be defined to a quick test to optimize out
382  * calling arch_ptrace_stop() when it would be superfluous.  For example,
383  * if the thread has not been back to user mode since the last stop, the
384  * thread state might indicate that nothing needs to be done.
385  */
386 #define arch_ptrace_stop_needed(code, info)     (0)
387 #endif
388
389 #ifndef arch_ptrace_stop
390 /**
391  * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
392  * @code:       current->exit_code value ptrace will stop with
393  * @info:       siginfo_t pointer (or %NULL) for signal ptrace will stop with
394  *
395  * This is called with no locks held when arch_ptrace_stop_needed() has
396  * just returned nonzero.  It is allowed to block, e.g. for user memory
397  * access.  The arch can have machine-specific work to be done before
398  * ptrace stops.  On ia64, register backing store gets written back to user
399  * memory here.  Since this can be costly (requires dropping the siglock),
400  * we only do it when the arch requires it for this particular stop, as
401  * indicated by arch_ptrace_stop_needed().
402  */
403 #define arch_ptrace_stop(code, info)            do { } while (0)
404 #endif
405
406 extern int task_current_syscall(struct task_struct *target, long *callno,
407                                 unsigned long args[6], unsigned int maxargs,
408                                 unsigned long *sp, unsigned long *pc);
409
410 #ifdef CONFIG_HAVE_HW_BREAKPOINT
411 extern int ptrace_get_breakpoints(struct task_struct *tsk);
412 extern void ptrace_put_breakpoints(struct task_struct *tsk);
413 #else
414 static inline void ptrace_put_breakpoints(struct task_struct *tsk) { }
415 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
416
417 #endif /* __KERNEL */
418
419 #endif