1 #ifndef _LINUX_PTRACE_H
2 #define _LINUX_PTRACE_H
4 /* structs and defines to help the user use the ptrace system call. */
6 /* has the defines to get at the registers. */
8 #define PTRACE_TRACEME 0
9 #define PTRACE_PEEKTEXT 1
10 #define PTRACE_PEEKDATA 2
11 #define PTRACE_PEEKUSR 3
12 #define PTRACE_POKETEXT 4
13 #define PTRACE_POKEDATA 5
14 #define PTRACE_POKEUSR 6
17 #define PTRACE_SINGLESTEP 9
19 #define PTRACE_ATTACH 16
20 #define PTRACE_DETACH 17
22 #define PTRACE_SYSCALL 24
24 /* 0x4200-0x4300 are reserved for architecture-independent additions. */
25 #define PTRACE_SETOPTIONS 0x4200
26 #define PTRACE_GETEVENTMSG 0x4201
27 #define PTRACE_GETSIGINFO 0x4202
28 #define PTRACE_SETSIGINFO 0x4203
31 * Generic ptrace interface that exports the architecture specific regsets
32 * using the corresponding NT_* types (which are also used in the core dump).
33 * Please note that the NT_PRSTATUS note type in a core dump contains a full
34 * 'struct elf_prstatus'. But the user_regset for NT_PRSTATUS contains just the
35 * elf_gregset_t that is the pr_reg field of 'struct elf_prstatus'. For all the
36 * other user_regset flavors, the user_regset layout and the ELF core dump note
37 * payload are exactly the same layout.
39 * This interface usage is as follows:
40 * struct iovec iov = { buf, len};
42 * ret = ptrace(PTRACE_GETREGSET/PTRACE_SETREGSET, pid, NT_XXX_TYPE, &iov);
44 * On the successful completion, iov.len will be updated by the kernel,
45 * specifying how much the kernel has written/read to/from the user's iov.buf.
47 #define PTRACE_GETREGSET 0x4204
48 #define PTRACE_SETREGSET 0x4205
50 /* options set using PTRACE_SETOPTIONS */
51 #define PTRACE_O_TRACESYSGOOD 0x00000001
52 #define PTRACE_O_TRACEFORK 0x00000002
53 #define PTRACE_O_TRACEVFORK 0x00000004
54 #define PTRACE_O_TRACECLONE 0x00000008
55 #define PTRACE_O_TRACEEXEC 0x00000010
56 #define PTRACE_O_TRACEVFORKDONE 0x00000020
57 #define PTRACE_O_TRACEEXIT 0x00000040
59 #define PTRACE_O_MASK 0x0000007f
61 /* Wait extended result codes for the above trace options. */
62 #define PTRACE_EVENT_FORK 1
63 #define PTRACE_EVENT_VFORK 2
64 #define PTRACE_EVENT_CLONE 3
65 #define PTRACE_EVENT_EXEC 4
66 #define PTRACE_EVENT_VFORK_DONE 5
67 #define PTRACE_EVENT_EXIT 6
69 #include <asm/ptrace.h>
75 * The owner ship rules for task->ptrace which holds the ptrace
76 * flags is simple. When a task is running it owns it's task->ptrace
77 * flags. When the a task is stopped the ptracer owns task->ptrace.
80 #define PT_PTRACED 0x00000001
81 #define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */
82 #define PT_TRACESYSGOOD 0x00000004
83 #define PT_PTRACE_CAP 0x00000008 /* ptracer can follow suid-exec */
84 #define PT_TRACE_FORK 0x00000010
85 #define PT_TRACE_VFORK 0x00000020
86 #define PT_TRACE_CLONE 0x00000040
87 #define PT_TRACE_EXEC 0x00000080
88 #define PT_TRACE_VFORK_DONE 0x00000100
89 #define PT_TRACE_EXIT 0x00000200
91 #define PT_TRACE_MASK 0x000003f4
93 /* single stepping state bits (used on ARM and PA-RISC) */
94 #define PT_SINGLESTEP_BIT 31
95 #define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT)
96 #define PT_BLOCKSTEP_BIT 30
97 #define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT)
99 #include <linux/compiler.h> /* For unlikely. */
100 #include <linux/sched.h> /* For struct task_struct. */
103 extern long arch_ptrace(struct task_struct *child, long request, long addr, long data);
104 extern int ptrace_traceme(void);
105 extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
106 extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
107 extern int ptrace_attach(struct task_struct *tsk);
108 extern int ptrace_detach(struct task_struct *, unsigned int);
109 extern void ptrace_disable(struct task_struct *);
110 extern int ptrace_check_attach(struct task_struct *task, int kill);
111 extern int ptrace_request(struct task_struct *child, long request, long addr, long data);
112 extern void ptrace_notify(int exit_code);
113 extern void __ptrace_link(struct task_struct *child,
114 struct task_struct *new_parent);
115 extern void __ptrace_unlink(struct task_struct *child);
116 extern void exit_ptrace(struct task_struct *tracer);
117 #define PTRACE_MODE_READ 1
118 #define PTRACE_MODE_ATTACH 2
119 /* Returns 0 on success, -errno on denial. */
120 extern int __ptrace_may_access(struct task_struct *task, unsigned int mode);
121 /* Returns true on success, false on denial. */
122 extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
124 static inline int ptrace_reparented(struct task_struct *child)
126 return child->real_parent != child->parent;
129 static inline void ptrace_unlink(struct task_struct *child)
131 if (unlikely(child->ptrace))
132 __ptrace_unlink(child);
135 int generic_ptrace_peekdata(struct task_struct *tsk, long addr, long data);
136 int generic_ptrace_pokedata(struct task_struct *tsk, long addr, long data);
139 * task_ptrace - return %PT_* flags that apply to a task
140 * @task: pointer to &task_struct in question
142 * Returns the %PT_* flags that apply to @task.
144 static inline int task_ptrace(struct task_struct *task)
150 * ptrace_event - possibly stop for a ptrace event notification
151 * @mask: %PT_* bit to check in @current->ptrace
152 * @event: %PTRACE_EVENT_* value to report if @mask is set
153 * @message: value for %PTRACE_GETEVENTMSG to return
155 * This checks the @mask bit to see if ptrace wants stops for this event.
156 * If so we stop, reporting @event and @message to the ptrace parent.
158 * Returns nonzero if we did a ptrace notification, zero if not.
160 * Called without locks.
162 static inline int ptrace_event(int mask, int event, unsigned long message)
164 if (mask && likely(!(current->ptrace & mask)))
166 current->ptrace_message = message;
167 ptrace_notify((event << 8) | SIGTRAP);
172 * ptrace_init_task - initialize ptrace state for a new child
173 * @child: new child task
174 * @ptrace: true if child should be ptrace'd by parent's tracer
176 * This is called immediately after adding @child to its parent's children
177 * list. @ptrace is false in the normal case, and true to ptrace @child.
179 * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
181 static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
183 INIT_LIST_HEAD(&child->ptrace_entry);
184 INIT_LIST_HEAD(&child->ptraced);
185 child->parent = child->real_parent;
187 if (unlikely(ptrace) && (current->ptrace & PT_PTRACED)) {
188 child->ptrace = current->ptrace;
189 __ptrace_link(child, current->parent);
194 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
195 * @task: task in %EXIT_DEAD state
197 * Called with write_lock(&tasklist_lock) held.
199 static inline void ptrace_release_task(struct task_struct *task)
201 BUG_ON(!list_empty(&task->ptraced));
203 BUG_ON(!list_empty(&task->ptrace_entry));
206 #ifndef force_successful_syscall_return
208 * System call handlers that, upon successful completion, need to return a
209 * negative value should call force_successful_syscall_return() right before
210 * returning. On architectures where the syscall convention provides for a
211 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
212 * others), this macro can be used to ensure that the error flag will not get
213 * set. On architectures which do not support a separate error flag, the macro
214 * is a no-op and the spurious error condition needs to be filtered out by some
215 * other means (e.g., in user-level, by passing an extra argument to the
216 * syscall handler, or something along those lines).
218 #define force_successful_syscall_return() do { } while (0)
222 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
224 * These do-nothing inlines are used when the arch does not
225 * implement single-step. The kerneldoc comments are here
226 * to document the interface for all arch definitions.
229 #ifndef arch_has_single_step
231 * arch_has_single_step - does this CPU support user-mode single-step?
233 * If this is defined, then there must be function declarations or
234 * inlines for user_enable_single_step() and user_disable_single_step().
235 * arch_has_single_step() should evaluate to nonzero iff the machine
236 * supports instruction single-step for user mode.
237 * It can be a constant or it can test a CPU feature bit.
239 #define arch_has_single_step() (0)
242 * user_enable_single_step - single-step in user-mode task
243 * @task: either current or a task stopped in %TASK_TRACED
245 * This can only be called when arch_has_single_step() has returned nonzero.
246 * Set @task so that when it returns to user mode, it will trap after the
247 * next single instruction executes. If arch_has_block_step() is defined,
248 * this must clear the effects of user_enable_block_step() too.
250 static inline void user_enable_single_step(struct task_struct *task)
252 BUG(); /* This can never be called. */
256 * user_disable_single_step - cancel user-mode single-step
257 * @task: either current or a task stopped in %TASK_TRACED
259 * Clear @task of the effects of user_enable_single_step() and
260 * user_enable_block_step(). This can be called whether or not either
261 * of those was ever called on @task, and even if arch_has_single_step()
264 static inline void user_disable_single_step(struct task_struct *task)
268 extern void user_enable_single_step(struct task_struct *);
269 extern void user_disable_single_step(struct task_struct *);
270 #endif /* arch_has_single_step */
272 #ifndef arch_has_block_step
274 * arch_has_block_step - does this CPU support user-mode block-step?
276 * If this is defined, then there must be a function declaration or inline
277 * for user_enable_block_step(), and arch_has_single_step() must be defined
278 * too. arch_has_block_step() should evaluate to nonzero iff the machine
279 * supports step-until-branch for user mode. It can be a constant or it
280 * can test a CPU feature bit.
282 #define arch_has_block_step() (0)
285 * user_enable_block_step - step until branch in user-mode task
286 * @task: either current or a task stopped in %TASK_TRACED
288 * This can only be called when arch_has_block_step() has returned nonzero,
289 * and will never be called when single-instruction stepping is being used.
290 * Set @task so that when it returns to user mode, it will trap after the
291 * next branch or trap taken.
293 static inline void user_enable_block_step(struct task_struct *task)
295 BUG(); /* This can never be called. */
298 extern void user_enable_block_step(struct task_struct *);
299 #endif /* arch_has_block_step */
301 #ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
302 extern void user_single_step_siginfo(struct task_struct *tsk,
303 struct pt_regs *regs, siginfo_t *info);
305 static inline void user_single_step_siginfo(struct task_struct *tsk,
306 struct pt_regs *regs, siginfo_t *info)
308 memset(info, 0, sizeof(*info));
309 info->si_signo = SIGTRAP;
313 #ifndef arch_ptrace_stop_needed
315 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
316 * @code: current->exit_code value ptrace will stop with
317 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
319 * This is called with the siglock held, to decide whether or not it's
320 * necessary to release the siglock and call arch_ptrace_stop() with the
321 * same @code and @info arguments. It can be defined to a constant if
322 * arch_ptrace_stop() is never required, or always is. On machines where
323 * this makes sense, it should be defined to a quick test to optimize out
324 * calling arch_ptrace_stop() when it would be superfluous. For example,
325 * if the thread has not been back to user mode since the last stop, the
326 * thread state might indicate that nothing needs to be done.
328 #define arch_ptrace_stop_needed(code, info) (0)
331 #ifndef arch_ptrace_stop
333 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
334 * @code: current->exit_code value ptrace will stop with
335 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
337 * This is called with no locks held when arch_ptrace_stop_needed() has
338 * just returned nonzero. It is allowed to block, e.g. for user memory
339 * access. The arch can have machine-specific work to be done before
340 * ptrace stops. On ia64, register backing store gets written back to user
341 * memory here. Since this can be costly (requires dropping the siglock),
342 * we only do it when the arch requires it for this particular stop, as
343 * indicated by arch_ptrace_stop_needed().
345 #define arch_ptrace_stop(code, info) do { } while (0)
348 extern int task_current_syscall(struct task_struct *target, long *callno,
349 unsigned long args[6], unsigned int maxargs,
350 unsigned long *sp, unsigned long *pc);