1 #ifndef __LINUX_PERCPU_H
2 #define __LINUX_PERCPU_H
4 #include <linux/mmdebug.h>
5 #include <linux/preempt.h>
7 #include <linux/cpumask.h>
9 #include <linux/init.h>
11 #include <asm/percpu.h>
13 /* enough to cover all DEFINE_PER_CPUs in modules */
15 #define PERCPU_MODULE_RESERVE (8 << 10)
17 #define PERCPU_MODULE_RESERVE 0
20 #ifndef PERCPU_ENOUGH_ROOM
21 #define PERCPU_ENOUGH_ROOM \
22 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \
23 PERCPU_MODULE_RESERVE)
27 * Must be an lvalue. Since @var must be a simple identifier,
28 * we force a syntax error here if it isn't.
30 #define get_cpu_var(var) (*({ \
32 &__get_cpu_var(var); }))
35 * The weird & is necessary because sparse considers (void)(var) to be
36 * a direct dereference of percpu variable (var).
38 #define put_cpu_var(var) do { \
43 #define get_cpu_ptr(var) ({ \
47 #define put_cpu_ptr(var) do { \
52 /* minimum unit size, also is the maximum supported allocation size */
53 #define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10)
56 * Percpu allocator can serve percpu allocations before slab is
57 * initialized which allows slab to depend on the percpu allocator.
58 * The following two parameters decide how much resource to
59 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or
60 * larger than PERCPU_DYNAMIC_EARLY_SIZE.
62 #define PERCPU_DYNAMIC_EARLY_SLOTS 128
63 #define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10)
66 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
67 * back on the first chunk for dynamic percpu allocation if arch is
68 * manually allocating and mapping it for faster access (as a part of
69 * large page mapping for example).
71 * The following values give between one and two pages of free space
72 * after typical minimal boot (2-way SMP, single disk and NIC) with
73 * both defconfig and a distro config on x86_64 and 32. More
74 * intelligent way to determine this would be nice.
76 #if BITS_PER_LONG > 32
77 #define PERCPU_DYNAMIC_RESERVE (20 << 10)
79 #define PERCPU_DYNAMIC_RESERVE (12 << 10)
82 extern void *pcpu_base_addr;
83 extern const unsigned long *pcpu_unit_offsets;
85 struct pcpu_group_info {
86 int nr_units; /* aligned # of units */
87 unsigned long base_offset; /* base address offset */
88 unsigned int *cpu_map; /* unit->cpu map, empty
89 * entries contain NR_CPUS */
92 struct pcpu_alloc_info {
99 size_t __ai_size; /* internal, don't use */
100 int nr_groups; /* 0 if grouping unnecessary */
101 struct pcpu_group_info groups[];
111 extern const char * const pcpu_fc_names[PCPU_FC_NR];
113 extern enum pcpu_fc pcpu_chosen_fc;
115 typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
117 typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
118 typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
119 typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
121 extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
123 extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
125 extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
128 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
129 extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
131 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
132 pcpu_fc_alloc_fn_t alloc_fn,
133 pcpu_fc_free_fn_t free_fn);
136 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
137 extern int __init pcpu_page_first_chunk(size_t reserved_size,
138 pcpu_fc_alloc_fn_t alloc_fn,
139 pcpu_fc_free_fn_t free_fn,
140 pcpu_fc_populate_pte_fn_t populate_pte_fn);
144 * Use this to get to a cpu's version of the per-cpu object
145 * dynamically allocated. Non-atomic access to the current CPU's
146 * version should probably be combined with get_cpu()/put_cpu().
149 #define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
151 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); })
154 extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
155 extern bool is_kernel_percpu_address(unsigned long addr);
157 #if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
158 extern void __init setup_per_cpu_areas(void);
160 extern void __init percpu_init_late(void);
162 extern void __percpu *__alloc_percpu(size_t size, size_t align);
163 extern void free_percpu(void __percpu *__pdata);
164 extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
166 #define alloc_percpu(type) \
167 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
170 * Branching function to split up a function into a set of functions that
171 * are called for different scalar sizes of the objects handled.
174 extern void __bad_size_call_parameter(void);
176 #define __pcpu_size_call_return(stem, variable) \
177 ({ typeof(variable) pscr_ret__; \
178 __verify_pcpu_ptr(&(variable)); \
179 switch(sizeof(variable)) { \
180 case 1: pscr_ret__ = stem##1(variable);break; \
181 case 2: pscr_ret__ = stem##2(variable);break; \
182 case 4: pscr_ret__ = stem##4(variable);break; \
183 case 8: pscr_ret__ = stem##8(variable);break; \
185 __bad_size_call_parameter();break; \
190 #define __pcpu_size_call_return2(stem, variable, ...) \
192 typeof(variable) pscr2_ret__; \
193 __verify_pcpu_ptr(&(variable)); \
194 switch(sizeof(variable)) { \
195 case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \
196 case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \
197 case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \
198 case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \
200 __bad_size_call_parameter(); break; \
206 * Special handling for cmpxchg_double. cmpxchg_double is passed two
207 * percpu variables. The first has to be aligned to a double word
208 * boundary and the second has to follow directly thereafter.
209 * We enforce this on all architectures even if they don't support
210 * a double cmpxchg instruction, since it's a cheap requirement, and it
211 * avoids breaking the requirement for architectures with the instruction.
213 #define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \
216 __verify_pcpu_ptr(&pcp1); \
217 BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \
218 VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1))); \
219 VM_BUG_ON((unsigned long)(&pcp2) != \
220 (unsigned long)(&pcp1) + sizeof(pcp1)); \
221 switch(sizeof(pcp1)) { \
222 case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \
223 case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \
224 case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \
225 case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \
227 __bad_size_call_parameter(); break; \
232 #define __pcpu_size_call(stem, variable, ...) \
234 __verify_pcpu_ptr(&(variable)); \
235 switch(sizeof(variable)) { \
236 case 1: stem##1(variable, __VA_ARGS__);break; \
237 case 2: stem##2(variable, __VA_ARGS__);break; \
238 case 4: stem##4(variable, __VA_ARGS__);break; \
239 case 8: stem##8(variable, __VA_ARGS__);break; \
241 __bad_size_call_parameter();break; \
246 * Optimized manipulation for memory allocated through the per cpu
247 * allocator or for addresses of per cpu variables.
249 * These operation guarantee exclusivity of access for other operations
250 * on the *same* processor. The assumption is that per cpu data is only
251 * accessed by a single processor instance (the current one).
253 * The first group is used for accesses that must be done in a
254 * preemption safe way since we know that the context is not preempt
255 * safe. Interrupts may occur. If the interrupt modifies the variable
256 * too then RMW actions will not be reliable.
258 * The arch code can provide optimized functions in two ways:
260 * 1. Override the function completely. F.e. define this_cpu_add().
261 * The arch must then ensure that the various scalar format passed
262 * are handled correctly.
264 * 2. Provide functions for certain scalar sizes. F.e. provide
265 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte
266 * sized RMW actions. If arch code does not provide operations for
267 * a scalar size then the fallback in the generic code will be
271 #define _this_cpu_generic_read(pcp) \
272 ({ typeof(pcp) ret__; \
274 ret__ = *this_cpu_ptr(&(pcp)); \
279 #ifndef this_cpu_read
280 # ifndef this_cpu_read_1
281 # define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp)
283 # ifndef this_cpu_read_2
284 # define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp)
286 # ifndef this_cpu_read_4
287 # define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp)
289 # ifndef this_cpu_read_8
290 # define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp)
292 # define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp))
295 #define _this_cpu_generic_to_op(pcp, val, op) \
297 unsigned long flags; \
298 raw_local_irq_save(flags); \
299 *__this_cpu_ptr(&(pcp)) op val; \
300 raw_local_irq_restore(flags); \
303 #ifndef this_cpu_write
304 # ifndef this_cpu_write_1
305 # define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
307 # ifndef this_cpu_write_2
308 # define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
310 # ifndef this_cpu_write_4
311 # define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
313 # ifndef this_cpu_write_8
314 # define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
316 # define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val))
320 # ifndef this_cpu_add_1
321 # define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
323 # ifndef this_cpu_add_2
324 # define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
326 # ifndef this_cpu_add_4
327 # define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
329 # ifndef this_cpu_add_8
330 # define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
332 # define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val))
336 # define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(typeof(pcp))(val))
340 # define this_cpu_inc(pcp) this_cpu_add((pcp), 1)
344 # define this_cpu_dec(pcp) this_cpu_sub((pcp), 1)
348 # ifndef this_cpu_and_1
349 # define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
351 # ifndef this_cpu_and_2
352 # define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
354 # ifndef this_cpu_and_4
355 # define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
357 # ifndef this_cpu_and_8
358 # define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
360 # define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val))
364 # ifndef this_cpu_or_1
365 # define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
367 # ifndef this_cpu_or_2
368 # define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
370 # ifndef this_cpu_or_4
371 # define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
373 # ifndef this_cpu_or_8
374 # define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
376 # define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
379 #define _this_cpu_generic_add_return(pcp, val) \
382 unsigned long flags; \
383 raw_local_irq_save(flags); \
384 __this_cpu_add(pcp, val); \
385 ret__ = __this_cpu_read(pcp); \
386 raw_local_irq_restore(flags); \
390 #ifndef this_cpu_add_return
391 # ifndef this_cpu_add_return_1
392 # define this_cpu_add_return_1(pcp, val) _this_cpu_generic_add_return(pcp, val)
394 # ifndef this_cpu_add_return_2
395 # define this_cpu_add_return_2(pcp, val) _this_cpu_generic_add_return(pcp, val)
397 # ifndef this_cpu_add_return_4
398 # define this_cpu_add_return_4(pcp, val) _this_cpu_generic_add_return(pcp, val)
400 # ifndef this_cpu_add_return_8
401 # define this_cpu_add_return_8(pcp, val) _this_cpu_generic_add_return(pcp, val)
403 # define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
406 #define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(typeof(pcp))(val))
407 #define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1)
408 #define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1)
410 #define _this_cpu_generic_xchg(pcp, nval) \
411 ({ typeof(pcp) ret__; \
412 unsigned long flags; \
413 raw_local_irq_save(flags); \
414 ret__ = __this_cpu_read(pcp); \
415 __this_cpu_write(pcp, nval); \
416 raw_local_irq_restore(flags); \
420 #ifndef this_cpu_xchg
421 # ifndef this_cpu_xchg_1
422 # define this_cpu_xchg_1(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
424 # ifndef this_cpu_xchg_2
425 # define this_cpu_xchg_2(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
427 # ifndef this_cpu_xchg_4
428 # define this_cpu_xchg_4(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
430 # ifndef this_cpu_xchg_8
431 # define this_cpu_xchg_8(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
433 # define this_cpu_xchg(pcp, nval) \
434 __pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval)
437 #define _this_cpu_generic_cmpxchg(pcp, oval, nval) \
440 unsigned long flags; \
441 raw_local_irq_save(flags); \
442 ret__ = __this_cpu_read(pcp); \
443 if (ret__ == (oval)) \
444 __this_cpu_write(pcp, nval); \
445 raw_local_irq_restore(flags); \
449 #ifndef this_cpu_cmpxchg
450 # ifndef this_cpu_cmpxchg_1
451 # define this_cpu_cmpxchg_1(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
453 # ifndef this_cpu_cmpxchg_2
454 # define this_cpu_cmpxchg_2(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
456 # ifndef this_cpu_cmpxchg_4
457 # define this_cpu_cmpxchg_4(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
459 # ifndef this_cpu_cmpxchg_8
460 # define this_cpu_cmpxchg_8(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
462 # define this_cpu_cmpxchg(pcp, oval, nval) \
463 __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
467 * cmpxchg_double replaces two adjacent scalars at once. The first
468 * two parameters are per cpu variables which have to be of the same
469 * size. A truth value is returned to indicate success or failure
470 * (since a double register result is difficult to handle). There is
471 * very limited hardware support for these operations, so only certain
474 #define _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
477 unsigned long flags; \
478 raw_local_irq_save(flags); \
479 ret__ = __this_cpu_generic_cmpxchg_double(pcp1, pcp2, \
480 oval1, oval2, nval1, nval2); \
481 raw_local_irq_restore(flags); \
485 #ifndef this_cpu_cmpxchg_double
486 # ifndef this_cpu_cmpxchg_double_1
487 # define this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \
488 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
490 # ifndef this_cpu_cmpxchg_double_2
491 # define this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \
492 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
494 # ifndef this_cpu_cmpxchg_double_4
495 # define this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \
496 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
498 # ifndef this_cpu_cmpxchg_double_8
499 # define this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \
500 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
502 # define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
503 __pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
507 * Generic percpu operations for context that are safe from preemption/interrupts.
508 * Either we do not care about races or the caller has the
509 * responsibility of handling preemption/interrupt issues. Arch code can still
510 * override these instructions since the arch per cpu code may be more
511 * efficient and may actually get race freeness for free (that is the
512 * case for x86 for example).
514 * If there is no other protection through preempt disable and/or
515 * disabling interupts then one of these RMW operations can show unexpected
516 * behavior because the execution thread was rescheduled on another processor
517 * or an interrupt occurred and the same percpu variable was modified from
518 * the interrupt context.
520 #ifndef __this_cpu_read
521 # ifndef __this_cpu_read_1
522 # define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp)))
524 # ifndef __this_cpu_read_2
525 # define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp)))
527 # ifndef __this_cpu_read_4
528 # define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp)))
530 # ifndef __this_cpu_read_8
531 # define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp)))
533 # define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp))
536 #define __this_cpu_generic_to_op(pcp, val, op) \
538 *__this_cpu_ptr(&(pcp)) op val; \
541 #ifndef __this_cpu_write
542 # ifndef __this_cpu_write_1
543 # define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
545 # ifndef __this_cpu_write_2
546 # define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
548 # ifndef __this_cpu_write_4
549 # define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
551 # ifndef __this_cpu_write_8
552 # define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
554 # define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val))
557 #ifndef __this_cpu_add
558 # ifndef __this_cpu_add_1
559 # define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
561 # ifndef __this_cpu_add_2
562 # define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
564 # ifndef __this_cpu_add_4
565 # define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
567 # ifndef __this_cpu_add_8
568 # define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
570 # define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val))
573 #ifndef __this_cpu_sub
574 # define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(typeof(pcp))(val))
577 #ifndef __this_cpu_inc
578 # define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1)
581 #ifndef __this_cpu_dec
582 # define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1)
585 #ifndef __this_cpu_and
586 # ifndef __this_cpu_and_1
587 # define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
589 # ifndef __this_cpu_and_2
590 # define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
592 # ifndef __this_cpu_and_4
593 # define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
595 # ifndef __this_cpu_and_8
596 # define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
598 # define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val))
601 #ifndef __this_cpu_or
602 # ifndef __this_cpu_or_1
603 # define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
605 # ifndef __this_cpu_or_2
606 # define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
608 # ifndef __this_cpu_or_4
609 # define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
611 # ifndef __this_cpu_or_8
612 # define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
614 # define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val))
617 #define __this_cpu_generic_add_return(pcp, val) \
619 __this_cpu_add(pcp, val); \
620 __this_cpu_read(pcp); \
623 #ifndef __this_cpu_add_return
624 # ifndef __this_cpu_add_return_1
625 # define __this_cpu_add_return_1(pcp, val) __this_cpu_generic_add_return(pcp, val)
627 # ifndef __this_cpu_add_return_2
628 # define __this_cpu_add_return_2(pcp, val) __this_cpu_generic_add_return(pcp, val)
630 # ifndef __this_cpu_add_return_4
631 # define __this_cpu_add_return_4(pcp, val) __this_cpu_generic_add_return(pcp, val)
633 # ifndef __this_cpu_add_return_8
634 # define __this_cpu_add_return_8(pcp, val) __this_cpu_generic_add_return(pcp, val)
636 # define __this_cpu_add_return(pcp, val) \
637 __pcpu_size_call_return2(__this_cpu_add_return_, pcp, val)
640 #define __this_cpu_sub_return(pcp, val) __this_cpu_add_return(pcp, -(typeof(pcp))(val))
641 #define __this_cpu_inc_return(pcp) __this_cpu_add_return(pcp, 1)
642 #define __this_cpu_dec_return(pcp) __this_cpu_add_return(pcp, -1)
644 #define __this_cpu_generic_xchg(pcp, nval) \
645 ({ typeof(pcp) ret__; \
646 ret__ = __this_cpu_read(pcp); \
647 __this_cpu_write(pcp, nval); \
651 #ifndef __this_cpu_xchg
652 # ifndef __this_cpu_xchg_1
653 # define __this_cpu_xchg_1(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
655 # ifndef __this_cpu_xchg_2
656 # define __this_cpu_xchg_2(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
658 # ifndef __this_cpu_xchg_4
659 # define __this_cpu_xchg_4(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
661 # ifndef __this_cpu_xchg_8
662 # define __this_cpu_xchg_8(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
664 # define __this_cpu_xchg(pcp, nval) \
665 __pcpu_size_call_return2(__this_cpu_xchg_, (pcp), nval)
668 #define __this_cpu_generic_cmpxchg(pcp, oval, nval) \
671 ret__ = __this_cpu_read(pcp); \
672 if (ret__ == (oval)) \
673 __this_cpu_write(pcp, nval); \
677 #ifndef __this_cpu_cmpxchg
678 # ifndef __this_cpu_cmpxchg_1
679 # define __this_cpu_cmpxchg_1(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
681 # ifndef __this_cpu_cmpxchg_2
682 # define __this_cpu_cmpxchg_2(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
684 # ifndef __this_cpu_cmpxchg_4
685 # define __this_cpu_cmpxchg_4(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
687 # ifndef __this_cpu_cmpxchg_8
688 # define __this_cpu_cmpxchg_8(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
690 # define __this_cpu_cmpxchg(pcp, oval, nval) \
691 __pcpu_size_call_return2(__this_cpu_cmpxchg_, pcp, oval, nval)
694 #define __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
697 if (__this_cpu_read(pcp1) == (oval1) && \
698 __this_cpu_read(pcp2) == (oval2)) { \
699 __this_cpu_write(pcp1, (nval1)); \
700 __this_cpu_write(pcp2, (nval2)); \
706 #ifndef __this_cpu_cmpxchg_double
707 # ifndef __this_cpu_cmpxchg_double_1
708 # define __this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \
709 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
711 # ifndef __this_cpu_cmpxchg_double_2
712 # define __this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \
713 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
715 # ifndef __this_cpu_cmpxchg_double_4
716 # define __this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \
717 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
719 # ifndef __this_cpu_cmpxchg_double_8
720 # define __this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \
721 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
723 # define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
724 __pcpu_double_call_return_bool(__this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
727 #endif /* __LINUX_PERCPU_H */