Merge branch 'drm-fixes-3.15' of git://people.freedesktop.org/~deathsimple/linux...
[pandora-kernel.git] / fs / xfs / xfs_log.c
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_error.h"
28 #include "xfs_trans.h"
29 #include "xfs_trans_priv.h"
30 #include "xfs_log.h"
31 #include "xfs_log_priv.h"
32 #include "xfs_log_recover.h"
33 #include "xfs_inode.h"
34 #include "xfs_trace.h"
35 #include "xfs_fsops.h"
36 #include "xfs_cksum.h"
37
38 kmem_zone_t     *xfs_log_ticket_zone;
39
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43         struct xlog             *log,
44         struct xlog_ticket      *ticket,
45         struct xlog_in_core     **iclog,
46         xfs_lsn_t               *commitlsnp);
47
48 STATIC struct xlog *
49 xlog_alloc_log(
50         struct xfs_mount        *mp,
51         struct xfs_buftarg      *log_target,
52         xfs_daddr_t             blk_offset,
53         int                     num_bblks);
54 STATIC int
55 xlog_space_left(
56         struct xlog             *log,
57         atomic64_t              *head);
58 STATIC int
59 xlog_sync(
60         struct xlog             *log,
61         struct xlog_in_core     *iclog);
62 STATIC void
63 xlog_dealloc_log(
64         struct xlog             *log);
65
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70         struct xlog             *log,
71         int                     aborted,
72         struct xlog_in_core     *iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75         struct xlog             *log,
76         int                     len,
77         struct xlog_in_core     **iclog,
78         struct xlog_ticket      *ticket,
79         int                     *continued_write,
80         int                     *logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83         struct xlog             *log,
84         struct xlog_in_core     *iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87         struct xlog             *log,
88         struct xlog_in_core     *iclog,
89         int                     eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92         struct xlog             *log,
93         struct xlog_in_core     *iclog);
94
95 STATIC void
96 xlog_grant_push_ail(
97         struct xlog             *log,
98         int                     need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101         struct xlog             *log,
102         struct xlog_ticket      *ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105         struct xlog             *log,
106         struct xlog_ticket      *ticket);
107
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111         struct xlog             *log,
112         char                    *ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115         struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118         struct xlog             *log,
119         struct xlog_in_core     *iclog,
120         int                     count,
121         bool                    syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124         struct xlog             *log,
125         struct xlog_in_core     *iclog,
126         xfs_lsn_t               tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133
134 STATIC int
135 xlog_iclogs_empty(
136         struct xlog             *log);
137
138 static void
139 xlog_grant_sub_space(
140         struct xlog             *log,
141         atomic64_t              *head,
142         int                     bytes)
143 {
144         int64_t head_val = atomic64_read(head);
145         int64_t new, old;
146
147         do {
148                 int     cycle, space;
149
150                 xlog_crack_grant_head_val(head_val, &cycle, &space);
151
152                 space -= bytes;
153                 if (space < 0) {
154                         space += log->l_logsize;
155                         cycle--;
156                 }
157
158                 old = head_val;
159                 new = xlog_assign_grant_head_val(cycle, space);
160                 head_val = atomic64_cmpxchg(head, old, new);
161         } while (head_val != old);
162 }
163
164 static void
165 xlog_grant_add_space(
166         struct xlog             *log,
167         atomic64_t              *head,
168         int                     bytes)
169 {
170         int64_t head_val = atomic64_read(head);
171         int64_t new, old;
172
173         do {
174                 int             tmp;
175                 int             cycle, space;
176
177                 xlog_crack_grant_head_val(head_val, &cycle, &space);
178
179                 tmp = log->l_logsize - space;
180                 if (tmp > bytes)
181                         space += bytes;
182                 else {
183                         space = bytes - tmp;
184                         cycle++;
185                 }
186
187                 old = head_val;
188                 new = xlog_assign_grant_head_val(cycle, space);
189                 head_val = atomic64_cmpxchg(head, old, new);
190         } while (head_val != old);
191 }
192
193 STATIC void
194 xlog_grant_head_init(
195         struct xlog_grant_head  *head)
196 {
197         xlog_assign_grant_head(&head->grant, 1, 0);
198         INIT_LIST_HEAD(&head->waiters);
199         spin_lock_init(&head->lock);
200 }
201
202 STATIC void
203 xlog_grant_head_wake_all(
204         struct xlog_grant_head  *head)
205 {
206         struct xlog_ticket      *tic;
207
208         spin_lock(&head->lock);
209         list_for_each_entry(tic, &head->waiters, t_queue)
210                 wake_up_process(tic->t_task);
211         spin_unlock(&head->lock);
212 }
213
214 static inline int
215 xlog_ticket_reservation(
216         struct xlog             *log,
217         struct xlog_grant_head  *head,
218         struct xlog_ticket      *tic)
219 {
220         if (head == &log->l_write_head) {
221                 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222                 return tic->t_unit_res;
223         } else {
224                 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225                         return tic->t_unit_res * tic->t_cnt;
226                 else
227                         return tic->t_unit_res;
228         }
229 }
230
231 STATIC bool
232 xlog_grant_head_wake(
233         struct xlog             *log,
234         struct xlog_grant_head  *head,
235         int                     *free_bytes)
236 {
237         struct xlog_ticket      *tic;
238         int                     need_bytes;
239
240         list_for_each_entry(tic, &head->waiters, t_queue) {
241                 need_bytes = xlog_ticket_reservation(log, head, tic);
242                 if (*free_bytes < need_bytes)
243                         return false;
244
245                 *free_bytes -= need_bytes;
246                 trace_xfs_log_grant_wake_up(log, tic);
247                 wake_up_process(tic->t_task);
248         }
249
250         return true;
251 }
252
253 STATIC int
254 xlog_grant_head_wait(
255         struct xlog             *log,
256         struct xlog_grant_head  *head,
257         struct xlog_ticket      *tic,
258         int                     need_bytes) __releases(&head->lock)
259                                             __acquires(&head->lock)
260 {
261         list_add_tail(&tic->t_queue, &head->waiters);
262
263         do {
264                 if (XLOG_FORCED_SHUTDOWN(log))
265                         goto shutdown;
266                 xlog_grant_push_ail(log, need_bytes);
267
268                 __set_current_state(TASK_UNINTERRUPTIBLE);
269                 spin_unlock(&head->lock);
270
271                 XFS_STATS_INC(xs_sleep_logspace);
272
273                 trace_xfs_log_grant_sleep(log, tic);
274                 schedule();
275                 trace_xfs_log_grant_wake(log, tic);
276
277                 spin_lock(&head->lock);
278                 if (XLOG_FORCED_SHUTDOWN(log))
279                         goto shutdown;
280         } while (xlog_space_left(log, &head->grant) < need_bytes);
281
282         list_del_init(&tic->t_queue);
283         return 0;
284 shutdown:
285         list_del_init(&tic->t_queue);
286         return XFS_ERROR(EIO);
287 }
288
289 /*
290  * Atomically get the log space required for a log ticket.
291  *
292  * Once a ticket gets put onto head->waiters, it will only return after the
293  * needed reservation is satisfied.
294  *
295  * This function is structured so that it has a lock free fast path. This is
296  * necessary because every new transaction reservation will come through this
297  * path. Hence any lock will be globally hot if we take it unconditionally on
298  * every pass.
299  *
300  * As tickets are only ever moved on and off head->waiters under head->lock, we
301  * only need to take that lock if we are going to add the ticket to the queue
302  * and sleep. We can avoid taking the lock if the ticket was never added to
303  * head->waiters because the t_queue list head will be empty and we hold the
304  * only reference to it so it can safely be checked unlocked.
305  */
306 STATIC int
307 xlog_grant_head_check(
308         struct xlog             *log,
309         struct xlog_grant_head  *head,
310         struct xlog_ticket      *tic,
311         int                     *need_bytes)
312 {
313         int                     free_bytes;
314         int                     error = 0;
315
316         ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317
318         /*
319          * If there are other waiters on the queue then give them a chance at
320          * logspace before us.  Wake up the first waiters, if we do not wake
321          * up all the waiters then go to sleep waiting for more free space,
322          * otherwise try to get some space for this transaction.
323          */
324         *need_bytes = xlog_ticket_reservation(log, head, tic);
325         free_bytes = xlog_space_left(log, &head->grant);
326         if (!list_empty_careful(&head->waiters)) {
327                 spin_lock(&head->lock);
328                 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329                     free_bytes < *need_bytes) {
330                         error = xlog_grant_head_wait(log, head, tic,
331                                                      *need_bytes);
332                 }
333                 spin_unlock(&head->lock);
334         } else if (free_bytes < *need_bytes) {
335                 spin_lock(&head->lock);
336                 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337                 spin_unlock(&head->lock);
338         }
339
340         return error;
341 }
342
343 static void
344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346         tic->t_res_num = 0;
347         tic->t_res_arr_sum = 0;
348         tic->t_res_num_ophdrs = 0;
349 }
350
351 static void
352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354         if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355                 /* add to overflow and start again */
356                 tic->t_res_o_flow += tic->t_res_arr_sum;
357                 tic->t_res_num = 0;
358                 tic->t_res_arr_sum = 0;
359         }
360
361         tic->t_res_arr[tic->t_res_num].r_len = len;
362         tic->t_res_arr[tic->t_res_num].r_type = type;
363         tic->t_res_arr_sum += len;
364         tic->t_res_num++;
365 }
366
367 /*
368  * Replenish the byte reservation required by moving the grant write head.
369  */
370 int
371 xfs_log_regrant(
372         struct xfs_mount        *mp,
373         struct xlog_ticket      *tic)
374 {
375         struct xlog             *log = mp->m_log;
376         int                     need_bytes;
377         int                     error = 0;
378
379         if (XLOG_FORCED_SHUTDOWN(log))
380                 return XFS_ERROR(EIO);
381
382         XFS_STATS_INC(xs_try_logspace);
383
384         /*
385          * This is a new transaction on the ticket, so we need to change the
386          * transaction ID so that the next transaction has a different TID in
387          * the log. Just add one to the existing tid so that we can see chains
388          * of rolling transactions in the log easily.
389          */
390         tic->t_tid++;
391
392         xlog_grant_push_ail(log, tic->t_unit_res);
393
394         tic->t_curr_res = tic->t_unit_res;
395         xlog_tic_reset_res(tic);
396
397         if (tic->t_cnt > 0)
398                 return 0;
399
400         trace_xfs_log_regrant(log, tic);
401
402         error = xlog_grant_head_check(log, &log->l_write_head, tic,
403                                       &need_bytes);
404         if (error)
405                 goto out_error;
406
407         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408         trace_xfs_log_regrant_exit(log, tic);
409         xlog_verify_grant_tail(log);
410         return 0;
411
412 out_error:
413         /*
414          * If we are failing, make sure the ticket doesn't have any current
415          * reservations.  We don't want to add this back when the ticket/
416          * transaction gets cancelled.
417          */
418         tic->t_curr_res = 0;
419         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
420         return error;
421 }
422
423 /*
424  * Reserve log space and return a ticket corresponding the reservation.
425  *
426  * Each reservation is going to reserve extra space for a log record header.
427  * When writes happen to the on-disk log, we don't subtract the length of the
428  * log record header from any reservation.  By wasting space in each
429  * reservation, we prevent over allocation problems.
430  */
431 int
432 xfs_log_reserve(
433         struct xfs_mount        *mp,
434         int                     unit_bytes,
435         int                     cnt,
436         struct xlog_ticket      **ticp,
437         __uint8_t               client,
438         bool                    permanent,
439         uint                    t_type)
440 {
441         struct xlog             *log = mp->m_log;
442         struct xlog_ticket      *tic;
443         int                     need_bytes;
444         int                     error = 0;
445
446         ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
447
448         if (XLOG_FORCED_SHUTDOWN(log))
449                 return XFS_ERROR(EIO);
450
451         XFS_STATS_INC(xs_try_logspace);
452
453         ASSERT(*ticp == NULL);
454         tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455                                 KM_SLEEP | KM_MAYFAIL);
456         if (!tic)
457                 return XFS_ERROR(ENOMEM);
458
459         tic->t_trans_type = t_type;
460         *ticp = tic;
461
462         xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
463                                             : tic->t_unit_res);
464
465         trace_xfs_log_reserve(log, tic);
466
467         error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
468                                       &need_bytes);
469         if (error)
470                 goto out_error;
471
472         xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
473         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
474         trace_xfs_log_reserve_exit(log, tic);
475         xlog_verify_grant_tail(log);
476         return 0;
477
478 out_error:
479         /*
480          * If we are failing, make sure the ticket doesn't have any current
481          * reservations.  We don't want to add this back when the ticket/
482          * transaction gets cancelled.
483          */
484         tic->t_curr_res = 0;
485         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
486         return error;
487 }
488
489
490 /*
491  * NOTES:
492  *
493  *      1. currblock field gets updated at startup and after in-core logs
494  *              marked as with WANT_SYNC.
495  */
496
497 /*
498  * This routine is called when a user of a log manager ticket is done with
499  * the reservation.  If the ticket was ever used, then a commit record for
500  * the associated transaction is written out as a log operation header with
501  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
502  * a given ticket.  If the ticket was one with a permanent reservation, then
503  * a few operations are done differently.  Permanent reservation tickets by
504  * default don't release the reservation.  They just commit the current
505  * transaction with the belief that the reservation is still needed.  A flag
506  * must be passed in before permanent reservations are actually released.
507  * When these type of tickets are not released, they need to be set into
508  * the inited state again.  By doing this, a start record will be written
509  * out when the next write occurs.
510  */
511 xfs_lsn_t
512 xfs_log_done(
513         struct xfs_mount        *mp,
514         struct xlog_ticket      *ticket,
515         struct xlog_in_core     **iclog,
516         uint                    flags)
517 {
518         struct xlog             *log = mp->m_log;
519         xfs_lsn_t               lsn = 0;
520
521         if (XLOG_FORCED_SHUTDOWN(log) ||
522             /*
523              * If nothing was ever written, don't write out commit record.
524              * If we get an error, just continue and give back the log ticket.
525              */
526             (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
527              (xlog_commit_record(log, ticket, iclog, &lsn)))) {
528                 lsn = (xfs_lsn_t) -1;
529                 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
530                         flags |= XFS_LOG_REL_PERM_RESERV;
531                 }
532         }
533
534
535         if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
536             (flags & XFS_LOG_REL_PERM_RESERV)) {
537                 trace_xfs_log_done_nonperm(log, ticket);
538
539                 /*
540                  * Release ticket if not permanent reservation or a specific
541                  * request has been made to release a permanent reservation.
542                  */
543                 xlog_ungrant_log_space(log, ticket);
544                 xfs_log_ticket_put(ticket);
545         } else {
546                 trace_xfs_log_done_perm(log, ticket);
547
548                 xlog_regrant_reserve_log_space(log, ticket);
549                 /* If this ticket was a permanent reservation and we aren't
550                  * trying to release it, reset the inited flags; so next time
551                  * we write, a start record will be written out.
552                  */
553                 ticket->t_flags |= XLOG_TIC_INITED;
554         }
555
556         return lsn;
557 }
558
559 /*
560  * Attaches a new iclog I/O completion callback routine during
561  * transaction commit.  If the log is in error state, a non-zero
562  * return code is handed back and the caller is responsible for
563  * executing the callback at an appropriate time.
564  */
565 int
566 xfs_log_notify(
567         struct xfs_mount        *mp,
568         struct xlog_in_core     *iclog,
569         xfs_log_callback_t      *cb)
570 {
571         int     abortflg;
572
573         spin_lock(&iclog->ic_callback_lock);
574         abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
575         if (!abortflg) {
576                 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
577                               (iclog->ic_state == XLOG_STATE_WANT_SYNC));
578                 cb->cb_next = NULL;
579                 *(iclog->ic_callback_tail) = cb;
580                 iclog->ic_callback_tail = &(cb->cb_next);
581         }
582         spin_unlock(&iclog->ic_callback_lock);
583         return abortflg;
584 }
585
586 int
587 xfs_log_release_iclog(
588         struct xfs_mount        *mp,
589         struct xlog_in_core     *iclog)
590 {
591         if (xlog_state_release_iclog(mp->m_log, iclog)) {
592                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
593                 return EIO;
594         }
595
596         return 0;
597 }
598
599 /*
600  * Mount a log filesystem
601  *
602  * mp           - ubiquitous xfs mount point structure
603  * log_target   - buftarg of on-disk log device
604  * blk_offset   - Start block # where block size is 512 bytes (BBSIZE)
605  * num_bblocks  - Number of BBSIZE blocks in on-disk log
606  *
607  * Return error or zero.
608  */
609 int
610 xfs_log_mount(
611         xfs_mount_t     *mp,
612         xfs_buftarg_t   *log_target,
613         xfs_daddr_t     blk_offset,
614         int             num_bblks)
615 {
616         int             error = 0;
617         int             min_logfsbs;
618
619         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
620                 xfs_notice(mp, "Mounting Filesystem");
621         else {
622                 xfs_notice(mp,
623 "Mounting filesystem in no-recovery mode.  Filesystem will be inconsistent.");
624                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
625         }
626
627         mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
628         if (IS_ERR(mp->m_log)) {
629                 error = -PTR_ERR(mp->m_log);
630                 goto out;
631         }
632
633         /*
634          * Validate the given log space and drop a critical message via syslog
635          * if the log size is too small that would lead to some unexpected
636          * situations in transaction log space reservation stage.
637          *
638          * Note: we can't just reject the mount if the validation fails.  This
639          * would mean that people would have to downgrade their kernel just to
640          * remedy the situation as there is no way to grow the log (short of
641          * black magic surgery with xfs_db).
642          *
643          * We can, however, reject mounts for CRC format filesystems, as the
644          * mkfs binary being used to make the filesystem should never create a
645          * filesystem with a log that is too small.
646          */
647         min_logfsbs = xfs_log_calc_minimum_size(mp);
648
649         if (mp->m_sb.sb_logblocks < min_logfsbs) {
650                 xfs_warn(mp,
651                 "Log size %d blocks too small, minimum size is %d blocks",
652                          mp->m_sb.sb_logblocks, min_logfsbs);
653                 error = EINVAL;
654         } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
655                 xfs_warn(mp,
656                 "Log size %d blocks too large, maximum size is %lld blocks",
657                          mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
658                 error = EINVAL;
659         } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
660                 xfs_warn(mp,
661                 "log size %lld bytes too large, maximum size is %lld bytes",
662                          XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
663                          XFS_MAX_LOG_BYTES);
664                 error = EINVAL;
665         }
666         if (error) {
667                 if (xfs_sb_version_hascrc(&mp->m_sb)) {
668                         xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
669                         ASSERT(0);
670                         goto out_free_log;
671                 }
672                 xfs_crit(mp,
673 "Log size out of supported range. Continuing onwards, but if log hangs are\n"
674 "experienced then please report this message in the bug report.");
675         }
676
677         /*
678          * Initialize the AIL now we have a log.
679          */
680         error = xfs_trans_ail_init(mp);
681         if (error) {
682                 xfs_warn(mp, "AIL initialisation failed: error %d", error);
683                 goto out_free_log;
684         }
685         mp->m_log->l_ailp = mp->m_ail;
686
687         /*
688          * skip log recovery on a norecovery mount.  pretend it all
689          * just worked.
690          */
691         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
692                 int     readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
693
694                 if (readonly)
695                         mp->m_flags &= ~XFS_MOUNT_RDONLY;
696
697                 error = xlog_recover(mp->m_log);
698
699                 if (readonly)
700                         mp->m_flags |= XFS_MOUNT_RDONLY;
701                 if (error) {
702                         xfs_warn(mp, "log mount/recovery failed: error %d",
703                                 error);
704                         goto out_destroy_ail;
705                 }
706         }
707
708         /* Normal transactions can now occur */
709         mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
710
711         /*
712          * Now the log has been fully initialised and we know were our
713          * space grant counters are, we can initialise the permanent ticket
714          * needed for delayed logging to work.
715          */
716         xlog_cil_init_post_recovery(mp->m_log);
717
718         return 0;
719
720 out_destroy_ail:
721         xfs_trans_ail_destroy(mp);
722 out_free_log:
723         xlog_dealloc_log(mp->m_log);
724 out:
725         return error;
726 }
727
728 /*
729  * Finish the recovery of the file system.  This is separate from the
730  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
731  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
732  * here.
733  *
734  * If we finish recovery successfully, start the background log work. If we are
735  * not doing recovery, then we have a RO filesystem and we don't need to start
736  * it.
737  */
738 int
739 xfs_log_mount_finish(xfs_mount_t *mp)
740 {
741         int     error = 0;
742
743         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
744                 error = xlog_recover_finish(mp->m_log);
745                 if (!error)
746                         xfs_log_work_queue(mp);
747         } else {
748                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
749         }
750
751
752         return error;
753 }
754
755 /*
756  * Final log writes as part of unmount.
757  *
758  * Mark the filesystem clean as unmount happens.  Note that during relocation
759  * this routine needs to be executed as part of source-bag while the
760  * deallocation must not be done until source-end.
761  */
762
763 /*
764  * Unmount record used to have a string "Unmount filesystem--" in the
765  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
766  * We just write the magic number now since that particular field isn't
767  * currently architecture converted and "Unmount" is a bit foo.
768  * As far as I know, there weren't any dependencies on the old behaviour.
769  */
770
771 int
772 xfs_log_unmount_write(xfs_mount_t *mp)
773 {
774         struct xlog      *log = mp->m_log;
775         xlog_in_core_t   *iclog;
776 #ifdef DEBUG
777         xlog_in_core_t   *first_iclog;
778 #endif
779         xlog_ticket_t   *tic = NULL;
780         xfs_lsn_t        lsn;
781         int              error;
782
783         /*
784          * Don't write out unmount record on read-only mounts.
785          * Or, if we are doing a forced umount (typically because of IO errors).
786          */
787         if (mp->m_flags & XFS_MOUNT_RDONLY)
788                 return 0;
789
790         error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
791         ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
792
793 #ifdef DEBUG
794         first_iclog = iclog = log->l_iclog;
795         do {
796                 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
797                         ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
798                         ASSERT(iclog->ic_offset == 0);
799                 }
800                 iclog = iclog->ic_next;
801         } while (iclog != first_iclog);
802 #endif
803         if (! (XLOG_FORCED_SHUTDOWN(log))) {
804                 error = xfs_log_reserve(mp, 600, 1, &tic,
805                                         XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
806                 if (!error) {
807                         /* the data section must be 32 bit size aligned */
808                         struct {
809                             __uint16_t magic;
810                             __uint16_t pad1;
811                             __uint32_t pad2; /* may as well make it 64 bits */
812                         } magic = {
813                                 .magic = XLOG_UNMOUNT_TYPE,
814                         };
815                         struct xfs_log_iovec reg = {
816                                 .i_addr = &magic,
817                                 .i_len = sizeof(magic),
818                                 .i_type = XLOG_REG_TYPE_UNMOUNT,
819                         };
820                         struct xfs_log_vec vec = {
821                                 .lv_niovecs = 1,
822                                 .lv_iovecp = &reg,
823                         };
824
825                         /* remove inited flag, and account for space used */
826                         tic->t_flags = 0;
827                         tic->t_curr_res -= sizeof(magic);
828                         error = xlog_write(log, &vec, tic, &lsn,
829                                            NULL, XLOG_UNMOUNT_TRANS);
830                         /*
831                          * At this point, we're umounting anyway,
832                          * so there's no point in transitioning log state
833                          * to IOERROR. Just continue...
834                          */
835                 }
836
837                 if (error)
838                         xfs_alert(mp, "%s: unmount record failed", __func__);
839
840
841                 spin_lock(&log->l_icloglock);
842                 iclog = log->l_iclog;
843                 atomic_inc(&iclog->ic_refcnt);
844                 xlog_state_want_sync(log, iclog);
845                 spin_unlock(&log->l_icloglock);
846                 error = xlog_state_release_iclog(log, iclog);
847
848                 spin_lock(&log->l_icloglock);
849                 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
850                       iclog->ic_state == XLOG_STATE_DIRTY)) {
851                         if (!XLOG_FORCED_SHUTDOWN(log)) {
852                                 xlog_wait(&iclog->ic_force_wait,
853                                                         &log->l_icloglock);
854                         } else {
855                                 spin_unlock(&log->l_icloglock);
856                         }
857                 } else {
858                         spin_unlock(&log->l_icloglock);
859                 }
860                 if (tic) {
861                         trace_xfs_log_umount_write(log, tic);
862                         xlog_ungrant_log_space(log, tic);
863                         xfs_log_ticket_put(tic);
864                 }
865         } else {
866                 /*
867                  * We're already in forced_shutdown mode, couldn't
868                  * even attempt to write out the unmount transaction.
869                  *
870                  * Go through the motions of sync'ing and releasing
871                  * the iclog, even though no I/O will actually happen,
872                  * we need to wait for other log I/Os that may already
873                  * be in progress.  Do this as a separate section of
874                  * code so we'll know if we ever get stuck here that
875                  * we're in this odd situation of trying to unmount
876                  * a file system that went into forced_shutdown as
877                  * the result of an unmount..
878                  */
879                 spin_lock(&log->l_icloglock);
880                 iclog = log->l_iclog;
881                 atomic_inc(&iclog->ic_refcnt);
882
883                 xlog_state_want_sync(log, iclog);
884                 spin_unlock(&log->l_icloglock);
885                 error =  xlog_state_release_iclog(log, iclog);
886
887                 spin_lock(&log->l_icloglock);
888
889                 if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
890                         || iclog->ic_state == XLOG_STATE_DIRTY
891                         || iclog->ic_state == XLOG_STATE_IOERROR) ) {
892
893                                 xlog_wait(&iclog->ic_force_wait,
894                                                         &log->l_icloglock);
895                 } else {
896                         spin_unlock(&log->l_icloglock);
897                 }
898         }
899
900         return error;
901 }       /* xfs_log_unmount_write */
902
903 /*
904  * Empty the log for unmount/freeze.
905  *
906  * To do this, we first need to shut down the background log work so it is not
907  * trying to cover the log as we clean up. We then need to unpin all objects in
908  * the log so we can then flush them out. Once they have completed their IO and
909  * run the callbacks removing themselves from the AIL, we can write the unmount
910  * record.
911  */
912 void
913 xfs_log_quiesce(
914         struct xfs_mount        *mp)
915 {
916         cancel_delayed_work_sync(&mp->m_log->l_work);
917         xfs_log_force(mp, XFS_LOG_SYNC);
918
919         /*
920          * The superblock buffer is uncached and while xfs_ail_push_all_sync()
921          * will push it, xfs_wait_buftarg() will not wait for it. Further,
922          * xfs_buf_iowait() cannot be used because it was pushed with the
923          * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
924          * the IO to complete.
925          */
926         xfs_ail_push_all_sync(mp->m_ail);
927         xfs_wait_buftarg(mp->m_ddev_targp);
928         xfs_buf_lock(mp->m_sb_bp);
929         xfs_buf_unlock(mp->m_sb_bp);
930
931         xfs_log_unmount_write(mp);
932 }
933
934 /*
935  * Shut down and release the AIL and Log.
936  *
937  * During unmount, we need to ensure we flush all the dirty metadata objects
938  * from the AIL so that the log is empty before we write the unmount record to
939  * the log. Once this is done, we can tear down the AIL and the log.
940  */
941 void
942 xfs_log_unmount(
943         struct xfs_mount        *mp)
944 {
945         xfs_log_quiesce(mp);
946
947         xfs_trans_ail_destroy(mp);
948         xlog_dealloc_log(mp->m_log);
949 }
950
951 void
952 xfs_log_item_init(
953         struct xfs_mount        *mp,
954         struct xfs_log_item     *item,
955         int                     type,
956         const struct xfs_item_ops *ops)
957 {
958         item->li_mountp = mp;
959         item->li_ailp = mp->m_ail;
960         item->li_type = type;
961         item->li_ops = ops;
962         item->li_lv = NULL;
963
964         INIT_LIST_HEAD(&item->li_ail);
965         INIT_LIST_HEAD(&item->li_cil);
966 }
967
968 /*
969  * Wake up processes waiting for log space after we have moved the log tail.
970  */
971 void
972 xfs_log_space_wake(
973         struct xfs_mount        *mp)
974 {
975         struct xlog             *log = mp->m_log;
976         int                     free_bytes;
977
978         if (XLOG_FORCED_SHUTDOWN(log))
979                 return;
980
981         if (!list_empty_careful(&log->l_write_head.waiters)) {
982                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
983
984                 spin_lock(&log->l_write_head.lock);
985                 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
986                 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
987                 spin_unlock(&log->l_write_head.lock);
988         }
989
990         if (!list_empty_careful(&log->l_reserve_head.waiters)) {
991                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
992
993                 spin_lock(&log->l_reserve_head.lock);
994                 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
995                 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
996                 spin_unlock(&log->l_reserve_head.lock);
997         }
998 }
999
1000 /*
1001  * Determine if we have a transaction that has gone to disk that needs to be
1002  * covered. To begin the transition to the idle state firstly the log needs to
1003  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1004  * we start attempting to cover the log.
1005  *
1006  * Only if we are then in a state where covering is needed, the caller is
1007  * informed that dummy transactions are required to move the log into the idle
1008  * state.
1009  *
1010  * If there are any items in the AIl or CIL, then we do not want to attempt to
1011  * cover the log as we may be in a situation where there isn't log space
1012  * available to run a dummy transaction and this can lead to deadlocks when the
1013  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1014  * there's no point in running a dummy transaction at this point because we
1015  * can't start trying to idle the log until both the CIL and AIL are empty.
1016  */
1017 int
1018 xfs_log_need_covered(xfs_mount_t *mp)
1019 {
1020         struct xlog     *log = mp->m_log;
1021         int             needed = 0;
1022
1023         if (!xfs_fs_writable(mp))
1024                 return 0;
1025
1026         if (!xlog_cil_empty(log))
1027                 return 0;
1028
1029         spin_lock(&log->l_icloglock);
1030         switch (log->l_covered_state) {
1031         case XLOG_STATE_COVER_DONE:
1032         case XLOG_STATE_COVER_DONE2:
1033         case XLOG_STATE_COVER_IDLE:
1034                 break;
1035         case XLOG_STATE_COVER_NEED:
1036         case XLOG_STATE_COVER_NEED2:
1037                 if (xfs_ail_min_lsn(log->l_ailp))
1038                         break;
1039                 if (!xlog_iclogs_empty(log))
1040                         break;
1041
1042                 needed = 1;
1043                 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1044                         log->l_covered_state = XLOG_STATE_COVER_DONE;
1045                 else
1046                         log->l_covered_state = XLOG_STATE_COVER_DONE2;
1047                 break;
1048         default:
1049                 needed = 1;
1050                 break;
1051         }
1052         spin_unlock(&log->l_icloglock);
1053         return needed;
1054 }
1055
1056 /*
1057  * We may be holding the log iclog lock upon entering this routine.
1058  */
1059 xfs_lsn_t
1060 xlog_assign_tail_lsn_locked(
1061         struct xfs_mount        *mp)
1062 {
1063         struct xlog             *log = mp->m_log;
1064         struct xfs_log_item     *lip;
1065         xfs_lsn_t               tail_lsn;
1066
1067         assert_spin_locked(&mp->m_ail->xa_lock);
1068
1069         /*
1070          * To make sure we always have a valid LSN for the log tail we keep
1071          * track of the last LSN which was committed in log->l_last_sync_lsn,
1072          * and use that when the AIL was empty.
1073          */
1074         lip = xfs_ail_min(mp->m_ail);
1075         if (lip)
1076                 tail_lsn = lip->li_lsn;
1077         else
1078                 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1079         trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1080         atomic64_set(&log->l_tail_lsn, tail_lsn);
1081         return tail_lsn;
1082 }
1083
1084 xfs_lsn_t
1085 xlog_assign_tail_lsn(
1086         struct xfs_mount        *mp)
1087 {
1088         xfs_lsn_t               tail_lsn;
1089
1090         spin_lock(&mp->m_ail->xa_lock);
1091         tail_lsn = xlog_assign_tail_lsn_locked(mp);
1092         spin_unlock(&mp->m_ail->xa_lock);
1093
1094         return tail_lsn;
1095 }
1096
1097 /*
1098  * Return the space in the log between the tail and the head.  The head
1099  * is passed in the cycle/bytes formal parms.  In the special case where
1100  * the reserve head has wrapped passed the tail, this calculation is no
1101  * longer valid.  In this case, just return 0 which means there is no space
1102  * in the log.  This works for all places where this function is called
1103  * with the reserve head.  Of course, if the write head were to ever
1104  * wrap the tail, we should blow up.  Rather than catch this case here,
1105  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1106  *
1107  * This code also handles the case where the reservation head is behind
1108  * the tail.  The details of this case are described below, but the end
1109  * result is that we return the size of the log as the amount of space left.
1110  */
1111 STATIC int
1112 xlog_space_left(
1113         struct xlog     *log,
1114         atomic64_t      *head)
1115 {
1116         int             free_bytes;
1117         int             tail_bytes;
1118         int             tail_cycle;
1119         int             head_cycle;
1120         int             head_bytes;
1121
1122         xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1123         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1124         tail_bytes = BBTOB(tail_bytes);
1125         if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1126                 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1127         else if (tail_cycle + 1 < head_cycle)
1128                 return 0;
1129         else if (tail_cycle < head_cycle) {
1130                 ASSERT(tail_cycle == (head_cycle - 1));
1131                 free_bytes = tail_bytes - head_bytes;
1132         } else {
1133                 /*
1134                  * The reservation head is behind the tail.
1135                  * In this case we just want to return the size of the
1136                  * log as the amount of space left.
1137                  */
1138                 xfs_alert(log->l_mp,
1139                         "xlog_space_left: head behind tail\n"
1140                         "  tail_cycle = %d, tail_bytes = %d\n"
1141                         "  GH   cycle = %d, GH   bytes = %d",
1142                         tail_cycle, tail_bytes, head_cycle, head_bytes);
1143                 ASSERT(0);
1144                 free_bytes = log->l_logsize;
1145         }
1146         return free_bytes;
1147 }
1148
1149
1150 /*
1151  * Log function which is called when an io completes.
1152  *
1153  * The log manager needs its own routine, in order to control what
1154  * happens with the buffer after the write completes.
1155  */
1156 void
1157 xlog_iodone(xfs_buf_t *bp)
1158 {
1159         struct xlog_in_core     *iclog = bp->b_fspriv;
1160         struct xlog             *l = iclog->ic_log;
1161         int                     aborted = 0;
1162
1163         /*
1164          * Race to shutdown the filesystem if we see an error.
1165          */
1166         if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
1167                         XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1168                 xfs_buf_ioerror_alert(bp, __func__);
1169                 xfs_buf_stale(bp);
1170                 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1171                 /*
1172                  * This flag will be propagated to the trans-committed
1173                  * callback routines to let them know that the log-commit
1174                  * didn't succeed.
1175                  */
1176                 aborted = XFS_LI_ABORTED;
1177         } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1178                 aborted = XFS_LI_ABORTED;
1179         }
1180
1181         /* log I/O is always issued ASYNC */
1182         ASSERT(XFS_BUF_ISASYNC(bp));
1183         xlog_state_done_syncing(iclog, aborted);
1184
1185         /*
1186          * drop the buffer lock now that we are done. Nothing references
1187          * the buffer after this, so an unmount waiting on this lock can now
1188          * tear it down safely. As such, it is unsafe to reference the buffer
1189          * (bp) after the unlock as we could race with it being freed.
1190          */
1191         xfs_buf_unlock(bp);
1192 }
1193
1194 /*
1195  * Return size of each in-core log record buffer.
1196  *
1197  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1198  *
1199  * If the filesystem blocksize is too large, we may need to choose a
1200  * larger size since the directory code currently logs entire blocks.
1201  */
1202
1203 STATIC void
1204 xlog_get_iclog_buffer_size(
1205         struct xfs_mount        *mp,
1206         struct xlog             *log)
1207 {
1208         int size;
1209         int xhdrs;
1210
1211         if (mp->m_logbufs <= 0)
1212                 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1213         else
1214                 log->l_iclog_bufs = mp->m_logbufs;
1215
1216         /*
1217          * Buffer size passed in from mount system call.
1218          */
1219         if (mp->m_logbsize > 0) {
1220                 size = log->l_iclog_size = mp->m_logbsize;
1221                 log->l_iclog_size_log = 0;
1222                 while (size != 1) {
1223                         log->l_iclog_size_log++;
1224                         size >>= 1;
1225                 }
1226
1227                 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1228                         /* # headers = size / 32k
1229                          * one header holds cycles from 32k of data
1230                          */
1231
1232                         xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1233                         if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1234                                 xhdrs++;
1235                         log->l_iclog_hsize = xhdrs << BBSHIFT;
1236                         log->l_iclog_heads = xhdrs;
1237                 } else {
1238                         ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1239                         log->l_iclog_hsize = BBSIZE;
1240                         log->l_iclog_heads = 1;
1241                 }
1242                 goto done;
1243         }
1244
1245         /* All machines use 32kB buffers by default. */
1246         log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1247         log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1248
1249         /* the default log size is 16k or 32k which is one header sector */
1250         log->l_iclog_hsize = BBSIZE;
1251         log->l_iclog_heads = 1;
1252
1253 done:
1254         /* are we being asked to make the sizes selected above visible? */
1255         if (mp->m_logbufs == 0)
1256                 mp->m_logbufs = log->l_iclog_bufs;
1257         if (mp->m_logbsize == 0)
1258                 mp->m_logbsize = log->l_iclog_size;
1259 }       /* xlog_get_iclog_buffer_size */
1260
1261
1262 void
1263 xfs_log_work_queue(
1264         struct xfs_mount        *mp)
1265 {
1266         queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1267                                 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1268 }
1269
1270 /*
1271  * Every sync period we need to unpin all items in the AIL and push them to
1272  * disk. If there is nothing dirty, then we might need to cover the log to
1273  * indicate that the filesystem is idle.
1274  */
1275 void
1276 xfs_log_worker(
1277         struct work_struct      *work)
1278 {
1279         struct xlog             *log = container_of(to_delayed_work(work),
1280                                                 struct xlog, l_work);
1281         struct xfs_mount        *mp = log->l_mp;
1282
1283         /* dgc: errors ignored - not fatal and nowhere to report them */
1284         if (xfs_log_need_covered(mp))
1285                 xfs_fs_log_dummy(mp);
1286         else
1287                 xfs_log_force(mp, 0);
1288
1289         /* start pushing all the metadata that is currently dirty */
1290         xfs_ail_push_all(mp->m_ail);
1291
1292         /* queue us up again */
1293         xfs_log_work_queue(mp);
1294 }
1295
1296 /*
1297  * This routine initializes some of the log structure for a given mount point.
1298  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1299  * some other stuff may be filled in too.
1300  */
1301 STATIC struct xlog *
1302 xlog_alloc_log(
1303         struct xfs_mount        *mp,
1304         struct xfs_buftarg      *log_target,
1305         xfs_daddr_t             blk_offset,
1306         int                     num_bblks)
1307 {
1308         struct xlog             *log;
1309         xlog_rec_header_t       *head;
1310         xlog_in_core_t          **iclogp;
1311         xlog_in_core_t          *iclog, *prev_iclog=NULL;
1312         xfs_buf_t               *bp;
1313         int                     i;
1314         int                     error = ENOMEM;
1315         uint                    log2_size = 0;
1316
1317         log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1318         if (!log) {
1319                 xfs_warn(mp, "Log allocation failed: No memory!");
1320                 goto out;
1321         }
1322
1323         log->l_mp          = mp;
1324         log->l_targ        = log_target;
1325         log->l_logsize     = BBTOB(num_bblks);
1326         log->l_logBBstart  = blk_offset;
1327         log->l_logBBsize   = num_bblks;
1328         log->l_covered_state = XLOG_STATE_COVER_IDLE;
1329         log->l_flags       |= XLOG_ACTIVE_RECOVERY;
1330         INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1331
1332         log->l_prev_block  = -1;
1333         /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1334         xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1335         xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1336         log->l_curr_cycle  = 1;     /* 0 is bad since this is initial value */
1337
1338         xlog_grant_head_init(&log->l_reserve_head);
1339         xlog_grant_head_init(&log->l_write_head);
1340
1341         error = EFSCORRUPTED;
1342         if (xfs_sb_version_hassector(&mp->m_sb)) {
1343                 log2_size = mp->m_sb.sb_logsectlog;
1344                 if (log2_size < BBSHIFT) {
1345                         xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1346                                 log2_size, BBSHIFT);
1347                         goto out_free_log;
1348                 }
1349
1350                 log2_size -= BBSHIFT;
1351                 if (log2_size > mp->m_sectbb_log) {
1352                         xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1353                                 log2_size, mp->m_sectbb_log);
1354                         goto out_free_log;
1355                 }
1356
1357                 /* for larger sector sizes, must have v2 or external log */
1358                 if (log2_size && log->l_logBBstart > 0 &&
1359                             !xfs_sb_version_haslogv2(&mp->m_sb)) {
1360                         xfs_warn(mp,
1361                 "log sector size (0x%x) invalid for configuration.",
1362                                 log2_size);
1363                         goto out_free_log;
1364                 }
1365         }
1366         log->l_sectBBsize = 1 << log2_size;
1367
1368         xlog_get_iclog_buffer_size(mp, log);
1369
1370         error = ENOMEM;
1371         bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0);
1372         if (!bp)
1373                 goto out_free_log;
1374
1375         /*
1376          * The iclogbuf buffer locks are held over IO but we are not going to do
1377          * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1378          * when appropriately.
1379          */
1380         ASSERT(xfs_buf_islocked(bp));
1381         xfs_buf_unlock(bp);
1382
1383         bp->b_iodone = xlog_iodone;
1384         log->l_xbuf = bp;
1385
1386         spin_lock_init(&log->l_icloglock);
1387         init_waitqueue_head(&log->l_flush_wait);
1388
1389         iclogp = &log->l_iclog;
1390         /*
1391          * The amount of memory to allocate for the iclog structure is
1392          * rather funky due to the way the structure is defined.  It is
1393          * done this way so that we can use different sizes for machines
1394          * with different amounts of memory.  See the definition of
1395          * xlog_in_core_t in xfs_log_priv.h for details.
1396          */
1397         ASSERT(log->l_iclog_size >= 4096);
1398         for (i=0; i < log->l_iclog_bufs; i++) {
1399                 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1400                 if (!*iclogp)
1401                         goto out_free_iclog;
1402
1403                 iclog = *iclogp;
1404                 iclog->ic_prev = prev_iclog;
1405                 prev_iclog = iclog;
1406
1407                 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1408                                                 BTOBB(log->l_iclog_size), 0);
1409                 if (!bp)
1410                         goto out_free_iclog;
1411
1412                 ASSERT(xfs_buf_islocked(bp));
1413                 xfs_buf_unlock(bp);
1414
1415                 bp->b_iodone = xlog_iodone;
1416                 iclog->ic_bp = bp;
1417                 iclog->ic_data = bp->b_addr;
1418 #ifdef DEBUG
1419                 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1420 #endif
1421                 head = &iclog->ic_header;
1422                 memset(head, 0, sizeof(xlog_rec_header_t));
1423                 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1424                 head->h_version = cpu_to_be32(
1425                         xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1426                 head->h_size = cpu_to_be32(log->l_iclog_size);
1427                 /* new fields */
1428                 head->h_fmt = cpu_to_be32(XLOG_FMT);
1429                 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1430
1431                 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1432                 iclog->ic_state = XLOG_STATE_ACTIVE;
1433                 iclog->ic_log = log;
1434                 atomic_set(&iclog->ic_refcnt, 0);
1435                 spin_lock_init(&iclog->ic_callback_lock);
1436                 iclog->ic_callback_tail = &(iclog->ic_callback);
1437                 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1438
1439                 init_waitqueue_head(&iclog->ic_force_wait);
1440                 init_waitqueue_head(&iclog->ic_write_wait);
1441
1442                 iclogp = &iclog->ic_next;
1443         }
1444         *iclogp = log->l_iclog;                 /* complete ring */
1445         log->l_iclog->ic_prev = prev_iclog;     /* re-write 1st prev ptr */
1446
1447         error = xlog_cil_init(log);
1448         if (error)
1449                 goto out_free_iclog;
1450         return log;
1451
1452 out_free_iclog:
1453         for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1454                 prev_iclog = iclog->ic_next;
1455                 if (iclog->ic_bp)
1456                         xfs_buf_free(iclog->ic_bp);
1457                 kmem_free(iclog);
1458         }
1459         spinlock_destroy(&log->l_icloglock);
1460         xfs_buf_free(log->l_xbuf);
1461 out_free_log:
1462         kmem_free(log);
1463 out:
1464         return ERR_PTR(-error);
1465 }       /* xlog_alloc_log */
1466
1467
1468 /*
1469  * Write out the commit record of a transaction associated with the given
1470  * ticket.  Return the lsn of the commit record.
1471  */
1472 STATIC int
1473 xlog_commit_record(
1474         struct xlog             *log,
1475         struct xlog_ticket      *ticket,
1476         struct xlog_in_core     **iclog,
1477         xfs_lsn_t               *commitlsnp)
1478 {
1479         struct xfs_mount *mp = log->l_mp;
1480         int     error;
1481         struct xfs_log_iovec reg = {
1482                 .i_addr = NULL,
1483                 .i_len = 0,
1484                 .i_type = XLOG_REG_TYPE_COMMIT,
1485         };
1486         struct xfs_log_vec vec = {
1487                 .lv_niovecs = 1,
1488                 .lv_iovecp = &reg,
1489         };
1490
1491         ASSERT_ALWAYS(iclog);
1492         error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1493                                         XLOG_COMMIT_TRANS);
1494         if (error)
1495                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1496         return error;
1497 }
1498
1499 /*
1500  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1501  * log space.  This code pushes on the lsn which would supposedly free up
1502  * the 25% which we want to leave free.  We may need to adopt a policy which
1503  * pushes on an lsn which is further along in the log once we reach the high
1504  * water mark.  In this manner, we would be creating a low water mark.
1505  */
1506 STATIC void
1507 xlog_grant_push_ail(
1508         struct xlog     *log,
1509         int             need_bytes)
1510 {
1511         xfs_lsn_t       threshold_lsn = 0;
1512         xfs_lsn_t       last_sync_lsn;
1513         int             free_blocks;
1514         int             free_bytes;
1515         int             threshold_block;
1516         int             threshold_cycle;
1517         int             free_threshold;
1518
1519         ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1520
1521         free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1522         free_blocks = BTOBBT(free_bytes);
1523
1524         /*
1525          * Set the threshold for the minimum number of free blocks in the
1526          * log to the maximum of what the caller needs, one quarter of the
1527          * log, and 256 blocks.
1528          */
1529         free_threshold = BTOBB(need_bytes);
1530         free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1531         free_threshold = MAX(free_threshold, 256);
1532         if (free_blocks >= free_threshold)
1533                 return;
1534
1535         xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1536                                                 &threshold_block);
1537         threshold_block += free_threshold;
1538         if (threshold_block >= log->l_logBBsize) {
1539                 threshold_block -= log->l_logBBsize;
1540                 threshold_cycle += 1;
1541         }
1542         threshold_lsn = xlog_assign_lsn(threshold_cycle,
1543                                         threshold_block);
1544         /*
1545          * Don't pass in an lsn greater than the lsn of the last
1546          * log record known to be on disk. Use a snapshot of the last sync lsn
1547          * so that it doesn't change between the compare and the set.
1548          */
1549         last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1550         if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1551                 threshold_lsn = last_sync_lsn;
1552
1553         /*
1554          * Get the transaction layer to kick the dirty buffers out to
1555          * disk asynchronously. No point in trying to do this if
1556          * the filesystem is shutting down.
1557          */
1558         if (!XLOG_FORCED_SHUTDOWN(log))
1559                 xfs_ail_push(log->l_ailp, threshold_lsn);
1560 }
1561
1562 /*
1563  * Stamp cycle number in every block
1564  */
1565 STATIC void
1566 xlog_pack_data(
1567         struct xlog             *log,
1568         struct xlog_in_core     *iclog,
1569         int                     roundoff)
1570 {
1571         int                     i, j, k;
1572         int                     size = iclog->ic_offset + roundoff;
1573         __be32                  cycle_lsn;
1574         xfs_caddr_t             dp;
1575
1576         cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1577
1578         dp = iclog->ic_datap;
1579         for (i = 0; i < BTOBB(size); i++) {
1580                 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1581                         break;
1582                 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1583                 *(__be32 *)dp = cycle_lsn;
1584                 dp += BBSIZE;
1585         }
1586
1587         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1588                 xlog_in_core_2_t *xhdr = iclog->ic_data;
1589
1590                 for ( ; i < BTOBB(size); i++) {
1591                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1592                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1593                         xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1594                         *(__be32 *)dp = cycle_lsn;
1595                         dp += BBSIZE;
1596                 }
1597
1598                 for (i = 1; i < log->l_iclog_heads; i++)
1599                         xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1600         }
1601 }
1602
1603 /*
1604  * Calculate the checksum for a log buffer.
1605  *
1606  * This is a little more complicated than it should be because the various
1607  * headers and the actual data are non-contiguous.
1608  */
1609 __le32
1610 xlog_cksum(
1611         struct xlog             *log,
1612         struct xlog_rec_header  *rhead,
1613         char                    *dp,
1614         int                     size)
1615 {
1616         __uint32_t              crc;
1617
1618         /* first generate the crc for the record header ... */
1619         crc = xfs_start_cksum((char *)rhead,
1620                               sizeof(struct xlog_rec_header),
1621                               offsetof(struct xlog_rec_header, h_crc));
1622
1623         /* ... then for additional cycle data for v2 logs ... */
1624         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1625                 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1626                 int             i;
1627
1628                 for (i = 1; i < log->l_iclog_heads; i++) {
1629                         crc = crc32c(crc, &xhdr[i].hic_xheader,
1630                                      sizeof(struct xlog_rec_ext_header));
1631                 }
1632         }
1633
1634         /* ... and finally for the payload */
1635         crc = crc32c(crc, dp, size);
1636
1637         return xfs_end_cksum(crc);
1638 }
1639
1640 /*
1641  * The bdstrat callback function for log bufs. This gives us a central
1642  * place to trap bufs in case we get hit by a log I/O error and need to
1643  * shutdown. Actually, in practice, even when we didn't get a log error,
1644  * we transition the iclogs to IOERROR state *after* flushing all existing
1645  * iclogs to disk. This is because we don't want anymore new transactions to be
1646  * started or completed afterwards.
1647  *
1648  * We lock the iclogbufs here so that we can serialise against IO completion
1649  * during unmount. We might be processing a shutdown triggered during unmount,
1650  * and that can occur asynchronously to the unmount thread, and hence we need to
1651  * ensure that completes before tearing down the iclogbufs. Hence we need to
1652  * hold the buffer lock across the log IO to acheive that.
1653  */
1654 STATIC int
1655 xlog_bdstrat(
1656         struct xfs_buf          *bp)
1657 {
1658         struct xlog_in_core     *iclog = bp->b_fspriv;
1659
1660         xfs_buf_lock(bp);
1661         if (iclog->ic_state & XLOG_STATE_IOERROR) {
1662                 xfs_buf_ioerror(bp, EIO);
1663                 xfs_buf_stale(bp);
1664                 xfs_buf_ioend(bp, 0);
1665                 /*
1666                  * It would seem logical to return EIO here, but we rely on
1667                  * the log state machine to propagate I/O errors instead of
1668                  * doing it here. Similarly, IO completion will unlock the
1669                  * buffer, so we don't do it here.
1670                  */
1671                 return 0;
1672         }
1673
1674         xfs_buf_iorequest(bp);
1675         return 0;
1676 }
1677
1678 /*
1679  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1680  * fashion.  Previously, we should have moved the current iclog
1681  * ptr in the log to point to the next available iclog.  This allows further
1682  * write to continue while this code syncs out an iclog ready to go.
1683  * Before an in-core log can be written out, the data section must be scanned
1684  * to save away the 1st word of each BBSIZE block into the header.  We replace
1685  * it with the current cycle count.  Each BBSIZE block is tagged with the
1686  * cycle count because there in an implicit assumption that drives will
1687  * guarantee that entire 512 byte blocks get written at once.  In other words,
1688  * we can't have part of a 512 byte block written and part not written.  By
1689  * tagging each block, we will know which blocks are valid when recovering
1690  * after an unclean shutdown.
1691  *
1692  * This routine is single threaded on the iclog.  No other thread can be in
1693  * this routine with the same iclog.  Changing contents of iclog can there-
1694  * fore be done without grabbing the state machine lock.  Updating the global
1695  * log will require grabbing the lock though.
1696  *
1697  * The entire log manager uses a logical block numbering scheme.  Only
1698  * log_sync (and then only bwrite()) know about the fact that the log may
1699  * not start with block zero on a given device.  The log block start offset
1700  * is added immediately before calling bwrite().
1701  */
1702
1703 STATIC int
1704 xlog_sync(
1705         struct xlog             *log,
1706         struct xlog_in_core     *iclog)
1707 {
1708         xfs_buf_t       *bp;
1709         int             i;
1710         uint            count;          /* byte count of bwrite */
1711         uint            count_init;     /* initial count before roundup */
1712         int             roundoff;       /* roundoff to BB or stripe */
1713         int             split = 0;      /* split write into two regions */
1714         int             error;
1715         int             v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1716         int             size;
1717
1718         XFS_STATS_INC(xs_log_writes);
1719         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1720
1721         /* Add for LR header */
1722         count_init = log->l_iclog_hsize + iclog->ic_offset;
1723
1724         /* Round out the log write size */
1725         if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1726                 /* we have a v2 stripe unit to use */
1727                 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1728         } else {
1729                 count = BBTOB(BTOBB(count_init));
1730         }
1731         roundoff = count - count_init;
1732         ASSERT(roundoff >= 0);
1733         ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 
1734                 roundoff < log->l_mp->m_sb.sb_logsunit)
1735                 || 
1736                 (log->l_mp->m_sb.sb_logsunit <= 1 && 
1737                  roundoff < BBTOB(1)));
1738
1739         /* move grant heads by roundoff in sync */
1740         xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1741         xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1742
1743         /* put cycle number in every block */
1744         xlog_pack_data(log, iclog, roundoff); 
1745
1746         /* real byte length */
1747         size = iclog->ic_offset;
1748         if (v2)
1749                 size += roundoff;
1750         iclog->ic_header.h_len = cpu_to_be32(size);
1751
1752         bp = iclog->ic_bp;
1753         XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1754
1755         XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1756
1757         /* Do we need to split this write into 2 parts? */
1758         if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1759                 char            *dptr;
1760
1761                 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1762                 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1763                 iclog->ic_bwritecnt = 2;
1764
1765                 /*
1766                  * Bump the cycle numbers at the start of each block in the
1767                  * part of the iclog that ends up in the buffer that gets
1768                  * written to the start of the log.
1769                  *
1770                  * Watch out for the header magic number case, though.
1771                  */
1772                 dptr = (char *)&iclog->ic_header + count;
1773                 for (i = 0; i < split; i += BBSIZE) {
1774                         __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1775                         if (++cycle == XLOG_HEADER_MAGIC_NUM)
1776                                 cycle++;
1777                         *(__be32 *)dptr = cpu_to_be32(cycle);
1778
1779                         dptr += BBSIZE;
1780                 }
1781         } else {
1782                 iclog->ic_bwritecnt = 1;
1783         }
1784
1785         /* calculcate the checksum */
1786         iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1787                                             iclog->ic_datap, size);
1788
1789         bp->b_io_length = BTOBB(count);
1790         bp->b_fspriv = iclog;
1791         XFS_BUF_ZEROFLAGS(bp);
1792         XFS_BUF_ASYNC(bp);
1793         bp->b_flags |= XBF_SYNCIO;
1794
1795         if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1796                 bp->b_flags |= XBF_FUA;
1797
1798                 /*
1799                  * Flush the data device before flushing the log to make
1800                  * sure all meta data written back from the AIL actually made
1801                  * it to disk before stamping the new log tail LSN into the
1802                  * log buffer.  For an external log we need to issue the
1803                  * flush explicitly, and unfortunately synchronously here;
1804                  * for an internal log we can simply use the block layer
1805                  * state machine for preflushes.
1806                  */
1807                 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1808                         xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1809                 else
1810                         bp->b_flags |= XBF_FLUSH;
1811         }
1812
1813         ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1814         ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1815
1816         xlog_verify_iclog(log, iclog, count, true);
1817
1818         /* account for log which doesn't start at block #0 */
1819         XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1820         /*
1821          * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1822          * is shutting down.
1823          */
1824         XFS_BUF_WRITE(bp);
1825
1826         error = xlog_bdstrat(bp);
1827         if (error) {
1828                 xfs_buf_ioerror_alert(bp, "xlog_sync");
1829                 return error;
1830         }
1831         if (split) {
1832                 bp = iclog->ic_log->l_xbuf;
1833                 XFS_BUF_SET_ADDR(bp, 0);             /* logical 0 */
1834                 xfs_buf_associate_memory(bp,
1835                                 (char *)&iclog->ic_header + count, split);
1836                 bp->b_fspriv = iclog;
1837                 XFS_BUF_ZEROFLAGS(bp);
1838                 XFS_BUF_ASYNC(bp);
1839                 bp->b_flags |= XBF_SYNCIO;
1840                 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1841                         bp->b_flags |= XBF_FUA;
1842
1843                 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1844                 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1845
1846                 /* account for internal log which doesn't start at block #0 */
1847                 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1848                 XFS_BUF_WRITE(bp);
1849                 error = xlog_bdstrat(bp);
1850                 if (error) {
1851                         xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1852                         return error;
1853                 }
1854         }
1855         return 0;
1856 }       /* xlog_sync */
1857
1858 /*
1859  * Deallocate a log structure
1860  */
1861 STATIC void
1862 xlog_dealloc_log(
1863         struct xlog     *log)
1864 {
1865         xlog_in_core_t  *iclog, *next_iclog;
1866         int             i;
1867
1868         xlog_cil_destroy(log);
1869
1870         /*
1871          * Cycle all the iclogbuf locks to make sure all log IO completion
1872          * is done before we tear down these buffers.
1873          */
1874         iclog = log->l_iclog;
1875         for (i = 0; i < log->l_iclog_bufs; i++) {
1876                 xfs_buf_lock(iclog->ic_bp);
1877                 xfs_buf_unlock(iclog->ic_bp);
1878                 iclog = iclog->ic_next;
1879         }
1880
1881         /*
1882          * Always need to ensure that the extra buffer does not point to memory
1883          * owned by another log buffer before we free it. Also, cycle the lock
1884          * first to ensure we've completed IO on it.
1885          */
1886         xfs_buf_lock(log->l_xbuf);
1887         xfs_buf_unlock(log->l_xbuf);
1888         xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1889         xfs_buf_free(log->l_xbuf);
1890
1891         iclog = log->l_iclog;
1892         for (i = 0; i < log->l_iclog_bufs; i++) {
1893                 xfs_buf_free(iclog->ic_bp);
1894                 next_iclog = iclog->ic_next;
1895                 kmem_free(iclog);
1896                 iclog = next_iclog;
1897         }
1898         spinlock_destroy(&log->l_icloglock);
1899
1900         log->l_mp->m_log = NULL;
1901         kmem_free(log);
1902 }       /* xlog_dealloc_log */
1903
1904 /*
1905  * Update counters atomically now that memcpy is done.
1906  */
1907 /* ARGSUSED */
1908 static inline void
1909 xlog_state_finish_copy(
1910         struct xlog             *log,
1911         struct xlog_in_core     *iclog,
1912         int                     record_cnt,
1913         int                     copy_bytes)
1914 {
1915         spin_lock(&log->l_icloglock);
1916
1917         be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1918         iclog->ic_offset += copy_bytes;
1919
1920         spin_unlock(&log->l_icloglock);
1921 }       /* xlog_state_finish_copy */
1922
1923
1924
1925
1926 /*
1927  * print out info relating to regions written which consume
1928  * the reservation
1929  */
1930 void
1931 xlog_print_tic_res(
1932         struct xfs_mount        *mp,
1933         struct xlog_ticket      *ticket)
1934 {
1935         uint i;
1936         uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1937
1938         /* match with XLOG_REG_TYPE_* in xfs_log.h */
1939         static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1940             "bformat",
1941             "bchunk",
1942             "efi_format",
1943             "efd_format",
1944             "iformat",
1945             "icore",
1946             "iext",
1947             "ibroot",
1948             "ilocal",
1949             "iattr_ext",
1950             "iattr_broot",
1951             "iattr_local",
1952             "qformat",
1953             "dquot",
1954             "quotaoff",
1955             "LR header",
1956             "unmount",
1957             "commit",
1958             "trans header"
1959         };
1960         static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1961             "SETATTR_NOT_SIZE",
1962             "SETATTR_SIZE",
1963             "INACTIVE",
1964             "CREATE",
1965             "CREATE_TRUNC",
1966             "TRUNCATE_FILE",
1967             "REMOVE",
1968             "LINK",
1969             "RENAME",
1970             "MKDIR",
1971             "RMDIR",
1972             "SYMLINK",
1973             "SET_DMATTRS",
1974             "GROWFS",
1975             "STRAT_WRITE",
1976             "DIOSTRAT",
1977             "WRITE_SYNC",
1978             "WRITEID",
1979             "ADDAFORK",
1980             "ATTRINVAL",
1981             "ATRUNCATE",
1982             "ATTR_SET",
1983             "ATTR_RM",
1984             "ATTR_FLAG",
1985             "CLEAR_AGI_BUCKET",
1986             "QM_SBCHANGE",
1987             "DUMMY1",
1988             "DUMMY2",
1989             "QM_QUOTAOFF",
1990             "QM_DQALLOC",
1991             "QM_SETQLIM",
1992             "QM_DQCLUSTER",
1993             "QM_QINOCREATE",
1994             "QM_QUOTAOFF_END",
1995             "SB_UNIT",
1996             "FSYNC_TS",
1997             "GROWFSRT_ALLOC",
1998             "GROWFSRT_ZERO",
1999             "GROWFSRT_FREE",
2000             "SWAPEXT"
2001         };
2002
2003         xfs_warn(mp,
2004                 "xlog_write: reservation summary:\n"
2005                 "  trans type  = %s (%u)\n"
2006                 "  unit res    = %d bytes\n"
2007                 "  current res = %d bytes\n"
2008                 "  total reg   = %u bytes (o/flow = %u bytes)\n"
2009                 "  ophdrs      = %u (ophdr space = %u bytes)\n"
2010                 "  ophdr + reg = %u bytes\n"
2011                 "  num regions = %u\n",
2012                 ((ticket->t_trans_type <= 0 ||
2013                   ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
2014                   "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
2015                 ticket->t_trans_type,
2016                 ticket->t_unit_res,
2017                 ticket->t_curr_res,
2018                 ticket->t_res_arr_sum, ticket->t_res_o_flow,
2019                 ticket->t_res_num_ophdrs, ophdr_spc,
2020                 ticket->t_res_arr_sum +
2021                 ticket->t_res_o_flow + ophdr_spc,
2022                 ticket->t_res_num);
2023
2024         for (i = 0; i < ticket->t_res_num; i++) {
2025                 uint r_type = ticket->t_res_arr[i].r_type;
2026                 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2027                             ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2028                             "bad-rtype" : res_type_str[r_type-1]),
2029                             ticket->t_res_arr[i].r_len);
2030         }
2031
2032         xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2033                 "xlog_write: reservation ran out. Need to up reservation");
2034         xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2035 }
2036
2037 /*
2038  * Calculate the potential space needed by the log vector.  Each region gets
2039  * its own xlog_op_header_t and may need to be double word aligned.
2040  */
2041 static int
2042 xlog_write_calc_vec_length(
2043         struct xlog_ticket      *ticket,
2044         struct xfs_log_vec      *log_vector)
2045 {
2046         struct xfs_log_vec      *lv;
2047         int                     headers = 0;
2048         int                     len = 0;
2049         int                     i;
2050
2051         /* acct for start rec of xact */
2052         if (ticket->t_flags & XLOG_TIC_INITED)
2053                 headers++;
2054
2055         for (lv = log_vector; lv; lv = lv->lv_next) {
2056                 /* we don't write ordered log vectors */
2057                 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2058                         continue;
2059
2060                 headers += lv->lv_niovecs;
2061
2062                 for (i = 0; i < lv->lv_niovecs; i++) {
2063                         struct xfs_log_iovec    *vecp = &lv->lv_iovecp[i];
2064
2065                         len += vecp->i_len;
2066                         xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2067                 }
2068         }
2069
2070         ticket->t_res_num_ophdrs += headers;
2071         len += headers * sizeof(struct xlog_op_header);
2072
2073         return len;
2074 }
2075
2076 /*
2077  * If first write for transaction, insert start record  We can't be trying to
2078  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2079  */
2080 static int
2081 xlog_write_start_rec(
2082         struct xlog_op_header   *ophdr,
2083         struct xlog_ticket      *ticket)
2084 {
2085         if (!(ticket->t_flags & XLOG_TIC_INITED))
2086                 return 0;
2087
2088         ophdr->oh_tid   = cpu_to_be32(ticket->t_tid);
2089         ophdr->oh_clientid = ticket->t_clientid;
2090         ophdr->oh_len = 0;
2091         ophdr->oh_flags = XLOG_START_TRANS;
2092         ophdr->oh_res2 = 0;
2093
2094         ticket->t_flags &= ~XLOG_TIC_INITED;
2095
2096         return sizeof(struct xlog_op_header);
2097 }
2098
2099 static xlog_op_header_t *
2100 xlog_write_setup_ophdr(
2101         struct xlog             *log,
2102         struct xlog_op_header   *ophdr,
2103         struct xlog_ticket      *ticket,
2104         uint                    flags)
2105 {
2106         ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2107         ophdr->oh_clientid = ticket->t_clientid;
2108         ophdr->oh_res2 = 0;
2109
2110         /* are we copying a commit or unmount record? */
2111         ophdr->oh_flags = flags;
2112
2113         /*
2114          * We've seen logs corrupted with bad transaction client ids.  This
2115          * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2116          * and shut down the filesystem.
2117          */
2118         switch (ophdr->oh_clientid)  {
2119         case XFS_TRANSACTION:
2120         case XFS_VOLUME:
2121         case XFS_LOG:
2122                 break;
2123         default:
2124                 xfs_warn(log->l_mp,
2125                         "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2126                         ophdr->oh_clientid, ticket);
2127                 return NULL;
2128         }
2129
2130         return ophdr;
2131 }
2132
2133 /*
2134  * Set up the parameters of the region copy into the log. This has
2135  * to handle region write split across multiple log buffers - this
2136  * state is kept external to this function so that this code can
2137  * be written in an obvious, self documenting manner.
2138  */
2139 static int
2140 xlog_write_setup_copy(
2141         struct xlog_ticket      *ticket,
2142         struct xlog_op_header   *ophdr,
2143         int                     space_available,
2144         int                     space_required,
2145         int                     *copy_off,
2146         int                     *copy_len,
2147         int                     *last_was_partial_copy,
2148         int                     *bytes_consumed)
2149 {
2150         int                     still_to_copy;
2151
2152         still_to_copy = space_required - *bytes_consumed;
2153         *copy_off = *bytes_consumed;
2154
2155         if (still_to_copy <= space_available) {
2156                 /* write of region completes here */
2157                 *copy_len = still_to_copy;
2158                 ophdr->oh_len = cpu_to_be32(*copy_len);
2159                 if (*last_was_partial_copy)
2160                         ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2161                 *last_was_partial_copy = 0;
2162                 *bytes_consumed = 0;
2163                 return 0;
2164         }
2165
2166         /* partial write of region, needs extra log op header reservation */
2167         *copy_len = space_available;
2168         ophdr->oh_len = cpu_to_be32(*copy_len);
2169         ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2170         if (*last_was_partial_copy)
2171                 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2172         *bytes_consumed += *copy_len;
2173         (*last_was_partial_copy)++;
2174
2175         /* account for new log op header */
2176         ticket->t_curr_res -= sizeof(struct xlog_op_header);
2177         ticket->t_res_num_ophdrs++;
2178
2179         return sizeof(struct xlog_op_header);
2180 }
2181
2182 static int
2183 xlog_write_copy_finish(
2184         struct xlog             *log,
2185         struct xlog_in_core     *iclog,
2186         uint                    flags,
2187         int                     *record_cnt,
2188         int                     *data_cnt,
2189         int                     *partial_copy,
2190         int                     *partial_copy_len,
2191         int                     log_offset,
2192         struct xlog_in_core     **commit_iclog)
2193 {
2194         if (*partial_copy) {
2195                 /*
2196                  * This iclog has already been marked WANT_SYNC by
2197                  * xlog_state_get_iclog_space.
2198                  */
2199                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2200                 *record_cnt = 0;
2201                 *data_cnt = 0;
2202                 return xlog_state_release_iclog(log, iclog);
2203         }
2204
2205         *partial_copy = 0;
2206         *partial_copy_len = 0;
2207
2208         if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2209                 /* no more space in this iclog - push it. */
2210                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2211                 *record_cnt = 0;
2212                 *data_cnt = 0;
2213
2214                 spin_lock(&log->l_icloglock);
2215                 xlog_state_want_sync(log, iclog);
2216                 spin_unlock(&log->l_icloglock);
2217
2218                 if (!commit_iclog)
2219                         return xlog_state_release_iclog(log, iclog);
2220                 ASSERT(flags & XLOG_COMMIT_TRANS);
2221                 *commit_iclog = iclog;
2222         }
2223
2224         return 0;
2225 }
2226
2227 /*
2228  * Write some region out to in-core log
2229  *
2230  * This will be called when writing externally provided regions or when
2231  * writing out a commit record for a given transaction.
2232  *
2233  * General algorithm:
2234  *      1. Find total length of this write.  This may include adding to the
2235  *              lengths passed in.
2236  *      2. Check whether we violate the tickets reservation.
2237  *      3. While writing to this iclog
2238  *          A. Reserve as much space in this iclog as can get
2239  *          B. If this is first write, save away start lsn
2240  *          C. While writing this region:
2241  *              1. If first write of transaction, write start record
2242  *              2. Write log operation header (header per region)
2243  *              3. Find out if we can fit entire region into this iclog
2244  *              4. Potentially, verify destination memcpy ptr
2245  *              5. Memcpy (partial) region
2246  *              6. If partial copy, release iclog; otherwise, continue
2247  *                      copying more regions into current iclog
2248  *      4. Mark want sync bit (in simulation mode)
2249  *      5. Release iclog for potential flush to on-disk log.
2250  *
2251  * ERRORS:
2252  * 1.   Panic if reservation is overrun.  This should never happen since
2253  *      reservation amounts are generated internal to the filesystem.
2254  * NOTES:
2255  * 1. Tickets are single threaded data structures.
2256  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2257  *      syncing routine.  When a single log_write region needs to span
2258  *      multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2259  *      on all log operation writes which don't contain the end of the
2260  *      region.  The XLOG_END_TRANS bit is used for the in-core log
2261  *      operation which contains the end of the continued log_write region.
2262  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2263  *      we don't really know exactly how much space will be used.  As a result,
2264  *      we don't update ic_offset until the end when we know exactly how many
2265  *      bytes have been written out.
2266  */
2267 int
2268 xlog_write(
2269         struct xlog             *log,
2270         struct xfs_log_vec      *log_vector,
2271         struct xlog_ticket      *ticket,
2272         xfs_lsn_t               *start_lsn,
2273         struct xlog_in_core     **commit_iclog,
2274         uint                    flags)
2275 {
2276         struct xlog_in_core     *iclog = NULL;
2277         struct xfs_log_iovec    *vecp;
2278         struct xfs_log_vec      *lv;
2279         int                     len;
2280         int                     index;
2281         int                     partial_copy = 0;
2282         int                     partial_copy_len = 0;
2283         int                     contwr = 0;
2284         int                     record_cnt = 0;
2285         int                     data_cnt = 0;
2286         int                     error;
2287
2288         *start_lsn = 0;
2289
2290         len = xlog_write_calc_vec_length(ticket, log_vector);
2291
2292         /*
2293          * Region headers and bytes are already accounted for.
2294          * We only need to take into account start records and
2295          * split regions in this function.
2296          */
2297         if (ticket->t_flags & XLOG_TIC_INITED)
2298                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2299
2300         /*
2301          * Commit record headers need to be accounted for. These
2302          * come in as separate writes so are easy to detect.
2303          */
2304         if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2305                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2306
2307         if (ticket->t_curr_res < 0)
2308                 xlog_print_tic_res(log->l_mp, ticket);
2309
2310         index = 0;
2311         lv = log_vector;
2312         vecp = lv->lv_iovecp;
2313         while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2314                 void            *ptr;
2315                 int             log_offset;
2316
2317                 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2318                                                    &contwr, &log_offset);
2319                 if (error)
2320                         return error;
2321
2322                 ASSERT(log_offset <= iclog->ic_size - 1);
2323                 ptr = iclog->ic_datap + log_offset;
2324
2325                 /* start_lsn is the first lsn written to. That's all we need. */
2326                 if (!*start_lsn)
2327                         *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2328
2329                 /*
2330                  * This loop writes out as many regions as can fit in the amount
2331                  * of space which was allocated by xlog_state_get_iclog_space().
2332                  */
2333                 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2334                         struct xfs_log_iovec    *reg;
2335                         struct xlog_op_header   *ophdr;
2336                         int                     start_rec_copy;
2337                         int                     copy_len;
2338                         int                     copy_off;
2339                         bool                    ordered = false;
2340
2341                         /* ordered log vectors have no regions to write */
2342                         if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2343                                 ASSERT(lv->lv_niovecs == 0);
2344                                 ordered = true;
2345                                 goto next_lv;
2346                         }
2347
2348                         reg = &vecp[index];
2349                         ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2350                         ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2351
2352                         start_rec_copy = xlog_write_start_rec(ptr, ticket);
2353                         if (start_rec_copy) {
2354                                 record_cnt++;
2355                                 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2356                                                    start_rec_copy);
2357                         }
2358
2359                         ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2360                         if (!ophdr)
2361                                 return XFS_ERROR(EIO);
2362
2363                         xlog_write_adv_cnt(&ptr, &len, &log_offset,
2364                                            sizeof(struct xlog_op_header));
2365
2366                         len += xlog_write_setup_copy(ticket, ophdr,
2367                                                      iclog->ic_size-log_offset,
2368                                                      reg->i_len,
2369                                                      &copy_off, &copy_len,
2370                                                      &partial_copy,
2371                                                      &partial_copy_len);
2372                         xlog_verify_dest_ptr(log, ptr);
2373
2374                         /* copy region */
2375                         ASSERT(copy_len >= 0);
2376                         memcpy(ptr, reg->i_addr + copy_off, copy_len);
2377                         xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2378
2379                         copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2380                         record_cnt++;
2381                         data_cnt += contwr ? copy_len : 0;
2382
2383                         error = xlog_write_copy_finish(log, iclog, flags,
2384                                                        &record_cnt, &data_cnt,
2385                                                        &partial_copy,
2386                                                        &partial_copy_len,
2387                                                        log_offset,
2388                                                        commit_iclog);
2389                         if (error)
2390                                 return error;
2391
2392                         /*
2393                          * if we had a partial copy, we need to get more iclog
2394                          * space but we don't want to increment the region
2395                          * index because there is still more is this region to
2396                          * write.
2397                          *
2398                          * If we completed writing this region, and we flushed
2399                          * the iclog (indicated by resetting of the record
2400                          * count), then we also need to get more log space. If
2401                          * this was the last record, though, we are done and
2402                          * can just return.
2403                          */
2404                         if (partial_copy)
2405                                 break;
2406
2407                         if (++index == lv->lv_niovecs) {
2408 next_lv:
2409                                 lv = lv->lv_next;
2410                                 index = 0;
2411                                 if (lv)
2412                                         vecp = lv->lv_iovecp;
2413                         }
2414                         if (record_cnt == 0 && ordered == false) {
2415                                 if (!lv)
2416                                         return 0;
2417                                 break;
2418                         }
2419                 }
2420         }
2421
2422         ASSERT(len == 0);
2423
2424         xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2425         if (!commit_iclog)
2426                 return xlog_state_release_iclog(log, iclog);
2427
2428         ASSERT(flags & XLOG_COMMIT_TRANS);
2429         *commit_iclog = iclog;
2430         return 0;
2431 }
2432
2433
2434 /*****************************************************************************
2435  *
2436  *              State Machine functions
2437  *
2438  *****************************************************************************
2439  */
2440
2441 /* Clean iclogs starting from the head.  This ordering must be
2442  * maintained, so an iclog doesn't become ACTIVE beyond one that
2443  * is SYNCING.  This is also required to maintain the notion that we use
2444  * a ordered wait queue to hold off would be writers to the log when every
2445  * iclog is trying to sync to disk.
2446  *
2447  * State Change: DIRTY -> ACTIVE
2448  */
2449 STATIC void
2450 xlog_state_clean_log(
2451         struct xlog *log)
2452 {
2453         xlog_in_core_t  *iclog;
2454         int changed = 0;
2455
2456         iclog = log->l_iclog;
2457         do {
2458                 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2459                         iclog->ic_state = XLOG_STATE_ACTIVE;
2460                         iclog->ic_offset       = 0;
2461                         ASSERT(iclog->ic_callback == NULL);
2462                         /*
2463                          * If the number of ops in this iclog indicate it just
2464                          * contains the dummy transaction, we can
2465                          * change state into IDLE (the second time around).
2466                          * Otherwise we should change the state into
2467                          * NEED a dummy.
2468                          * We don't need to cover the dummy.
2469                          */
2470                         if (!changed &&
2471                            (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2472                                         XLOG_COVER_OPS)) {
2473                                 changed = 1;
2474                         } else {
2475                                 /*
2476                                  * We have two dirty iclogs so start over
2477                                  * This could also be num of ops indicates
2478                                  * this is not the dummy going out.
2479                                  */
2480                                 changed = 2;
2481                         }
2482                         iclog->ic_header.h_num_logops = 0;
2483                         memset(iclog->ic_header.h_cycle_data, 0,
2484                               sizeof(iclog->ic_header.h_cycle_data));
2485                         iclog->ic_header.h_lsn = 0;
2486                 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2487                         /* do nothing */;
2488                 else
2489                         break;  /* stop cleaning */
2490                 iclog = iclog->ic_next;
2491         } while (iclog != log->l_iclog);
2492
2493         /* log is locked when we are called */
2494         /*
2495          * Change state for the dummy log recording.
2496          * We usually go to NEED. But we go to NEED2 if the changed indicates
2497          * we are done writing the dummy record.
2498          * If we are done with the second dummy recored (DONE2), then
2499          * we go to IDLE.
2500          */
2501         if (changed) {
2502                 switch (log->l_covered_state) {
2503                 case XLOG_STATE_COVER_IDLE:
2504                 case XLOG_STATE_COVER_NEED:
2505                 case XLOG_STATE_COVER_NEED2:
2506                         log->l_covered_state = XLOG_STATE_COVER_NEED;
2507                         break;
2508
2509                 case XLOG_STATE_COVER_DONE:
2510                         if (changed == 1)
2511                                 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2512                         else
2513                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2514                         break;
2515
2516                 case XLOG_STATE_COVER_DONE2:
2517                         if (changed == 1)
2518                                 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2519                         else
2520                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2521                         break;
2522
2523                 default:
2524                         ASSERT(0);
2525                 }
2526         }
2527 }       /* xlog_state_clean_log */
2528
2529 STATIC xfs_lsn_t
2530 xlog_get_lowest_lsn(
2531         struct xlog     *log)
2532 {
2533         xlog_in_core_t  *lsn_log;
2534         xfs_lsn_t       lowest_lsn, lsn;
2535
2536         lsn_log = log->l_iclog;
2537         lowest_lsn = 0;
2538         do {
2539             if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2540                 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2541                 if ((lsn && !lowest_lsn) ||
2542                     (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2543                         lowest_lsn = lsn;
2544                 }
2545             }
2546             lsn_log = lsn_log->ic_next;
2547         } while (lsn_log != log->l_iclog);
2548         return lowest_lsn;
2549 }
2550
2551
2552 STATIC void
2553 xlog_state_do_callback(
2554         struct xlog             *log,
2555         int                     aborted,
2556         struct xlog_in_core     *ciclog)
2557 {
2558         xlog_in_core_t     *iclog;
2559         xlog_in_core_t     *first_iclog;        /* used to know when we've
2560                                                  * processed all iclogs once */
2561         xfs_log_callback_t *cb, *cb_next;
2562         int                flushcnt = 0;
2563         xfs_lsn_t          lowest_lsn;
2564         int                ioerrors;    /* counter: iclogs with errors */
2565         int                loopdidcallbacks; /* flag: inner loop did callbacks*/
2566         int                funcdidcallbacks; /* flag: function did callbacks */
2567         int                repeats;     /* for issuing console warnings if
2568                                          * looping too many times */
2569         int                wake = 0;
2570
2571         spin_lock(&log->l_icloglock);
2572         first_iclog = iclog = log->l_iclog;
2573         ioerrors = 0;
2574         funcdidcallbacks = 0;
2575         repeats = 0;
2576
2577         do {
2578                 /*
2579                  * Scan all iclogs starting with the one pointed to by the
2580                  * log.  Reset this starting point each time the log is
2581                  * unlocked (during callbacks).
2582                  *
2583                  * Keep looping through iclogs until one full pass is made
2584                  * without running any callbacks.
2585                  */
2586                 first_iclog = log->l_iclog;
2587                 iclog = log->l_iclog;
2588                 loopdidcallbacks = 0;
2589                 repeats++;
2590
2591                 do {
2592
2593                         /* skip all iclogs in the ACTIVE & DIRTY states */
2594                         if (iclog->ic_state &
2595                             (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2596                                 iclog = iclog->ic_next;
2597                                 continue;
2598                         }
2599
2600                         /*
2601                          * Between marking a filesystem SHUTDOWN and stopping
2602                          * the log, we do flush all iclogs to disk (if there
2603                          * wasn't a log I/O error). So, we do want things to
2604                          * go smoothly in case of just a SHUTDOWN  w/o a
2605                          * LOG_IO_ERROR.
2606                          */
2607                         if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2608                                 /*
2609                                  * Can only perform callbacks in order.  Since
2610                                  * this iclog is not in the DONE_SYNC/
2611                                  * DO_CALLBACK state, we skip the rest and
2612                                  * just try to clean up.  If we set our iclog
2613                                  * to DO_CALLBACK, we will not process it when
2614                                  * we retry since a previous iclog is in the
2615                                  * CALLBACK and the state cannot change since
2616                                  * we are holding the l_icloglock.
2617                                  */
2618                                 if (!(iclog->ic_state &
2619                                         (XLOG_STATE_DONE_SYNC |
2620                                                  XLOG_STATE_DO_CALLBACK))) {
2621                                         if (ciclog && (ciclog->ic_state ==
2622                                                         XLOG_STATE_DONE_SYNC)) {
2623                                                 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2624                                         }
2625                                         break;
2626                                 }
2627                                 /*
2628                                  * We now have an iclog that is in either the
2629                                  * DO_CALLBACK or DONE_SYNC states. The other
2630                                  * states (WANT_SYNC, SYNCING, or CALLBACK were
2631                                  * caught by the above if and are going to
2632                                  * clean (i.e. we aren't doing their callbacks)
2633                                  * see the above if.
2634                                  */
2635
2636                                 /*
2637                                  * We will do one more check here to see if we
2638                                  * have chased our tail around.
2639                                  */
2640
2641                                 lowest_lsn = xlog_get_lowest_lsn(log);
2642                                 if (lowest_lsn &&
2643                                     XFS_LSN_CMP(lowest_lsn,
2644                                                 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2645                                         iclog = iclog->ic_next;
2646                                         continue; /* Leave this iclog for
2647                                                    * another thread */
2648                                 }
2649
2650                                 iclog->ic_state = XLOG_STATE_CALLBACK;
2651
2652
2653                                 /*
2654                                  * Completion of a iclog IO does not imply that
2655                                  * a transaction has completed, as transactions
2656                                  * can be large enough to span many iclogs. We
2657                                  * cannot change the tail of the log half way
2658                                  * through a transaction as this may be the only
2659                                  * transaction in the log and moving th etail to
2660                                  * point to the middle of it will prevent
2661                                  * recovery from finding the start of the
2662                                  * transaction. Hence we should only update the
2663                                  * last_sync_lsn if this iclog contains
2664                                  * transaction completion callbacks on it.
2665                                  *
2666                                  * We have to do this before we drop the
2667                                  * icloglock to ensure we are the only one that
2668                                  * can update it.
2669                                  */
2670                                 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2671                                         be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2672                                 if (iclog->ic_callback)
2673                                         atomic64_set(&log->l_last_sync_lsn,
2674                                                 be64_to_cpu(iclog->ic_header.h_lsn));
2675
2676                         } else
2677                                 ioerrors++;
2678
2679                         spin_unlock(&log->l_icloglock);
2680
2681                         /*
2682                          * Keep processing entries in the callback list until
2683                          * we come around and it is empty.  We need to
2684                          * atomically see that the list is empty and change the
2685                          * state to DIRTY so that we don't miss any more
2686                          * callbacks being added.
2687                          */
2688                         spin_lock(&iclog->ic_callback_lock);
2689                         cb = iclog->ic_callback;
2690                         while (cb) {
2691                                 iclog->ic_callback_tail = &(iclog->ic_callback);
2692                                 iclog->ic_callback = NULL;
2693                                 spin_unlock(&iclog->ic_callback_lock);
2694
2695                                 /* perform callbacks in the order given */
2696                                 for (; cb; cb = cb_next) {
2697                                         cb_next = cb->cb_next;
2698                                         cb->cb_func(cb->cb_arg, aborted);
2699                                 }
2700                                 spin_lock(&iclog->ic_callback_lock);
2701                                 cb = iclog->ic_callback;
2702                         }
2703
2704                         loopdidcallbacks++;
2705                         funcdidcallbacks++;
2706
2707                         spin_lock(&log->l_icloglock);
2708                         ASSERT(iclog->ic_callback == NULL);
2709                         spin_unlock(&iclog->ic_callback_lock);
2710                         if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2711                                 iclog->ic_state = XLOG_STATE_DIRTY;
2712
2713                         /*
2714                          * Transition from DIRTY to ACTIVE if applicable.
2715                          * NOP if STATE_IOERROR.
2716                          */
2717                         xlog_state_clean_log(log);
2718
2719                         /* wake up threads waiting in xfs_log_force() */
2720                         wake_up_all(&iclog->ic_force_wait);
2721
2722                         iclog = iclog->ic_next;
2723                 } while (first_iclog != iclog);
2724
2725                 if (repeats > 5000) {
2726                         flushcnt += repeats;
2727                         repeats = 0;
2728                         xfs_warn(log->l_mp,
2729                                 "%s: possible infinite loop (%d iterations)",
2730                                 __func__, flushcnt);
2731                 }
2732         } while (!ioerrors && loopdidcallbacks);
2733
2734         /*
2735          * make one last gasp attempt to see if iclogs are being left in
2736          * limbo..
2737          */
2738 #ifdef DEBUG
2739         if (funcdidcallbacks) {
2740                 first_iclog = iclog = log->l_iclog;
2741                 do {
2742                         ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2743                         /*
2744                          * Terminate the loop if iclogs are found in states
2745                          * which will cause other threads to clean up iclogs.
2746                          *
2747                          * SYNCING - i/o completion will go through logs
2748                          * DONE_SYNC - interrupt thread should be waiting for
2749                          *              l_icloglock
2750                          * IOERROR - give up hope all ye who enter here
2751                          */
2752                         if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2753                             iclog->ic_state == XLOG_STATE_SYNCING ||
2754                             iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2755                             iclog->ic_state == XLOG_STATE_IOERROR )
2756                                 break;
2757                         iclog = iclog->ic_next;
2758                 } while (first_iclog != iclog);
2759         }
2760 #endif
2761
2762         if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2763                 wake = 1;
2764         spin_unlock(&log->l_icloglock);
2765
2766         if (wake)
2767                 wake_up_all(&log->l_flush_wait);
2768 }
2769
2770
2771 /*
2772  * Finish transitioning this iclog to the dirty state.
2773  *
2774  * Make sure that we completely execute this routine only when this is
2775  * the last call to the iclog.  There is a good chance that iclog flushes,
2776  * when we reach the end of the physical log, get turned into 2 separate
2777  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2778  * routine.  By using the reference count bwritecnt, we guarantee that only
2779  * the second completion goes through.
2780  *
2781  * Callbacks could take time, so they are done outside the scope of the
2782  * global state machine log lock.
2783  */
2784 STATIC void
2785 xlog_state_done_syncing(
2786         xlog_in_core_t  *iclog,
2787         int             aborted)
2788 {
2789         struct xlog        *log = iclog->ic_log;
2790
2791         spin_lock(&log->l_icloglock);
2792
2793         ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2794                iclog->ic_state == XLOG_STATE_IOERROR);
2795         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2796         ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2797
2798
2799         /*
2800          * If we got an error, either on the first buffer, or in the case of
2801          * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2802          * and none should ever be attempted to be written to disk
2803          * again.
2804          */
2805         if (iclog->ic_state != XLOG_STATE_IOERROR) {
2806                 if (--iclog->ic_bwritecnt == 1) {
2807                         spin_unlock(&log->l_icloglock);
2808                         return;
2809                 }
2810                 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2811         }
2812
2813         /*
2814          * Someone could be sleeping prior to writing out the next
2815          * iclog buffer, we wake them all, one will get to do the
2816          * I/O, the others get to wait for the result.
2817          */
2818         wake_up_all(&iclog->ic_write_wait);
2819         spin_unlock(&log->l_icloglock);
2820         xlog_state_do_callback(log, aborted, iclog);    /* also cleans log */
2821 }       /* xlog_state_done_syncing */
2822
2823
2824 /*
2825  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2826  * sleep.  We wait on the flush queue on the head iclog as that should be
2827  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2828  * we will wait here and all new writes will sleep until a sync completes.
2829  *
2830  * The in-core logs are used in a circular fashion. They are not used
2831  * out-of-order even when an iclog past the head is free.
2832  *
2833  * return:
2834  *      * log_offset where xlog_write() can start writing into the in-core
2835  *              log's data space.
2836  *      * in-core log pointer to which xlog_write() should write.
2837  *      * boolean indicating this is a continued write to an in-core log.
2838  *              If this is the last write, then the in-core log's offset field
2839  *              needs to be incremented, depending on the amount of data which
2840  *              is copied.
2841  */
2842 STATIC int
2843 xlog_state_get_iclog_space(
2844         struct xlog             *log,
2845         int                     len,
2846         struct xlog_in_core     **iclogp,
2847         struct xlog_ticket      *ticket,
2848         int                     *continued_write,
2849         int                     *logoffsetp)
2850 {
2851         int               log_offset;
2852         xlog_rec_header_t *head;
2853         xlog_in_core_t    *iclog;
2854         int               error;
2855
2856 restart:
2857         spin_lock(&log->l_icloglock);
2858         if (XLOG_FORCED_SHUTDOWN(log)) {
2859                 spin_unlock(&log->l_icloglock);
2860                 return XFS_ERROR(EIO);
2861         }
2862
2863         iclog = log->l_iclog;
2864         if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2865                 XFS_STATS_INC(xs_log_noiclogs);
2866
2867                 /* Wait for log writes to have flushed */
2868                 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2869                 goto restart;
2870         }
2871
2872         head = &iclog->ic_header;
2873
2874         atomic_inc(&iclog->ic_refcnt);  /* prevents sync */
2875         log_offset = iclog->ic_offset;
2876
2877         /* On the 1st write to an iclog, figure out lsn.  This works
2878          * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2879          * committing to.  If the offset is set, that's how many blocks
2880          * must be written.
2881          */
2882         if (log_offset == 0) {
2883                 ticket->t_curr_res -= log->l_iclog_hsize;
2884                 xlog_tic_add_region(ticket,
2885                                     log->l_iclog_hsize,
2886                                     XLOG_REG_TYPE_LRHEADER);
2887                 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2888                 head->h_lsn = cpu_to_be64(
2889                         xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2890                 ASSERT(log->l_curr_block >= 0);
2891         }
2892
2893         /* If there is enough room to write everything, then do it.  Otherwise,
2894          * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2895          * bit is on, so this will get flushed out.  Don't update ic_offset
2896          * until you know exactly how many bytes get copied.  Therefore, wait
2897          * until later to update ic_offset.
2898          *
2899          * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2900          * can fit into remaining data section.
2901          */
2902         if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2903                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2904
2905                 /*
2906                  * If I'm the only one writing to this iclog, sync it to disk.
2907                  * We need to do an atomic compare and decrement here to avoid
2908                  * racing with concurrent atomic_dec_and_lock() calls in
2909                  * xlog_state_release_iclog() when there is more than one
2910                  * reference to the iclog.
2911                  */
2912                 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2913                         /* we are the only one */
2914                         spin_unlock(&log->l_icloglock);
2915                         error = xlog_state_release_iclog(log, iclog);
2916                         if (error)
2917                                 return error;
2918                 } else {
2919                         spin_unlock(&log->l_icloglock);
2920                 }
2921                 goto restart;
2922         }
2923
2924         /* Do we have enough room to write the full amount in the remainder
2925          * of this iclog?  Or must we continue a write on the next iclog and
2926          * mark this iclog as completely taken?  In the case where we switch
2927          * iclogs (to mark it taken), this particular iclog will release/sync
2928          * to disk in xlog_write().
2929          */
2930         if (len <= iclog->ic_size - iclog->ic_offset) {
2931                 *continued_write = 0;
2932                 iclog->ic_offset += len;
2933         } else {
2934                 *continued_write = 1;
2935                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2936         }
2937         *iclogp = iclog;
2938
2939         ASSERT(iclog->ic_offset <= iclog->ic_size);
2940         spin_unlock(&log->l_icloglock);
2941
2942         *logoffsetp = log_offset;
2943         return 0;
2944 }       /* xlog_state_get_iclog_space */
2945
2946 /* The first cnt-1 times through here we don't need to
2947  * move the grant write head because the permanent
2948  * reservation has reserved cnt times the unit amount.
2949  * Release part of current permanent unit reservation and
2950  * reset current reservation to be one units worth.  Also
2951  * move grant reservation head forward.
2952  */
2953 STATIC void
2954 xlog_regrant_reserve_log_space(
2955         struct xlog             *log,
2956         struct xlog_ticket      *ticket)
2957 {
2958         trace_xfs_log_regrant_reserve_enter(log, ticket);
2959
2960         if (ticket->t_cnt > 0)
2961                 ticket->t_cnt--;
2962
2963         xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2964                                         ticket->t_curr_res);
2965         xlog_grant_sub_space(log, &log->l_write_head.grant,
2966                                         ticket->t_curr_res);
2967         ticket->t_curr_res = ticket->t_unit_res;
2968         xlog_tic_reset_res(ticket);
2969
2970         trace_xfs_log_regrant_reserve_sub(log, ticket);
2971
2972         /* just return if we still have some of the pre-reserved space */
2973         if (ticket->t_cnt > 0)
2974                 return;
2975
2976         xlog_grant_add_space(log, &log->l_reserve_head.grant,
2977                                         ticket->t_unit_res);
2978
2979         trace_xfs_log_regrant_reserve_exit(log, ticket);
2980
2981         ticket->t_curr_res = ticket->t_unit_res;
2982         xlog_tic_reset_res(ticket);
2983 }       /* xlog_regrant_reserve_log_space */
2984
2985
2986 /*
2987  * Give back the space left from a reservation.
2988  *
2989  * All the information we need to make a correct determination of space left
2990  * is present.  For non-permanent reservations, things are quite easy.  The
2991  * count should have been decremented to zero.  We only need to deal with the
2992  * space remaining in the current reservation part of the ticket.  If the
2993  * ticket contains a permanent reservation, there may be left over space which
2994  * needs to be released.  A count of N means that N-1 refills of the current
2995  * reservation can be done before we need to ask for more space.  The first
2996  * one goes to fill up the first current reservation.  Once we run out of
2997  * space, the count will stay at zero and the only space remaining will be
2998  * in the current reservation field.
2999  */
3000 STATIC void
3001 xlog_ungrant_log_space(
3002         struct xlog             *log,
3003         struct xlog_ticket      *ticket)
3004 {
3005         int     bytes;
3006
3007         if (ticket->t_cnt > 0)
3008                 ticket->t_cnt--;
3009
3010         trace_xfs_log_ungrant_enter(log, ticket);
3011         trace_xfs_log_ungrant_sub(log, ticket);
3012
3013         /*
3014          * If this is a permanent reservation ticket, we may be able to free
3015          * up more space based on the remaining count.
3016          */
3017         bytes = ticket->t_curr_res;
3018         if (ticket->t_cnt > 0) {
3019                 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3020                 bytes += ticket->t_unit_res*ticket->t_cnt;
3021         }
3022
3023         xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3024         xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3025
3026         trace_xfs_log_ungrant_exit(log, ticket);
3027
3028         xfs_log_space_wake(log->l_mp);
3029 }
3030
3031 /*
3032  * Flush iclog to disk if this is the last reference to the given iclog and
3033  * the WANT_SYNC bit is set.
3034  *
3035  * When this function is entered, the iclog is not necessarily in the
3036  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3037  *
3038  *
3039  */
3040 STATIC int
3041 xlog_state_release_iclog(
3042         struct xlog             *log,
3043         struct xlog_in_core     *iclog)
3044 {
3045         int             sync = 0;       /* do we sync? */
3046
3047         if (iclog->ic_state & XLOG_STATE_IOERROR)
3048                 return XFS_ERROR(EIO);
3049
3050         ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3051         if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3052                 return 0;
3053
3054         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3055                 spin_unlock(&log->l_icloglock);
3056                 return XFS_ERROR(EIO);
3057         }
3058         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3059                iclog->ic_state == XLOG_STATE_WANT_SYNC);
3060
3061         if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3062                 /* update tail before writing to iclog */
3063                 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3064                 sync++;
3065                 iclog->ic_state = XLOG_STATE_SYNCING;
3066                 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3067                 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3068                 /* cycle incremented when incrementing curr_block */
3069         }
3070         spin_unlock(&log->l_icloglock);
3071
3072         /*
3073          * We let the log lock go, so it's possible that we hit a log I/O
3074          * error or some other SHUTDOWN condition that marks the iclog
3075          * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3076          * this iclog has consistent data, so we ignore IOERROR
3077          * flags after this point.
3078          */
3079         if (sync)
3080                 return xlog_sync(log, iclog);
3081         return 0;
3082 }       /* xlog_state_release_iclog */
3083
3084
3085 /*
3086  * This routine will mark the current iclog in the ring as WANT_SYNC
3087  * and move the current iclog pointer to the next iclog in the ring.
3088  * When this routine is called from xlog_state_get_iclog_space(), the
3089  * exact size of the iclog has not yet been determined.  All we know is
3090  * that every data block.  We have run out of space in this log record.
3091  */
3092 STATIC void
3093 xlog_state_switch_iclogs(
3094         struct xlog             *log,
3095         struct xlog_in_core     *iclog,
3096         int                     eventual_size)
3097 {
3098         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3099         if (!eventual_size)
3100                 eventual_size = iclog->ic_offset;
3101         iclog->ic_state = XLOG_STATE_WANT_SYNC;
3102         iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3103         log->l_prev_block = log->l_curr_block;
3104         log->l_prev_cycle = log->l_curr_cycle;
3105
3106         /* roll log?: ic_offset changed later */
3107         log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3108
3109         /* Round up to next log-sunit */
3110         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3111             log->l_mp->m_sb.sb_logsunit > 1) {
3112                 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3113                 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3114         }
3115
3116         if (log->l_curr_block >= log->l_logBBsize) {
3117                 log->l_curr_cycle++;
3118                 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3119                         log->l_curr_cycle++;
3120                 log->l_curr_block -= log->l_logBBsize;
3121                 ASSERT(log->l_curr_block >= 0);
3122         }
3123         ASSERT(iclog == log->l_iclog);
3124         log->l_iclog = iclog->ic_next;
3125 }       /* xlog_state_switch_iclogs */
3126
3127 /*
3128  * Write out all data in the in-core log as of this exact moment in time.
3129  *
3130  * Data may be written to the in-core log during this call.  However,
3131  * we don't guarantee this data will be written out.  A change from past
3132  * implementation means this routine will *not* write out zero length LRs.
3133  *
3134  * Basically, we try and perform an intelligent scan of the in-core logs.
3135  * If we determine there is no flushable data, we just return.  There is no
3136  * flushable data if:
3137  *
3138  *      1. the current iclog is active and has no data; the previous iclog
3139  *              is in the active or dirty state.
3140  *      2. the current iclog is drity, and the previous iclog is in the
3141  *              active or dirty state.
3142  *
3143  * We may sleep if:
3144  *
3145  *      1. the current iclog is not in the active nor dirty state.
3146  *      2. the current iclog dirty, and the previous iclog is not in the
3147  *              active nor dirty state.
3148  *      3. the current iclog is active, and there is another thread writing
3149  *              to this particular iclog.
3150  *      4. a) the current iclog is active and has no other writers
3151  *         b) when we return from flushing out this iclog, it is still
3152  *              not in the active nor dirty state.
3153  */
3154 int
3155 _xfs_log_force(
3156         struct xfs_mount        *mp,
3157         uint                    flags,
3158         int                     *log_flushed)
3159 {
3160         struct xlog             *log = mp->m_log;
3161         struct xlog_in_core     *iclog;
3162         xfs_lsn_t               lsn;
3163
3164         XFS_STATS_INC(xs_log_force);
3165
3166         xlog_cil_force(log);
3167
3168         spin_lock(&log->l_icloglock);
3169
3170         iclog = log->l_iclog;
3171         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3172                 spin_unlock(&log->l_icloglock);
3173                 return XFS_ERROR(EIO);
3174         }
3175
3176         /* If the head iclog is not active nor dirty, we just attach
3177          * ourselves to the head and go to sleep.
3178          */
3179         if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3180             iclog->ic_state == XLOG_STATE_DIRTY) {
3181                 /*
3182                  * If the head is dirty or (active and empty), then
3183                  * we need to look at the previous iclog.  If the previous
3184                  * iclog is active or dirty we are done.  There is nothing
3185                  * to sync out.  Otherwise, we attach ourselves to the
3186                  * previous iclog and go to sleep.
3187                  */
3188                 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3189                     (atomic_read(&iclog->ic_refcnt) == 0
3190                      && iclog->ic_offset == 0)) {
3191                         iclog = iclog->ic_prev;
3192                         if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3193                             iclog->ic_state == XLOG_STATE_DIRTY)
3194                                 goto no_sleep;
3195                         else
3196                                 goto maybe_sleep;
3197                 } else {
3198                         if (atomic_read(&iclog->ic_refcnt) == 0) {
3199                                 /* We are the only one with access to this
3200                                  * iclog.  Flush it out now.  There should
3201                                  * be a roundoff of zero to show that someone
3202                                  * has already taken care of the roundoff from
3203                                  * the previous sync.
3204                                  */
3205                                 atomic_inc(&iclog->ic_refcnt);
3206                                 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3207                                 xlog_state_switch_iclogs(log, iclog, 0);
3208                                 spin_unlock(&log->l_icloglock);
3209
3210                                 if (xlog_state_release_iclog(log, iclog))
3211                                         return XFS_ERROR(EIO);
3212
3213                                 if (log_flushed)
3214                                         *log_flushed = 1;
3215                                 spin_lock(&log->l_icloglock);
3216                                 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3217                                     iclog->ic_state != XLOG_STATE_DIRTY)
3218                                         goto maybe_sleep;
3219                                 else
3220                                         goto no_sleep;
3221                         } else {
3222                                 /* Someone else is writing to this iclog.
3223                                  * Use its call to flush out the data.  However,
3224                                  * the other thread may not force out this LR,
3225                                  * so we mark it WANT_SYNC.
3226                                  */
3227                                 xlog_state_switch_iclogs(log, iclog, 0);
3228                                 goto maybe_sleep;
3229                         }
3230                 }
3231         }
3232
3233         /* By the time we come around again, the iclog could've been filled
3234          * which would give it another lsn.  If we have a new lsn, just
3235          * return because the relevant data has been flushed.
3236          */
3237 maybe_sleep:
3238         if (flags & XFS_LOG_SYNC) {
3239                 /*
3240                  * We must check if we're shutting down here, before
3241                  * we wait, while we're holding the l_icloglock.
3242                  * Then we check again after waking up, in case our
3243                  * sleep was disturbed by a bad news.
3244                  */
3245                 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3246                         spin_unlock(&log->l_icloglock);
3247                         return XFS_ERROR(EIO);
3248                 }
3249                 XFS_STATS_INC(xs_log_force_sleep);
3250                 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3251                 /*
3252                  * No need to grab the log lock here since we're
3253                  * only deciding whether or not to return EIO
3254                  * and the memory read should be atomic.
3255                  */
3256                 if (iclog->ic_state & XLOG_STATE_IOERROR)
3257                         return XFS_ERROR(EIO);
3258                 if (log_flushed)
3259                         *log_flushed = 1;
3260         } else {
3261
3262 no_sleep:
3263                 spin_unlock(&log->l_icloglock);
3264         }
3265         return 0;
3266 }
3267
3268 /*
3269  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3270  * about errors or whether the log was flushed or not. This is the normal
3271  * interface to use when trying to unpin items or move the log forward.
3272  */
3273 void
3274 xfs_log_force(
3275         xfs_mount_t     *mp,
3276         uint            flags)
3277 {
3278         int     error;
3279
3280         trace_xfs_log_force(mp, 0);
3281         error = _xfs_log_force(mp, flags, NULL);
3282         if (error)
3283                 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3284 }
3285
3286 /*
3287  * Force the in-core log to disk for a specific LSN.
3288  *
3289  * Find in-core log with lsn.
3290  *      If it is in the DIRTY state, just return.
3291  *      If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3292  *              state and go to sleep or return.
3293  *      If it is in any other state, go to sleep or return.
3294  *
3295  * Synchronous forces are implemented with a signal variable. All callers
3296  * to force a given lsn to disk will wait on a the sv attached to the
3297  * specific in-core log.  When given in-core log finally completes its
3298  * write to disk, that thread will wake up all threads waiting on the
3299  * sv.
3300  */
3301 int
3302 _xfs_log_force_lsn(
3303         struct xfs_mount        *mp,
3304         xfs_lsn_t               lsn,
3305         uint                    flags,
3306         int                     *log_flushed)
3307 {
3308         struct xlog             *log = mp->m_log;
3309         struct xlog_in_core     *iclog;
3310         int                     already_slept = 0;
3311
3312         ASSERT(lsn != 0);
3313
3314         XFS_STATS_INC(xs_log_force);
3315
3316         lsn = xlog_cil_force_lsn(log, lsn);
3317         if (lsn == NULLCOMMITLSN)
3318                 return 0;
3319
3320 try_again:
3321         spin_lock(&log->l_icloglock);
3322         iclog = log->l_iclog;
3323         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3324                 spin_unlock(&log->l_icloglock);
3325                 return XFS_ERROR(EIO);
3326         }
3327
3328         do {
3329                 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3330                         iclog = iclog->ic_next;
3331                         continue;
3332                 }
3333
3334                 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3335                         spin_unlock(&log->l_icloglock);
3336                         return 0;
3337                 }
3338
3339                 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3340                         /*
3341                          * We sleep here if we haven't already slept (e.g.
3342                          * this is the first time we've looked at the correct
3343                          * iclog buf) and the buffer before us is going to
3344                          * be sync'ed. The reason for this is that if we
3345                          * are doing sync transactions here, by waiting for
3346                          * the previous I/O to complete, we can allow a few
3347                          * more transactions into this iclog before we close
3348                          * it down.
3349                          *
3350                          * Otherwise, we mark the buffer WANT_SYNC, and bump
3351                          * up the refcnt so we can release the log (which
3352                          * drops the ref count).  The state switch keeps new
3353                          * transaction commits from using this buffer.  When
3354                          * the current commits finish writing into the buffer,
3355                          * the refcount will drop to zero and the buffer will
3356                          * go out then.
3357                          */
3358                         if (!already_slept &&
3359                             (iclog->ic_prev->ic_state &
3360                              (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3361                                 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3362
3363                                 XFS_STATS_INC(xs_log_force_sleep);
3364
3365                                 xlog_wait(&iclog->ic_prev->ic_write_wait,
3366                                                         &log->l_icloglock);
3367                                 if (log_flushed)
3368                                         *log_flushed = 1;
3369                                 already_slept = 1;
3370                                 goto try_again;
3371                         }
3372                         atomic_inc(&iclog->ic_refcnt);
3373                         xlog_state_switch_iclogs(log, iclog, 0);
3374                         spin_unlock(&log->l_icloglock);
3375                         if (xlog_state_release_iclog(log, iclog))
3376                                 return XFS_ERROR(EIO);
3377                         if (log_flushed)
3378                                 *log_flushed = 1;
3379                         spin_lock(&log->l_icloglock);
3380                 }
3381
3382                 if ((flags & XFS_LOG_SYNC) && /* sleep */
3383                     !(iclog->ic_state &
3384                       (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3385                         /*
3386                          * Don't wait on completion if we know that we've
3387                          * gotten a log write error.
3388                          */
3389                         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3390                                 spin_unlock(&log->l_icloglock);
3391                                 return XFS_ERROR(EIO);
3392                         }
3393                         XFS_STATS_INC(xs_log_force_sleep);
3394                         xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3395                         /*
3396                          * No need to grab the log lock here since we're
3397                          * only deciding whether or not to return EIO
3398                          * and the memory read should be atomic.
3399                          */
3400                         if (iclog->ic_state & XLOG_STATE_IOERROR)
3401                                 return XFS_ERROR(EIO);
3402
3403                         if (log_flushed)
3404                                 *log_flushed = 1;
3405                 } else {                /* just return */
3406                         spin_unlock(&log->l_icloglock);
3407                 }
3408
3409                 return 0;
3410         } while (iclog != log->l_iclog);
3411
3412         spin_unlock(&log->l_icloglock);
3413         return 0;
3414 }
3415
3416 /*
3417  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3418  * about errors or whether the log was flushed or not. This is the normal
3419  * interface to use when trying to unpin items or move the log forward.
3420  */
3421 void
3422 xfs_log_force_lsn(
3423         xfs_mount_t     *mp,
3424         xfs_lsn_t       lsn,
3425         uint            flags)
3426 {
3427         int     error;
3428
3429         trace_xfs_log_force(mp, lsn);
3430         error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3431         if (error)
3432                 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3433 }
3434
3435 /*
3436  * Called when we want to mark the current iclog as being ready to sync to
3437  * disk.
3438  */
3439 STATIC void
3440 xlog_state_want_sync(
3441         struct xlog             *log,
3442         struct xlog_in_core     *iclog)
3443 {
3444         assert_spin_locked(&log->l_icloglock);
3445
3446         if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3447                 xlog_state_switch_iclogs(log, iclog, 0);
3448         } else {
3449                 ASSERT(iclog->ic_state &
3450                         (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3451         }
3452 }
3453
3454
3455 /*****************************************************************************
3456  *
3457  *              TICKET functions
3458  *
3459  *****************************************************************************
3460  */
3461
3462 /*
3463  * Free a used ticket when its refcount falls to zero.
3464  */
3465 void
3466 xfs_log_ticket_put(
3467         xlog_ticket_t   *ticket)
3468 {
3469         ASSERT(atomic_read(&ticket->t_ref) > 0);
3470         if (atomic_dec_and_test(&ticket->t_ref))
3471                 kmem_zone_free(xfs_log_ticket_zone, ticket);
3472 }
3473
3474 xlog_ticket_t *
3475 xfs_log_ticket_get(
3476         xlog_ticket_t   *ticket)
3477 {
3478         ASSERT(atomic_read(&ticket->t_ref) > 0);
3479         atomic_inc(&ticket->t_ref);
3480         return ticket;
3481 }
3482
3483 /*
3484  * Figure out the total log space unit (in bytes) that would be
3485  * required for a log ticket.
3486  */
3487 int
3488 xfs_log_calc_unit_res(
3489         struct xfs_mount        *mp,
3490         int                     unit_bytes)
3491 {
3492         struct xlog             *log = mp->m_log;
3493         int                     iclog_space;
3494         uint                    num_headers;
3495
3496         /*
3497          * Permanent reservations have up to 'cnt'-1 active log operations
3498          * in the log.  A unit in this case is the amount of space for one
3499          * of these log operations.  Normal reservations have a cnt of 1
3500          * and their unit amount is the total amount of space required.
3501          *
3502          * The following lines of code account for non-transaction data
3503          * which occupy space in the on-disk log.
3504          *
3505          * Normal form of a transaction is:
3506          * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3507          * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3508          *
3509          * We need to account for all the leadup data and trailer data
3510          * around the transaction data.
3511          * And then we need to account for the worst case in terms of using
3512          * more space.
3513          * The worst case will happen if:
3514          * - the placement of the transaction happens to be such that the
3515          *   roundoff is at its maximum
3516          * - the transaction data is synced before the commit record is synced
3517          *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3518          *   Therefore the commit record is in its own Log Record.
3519          *   This can happen as the commit record is called with its
3520          *   own region to xlog_write().
3521          *   This then means that in the worst case, roundoff can happen for
3522          *   the commit-rec as well.
3523          *   The commit-rec is smaller than padding in this scenario and so it is
3524          *   not added separately.
3525          */
3526
3527         /* for trans header */
3528         unit_bytes += sizeof(xlog_op_header_t);
3529         unit_bytes += sizeof(xfs_trans_header_t);
3530
3531         /* for start-rec */
3532         unit_bytes += sizeof(xlog_op_header_t);
3533
3534         /*
3535          * for LR headers - the space for data in an iclog is the size minus
3536          * the space used for the headers. If we use the iclog size, then we
3537          * undercalculate the number of headers required.
3538          *
3539          * Furthermore - the addition of op headers for split-recs might
3540          * increase the space required enough to require more log and op
3541          * headers, so take that into account too.
3542          *
3543          * IMPORTANT: This reservation makes the assumption that if this
3544          * transaction is the first in an iclog and hence has the LR headers
3545          * accounted to it, then the remaining space in the iclog is
3546          * exclusively for this transaction.  i.e. if the transaction is larger
3547          * than the iclog, it will be the only thing in that iclog.
3548          * Fundamentally, this means we must pass the entire log vector to
3549          * xlog_write to guarantee this.
3550          */
3551         iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3552         num_headers = howmany(unit_bytes, iclog_space);
3553
3554         /* for split-recs - ophdrs added when data split over LRs */
3555         unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3556
3557         /* add extra header reservations if we overrun */
3558         while (!num_headers ||
3559                howmany(unit_bytes, iclog_space) > num_headers) {
3560                 unit_bytes += sizeof(xlog_op_header_t);
3561                 num_headers++;
3562         }
3563         unit_bytes += log->l_iclog_hsize * num_headers;
3564
3565         /* for commit-rec LR header - note: padding will subsume the ophdr */
3566         unit_bytes += log->l_iclog_hsize;
3567
3568         /* for roundoff padding for transaction data and one for commit record */
3569         if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3570                 /* log su roundoff */
3571                 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3572         } else {
3573                 /* BB roundoff */
3574                 unit_bytes += 2 * BBSIZE;
3575         }
3576
3577         return unit_bytes;
3578 }
3579
3580 /*
3581  * Allocate and initialise a new log ticket.
3582  */
3583 struct xlog_ticket *
3584 xlog_ticket_alloc(
3585         struct xlog             *log,
3586         int                     unit_bytes,
3587         int                     cnt,
3588         char                    client,
3589         bool                    permanent,
3590         xfs_km_flags_t          alloc_flags)
3591 {
3592         struct xlog_ticket      *tic;
3593         int                     unit_res;
3594
3595         tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3596         if (!tic)
3597                 return NULL;
3598
3599         unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3600
3601         atomic_set(&tic->t_ref, 1);
3602         tic->t_task             = current;
3603         INIT_LIST_HEAD(&tic->t_queue);
3604         tic->t_unit_res         = unit_res;
3605         tic->t_curr_res         = unit_res;
3606         tic->t_cnt              = cnt;
3607         tic->t_ocnt             = cnt;
3608         tic->t_tid              = prandom_u32();
3609         tic->t_clientid         = client;
3610         tic->t_flags            = XLOG_TIC_INITED;
3611         tic->t_trans_type       = 0;
3612         if (permanent)
3613                 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3614
3615         xlog_tic_reset_res(tic);
3616
3617         return tic;
3618 }
3619
3620
3621 /******************************************************************************
3622  *
3623  *              Log debug routines
3624  *
3625  ******************************************************************************
3626  */
3627 #if defined(DEBUG)
3628 /*
3629  * Make sure that the destination ptr is within the valid data region of
3630  * one of the iclogs.  This uses backup pointers stored in a different
3631  * part of the log in case we trash the log structure.
3632  */
3633 void
3634 xlog_verify_dest_ptr(
3635         struct xlog     *log,
3636         char            *ptr)
3637 {
3638         int i;
3639         int good_ptr = 0;
3640
3641         for (i = 0; i < log->l_iclog_bufs; i++) {
3642                 if (ptr >= log->l_iclog_bak[i] &&
3643                     ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3644                         good_ptr++;
3645         }
3646
3647         if (!good_ptr)
3648                 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3649 }
3650
3651 /*
3652  * Check to make sure the grant write head didn't just over lap the tail.  If
3653  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3654  * the cycles differ by exactly one and check the byte count.
3655  *
3656  * This check is run unlocked, so can give false positives. Rather than assert
3657  * on failures, use a warn-once flag and a panic tag to allow the admin to
3658  * determine if they want to panic the machine when such an error occurs. For
3659  * debug kernels this will have the same effect as using an assert but, unlinke
3660  * an assert, it can be turned off at runtime.
3661  */
3662 STATIC void
3663 xlog_verify_grant_tail(
3664         struct xlog     *log)
3665 {
3666         int             tail_cycle, tail_blocks;
3667         int             cycle, space;
3668
3669         xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3670         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3671         if (tail_cycle != cycle) {
3672                 if (cycle - 1 != tail_cycle &&
3673                     !(log->l_flags & XLOG_TAIL_WARN)) {
3674                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3675                                 "%s: cycle - 1 != tail_cycle", __func__);
3676                         log->l_flags |= XLOG_TAIL_WARN;
3677                 }
3678
3679                 if (space > BBTOB(tail_blocks) &&
3680                     !(log->l_flags & XLOG_TAIL_WARN)) {
3681                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3682                                 "%s: space > BBTOB(tail_blocks)", __func__);
3683                         log->l_flags |= XLOG_TAIL_WARN;
3684                 }
3685         }
3686 }
3687
3688 /* check if it will fit */
3689 STATIC void
3690 xlog_verify_tail_lsn(
3691         struct xlog             *log,
3692         struct xlog_in_core     *iclog,
3693         xfs_lsn_t               tail_lsn)
3694 {
3695     int blocks;
3696
3697     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3698         blocks =
3699             log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3700         if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3701                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3702     } else {
3703         ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3704
3705         if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3706                 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3707
3708         blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3709         if (blocks < BTOBB(iclog->ic_offset) + 1)
3710                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3711     }
3712 }       /* xlog_verify_tail_lsn */
3713
3714 /*
3715  * Perform a number of checks on the iclog before writing to disk.
3716  *
3717  * 1. Make sure the iclogs are still circular
3718  * 2. Make sure we have a good magic number
3719  * 3. Make sure we don't have magic numbers in the data
3720  * 4. Check fields of each log operation header for:
3721  *      A. Valid client identifier
3722  *      B. tid ptr value falls in valid ptr space (user space code)
3723  *      C. Length in log record header is correct according to the
3724  *              individual operation headers within record.
3725  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3726  *      log, check the preceding blocks of the physical log to make sure all
3727  *      the cycle numbers agree with the current cycle number.
3728  */
3729 STATIC void
3730 xlog_verify_iclog(
3731         struct xlog             *log,
3732         struct xlog_in_core     *iclog,
3733         int                     count,
3734         bool                    syncing)
3735 {
3736         xlog_op_header_t        *ophead;
3737         xlog_in_core_t          *icptr;
3738         xlog_in_core_2_t        *xhdr;
3739         xfs_caddr_t             ptr;
3740         xfs_caddr_t             base_ptr;
3741         __psint_t               field_offset;
3742         __uint8_t               clientid;
3743         int                     len, i, j, k, op_len;
3744         int                     idx;
3745
3746         /* check validity of iclog pointers */
3747         spin_lock(&log->l_icloglock);
3748         icptr = log->l_iclog;
3749         for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3750                 ASSERT(icptr);
3751
3752         if (icptr != log->l_iclog)
3753                 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3754         spin_unlock(&log->l_icloglock);
3755
3756         /* check log magic numbers */
3757         if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3758                 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3759
3760         ptr = (xfs_caddr_t) &iclog->ic_header;
3761         for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3762              ptr += BBSIZE) {
3763                 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3764                         xfs_emerg(log->l_mp, "%s: unexpected magic num",
3765                                 __func__);
3766         }
3767
3768         /* check fields */
3769         len = be32_to_cpu(iclog->ic_header.h_num_logops);
3770         ptr = iclog->ic_datap;
3771         base_ptr = ptr;
3772         ophead = (xlog_op_header_t *)ptr;
3773         xhdr = iclog->ic_data;
3774         for (i = 0; i < len; i++) {
3775                 ophead = (xlog_op_header_t *)ptr;
3776
3777                 /* clientid is only 1 byte */
3778                 field_offset = (__psint_t)
3779                                ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3780                 if (!syncing || (field_offset & 0x1ff)) {
3781                         clientid = ophead->oh_clientid;
3782                 } else {
3783                         idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3784                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3785                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3786                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3787                                 clientid = xlog_get_client_id(
3788                                         xhdr[j].hic_xheader.xh_cycle_data[k]);
3789                         } else {
3790                                 clientid = xlog_get_client_id(
3791                                         iclog->ic_header.h_cycle_data[idx]);
3792                         }
3793                 }
3794                 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3795                         xfs_warn(log->l_mp,
3796                                 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3797                                 __func__, clientid, ophead,
3798                                 (unsigned long)field_offset);
3799
3800                 /* check length */
3801                 field_offset = (__psint_t)
3802                                ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3803                 if (!syncing || (field_offset & 0x1ff)) {
3804                         op_len = be32_to_cpu(ophead->oh_len);
3805                 } else {
3806                         idx = BTOBBT((__psint_t)&ophead->oh_len -
3807                                     (__psint_t)iclog->ic_datap);
3808                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3809                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3810                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3811                                 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3812                         } else {
3813                                 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3814                         }
3815                 }
3816                 ptr += sizeof(xlog_op_header_t) + op_len;
3817         }
3818 }       /* xlog_verify_iclog */
3819 #endif
3820
3821 /*
3822  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3823  */
3824 STATIC int
3825 xlog_state_ioerror(
3826         struct xlog     *log)
3827 {
3828         xlog_in_core_t  *iclog, *ic;
3829
3830         iclog = log->l_iclog;
3831         if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3832                 /*
3833                  * Mark all the incore logs IOERROR.
3834                  * From now on, no log flushes will result.
3835                  */
3836                 ic = iclog;
3837                 do {
3838                         ic->ic_state = XLOG_STATE_IOERROR;
3839                         ic = ic->ic_next;
3840                 } while (ic != iclog);
3841                 return 0;
3842         }
3843         /*
3844          * Return non-zero, if state transition has already happened.
3845          */
3846         return 1;
3847 }
3848
3849 /*
3850  * This is called from xfs_force_shutdown, when we're forcibly
3851  * shutting down the filesystem, typically because of an IO error.
3852  * Our main objectives here are to make sure that:
3853  *      a. the filesystem gets marked 'SHUTDOWN' for all interested
3854  *         parties to find out, 'atomically'.
3855  *      b. those who're sleeping on log reservations, pinned objects and
3856  *          other resources get woken up, and be told the bad news.
3857  *      c. nothing new gets queued up after (a) and (b) are done.
3858  *      d. if !logerror, flush the iclogs to disk, then seal them off
3859  *         for business.
3860  *
3861  * Note: for delayed logging the !logerror case needs to flush the regions
3862  * held in memory out to the iclogs before flushing them to disk. This needs
3863  * to be done before the log is marked as shutdown, otherwise the flush to the
3864  * iclogs will fail.
3865  */
3866 int
3867 xfs_log_force_umount(
3868         struct xfs_mount        *mp,
3869         int                     logerror)
3870 {
3871         struct xlog     *log;
3872         int             retval;
3873
3874         log = mp->m_log;
3875
3876         /*
3877          * If this happens during log recovery, don't worry about
3878          * locking; the log isn't open for business yet.
3879          */
3880         if (!log ||
3881             log->l_flags & XLOG_ACTIVE_RECOVERY) {
3882                 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3883                 if (mp->m_sb_bp)
3884                         XFS_BUF_DONE(mp->m_sb_bp);
3885                 return 0;
3886         }
3887
3888         /*
3889          * Somebody could've already done the hard work for us.
3890          * No need to get locks for this.
3891          */
3892         if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3893                 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3894                 return 1;
3895         }
3896         retval = 0;
3897
3898         /*
3899          * Flush the in memory commit item list before marking the log as
3900          * being shut down. We need to do it in this order to ensure all the
3901          * completed transactions are flushed to disk with the xfs_log_force()
3902          * call below.
3903          */
3904         if (!logerror)
3905                 xlog_cil_force(log);
3906
3907         /*
3908          * mark the filesystem and the as in a shutdown state and wake
3909          * everybody up to tell them the bad news.
3910          */
3911         spin_lock(&log->l_icloglock);
3912         mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3913         if (mp->m_sb_bp)
3914                 XFS_BUF_DONE(mp->m_sb_bp);
3915
3916         /*
3917          * This flag is sort of redundant because of the mount flag, but
3918          * it's good to maintain the separation between the log and the rest
3919          * of XFS.
3920          */
3921         log->l_flags |= XLOG_IO_ERROR;
3922
3923         /*
3924          * If we hit a log error, we want to mark all the iclogs IOERROR
3925          * while we're still holding the loglock.
3926          */
3927         if (logerror)
3928                 retval = xlog_state_ioerror(log);
3929         spin_unlock(&log->l_icloglock);
3930
3931         /*
3932          * We don't want anybody waiting for log reservations after this. That
3933          * means we have to wake up everybody queued up on reserveq as well as
3934          * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3935          * we don't enqueue anything once the SHUTDOWN flag is set, and this
3936          * action is protected by the grant locks.
3937          */
3938         xlog_grant_head_wake_all(&log->l_reserve_head);
3939         xlog_grant_head_wake_all(&log->l_write_head);
3940
3941         if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3942                 ASSERT(!logerror);
3943                 /*
3944                  * Force the incore logs to disk before shutting the
3945                  * log down completely.
3946                  */
3947                 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3948
3949                 spin_lock(&log->l_icloglock);
3950                 retval = xlog_state_ioerror(log);
3951                 spin_unlock(&log->l_icloglock);
3952         }
3953         /*
3954          * Wake up everybody waiting on xfs_log_force.
3955          * Callback all log item committed functions as if the
3956          * log writes were completed.
3957          */
3958         xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3959
3960 #ifdef XFSERRORDEBUG
3961         {
3962                 xlog_in_core_t  *iclog;
3963
3964                 spin_lock(&log->l_icloglock);
3965                 iclog = log->l_iclog;
3966                 do {
3967                         ASSERT(iclog->ic_callback == 0);
3968                         iclog = iclog->ic_next;
3969                 } while (iclog != log->l_iclog);
3970                 spin_unlock(&log->l_icloglock);
3971         }
3972 #endif
3973         /* return non-zero if log IOERROR transition had already happened */
3974         return retval;
3975 }
3976
3977 STATIC int
3978 xlog_iclogs_empty(
3979         struct xlog     *log)
3980 {
3981         xlog_in_core_t  *iclog;
3982
3983         iclog = log->l_iclog;
3984         do {
3985                 /* endianness does not matter here, zero is zero in
3986                  * any language.
3987                  */
3988                 if (iclog->ic_header.h_num_logops)
3989                         return 0;
3990                 iclog = iclog->ic_next;
3991         } while (iclog != log->l_iclog);
3992         return 1;
3993 }
3994